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New approach to greedy vector quantization

Rancy El Nmeir ∗† , Harald Luschgy ‡ and Gilles Pagès∗

Abstract

We extend some rate of convergence results of greedy quantization sequences already investi-
gated in [16]. We show, for a more general class of distributions satisfying a certain control, that the
quantization error of these sequences have an n− 1

d rate of convergence and that the distortion mis-
match property is satisfied. We will give some non-asymptotic Pierce type estimates. The recursive
character of greedy vector quantization allows some improvements to the algorithm of computation
of these sequences and the implementation of a recursive formula to quantization-based numerical
integration. Furthermore, we establish further properties of sub-optimality of greedy quantization
sequences.

Keywords : Greedy quantization sequence; rate optimality; Lloyd’s algorithm; distortion mismatch;
quantization-based numerical integration; quasi-Monte Carlo methods.

1 Introduction

Let d ≥ 1, r ∈ (0,+∞) and LrRd(P) (or simply Lr(P)) the set of d-dimensional random variables X
defined on the probability space (Ω,A,P) such that E‖X‖r < +∞ where ‖.‖ denotes any norm on
Rd. We denote P = PX the probability distribution of X. Optimal vector quantization is a technique
derived from signal processing, initially devised to optimally discretize a continuous (stationary) signal
for its transmission. Originally developed in the 1950s (see [9]), it was introduced as a cubature formula
for numerical integration in the early 1990s (see [19]) and for approximation of conditional expectations
in the early 2000s for financial applications (see [1, 2]). Its goal is to find the best approximation of
a continuous probability distribution by a discrete one, or in other words, the best approximation of
a multidimensional random vector X by a random variable Y taking at most a finite number n of
values.
Let Γ = {x1, . . . , xn} be a d-dimensional grid of size n. The idea is to approximate X by q(X), where
q is a Borel function defined on Rd and having values in Γ. If we consider, for q, the nearest neighbor
projection πΓ : Rd → Γ defined by

πΓ(ξ) =
n∑
i=1

xi1Wi(Γ)(ξ),

where
Wi(Γ) ⊂ {ξ ∈ Rd : ‖ξ − xi‖ ≤ min

j 6=i
‖ξ − xj‖}, i = 1, . . . , n, (1)

is the Voronöı partition induced by Γ, then the Voronöı quantization of X is defined by

X̂Γ = πΓ(X) :=
n∑
i=1

xi1Wi(Γ)(X). (2)
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We will denote, most of the times, X̂ instead of X̂Γ when there is no need for specifications. The
Lr-quantization error associated to the grid Γ is defined, for every r ∈ (0,+∞), by

er(Γ, X) = ‖X − πΓ(X)‖r = ‖X − X̂Γ‖r =
∥∥∥∥ min

1≤i≤n
|X − xi|

∥∥∥∥
r

(3)

where ‖.‖r denotes the Lr(P)-norm (or quasi-norm if 0 < r < 1). Consequently, the optimal quanti-
zation problem comes down to finding the grid Γ that minimizes this error. It has been shown (see
[10, 21, 22]) that this problem admits a solution and that the quantization error converges to 0 when
the size n goes to +∞. The rate of convergence is given by two well known results exposed in the
following theorem.

Theorem 1.1. (a) Zador’s Theorem (see [24]) : Let X ∈ Lr+ηRd (P), η > 0, with distribution P such
that dP (ξ) = ϕ(ξ)dλd(ξ) + dν(ξ). Then,

lim
n→+∞

n
1
d er,n(X) = J̃r,d‖ϕ‖

1
r

L
r
r+d (λd)

where J̃r,d = inf
n≥1

n
1
d er,n(U([0, 1]d)) ∈ (0,+∞).

(b) Extended Pierce’s Lemma (see [15]): Let r, η > 0. There exists a constant κd,r,η ∈ (0,+∞) such
that,

∀n ≥ 1, er,n(X) ≤ κd,r,ησr+η(X)n−
1
d

where, for every r ∈ (0,+∞), σr(X) = inf
a∈Rd

‖X − a‖r is the Lr-standard deviation of X.

