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Abstract

We develop a novel unfitted finite element solver for composite materials with
quasi-1D fibrous reinforcements. The method belongs to the class of
mixed-dimensional non-conforming finite element solvers. The fibres are treated as 1D
structural elements that may intersect the mesh of the embedding structure in an
arbitrary manner. No meshing of the unidimensional elements is required. Instead, fibre
solution fields are described using the trace of the background mesh. A regularised
“cut” finite element formulation is carefully designed to ensure that analyses using such
non-conforming finite element descriptions are stable. We also design a dedicated
primal/dual operator splitting scheme to resolve the coupling between structure and
fibrous reinforcements efficiently. The novel computational strategy is applied to the
solution of stiff computational models whereby fibrous reinforcements may lose their
bond to the embedding material above a certain level of stress. It is shown that the
primal-dual 1D/3D CutFEM scheme is convergent and well-behaved in variety of
scenarios involving such highly nonlinear structural computations.
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Introduction
In this paper, we develop an efficient unfitted finite element solver for composite materi-
als and structures featuring fibrous reinforcements. Such composites are commonly used
in industry. In civil engineering, standard concrete structures are reinforced with steel
lattices to circumvent the poor ability of concrete to keep its integrity under tensile load-
ing. Short fibres may be also be added to concrete mixes to increase their strength and
ductility. To characterise and certify engineering structures employing such reinforced
composites, it is important to devise efficient and reliable finite element solvers to simulate
the associated micro-mechanics.
Simulations involving “quasi-1D” embedded structural elements are difficult to carry

in a standard finite element context. Indeed, representing such slender elements using
finite elements that are dimensionality consistent with the embedding space leads to pro-
hibitively large computationalmodels. The3Danalysis of large-scale slender elementsmay
at best be performed locally [23]. Away from regions of interest, asymptotic or numerical
cross-sectional approximations of the mechanics of these structures need to be derived
for numerical models to be tractable. In the context of quasi-1D embedded fibres, slender
elements are typically represented as unidimensional structures with the properties of
bars or beams. The mechanical coupling between these lower-dimensional elements and
the surrounding domain needs to be handled with care when developing finite element
solvers.
Following the taxonomy preposed in [23], three traditional finite element methodolo-

gies may be distinguished. In the diffuse approach (see e.g. [28]), stiffness is added to
the element of the embedded domain that are intersected by reinforcements, leading to
the desired local anisotropy. Such formulations are restricted to the analysis of arrays of
slender elements that are geometrically regular and mechanically perfectly bonded to the
surroundingmaterial. In the discrete, conforming approach (see e.g. [28]), reinforcements
are geometrically represented by edges of the embedding finite elementmesh. The advan-
tage is that slender elements may now possess their own kinematics, allowing to simulate
sliding for example. However, elements of the embedding domain need to conform to
the geometry of the fibrous reinforcement, leading to additional cost, and potentially to
meshing difficulties. Finally, modern computational approach may use an embedded rep-
resentation of fibres, whereby fibres are explicitly represented but may cross elements of
the surrounding material in an arbitrary manner [5,17,23,27]. The present methodology
belongs to the latter class of methods.
We focus in this paper on the simulation of 2D and 3D structures reinforced by 1D uni-

dimensional structural elements. The reinforcements will be straight and we will assume
that they have no bending energy (i.e. bars in tension and compression). In this specific
but important engineering context, we propose to develop a novel primal/dual CutFEM
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approach to model the assembly of composite components. The fibres will possess their
own degrees of freedom, as in [10,15]. This fundamental feature will be leveraged to rep-
resent sliding behaviours between the fibres and the surrounding material. Consistently
with theCutFEM framework [6,18], no specific computationalmeshwill be created to rep-
resent the 1D reinforcements. Instead unidimensional mechanical fields will be described
as the trace of intersected embedded elements. Such formulations have already been
explored to solve Laplace–Beltrami equations over embedded manifolds [9,10], and to
solve fluid flow problems in networks of cracks [10,14,16].
The novelty of the CutFEM approach proposed in the present paper is threefold. Firstly,

we extend the “CutFEM on embedded manifolds” premise to the solution of advanced
nonlinear solid mechanics problems involving unidimensional reinforcements. Secondly,
we propose an efficient primal-dual numerical algorithm based on the LaTIn algorithm
[3,21,22] to solve the 1D/3D coupled problem iteratively. This primal-dual formulation
is a natural extension of our previous work on primal-dual CutFEM technologies for
unilateral contact problems [12] (see [1,8,19,26] for closely related pieces of work from
other research groups), and is relatively new in the context of CutFEM approaches, where
consistent penalty formulations are usually chosen as a first step to the development of a
coupling strategy [7,11,13]. Finally, CutFEM formulations need to be carefully regularised
for system matrices to be well conditioned and, in the context of primal-dual algorithms,
for inf-sup stability conditions to be satisfied. The regularisation technique proposed in
this paper departs from earlier work [10] in that it is devised specifically for primal-
dual coupling conditions and that it relies on a consistent combination of ghost penalty
regularisation [6] and added diffusion in the band of intersected embedding elements [10].
The proposed CutFEM methodology is to be applied to a family of nonlinear prob-

lems that are relevant to civil engineering design. We have two application targets in
mind. Firstly, we wish to develop a solver for fracture in short-fibre reinforced concrete
structures. Inclusions and inclusion/matrix nonlinear interface conditions will be han-
dled efficiently using the primal-dual CutFEM algorithm presented in [11]. The proposed
primal-dual algorithm will allow us to represent stiff slender reinforcements using a very
similar algorithm, ensuring that the new developments proposed here are fully compat-
ible with our existing computational library. Matrix failure will be represented by using
the phase-field model and staggered solution algorithm presented in [25], without mod-
ification. Secondly, we wish to develop a methodology to simulate fibre pull-out. To this
end, another novel element of the paper is the development of a new formulation for
imperfectly bonded 1D fibres in 3D materials. More precisely, sliding will be allowed
above a certain threshold, following a thermodynamically consistent approach, yielding a
primal-dual stiff friction model (or a model of perfect plasticity with infinite stiffness for
the 1D/3D interface) whose solution will be naturally handled by the LaTIn algorithm.
The article is organised as follows. In “Embedded fibre problem” section, we present

the problem setting. Straight elastic unidimensional fibres are embedded in a background
elastic (potentially damageable) material. The new imperfect bonding formulation is pre-
sented next. In “Stabilised enriched finite element formulation” section, we present the
primal-dual cut finite element formulation that will be dedicated to the solution of com-
posite materials with fibrous reinforcements. Stabilisation aspects are carefully detailed
in this section. The LaTIn iterative scheme is detailed in “Operator-splitting LaTIn algo-
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Fig. 1 Computational domain with two embedded 1D fibres. The fibres have no bending energy

rithm” section. Finally, numerical results to demonstrate the efficiency and versatility of
the proposed solver are reported and discussed in “Numerical examples” section (Fig. 1).