However, the numerical implementation of multidimensional optimal quantizers requires the com-
putation of grids of size N × d which becomes too expensive when N or d increase. Hence, there is
a need to provide a sub-optimal solution to the quantization problem which is easier to handle and
whose convergence rate remains similar (or comparable) to that induced by optimal quantizers. A
so-called greedy version of optimal vector quantization has been developed in [16]. It consists this
time in building a sequence of points (an)n≥1 in Rd which is recursively optimal step by step, in the
sense that it minimizes the Lr-quantization error at each iteration. This means that, having the first
n points a(n) = {a1, . . . , an} for n ≥ 1, we add, at the (n+ 1)-th step, the point an+1 solution to

an+1 ∈ argminξ∈Rd er(a(n) ∪ {ξ}, X), (4)

noting that a(0) = ∅, so that a1 is simply an/the Lr-median of the distribution P of X. The sequence
(an)n≥1 is called an Lr-optimal greedy quantization sequence for X or its distribution P . The idea
to design such an optimal sequence, which will hopefully produce quantizers with a rate-optimal be-
havior as n goes to infnity, is very natural and may be compared to sequences with low discrepancy
in Quasi-Monte Carlo methods when working on the unit cube [0, 1]d. In fact, such sequences have
already been investigated in an L1-setting for compactly supported distributions P as a model of
short term experiment planning versus long term experiment planning represented by regular quanti-
zation at a given level n (see [4]) and, then, in [16] where the authors investigated more deeply this
greedy version of vector quantization for Lr-random vectors taking values in Rd. They showed that
the problem (4) admits at least one solution (an)n≥1 when X is an Rd-valued random vector (the
existence of such sequences can be proved in Banach spaces but, in this paper, we will only focus on
Rd). This sequence may not be unique since greedy quantization depends on the symmetry of the
distribution (consider for example the N (0, 1) distribution). However, note that, if the norm ‖.‖ is
strictly convex and r > 1, then the Lr-median is unique. They also showed that the Lr-quantization
error converges to 0 when n goes to infinity and, if supp(P ) contains at least n elements, then the
sequence a(n) lies in the convex hull of supp(P ), er(a(k), X) is decreasing w.r.t. k ∈ {1, . . . , n} and
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P
(
{ξ ∈ Rd : ‖ξ − an‖ < min1≤i≤n ‖ξ − ai‖}

)
> 0. The proof of these results (see Propositions 2.1 and

2.2 in [16]) are based on micro-macro inequalities given in [11]. Moreover, the authors showed in [16]
that these sequences have an optimal rate of convergence to zero, compared to optimal quantizers,
and that they satisfy the distortion mismatch problem, i.e. the property that the optimal rate of
Lr-quantizers holds for Ls-quantizers for s > r. The proofs were based on the integrability of the
b-maximal functions associated to an Lr-optimal greedy quantization sequence (an)n≥1 given by

∀ξ ∈ Rd, Ψb(ξ) = sup
n∈N

λd
(
B(ξ, bdist(ξ, a(n)))

)
P
(
B(ξ, bdist(ξ, a(n)))

) . (5)

In this paper, we will extend those rate of convergence and distortion mismatch results to a much
larger class of functions. Instead of maximal functions, we will rely on a new micro-macro inequality
involving an auxiliary probability distribution ν on Rd. When this distribution ν satisfies an appro-
priate control on balls, with respect to an Lr-median a1 of P , defined later in section 2, we will show
that the rate of convergence of the Lr-quantization error of greedy sequences is O(n−

1
d ), just like

the optimal quantizers. Furthermore, considering appropriate auxiliary distributions ν satisfying this
control allows us to obtain Pierce type, and hybrid Zador-Pierce type, Lr-rate optimality results of
the error quantization, instead of only Zador type results as given in [16].