Embedded fibre problem
We consider the problem of an elastic body occupying domain � ⊂ R

d in dimension
d ∈ {2, 3} (see Fig. 1). The material is reinforced by Nf straight unidimensional fibres.
The ith fibre occupies domain

�i
f =

{
x ∈ �

∣∣∣ x = Pi
1 + α(Pi

2 − Pi
1), α ∈ [0 1]

}
, (1)

where Pi
1 and P

i
2 are two elements ofRd . As a particular case, Pi

1 and P
i
2 are the extremities

of fibre i if both points belong to domain �. We define �f = ⋃nf
i=1 �i

f and we further

assume that �i
f ∩ �

j
f = ∅ if i �= j (i.e. the fibres do not intersect). We define the director

vector tif of the ith fibre as tif = (Pi
2−Pi

1)
‖Pi

2−Pi
1‖2

. The norm used is the euclidean norm. Here, tf
will denote the field defined over �f whose value is tif in �i

f . We also introduce basis nf
(respectively (n1f , n

2
f )) for the line (respectively the plane) normal to tf , in the case d = 2

(respectively d = 3). The boundary of domain � is denoted by ∂� and is additively split
into a Dirichlet part ∂�d and a Neumann part ∂�n.
We denote by um : � → R

d the displacement field of the matrix of the composite
material. Here, um will be searched in Sobolov space Um = H1(�) of functions whose
derivatives up to order one are square integrable. The displacement of the ith fibre is
denoted by uif : �i

f → R
d , and we additionally introduce notation uf : �f → R

d to
denote the field of �f whose restriction to subdomain �i

f ⊂ �f is uif . We seek field uf in
product space Uf = ∏nf

i=1H1(�i
f ).

Elastic composite with perfectly bonded embedded fibres

To ease the reader into the proposed numerical scheme, we first introduce a simple solid
mechanics problemwhereby thematrix andfibres are linear elastic, andwhere thebonding
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between these two phases is perfect (i.e. there is no displacement jump). We therefore
seek a solution u := (um, uf ) ∈ Um × Uf minimising the energy functional

J (um, uf ) = Em(um) + Ef (uf ) , (2)

where the potential energy functionals Em and Ef are defined by

Em(um) = 1
2

∫

�

∇sum : C : ∇sum dx −
∫

�

fd · um dx −
∫

∂�n
td · um dx (3)

and

Ef (uf ) = 1
2

nf∑
i=1

∫

�i
f

kf ∇f uf : ∇f uf dx , (4)

respectively. In the previous expressions, ∇s . = 1
2

(∇ . + (∇ . )T
)
is the symmetric part of

the displacement gradient. ∇f is the projected gradient operator defined as

∇f . = (tf ⊗ tf ) : ∇ . . (5)

Field fd : � → R
d is a volume source term, and td : ∂�n → R

d is a field of Neumann
conditions. Finally, kf ∈ R is a fibre stiffness parameter, andC ∈ (Rd)4 is the fourth-order
Hooke tensor defined by its action, which in the case of isotropic materials is

C : ∇s . = λTrace(∇s . )Id + 2μ∇s . . (6)

In the previous expression Id is the identity tensor, and λ and μ are the Lamé constants.
Importantly, due to the action of the projector gradient operator, the fibres have no
bending energy.
The minimisation of J must be performed under constraints

um = ud in ∂�d (7)

and

um − uf = 0 in ∂�f . (8)

The last equality enforces perfect bonding between matrix and elastic fibres.
The problem of minimisation under constraint can be recast as the unconstrained

extremisation of a Lagrangian. The corresponding variational principle is the following
Euler-Lagrange system of coupled equations: Find (um, uf , λ) ∈ Um × Uf × Z such that
for all (δum, δuf , δλ) ∈ Um × Uf × Z

∫

�

∇sum : C : ∇sδum dx +
∫

�f

kf ∇f uf : ∇f δuf dx −
∫

�f

λ · (δum − δuf ) dx

=
∫

�

fd · δum dx +
∫

∂�n
td · δum dx , (9)

and ∫

�f

δλ · (um − uf ) dx = 0 (10)

with the additional condition that Dirichlet condition (7) must be satisfied. We have used
notation Z = L2(�f ). Here, the Lagrange multiplier field λ ∈ Z can be interpreted as the
opposite of a density of forces applied by the embedding material to the 1D fibres (choose
δum = 0 in (9) to see this).
For later use we define the jump operator by [u] := um−uf , where we implicitly assume

the existence of the cartesian product u between um and uf .
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Embedded elastic fibres with perfectly plastic bonding

We now relax perfect bonding condition (8) and only impose it in directions that are
normal to the fibre directors, i.e.

∀i ∈ �1, d − 1�, [u] · nif = 0 in�i
f , (11)

which may also be compactly written as

�⊥
f [u] = 0 in�f , (12)

where �⊥
f . = (

Id − tf ⊗ tf
)
. . For later use, we split λ as follows:

λ = �f λ + �⊥
f λ := (Id − �⊥

f )λ + �⊥
f λ = (tf ⊗ tf )λ + �⊥

f λ =: λ�
f tf + �⊥

f λ , (13)

We assume that equilibrium Eq. (9) is satisfied. Due to the relaxation of the bonding
conditions, λ�

f is now undetermined. In the following, we introduce a rate-independent
plasticity-like evolution law for this quantity, following the classical framework of ther-
modynamically consistent materials.
The nonlinear time analysis will be conducted over pseudo-time interval T = [0 T ].

Field um, uf and λ are now defined over product spaces Um × T , Uf × T and Z × T ,
respectively. For the sake of simplicity, the initial conditions um( . , 0) and uf ( . , 0) will be
set to zero.
At any time t ∈ T \{0}, the energy dissipation is defined by

D(um, uf , λ) = Pe(um, uf ) − d
dt

(
ψ(um, uf )

)
, (14)

where the power of the external forces is

Pe(um, uf ) =
(∫

�

fd · u̇m dx +
∫

∂�n
td · u̇m dx

)
(15)

and the elastic energy of the composite is defined as

ψ(um, uf ) = 1
2

(∫

�

∇sum : C : ∇sum dx +
∫

�f

kf ∇f uf : ∇f uf dx
)

. (16)

Replacing the test functions by velocities in (9), the energy dissipation takes the following
expression:

D(um, uf , λ) =
∫

�f

λ� · [u̇]� dx (17)

where λ� := tf · λ.
We now postulate that solution (um, uf , λ) satisfies the principle of maximum energy

dissipation at all times, subject to the following inequality constraint:

ff (λ�) := |λ�| − Y ≤ 0 in �f , (18)

where Y is the unique positive scalar parameter of the friction model. The constrained
maximisation principle will yield an expression for the evolution of λ�, which is ensured
by the convexity of ff . Introducing and extremising Lagrangian

L�
f (λ

�, γf ) := D(um, uf , λ�) +
∫

�f

γf ff (λ�) dx (19)

with respect to λ� and Lagrangemultiplier γf , we obtain the usual Karush–Kuhn–Tucker
conditions, which are composed of the three relations

ff (λ�) ≤ 0 γf ff (λ�) = 0 γf ≥ 0 (20)
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and of variational equality

∀δλ� ∈ L2(�f ), D(um, uf , δλ) +
∫

�f

γf f ′
f (λ

�)(δλ · tf ) dx = 0, (21)

where f ′
f ( . ) = sign( . ). The last equation yields the following expression for the Lagrange

multiplier:

γf = −sign(λ�) [u̇]� . (22)

We can finally state the system of equations that governs the evolution of the composite
with imperfectly bonded fibres. The system is composed of equilibrium Eq. (9) perfect
normal bonding Eq. (11) and the systemof equations for the plastic flowof the fibre/matrix
bond in the direction of the fibre director vectors

ff (λ�) ≤ 0 ff (λ�) [u̇]� = 0 sign(λ�) [u̇]� ≤ 0 . (23)

The last inequality implies, in particular, that the dissipation is always positive, which
means that the proposed model satisfies the second principle of thermodynamics. Whilst
the two first equations allow us to calculate the amplitude of λ�, the last one yields its
sign. It is clear that λ� acts in opposition to the motion of the matrix relative to the fibres.

Stabilised enriched finite element formulation
Time discretisation

We use the implicit Euler scheme to discretise the time derivatives that appear in the
plasticity model. T is split into nt time slabs of equal length �T . The resulting discrete
time grid is denoted by T�t = {t0, t1, ... , tnt }. At time tn, n > 0, system (23) becomes:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

ff
(
λ�(tn)

) ≤ 0

ff
(
λ�(tn)

) (
[u(tn)]� − [u(tn−1)]�

) = 0

sign
(
λ�(tn)

) (
[u(tn)]� − [u(tn−1)]�

) ≤ 0 .

(24)

Notice that step length �T does not appear in this set of rate-independent equations (i.e.
pseudo-time dependency).

Cut finite element formulation

Finite element spaces

We will solve the composite problem using an enriched finite element formulation. In
particular, the embedded fibres will possess their own degrees of freedom defined via
the finite element space of the embedding material restricted to the band of intersected
elements.
Let us introduce a triangulation Th of domain �. Here, h is the diameter of the smallest

sphere containing the elements of Th. We now define the finite element space Uh ⊂ Um
by

Uh := {u ∈ C0(�) |u|K ∈ P1(K )∀K ∈ Th} . (25)

Next, we define the set of all elements of Th that have a non-zero intersection with �f (i.e.
grey elements in Fig. 2) by

Gh := {K ∈ Th |K ∩ �f �= ∅} . (26)

The domain corresponding to this set is denoted by Gh := ⋃
K∈Gh

K . Importantly, all
fields defined over the embedded fibres will be represented by the restriction of finite
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Fig. 2 Primal and dual fibre fields are represented by the trace of bulk finite element spaces

element fields defined over Gh. We define the extended (in the sense extended from 1D
embedded domain to the surrounding surface or volume) fibre finite element space Wh
by

Wh := {u ∈ C0(Gh) |u|K ∈ P1(K )∀K ∈ Gh} . (27)

Of key importance to CutFEM methods [7,12,18] is the introduction of regularisation
terms to ensure that system matrices remain well-conditioned, notably by applying some
formof ghost-penalty [6] stabilisation. To this end,we define the set of intersected element
edges by

FI := {F = K ∩ K ′ |K ∈ Gh and K ′ ∈ Gh} . (28)

Finite element formulation At time tn, n > 0, we look for a solution composed of fields
uh := (um,h, uf,h, λh, w̃h, λ̃h) ∈ Uh × Wh × Wh × Z × Z . Here, um,h is the finite element
displacement in the matrix phase. uf,h is a finite element field defined over the band
of elements intersected by the fibers, and whose restriction to the 1D fiber domains
will be our finite element approximation of the fiber displacements. λh is the extended
approximation of the Lagrange multiplier field, which will be sought for in the same space
as uf,h. Fields w̃h and λ̃h are additional variables that need to be introduced to stabilise
the CutFEM formulation. λ̃h is a fiber Lagrange multiplier field that belongs in L2(�f ).
Finally, w̃h is a field that represents the jump of displacement between the fibers and the
surrounding matrix material. This field will also be looked for in L2(�f ). Fields w̃h and
λ̃h are not discretised a priori. Their numerical values will only be required at quadrature
points defined over interface �f (through the discrete evaluation of integrals). The 5 fields
introduced here are fully defined by the set of equations provided below.
To avoid cluttered symbolic expressions, we will omit the dependency of solution fields

to time. The only exception is for quantities at time tn−1, which will be indicated via the
� superscript. Other notations, notably the use of superscript � and jump symbol [ ] are
meant to be consistent with the developments of the previous sections, and should be
self-explanatory.
The enriched finite element formulation of the embedded fibre problem employs a two-

scale formalism that requires splittingZ additively into the restriction ofWh onto �f and
its supplementary space. Accordingly, the stabilised and extendedL2-projection λh ∈ Wh
of field λ̃h ∈ Z is defined by