A very important field of applications is to use these greedy sequences instead of n-optimal quan-
tizers in quantization-based numerical integration schemes. In fact, the size of the grids used in these
procedures is large in a way that the RAM storing of the quantization tree may exceed the storage ca-
pacity of the computing device. So, using greedy quantization sequences will dramatically reduce this
drawback, especially since we will show that they behave similarly to optimal quantizers in terms of
convergence rate. The computation of greedy quantizers is performed by algorithms, detailed in [17],
allowing also the computation of the weights (pni )1≤i≤n of the Voronöı cells of the sequence a(n). The-
ses quantities are mandatory for the greedy quantization-based numerical integration to approximate
an integral I of a function f on Rd by the cubature formula

I(f) ≈
n∑
i=1

pni f
(
a

(n)
i

)
.

Compared to other methods of numerical approximation, such as quasi-Monte Carlo methods (QMC),
the quantization-based methods present an advantage in terms of convergence rate, since QMC, for

example, is known to induce a convergence rate of O
(

logn
n

1
d

)
when integrating Lipschitz functions (see

[23]) while quantization-based numerical integration produces an O
(
n−

1
d
)

rate (see [22]). However,
it seems to have a drawback which is the computation of the non-uniform weights (pni )1≤i≤n, unlike
the uniform weights in QMC (equal to 1

n). In this paper, we expose how the recursive character of
greedy quantization provides several improvements to the algorithm, making it more advantageous.
Moreover, this character induces the implementation of a recursive formula for numerical integra-
tion, that can replace the usual cubature formula, reducing the time and cost of the computations.
This recursive formula will be introduced first in the one-dimensional case, and then extended to the
multi-dimensional case for product greedy quantization sequences, computed from one-dimensional
sequences, used to reduce the cost of implementations while always preserving the recursive character.

The paper is organized as follows. We first show that greedy quantization sequences can be rate
optimal just like the optimal quantizers in section 2 where we extend the results already presented in
[16] and we give Pierce type results. Likewise, the distortion mismatch problem will be solved and
extended in section 3. In section 4, we present the improvements we can apply to the algorithm of
designing the greedy sequences, as well as the new approach for greedy quantization-based numerical
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integration. Numerical examples will illustrate and confirm the advantages brought by this new
approach in section 5. Finally, section 6 is devoted to some numerical conclusions about further
properties of greedy quantization sequences such as the sub-optimality, the convergence of empirical
measures, the stationarity (or quasi-stationarity) and the discrepancy, to see to what extent greedy
sequences can be close to optimality.

2 Rate optimality: Universal non-asymptotic bounds

In [16], the authors presented the rate optimality of Lr-greedy quantizers in the sense of Zador’s
theorem based on the integrability of the b-maximal function Ψb(ξ) defined by (5). Here, we present
Pierce type non-asymptotic estimates relying on micro-macro inequalities applied to a certain class of
auxiliary probability distributions ν. Different specifications of ν lead to various versions of Pierce’s
Lemma.
In all this section, we denote Vd = λd

(
B(0, 1)

)
w.r.t. the norm ‖ · ‖. We recall, first, a micro-macro

inequality that will be be used to prove the first result.

Proposition 2.1. Assume
∫
‖x‖rdP (x) < +∞. Then, for every probability distribution ν on (Rd,B(Rd)),

every c ∈ (0, 1
2) and every n ≥ 1

er(a(n), P )r − er(a(n+1), P )r ≥ (1− c)r − cr

(c+ 1)r
∫
ν

(
B

(
x,

c

c+ 1d
(
x, a(n)

)))
d
(
x, a(n)

)r
dP (x).

Proof. Step 1: Micro-macro inequality
Let Γ ⊂ Rd be a finite quantizer of a random variable X with distribution P and Γ1 = Γ ∪ {y},
y ∈ Rd. For every c ∈ (0, 1

2), we have B(y, cd(y,Γ)) ⊂ Wy(Γ1), where Wy(Γ1) is the Voronöı cell
associated centroid y form a Voronoi partition induced by Γ1, as defined by (1). Hence, for every
x ∈ B(y, cd(y,Γ)), d(x,Γ) ≥ d(y,Γ)− ‖x− y‖ ≥ (1− c)d(y,Γ). Consequently,

er(Γ, P )r − er(Γ ∪ {y}, P )r =
∫
Rd

(d(x,Γ)r − d(x,Γ1)r) dP (x)

≥
∫
Wy(Γ1)

(d(x,Γ)r − ‖x− y‖r) dP (x)

≥
∫
B(y,cd(y,Γ))

((1− c)r − cr)d(y,Γ)rdP (x).