∀δλh ∈ Wh, (λh − λ̃h, δλh)L2(�f ) + s♥,h(λh, δλh) = 0. (29)

Here, term s♥,h is a regularisation term that will be discussed in the next section.
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Now, solution (um,h, uf,h, λh, w̃h, λ̃h) must satisfy the previous identity, the Dirichlet
conditions forum,h and the following variational statement For all (δum,h, δuf,h) ∈ Uh×Wh,
and providing that δum,h satisfies the homogeneous Dirichlet boundary conditions,

ah
(
(um,h, uf,h), (δum,h, δuf,h)

) − (λh, [δuh])L2(�f ) = lh
(
(δum,h, δuf,h)

)
. (30)

This variational equality is complemented by the Signorini-type law for the .̃ quantities

locally in �f ,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ff
(
λ̃�
h

) ≤ 0

ff
(
λ̃�
h

)
.
(
w̃�
h − w̃��

h
) = 0

sign
(
λ̃�
h

) (
w̃�
h − w̃��

h
) ≤ 0 ,

(31)

and by d − 1 scalar equality constraints

locally in �f , �⊥
f w̃h = 0 . (32)

Last, the following closure equation is introduced, following [12]

(λh − λ̃h) − γ ([uh] − w̃h) = 0 . (33)

The last equation regularises the .̃ interface quantities by penalising the distance to their
.h bulk counterpart. Parameter γ must be strictly positive. The bilinear and linear forms
used in (30) are respectively defined by

ah
(
(um,h, uf,h), (δum,h, δuf,h)

) =
∫

�

∇sum,h : C : ∇sδum,h dx

+
∫

�f

kf ∇f uf,h : ∇f δuf,h dx

+ s,h(uf,h, δuf,h) (34)

and

lh
(
(δum,h, δuf,h)

) =
∫

�

fd · δum,h dx +
∫

∂�n
td · δum,h . (35)

Here, term s,h is the second regularisation term of the formulation. It is discussed next.

Stabilisation

Without stabilisation (i.e. definition of s,h, s♥,h and mixed condition (33)), the 1D-3D
CutFEM formulation suffers from several sources of numerical instability.

1. Elements may have a small intersection with a particular fibre, leading to a loss of
control of finite element field uf,h (fibre displacement, which is extended to the band
of intersected elements) and finite element field λf,h.

2. The extended fibre kinematics (displacements and Lagrange multiplers) allows zero
energy modes to be represented, leading to singular systems of equations.

3. Uncontrolled oscillatory modes may appear in the Lagrange multiplier fields due to
the non-satisfaction of the LBB condition.

These problemswill be circumvented via the introductionof the following regularisation
term:

s,h(uf,h, δuf,h) = βkf h2−d
∑
F∈FI

∫

F

(
[∇f uf,h] · nF

) (
[∇f δuf,h] · nF

)
dx

+ ζkf h1−d
∫

Gh

∇⊥
f uf,h : ∇⊥

f δuf,h dx , (36)
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where nF denotes the facet normal and the orthogonal gradient operator is defined by

∇⊥
f uf,h = ∇uf,h −

d∑
i=1

(∇(uf,h · ei) · tf
)
ei ⊗ tf . (37)

Ghost penalty parameter β is typically set to 0.1. The corresponding term extends
the ellipticity provided by the fibres’ elasticity operator to the entire band of intersected
elements, thereby alleviating the ill-conditioning due to uncontrolled modes of uf,h · tf .
Let us emphasise that only the tangential part of uf,h is controlled by the ghost-penalty
stabilisation. This is consistent with the formulation of the deformation energy of the
fibres, which develops in reaction to the projected displacement gradient. The normal
part of the fibre displacement does not need to be regularised. It will simply follow the
bulk displacement, which is trivially enforceable, the fibre having no bending energy to
act against the corresponding constraint. This addresses point 1 above.
The second regularisation term eliminates zero energy modes from the system, which

addresses point 2 above. It is a diffusion term which is integrated over the entire band
of element, although a facet penalisation could have been used as well [10]. This term
does not introduce any inconsistency (an extension of the exact solution in the normal
directionmay be constructed, which has vanishing orthogonal gradient). Typically, a small
parameter value ζ = 10−5 is sufficient to stabilise the formulation.
A similar term is proposed to stabilise the Lagrange multiplier field (see Points 1 and 3

above):

s♥,h(λh, δλh) = βλ

1
κ
h6−d

∑
F∈FI

∫

F

(
[∇f λh] · nF

) (
[∇f λh] · nF

)
dx

+ ζλ

1
κ
h5−d

∫

Gh

∇⊥
f λh : ∇⊥

f δλh dx , (38)

where κ = ELd−1 kf
ELd−1+kf

is the harmonic mean of the fibre stiffness and the equivalent axial
stiffness provided by the matrix. L is a non-dimensionalising parameter that represents
the width of the matrix region that reacts to the deformations of a particular fibre. As
shown in [12], the first term helps control the spurious oscillations that may appear in the
Lagrange multiplier field. The second term eliminates zero energy modes.
We showed in [12] that this type of stabilised primal/dual formulation could be inter-

preted as an alternative formulation for the stabilised augmented Lagrangian proposed in
[8], in the spirit of the classical approach for unilateral contact problems first introduced
in [2].

Operator-splitting LaTIn algorithm
Overview

We will develop a LaTIn solver that algorithmically decouples the matrix and fibre finite
element problems. LaTIn solvers have proved to be particularly efficient when solving stiff
Signorini-type problems without the need to further smoothen or regularise the discrete
system of governing equations.
The primal/dual variables of interest are Fh = (Fm,h, Ff,h) ∈ Wh ×Wh, which represents

Fm,h ≡ λh and Ff,h ≡ −λh, and Wh = (Wm,h,Wf,h) ∈ Wh × Wh that represents the
restriction of um,h to the band of intersected elements Gh. One iteration of the LaTIn
solver is as follows.
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Linear stage Knowing half-iterate Sk− 1
2 :=

(
Wk− 1

2
h , Fk− 1

2
h

)
, we look for Sk :=

(
Wk

h , F
k
h

)

satisfying differential Eq. (30), where

in Gh, Wk
h = ukm,h . (39)

To close the system of equations, we require the iterate to satisfy the descent search
direction given by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
Fk
m,h − Fk− 1

2
m,h

)
+ γ

(
Wk

m,h − Wk− 1
2

m,h

)
= 0

(
Fk
f,h − Fk− 1

2
f,h

)
+ γ

(
Wk

f,h − Wk− 1
2

f,h

)
= 0 .

(40)

The differential equations of the matrix and fibres are decoupled by this algorithmic
construction. Positive scalar γ was first introduced in Eq. (33). It is such that γ = γ̄ κL−1,
where γ̄ is a non-dimensional parameter.

Relaxation stage

Sk ← μ Sk + (1 − μ) Sk−1 (41)

Relaxation parameter μ is typically set to 0.85 (see e.g. [3]).

Local stage Knowing Sk :=
(
Wk

h , F
k
h

)
, we look for Sk+ 1

2 :=
(
Wk+ 1

2
h , Fk+ 1

2
h

)
satisfying

the set of requirements (29), (31), (32), (33) , where we will introduce variables W̃ k+ 1
2

h =(
W̃ k+ 1

2
m,h , W̃ k+ 1

2
f,h

)
∈ Z2 and F̃ k+ 1

2
h =

(
F̃ k+ 1

2
m,h , F̃ k+ 1

2
f,h

)
∈ Z2 and replace all occurrences of

symbol uh by symbolWh, and λh by Fm,h. We further require that

in Gh, Fk+ 1
2

m,h + Fk+ 1
2

f,h = 0 (42)

and that (29) applies to both Fk+ 1
2

m,h and Fk+ 1
2

f,h . To close the system of equations, we require
the half-iterate iterate to satisfy the ascent direction

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
Fk+ 1

2
m,h − Fk

m,h

)
− γ

(
Wk+ 1

2
m,h − Wk

m,h

)
= 0

(
Fk+ 1

2
f,h − Fk

f,h

)
− γ

(
Wk+ 1

2
f,h − Wk

f,h

)
= 0 .

(43)

Notice that because of closure Eq. (33) and extended projection property (29), the ascent
search direction and Eq. (42) are also satisfied by the .̃ k+ 1

2 quantities.

Linear stage: uncoupled systems of equations

The linear stage defined above consists in solving the following set of linear equations,
which are independent for each phase of the composite:

∀ δum,h ∈ Uh,
∫

�

∇sukm,h : C : ∇sδum,h dx +
∫

�f

γ ukm,h · δum,h dx

= l(δum,h) +
∫

�f

(
Fk− 1

2
m,h + γ Wk− 1

2
m,h

)
· δum,h dx (44)
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∀ δuf,h ∈ Wh,
∫

�f

kf ∇f ukf,h : ∇f δuf,h dx +
∫

�f

γ ukf,h · δuf,h dx + s,h(ukf,h, δuf,h)

=
∫

�f

(
Fk− 1

2
f,h + γ Wk− 1

2
f,h

)
· δuf,h dx . (45)

As detailed previously, the set of equations corresponding to the fibres are regularised by
term s,h.

“Inf-Sup-regularised” local stage: algorithmic solution

The regularised local stage defined previously can be solved by applying the following
algorithmic procedure.

• Choose an appropriate quadrature strategy for
(
F̃m,h, δFm,h

)
L2(�f )

, where F̃m,h ∈ Z
and δFm,h ∈ Wh. At every integration point of set Ĩf,h, solve nonlinear but local Eqs.
(31), (32), (42), (43) for F̃ k+ 1

2
m,h , knowing

(
Wk

h , F
k
h

)
. These calculations are classical

when applying LaTIn solvers, and are fully detailed for the friction model introduced
in this paper in appendix A.

• Solve extended and stabilised projection problem

∀δFm,h ∈ Wh,
(
Fk+ 1

2
m,h , δFm,h

)

L2(�f )
+ s♥

(
Fk+ 1

2
m,h , δFm,h

)

=
(
F̃ k+ 1

2
m,h , δFm,h

)

L2(�f )
. (46)

• Set Fk+ 1
2

f,h = −Fk+ 1
2

m,h and recoverWk+ 1
2

h by using ascent search direction (43).

In our example, we use the quadrature point corresponding to the integral of the product
of two piecewise linear fields over �f . This introduces a quadrature error, whose effect
was studied and discussed in [12].

Numerical examples
All the numerical simulations presented in this section are performed using the LaTIn-
CutFEM library [12] developed in finite element package FEniCS [4].

2D structure with a hole and two embedded 1D reinforcements

The first numerical example that we wish to discuss is represented in Fig. 3. The structure
is two-dimensional, and undergoes plane strain deformations. The computational domain
is the unit square � = [0 1] × [0 1]. A vertical load is applied in the form of a Dirichlet
field ud at the top of the structure, i.e. ∂�d = {x ∈ �| x · e2 = 1}. The Young’s modulus E
in the circle of diameter r = 0.15 with centre (0.5 0.5) is set to 1.0. Outside the circle, the
Young’s modulus is set to 0.1. Hence, the circular inclusion is made of a comparatively
hardmaterial. Poisson’s ratio for bothmaterials are set to 0.3. Two straight reinforcements
are introduced, as represented in Fig. 3. The reinforcements are stiff compared to the
matrix, with kf = 1.0. The friction coefficient Y is relatively low at Y = 0.2, which will
result in early yielding.
The prescribed displacement field is uniform over ∂�d , and of amplitude A(t) as

reported in Fig. 5 (top subfigure). The structure is loaded in traction, then unloaded
and forced into a compressive state, before being reloaded in traction. Figure 5 also shows
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the 26 time steps that will be used by the implicit time integrator. There is no source term,
i.e. fd = 0 and no imposed tractions, i.e. td = 0.
A coarse computational mesh is represented in Fig. 3. The set of intersected cells Gh

over which the finite element fibre displacements and Lagrange multipliers are defined
are also represented. The fibres do not conform with the regular background mesh. The
circle does not conform tomesh edges either. In order to handle themismatch inmaterial
properties, kinematic enrichment is performed using the CutFEM technology, including
ghost penalty stabilisation and the primal/dual coupling introduced in [12].
We now examine Fig. 4. The figure presents the field of Lagrange multipliers after the

third time step (framed in the top subfigure of Fig. 5). The colour scale indicates the mag-
nitude of the Lagrange multipliers, which are piecewise linear in the band of intersected
elements. We emphasise the fact the all our fibre fields are traces of d-dimensional stan-
dard finite element fields defined over these bands of intersected elements. Fibres do not
possess their own meshes. We see that the multipliers are aligned with the director vec-