Finally, we obtain the micro-macro inequality

er(Γ, P )r − er(Γ ∪ {y}, P )r ≥ ((1− c)r − cr)P (B (y, cd (y,Γ))) d (y,Γ)r . (6)

Step 2: Based on the micro-macro inequality (6), we have for every c ∈
(
0, 1

2

)
and every y ∈ Rd,

er(a(n), P )r − er(a(n) ∪ {y}, P )r ≥ ((1− c)r − cr)P
(
B
(
y, cd(y, a(n))

))
d(y, a(n))r.

Since er(a(n+1), P ) ≤ er(a(n) ∪ {y}, P ) for every y ∈ Rd,

er(a(n), P )r − er(a(n+1), P )r ≥ ((1− c)r − cr)P
(
B
(
y, cd(y, a(n))

))
d(y, a(n))r.

We integrate this inequality with respect to ν to obtain

er(a(n), P )r − er(a(n+1), P )r ≥ ((1− c)r − cr)
∫
P
(
B
(
y, cd(y, a(n))

))
d(y, a(n))rdν(y).
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Now, we consider the closed sets

F1 =
{

(x, y) ∈ (Rd)2 : ‖x− y‖ ≤ cd(y, a(n))
}

and F2 =
{

(x, y) ∈ (Rd)2 : ‖x− y‖ ≤ c

c+ 1d(x, a(n))
}
.

We notice that

F2 ⊂ F1 ∩
{

(x, y) ∈ (Rd)2 : d(y, a(n)) ≥ 1
c+ 1d(x, a(n))

}
,

In fact, for (x, y) ∈ F2,

d(y, a(n)) ≥ d(x, a(n))− ‖x− y‖ ≥ d(x, a(n))− c

c+ 1d(x, a(n)) ≥ 1
c+ 1d(x, a(n))

and
‖x− y‖ ≤ c

c+ 1d(x, a(n)) ≤ cd(y, a(n)).

Then,∫
P (B(y, cd(y, a(n))))d(y, a(n))rdν(y) =

∫ ∫
1F1(x, y)d(y, a(n))rdν(y)dP (x)

≥ 1
(c+ 1)r

∫ ∫
1F2(x, y)d(x, a(n))rdν(y)dP (x)

= 1
(c+ 1)r

∫
ν

(
B

(
x,

c

c+ 1d
(
x, a(n)

)))
d(x, a(n))rdP (x).

�
In order to prove the rate optimality of the greedy quantization sequences and obtain a non-

asymptotic Pierce type result, we will consider auxiliary probability distributions ν satisfying the
following control on balls with respect to an Lr-median a1 of P : for every ε ∈ (0, ε0), for some
ε0∈ (0, 1], there exists a Borel function gε : Rd → [0,+∞) such that, for every x ∈ supp(P ) and every
t ∈ [0, ε‖x− a1‖],

ν(B(x, t)) ≥ gε(x)Vdtd. (7)

Of course, this condition is of interest only if the set {gε > 0} is sufficiently large. Note that a1 ∈ a(n)

for every n ≥ 1 by construction of the greedy quantization sequence. We begin by a technical lemma
which will be used in the proof of the next proposition.

Lemma 2.2. Let C, ρ ∈ (0,+∞) be some real constants and (xn)n≥1 be a non-negative sequence
satisfying, for every n ≥ 1,

xn+1 ≤ xn − Cx1+ρ
n . (8)

Then for every n ≥ 1,

(n− 1)
1
ρxn ≤

( 1
Cρ

) 1
ρ

.

Proof. We rely on the following Bernoulli inequalities, for every x ≥ −1,

(1 + x)ρ ≥ 1 + ρx, if ρ ≥ 1, and (1 + x)ρ ≤ 1 + ρx, if 0 < ρ < 1.