Fig. 3 2D example with an unfitted stiff circular inclusion and two 1D reinforcements

Fig. 4 Forces applied by the fibers to the embedding material in reaction to an overall prescribed extension
of the structure
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Fig. 5 History of fiber reaction forces. Nonlinear effects are due to the friction law that governs possible
sliding between the fibres and the embedding material. The amplitude of the forces is bounded by
parameter Y of the adhesion/friction model

tors. This is normal, but not enforced directly in our approach. Fibres do not have bending
energy. Therefore, they can only generate forces in the direction of their respective direc-
tor vector, thereby resisting to deformations of the matrix phase in these directions only.
In our experience, erroneous stabilisation of the fibre fields generate tangential forces that
pollute the overall finite element results.
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Fig. 6 Normal component of the stress field in the vertical direction. The finite element solution is computed
using 4 computational meshes

In Fig. 5, we report the evolution of these forces with time. Towards the end of the
increasing phase of the loading amplitude A(t), these forces saturate. Indeed, they are
constrained not to exceed friction coefficient Y . Instead, plastic slip develops to accom-
modate the boundary conditions. At the end of the compression phase, the forces are also
fully saturated, but take the opposite signs, as they now react to compressive loading. The
last picture is interesting. It is representative of transition phases that appear when the
direction of the load changes. In that case, forces at the extremities of the fibres imme-
diately change directions, while due to adhesion, the forces in the middle of the fibres
carry residual forces in the opposite direction, creating a mixed traction/compression
stress state in the matrix as well. Notice that the degrees of freedom corresponding to the
Lagrange multipliers are well-behaved throughout this analysis.
A sequence of computationalmeshes is represented in Fig. 6. The solution is for the 20th

of the computational times shown inFig. 5.The structure is globally in tension, but residual
compressive stresses exist in thematrix due to the past global compression states. Looking
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Fig. 7 Warping of the computational domain and both 1D fibre domains by the corresponding
displacement fields

at the finest of the finite element solutions, we see that stress concentrations develop at
the extremities of the fibers. Away from these extremities, the stiff fibres restrict the value
of the tensile stress that develops in the embedding material. It is clear that the stress field
shown in Fig. 6 converges with mesh refinement.
In Fig. 7, the four meshes are warped using the displacement of the matrix phase, and

both fibres are warped with their own displacement fields. The solution inside the circle is
not represented. The absence of noticeable difference between the 4 displacement fields
indicates that the method converges with mesh refinement. The symmetries observed in
the displacement of the fibres are also qualitative indicators that the proposed strategy and



Kerfriden et al. Adv. Model. and Simul. in Eng. Sci.           (2020) 7:18 Page 17 of 26

Fig. 8 Global reaction force of the structure as a function of the prescribed extension. The hysteretic
behaviour is due to the friction law. Convergence of this response curve can be seen when the mesh is
progressively refined. The meshes used to produce these four curves are represented in Fig. 7

its numerical implementation are correct. Notice that meshes now appear to conform to
the geometry of the circular inclusion. These are not computational meshes but auxiliary
meshes obtained by subdividing elements that are cut by the inner circle, which is done for
integration and visualisation purposes only. The finite element meshes used to describe
the displacement field in the matrix are the regular grids displayed in Fig. 6.
In Fig. 8, we present quantitative mesh convergence results for the example described

above. We report the evolution of the reaction force at the Dirichlet boundary

Rh(t) =
∫

∂�d

e2 · (C : ∇sum,h(t)) · n dx (47)

as a function of the loading amplitude. In the previous expression, n = e2 is the outer
normal to the Dirichlet domain boundary, and e2 is the second canonical vector of R2.
Time response Rh(t) is computed four times using the sequence of meshes represented in
Fig. 7. Clearly, the nonlinear behaviour of the interface between fibres and matrix creates
an hysteresis that is akin to that of plastic materials undergoing cycling deformations. The
area bounded by the upper and lower part of the cycle is the energy that has been dissipated
during the cycle by friction. The response curve converges with mesh refinement.
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Fig. 9 Notched concrete beam with embedded SMP fibres tested in flexure

Fig. 10 Beam structure undergoing four-point bending deformations. The two feet are fixed vertically, but
their rotations in the plane of figure (a) are freely allowed. The two top parallelepipeds are vertically
constrained to follow prescribed displacement −A(t). They are also free to rotate. The embedded interface
between the four smaller parallelepipeds and the large beam is unilateral frictionless contact. When A(t) is
negative, the top two smaller parallelepipeds loose contact with the beam, and the structure is at rest

Self-healing concrete block with temperature-activated elastic fibres

Description of the computational model One of the motivating elements for the present
work is the simulation of advanced concrete structures. In recent years, considerable work
has been carried out in the development of self-healing cementitiousmaterials. A particu-
lar application, currently investigated atCardiffUniversity, is the use of shrinkable fibres in
the development of a crack closure system (see Fig. 9). The fibres aremade of polyethylene
terephthalate (PET), a shape memory polymer (SMP) that shrinks when heated at tem-
peratures above 60 Celsius [20]. Under restrained conditions and upon thermal activation
these SMP fibres can develop significant shrinkage stresses [20,24]. Preliminary results
from an experimental study showed that SMP fibres with end-anchorages and embed-
ded in a cementitious matrix were effective in closing macro-cracks [24]. Nevertheless,
to achieve an optimum mix design for these advanced cement based composites, further
work focused on the optimisation of key parameters (e.g. fibre geometry, fibre content)
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is required. To this end, virtual experiments carried out with numerical models that are
able to capture the underlying mechanisms would be very advantageous.
We now propose to show how experimental devices such as the one represent in Fig. 9

may be simulated using the proposed embedded FE technology, which we hope will even-
tually enable experimentalists to explore material design spaces virtually. The computa-
tional model is represented in Fig. 10. It is composed of one main square parallelepiped
(the beam), and four additional smaller square parallelepiped designed to replicate the
loading conditions of typical testing devices used in civil engineering. We apply zero
Dirichlet conditions along a line of each of the two smaller parallelepipeds located under-
neath the structure. This allows these two support to rotate freely (the mesh conforms
with those lines). The two smaller parallelepipeds at the top of the structure are loaded
in a similar fashion, but with a downward prescribed motion of the action lines, with an
amplitude that is proportional toA(t), i.e. we reuse the loading function introduced in the
previous example to simplify the presentation. The interface between the large beam and
the four smaller parallelepipeds is represented by a unilateral frictionless contact model.
We finally introduce two fibres as represented in Fig. 10, the interface between the fibres
and the matrix being modelled by the friction-type model derived previously.
The object composed of the 5 parallelepipeds is meshed conformingly to its boundary.

The fibres are not meshed by the meshing software. Instead, they are introduced in a
non-conforming manner using the technique proposed in this paper. In a similar fashion,
we handle the four unilateral contact conditions described above nonconformingly using
the primal/dual LaTIn-CutFEM algorithm [12], i.e. the four contact interfaces do not
conform with the facets of the mesh and are represented by the zero isoline of a finite
element level-set function.

Numerical results The displacement of the system at the end of the first loading phase
is represented in Fig. 10. The set of elements that are intersected by the fibres is also
displayed. We see that the fibres and the band of elements they are embedded in follow
the global deformation of the structure, as expected.
The system presented here will not behave like the 2D system presented in the previous

section. When A(t) becomes negative at time t = 1.5, the two parallelepipeds onto which
the prescribed motion is applied move upward without adhering to the remainder of the
structure (traction forces cannot be transmitted by the unilateral contact interfaces). The
beam will stay at rest until t = 2.7, after which it will undergo bending deformations
again as induced by the downward motion of the two parallelepipeds. This resting time
will allow us to study residual stresses, i.e stresses that have developed due to inelastic
phenomena (i.e. friction), and do not go back to zero once the structure is fully unloaded.
These residual stresses are shown in Fig. 11. We see that when the structure is under-

going progressively increasing bending conditions, the bottom fibre is acting against the
extension of the beam, while the top fibre acts against compression. During rest (subplot
(b) in Fig. 11), due to friction, these stress states do not subside completely, and a small
amount of permanent bending deformations remains without external action.

Effect of the numerical stabilisers In Fig. 12, we show the effect of the stabilisers introduced
tomake sure that the solution of finite element problems with nonconforming 1D embed-
ded elastic elements is well-posed. The top picture is the representation of an uncontrolled
deformation mode that appeared when setting ζ to a value that is very close to zero. The
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Fig. 11 Lagrange multipliers of the fibre friction model: a development of fibre forces in reaction to bending
deformations, limited in amplitude by plastic slip and b residual stresses at rest, once the two top
paralellepipeds have lost contact with the beam struture. Stress σ11 is the longitudinal stress measured along
the horizontal axis of the figure

zero energy modes explode in amplitude. The restriction of the solution to the fibre is still
correct, but carrying such large values of the degrees of freedom through long time anal-
yses is of course not advisable. Setting ζ to a small but non-vanishing value, as suggested
previously, ensures that such uncontrolled sets of degrees of freedom are eliminated from
the system. This results in fully controlled deformations of bands of intersected elements,
as shown in Fig. 10 (last two subplots).
The same remarks can be made regarding Lagrange multiplier fields. When setting ζλ

to a vanishingly small value, uncontrolled modes develop, as seen in Fig. 12a, b. A small
regularisation parameter ensures that the problem is well-posed, which is exemplified by
the beautiful purely axial distribution of the extended Lagrange multiplier field shown
Fig. 12c, d.

Fracture of quasi-brittle composites with randomly distributed short fibres

To further illustrate the capabilities of the proposed approach, we extend it to the simula-
tionof damage in cement-based compositematerials reinforcedwith randomlydistributed
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Fig. 12 Effect of stabilisation terms on extended fibre fields: a uncontrolled extended displacement mode, b
uncontrolled extended Lagrange multiplier modes, c regularised extended Lagrange multiplier and d
restriction of the regularised extended Lagrange multiplier field to the 1D fibre domain

short fibres. The overall mechanical behaviour as well as the crack propagation in these
composites are largely gouverned by the crack-bridging action of fibres.
The problem setting is graphically described in Fig. 13. The interface between fibres and

matrix is now rigid (i.e. infinite friction coefficient Y ). Uniform linear Dirichlet boundary
conditions in the e2 direction are now applied on the entire boundary ∂�. We continue
using function A(t) to described the overall evolution of the load with time. The perfect
kinematic coupling between hard elastic inclusions and matrix is handled via the pri-
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Fig. 13 Geometry of the fracture mechanics model (left) and points of interest in the time analysis (right)

mal/dual LaTin-CutFEM algorithm. The new element in this example is the fact that the
matrix can undergo elastic damage.
To represent damage, we use the staggered phase-field formulation presented in [25].

Bilinear form ah is therefore modified as follows:

ah
(
(um,h, uf,h), (δum,h, δuf,h)

) =
∫

�

(
(1 − dh)2 + εd

)∇sum,h : C : ∇sδum,h dx

+
∫

�f

kf ∇f uf,h : ∇f δuf,h dx

+ s,h(uf,h, δuf,h) . (48)

Field σm,h := (
(1 − dh)2 + εd

)
C : ∇sδum,h is the Cauchy stress tensor and dh ∈ Uh is a

finite element field that represents damage. At the end of time step tn ∈ T�t , damage field
dh is updated by solving the following linear elliptic variational problem:

∀δdh ∈ Uh,
∫

�

(
1 + 2l

gc
Hh(x)

)
dh δdh dx + l2

∫

�

∇dh · ∇δdh dx

=
∫

�

2l
gc
Hh(x) δdh dx . (49)

In the above damage model, εd � 1 is a small regularisation parameter, l is the length-
scale of the phase-field model, which is set to 0.05 times the width of the computational
domain, gc is the energy release rate, and fieldHh is computed locally as follows, using the
displacement obtained iteratively using the iterative LaTIn solver described in this paper,

∀ x ∈ �, Hh(x) = max
t∈T�t |t≤tn

(
1
2
∇sum,h|x(t) : C : ∇sum,h|x(t)