These inequalities can be obtained by studying the function f defined for every x ∈ (−1,+∞) by
f(x) = (1 + x)ρ− (1 + ρx). Assuming that (xn)n≥1 is non-increasing and that xn > 0 for every n ≥ 1,
it follows from (8) that

1
xρn+1

≥ 1
xρn(1− C xρn)ρ ≥

1
xρn

(1 + C xρn)ρ.
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If ρ ≥ 1, the Bernoulli inequalities imply 1
xρn+1

≥ 1
xρn

(1 +C ρxρn) = 1
xρn

+Cρ. By induction, one obtains

1
xρn
≥ 1
xρ1

+ (n− 1)Cρ ≥ (n− 1)Cρ

to deduce the result easily. If 0 < ρ < 1, then −Cρxρn ≥ −1 for every n ≥ 1, and the result is deduced
by using the Bernoulli inequality and then reasoning by induction. �

Proposition 2.3. Let P be such that
∫
Rd ‖x‖rdP (x) < +∞. For any distribution ν and Borel function

gε : Rd → R+, ε ∈ (0, 1
3), satisfying (7),

∀n ≥ 2, er(a(n), P ) ≤ ϕr(ε)−
1
dV
− 1
d

d

(
r

d

) 1
d
(∫

g
− r
d

ε dP

) 1
r

(n− 1)−
1
d (9)

where ϕr(u) =
( 1

3r − u
r
)
ud.

Proof. We may assume that
∫
g
− r
d

ε dP < +∞. Assume c ∈ (0, ε
1−ε ]∩ (0, 1

2) so that c
c+1 ≤ ε. Moreover

d(x, a(n)) ≤ d(x, a1) since a1 ∈ a(n). Consequently, for any such c,
c

c+ 1 d(x, a(n)) ≤ ε‖x−a1‖ so that,

by (7), there exists a function gε such that

ν

(
B

(
x,

c

c+ 1 d
(
x, a(n)))) ≥ Vd ( c

c+ 1

)d
d(x, a(n))d gε(x).

Then, noting that (1−c)r−cr
(1+c)r ≥ 1

3r −
(

c
c+1
)r

> 0, since c ∈ (0, 1
2), Proposition 2.1 implies that

er(a(n), P )r − er(a(n+1), P )r ≥ Vd ϕr
(

c

c+ 1

)∫
gε(x)d(x, a(n))d+rdP (x) (10)

where ϕr(u) =
( 1

3r − u
r
)
ud, u ∈ (0, 1

3). Applying the reverse Hölder inequality with the conjugate

Hölder exponents p = − r
d and q = r

r+d yields

er(a(n), P )r − er(a(n+1), P )r ≥ Vd ϕr
(

c

c+ 1

)(∫
gε(x)−

r
ddP (x)

)− d
r
(∫

d(x, a(n))rdP (x)
)1+ d

r

≥ Vd ϕr
(

c

c+ 1

)(∫
gε(x)−

r
ddP (x)

)− d
r (
er(a(n), P )r

)1+ d
r .

Then, applying lemma 2.2 to the sequence xn = er(a(n), P )r with C = Vd ϕr
(

c
c+1

) (∫
gε(x)−

r
ddP (x)

)− d
r

and ρ = d
r , one obtains, for every c ∈ (0, 1

2),

er(a(n),P) ≤ V −
1
d

d

(
r

d

) 1
d

ϕr

(
c

c+ 1

)− 1
d
(∫

g
− r
d

ε dP

) 1
r

(n− 1)−
1
d .

Since in most applications ε 7→
(∫

g
− r
d

ε dP

) 1
r

is increasing on (0, 1/3), we are led to study ϕr
(

c
c+1

)− 1
d

subject to the constraint c ∈
(
0, ε

1−ε
]
∩
(
0, 1

2
)
. ϕr is increasing in the neighborhood of 0 and ϕr(0) = 0,

so, one has, for every ε ∈ (0, 1
3) small enough, ϕr

(
c
c+1

)
≤ ϕr(ε), for c ∈ (0, ε

1−ε ]. This leads to specify

c as c = ε
1−ε , so that c

c+1 = ε, to finally deduce the result. �
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By specifying the measure ν and the function gε, we will obtain two first natural versions of the
Pierce Lemma.