)
. (50)

Our first results using the phase-field model together with the embedded fibre formu-
lation are reported in Fig. 14. The circular inclusions cannot be damaged, which can be
formulated by setting gc to a large value in the corresponding subdomain. In the left-hand-
side plots of Fig. 14, we do not represent elements that exhibit damage values exceeding
0.95, for visual purposes. The proposed algorithm remained stable throughout the anal-
ysis, yielding qualitatively sensible results. In particular, the stiff fibres prevent the crack
from developing along directions that are orthogonal to their respective director vector.
The Lagrange multipliers are well aligned with the fibres.
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Fig. 14 Results obtained with the fracture mechanics model (phase-field) at two different analysis times: a
crack initiation and b fully cracked computational model

Further stability and convergence tests would be required to study the effect of the
damage field on the overall stability of the unfitted finite element formulation. This is left
to future investigations.
We note that a particular drawback of the proposed unfitted finite element approach

is that fictitious domains corresponding to disconnected physical elements (i.e. two sep-
arate inclusions, two different fibres, a fibre and an inclusion), should not overlap for the
numerical results to be sensible. This sets a lower bound on the element size, which may
preclude their use in preliminary engineering studies where very coarse meshes are used
to inexpensively study the overall behaviour of a complex system.
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Conclusion
We have presented a stabilised cut finite element solver to simulate the micro-mechanics
of fibre-reinforced composites. The fibre elements have their own degrees of freedom,
allowing complex interface conditions and efficient iterative solvers to be devised. No spe-
cificmesh is required for the slender structural elements. The unidimensional mechanical
fields are represented as 1D traces of background 2D or 3D finite element fields.
Starting from this elegant numerical strategy, we developed a primal-dual finite element

formulation to simulate friction-restricted sliding between the fibres and the embedding
material. We also designed an efficient LaTIn algorithm to solve the resulting stiff non-
linear system of equations.
Just like any CutFEM solver, ours needs to be stabilised to fully eliminate numerical

instabilities resulting from arbitrary cutting and embedding of finite element meshes. To
this end, we have proposed a natural combination of ghost-penalty regularisation to sta-
bilise the projected gradient, and backgroundmesh penalisation to eliminate uncontrolled
gradients in the normal direction. This approach has also been used to stabilise the dual
fields. We have shown that the method is stable, convergent, and versatile. It handles
high levels of nonlinearities very well, which was shown in examples of featuring 1D/3D
imperfect bonding and nonlinear damage mechanics.
This work is an important stepping stone towards the development of flexible virtual

testing platforms, in particular for cement-based compositematerials. Avenues for further
research and developments are manifold. For instance, we would like to investigate how
the proposed method can handle structural elements with bending energy, where locking
is very likely to cause numerical issue. Similarly, the present investigations are limited
to straight fibres, and an obvious extension would be to allow for curved fibres to be
represented. Finally, we would like to be able to simulate pull-out, i.e. the reduction of
added stiffness as fibres are progressively loosing contact areas with embedding materials
when cracks progressively open. This requires tomove away from the assumption of small
perturbation, and to continuously update the geometrical configuration of the embedded
elements in the evolving embedding structure.
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A Unregularised LaTIn local stage
By manipulating the ascent search direction, we can easily show that

2 F̃ k+ 1
2

m,h −
(
Fk
m,h − Fk

f,h

)
− γ

(
(W̃ k+ 1

2
m,h − �W̃ k+ 1

2
f,h ) − (�Wk

m,h − �Wk
f,h)

)
= 0 , (51)

where the � symbol denotes a time increment, e.g. �W̃ k+ 1
2

m,h := W̃ k+ 1
2

m,h − W̃ �
m,h. The

previous expression implicitly assumes that the LaTIn solver used to solve the incremental
problem arising at time tn has converged.
Normal problem The previous equation can projected orthogonally to the fibres director

vector. Using the fact that �⊥
f

(
�W̃ k+ 1

2
m,h − �W̃ k+ 1

2
f,h

)
= 0, which is a direct contextuali-

sation of (32), we obtain the expression of �⊥
f F̃

k+ 1
2

m,h by solving

�⊥
f

(
2 F̃ k+ 1

2
m,h −

(
Fk
m,h − Fk

f,h

)
− γ

(
−(�Wk

m,h − �Wk
f,h)

))
= 0 . (52)

Tangential problemWe now solve the equations of plasticity in the direction of the fibres

director vector.Weproceedby trial and testing, hypothesising that
(

�W̃ k+ 1
2

m,h − �W̃ k+ 1
2

f,h

)
·

tf = 0, which means that there is no sliding between matrix and fibre phases. If this
assumption was true, we would have that

(
2 F̃ k+ 1

2
m,h −

(
Fk
m,h − Fk

f,h

)
− γ

(
−(�Wk

m,h − �Wk
f,h)

))
· tf = 0 , (53)

We can now check whether the previously made hypothesis is consistent with equation

ff
(
F̃ k+ 1

2
m,h

)
≤ 0. If it is the case, we can safely return

F̃ k+ 1
2

m,h =
(
F̃ k+ 1

2
m,h · tf

)
tf + �⊥

f F̃
k+ 1

2
m,h (54)

and proceed to the smoothing step of the local stage. Otherwise, our hypothesis is not
true: there is sliding, which means that necessarily,

F̃ k+ 1
2

m,h · tf = −Y sign
(
(�W̃ k

m,h − �W̃ k
f,h) · tf

)
. (55)

Wenowmake the hypothesis that the sign of the relative velocity between fibre andmatrix
is positive. In this case, we have that

tf ·
(

−2Y −
(
Fk
m,h − Fk

f,h

)
− γ

(
(�W̃ k+ 1

2
m,h −�W̃ k+ 1

2
f,h )−(�Wk

m,h−�Wk
f,h)

))
=0 ,

(56)

from which we can compute
[
tf · �W̃ k+ 1

2
h

]
= tf ·

(
�W̃ k+ 1

2
m,h − �W̃ k+ 1

2
f,h

)
. If the sign of

this quantity is positive, we return

F̃ k+ 1
2

m,h = −Ytf + �⊥
f F̃

k+ 1
2

m,h . (57)

Otherwise, we return

F̃ k+ 1
2

m,h = Ytf + �⊥
f F̃

k+ 1
2

m,h . (58)
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