Theorem 2.4 (Pierce’s Lemma). (a) Assume
∫
Rd ‖x‖rdP (x) < +∞. Let δ > 0. Then er(a1, P ) =

σr(P ) and

∀n ≥ 2, er(a(n), P ) ≤ κGreedy,Pierce
d,δ,r σr+δ(P )(n− 1)−

1
d

where κGreedy, Pierce
d,δ,r ≤ V −

1
d

d

(
r

d

) 1
d

((
δ

r

) r
r+δ

+
(
r

δ

) δ
r+δ
)1+ δ

r (∫
Rd

(‖x‖ ∨ 1)−d−
dδ
r dx

) 1
d

min
ε∈(0,13 )

(1+ε)ϕr(ε)−
1
d .

(b) Assume
∫
Rd ‖x‖rdP (x) < +∞. Let δ > 0. Then

∀n ≥ 2, er(a(n), P ) ≤ κGreedy
d,r,δ

(∫
(‖x− a1‖ ∨ 1)r (log(‖x− a1‖ ∨ e))

r
d

+δ dP (x)
) 1
r

(n− 1)−
1
d

where κGreedy
d,r,δ ≤ V −

1
d

d

(
r
d

) 1
d minε∈(0, 1

3 )(1 + ε)ε
1
d

+ δ
rϕr(ε)−

1
d .

(∫ dx

(1∨‖x‖)d(log(‖x‖∨e))1+ dδ
r

) 1
d

.

In particular, if
∫
Rd ‖x‖r(log+‖x‖)

r
d

+δdP (x) < +∞, then

lim sup
n
n

1
d sup{er(a(n), P ) : (an)Lr-optimal greedy sequence for P} < +∞.

Proof. (a) Let δ > 0 be fixed. We set ν(dx) = γr,δ(x)λd(dx) where

γr,δ(x) = Kδ,r

(1 ∨ ‖x− a1‖)d(1+ δ
r

)
with Kδ,r =

(∫
dx

(1 ∨ ‖x‖)d(1+ δ
r

)

)−1

< +∞

is a probability density with respect to the Lebesgue measure on Rd.
Let ε ∈ (0, 1) and t > 0. For every x ∈ Rd such that ε‖x − a1‖ ≥ t and every y ∈ B(x, t),
‖y − a1‖ ≤ ‖y − x‖+ ‖x− a1‖ ≤ (1 + ε)‖x− a1‖ so that

ν(B(x, t)) ≥ Kδ,rVd t
d

(1 ∨ [(1 + ε)‖x− a1‖])d(1+ δ
r

)
.

Hence, (7) is verified with

gε(x) = Kδ,r

(1 ∨ [(1 + ε)‖x− a1‖])d(1+ δ
r

)
,

so we can apply Proposition 2.3. We have∫
gε(x)−

r
ddP (x) ≤ K−

r
d

δ,r

∫
(1 ∨ (1 + ε)‖x− a1‖)r+δ dP (x)

so that, applying Lr+δ-Minkowski inequality, one obtains(∫
gε(x)−

r
ddP (x)

) 1
r

≤ K−
1
d

δ,r (1 + (1 + ε)σr+δ)1+ δ
r .

Consequently, by Proposition 2.3, for ε∈ (0, 1/3),

er(a(n), P ) ≤ V −
1
d

d

(
r

d

) 1
d

K
− 1
d

δ,r (1 + (1 + ε)σr+δ)1+ δ
r ϕr(ε)−

1
d (n− 1)−

1
d (11)
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Now, we introduce an equivariance argument. For λ > 0, let Xλ := λ(X−a1)+a1 and (aλ,n)n≥1 :=
(λ(an−a1)+a1)n≥1. It is clear that (aλ,n)n≥1 is an Lr-optimal greedy sequence forXλ and er(a(n), X) =
1
λer(a

(n)
λ , Xλ). Plugging this in inequality (10) yields

er(a(n), P ) ≤V −
1
d

d

(
r

d

) 1
d

K
− 1
d

δ,r

1
λ

(1 + (1 + ε)λσr+δ)1+ δ
r ϕr(ε)−

1
d (n− 1)−

1
d

≤V −
1
d

d

(
r

d

) 1
d

K
− 1
d

δ,r

(
λ−

r
δ+r + (1 + ε)λ

δ
δ+r σr+δ

)1+ δ
r
ϕr(ε)−

1
d (n− 1)−

1
d .

Finally, one deduces the result by setting λ = r

δ

1
(1 + ε)σr+δ

.

(b) Let δ > 0 be fixed. We set ν(dx) = γr,δ(x)λd(dx) where

γr,δ(x) = Kδ,r

(1 ∨ ‖x− a1‖)d (log(‖x− a1‖ ∨ e))1+ dδ
r

,

with Kδ,r =
(∫ dx

(1∨‖x‖)d(log(‖x‖∨e))1+ dδ
r

)−1
< +∞, is a probability density with respect to the Lebesgue

measure on Rd.

Let ε ∈ (0, 1) and t > 0. For every x ∈ Rd such that ε‖x − a1‖ ≥ t and every y ∈ B(x, t),
‖y − a1‖ ≤ ‖y − x‖+ ‖x− a1‖ ≤ (1 + ε)‖x− a1‖ so that

ν(B(x, t)) ≥ Kδ,rVdt
d

(1 ∨ (1 + ε)‖x− a1‖)d (log((1 + ε)‖x− a1‖ ∨ e))1+ dδ
r

≥ Kδ,rVdt
d

(1 + ε)d ε1+ dδ
r (1 ∨ ‖x− a1‖)d (log(‖x− a1‖ ∨ e))1+ dδ

r

since log(1 + ε) ≤ ε. Hence, (7) is verified with

gε(x) = Kδ,r

(1 + ε)d ε1+ dδ
r (1 ∨ ‖x− a1‖)d (log(‖x− a1‖ ∨ e))1+ dδ

r

,

so we can apply proposition 2.3. We have(∫
gε(x)−

r
ddP (x)

) 1
r

≤ K−
1
d

δ,r (1 + ε)ε
1
d

+ δ
r

(∫
(1 ∨ ‖x− a1‖)r (log(‖x− a1‖ ∨ e))δ+

r
d dP (x)

) 1
r

.

Consequently, one applies Proposition 2.3 to deduce the first part. For the second part of the propo-
sition, we start by noticing that

(1 ∨ ‖x− a1‖)r ≤ (1 + ‖x‖+ ‖a1‖)r ≤ 2(r−1)+ (‖x‖r + (1 + ‖a1‖)r)

and

log(‖x− a1‖ ∨ e) ≤ log(‖x‖ ∨ e) + ‖a1‖ ∨ e
‖x‖ ∨ e

≤ log+ ‖x‖+ 1 + ‖a1‖ ∨ e
e

where log+ u = log u1u≥1, so that

(1 ∨ ‖x− a1‖)r (log(‖x− a1‖ ∨ e))δ+
r
d ≤ 2(r−1)++( r

d
+δ−1)+

(
‖x‖r log+ ‖x‖

r
d

+δ +A2‖x‖r

+A1 log+ ‖x‖
r
d

+δ +A1A2
)
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where A1 = (1 + ‖a1‖)r and A2 =
(
1 + ‖a1‖∨e

e

) r
d

+δ
. Since log ‖x‖

r
d

+δ = 1
r

(
r
d + δ

)
log ‖x‖r, then

log+ ‖x‖
r
d

+δ = 1
r

(
r
d + δ

)
log+ ‖x‖r. Moreover, log+ ‖x‖r ≤ ‖x‖r − 1 if ‖x‖r ≥ 1 and equal to zero

otherwise so

log+ ‖x‖
r
d

+δ ≤ 1
r

(
r

d
+ δ

)
(‖x‖r − 1)+ ≤

1
r

(
r

d
+ δ

)
(1 + ‖x‖r).

Consequently,

(1 ∨ ‖x− a1‖)r (log(‖x− a1‖ ∨ e))δ+
r
d ≤ 2(r−1)++( r

d
+δ−1)+

(
‖x‖r log+ ‖x‖

r
d

+δ +A′1‖x‖r +A′2

)
where A′1 = A2 + 1

r

(
r
d + δ

)
A2 and A′2 = 1

r

(
r
d + δ

)
A1 + A1A2. The result is deduced from the fact

that sup{‖a1‖ : a1∈ argminξ∈Rder({ξ}, P ) < +∞ (see [10, Lemma 2.2]) and κd,r,δ does not depend on
a1. �

Remark 2.5. One checks that ϕr attains its maximum at 1
3

(
d
d+r

) 1
r on (0, 1

3), so one concludes that

minε∈(0, 1
3 )(1 + ε)ϕr (ε)−

1
d ≤

(
1 + 1

3

(
d
d+r

) 1
r

)
3
r
d

+1
(
1 + d

r

) 1
d (1 + r

d

) 1
r and

minε∈(0, 1
3 )(1 + ε)ε

1
d

+ δ
rϕr (ε)−

1
d ≤

(
1 + 1

3

(
d
d+r

) 1
r

)
31+ r−1

d
− δ
r

(
1 + d

r

) 1
d
− 1
r (1 + r

d

) 1
r .

At this stage, one can wonder if it is possible to have a kind of hybrid Zador-Pierce result where,
if P = h.λd, one has

er(a(n), P ) ≤ C‖h‖ d
d+r

n
1
d

for some real constant C. To this end, we have to consider

ν = h
d
d+r∫

h
d
d+r dλd

.λd.

This is related to the following local growth control condition of densities.

Definition 2.6. Let A ⊂ Rd. A function f : Rd → R+ is said to be almost radial non-increasing on
A w.r.t. a ∈ A if there exists a norm ‖.‖0 on Rd and real constant M ∈ (0, 1] such that

∀x∈ A \ {a}, f|B‖.‖0 (a,‖x−a‖0)∩(A\{a}) ≥Mf(x). (12)

If (12) holds for M = 1, then f is called radial non-increasing on A w.r.t. a.

Remark 2.7. (a) (12) reads f(y) ≥Mf(x) for all x, y∈ A \ {a} for which ‖y − a‖0 ≤ ‖x− a‖0.

(b) If f is radial non-increasing on Rd w.r.t. a ∈ Rd with parameter ‖.‖0, then there exists a non-
increasing measurable function g : (0,+∞)→ R+ satisfying f(x) = g(‖x− a‖0) for every x 6= a.

(c) From a practical point of view, many classes of distributions satisfy (12), e.g. the d-dimensional

normal distribution N (m,σd) for which one considers h(y) = 1
(2π)

d
2 det(σd)

1
2
e−

y2
2 and density f(x) =

h(‖x−m‖0) where ‖x‖0 = ‖σ−
1
2

d x‖, and the family of distributions defined by f(x) ∝ ‖x‖ce−a‖x‖b, for

every x ∈ Rd, a, b > 0 and c > −d, for which one considers h(u) = uce−au
b
. In the one dimensional

case, we can mention the Gamma distribution, the Weibull distributions, the Pareto distributions and
the log-normal distributions.

Theorem 2.8. Assume P = h.λd with h ∈ L
d
d+r (λd) and

∫
Rd ‖x‖rdP (x) < +∞. Let a1 denote the

Lr-median of P . Assume that supp(P ) ⊂ A and a1 ∈ A for some A star-shaped and peakless with
respect to a1 in the sense that

p(A, ‖.− a1‖) := inf
{
λd(B(x, t) ∩A)
λd(B(x, t)) ;x ∈ A, 0 < t ≤ ‖x− a1‖

}
> 0. (13)
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Assume h is almost radial non-increasing on A with respect to a1 in the sense of (12). Then,

∀n ≥ 2, er(a(n), P ) ≤ κG,Z,P
d,r,M,C0,p(A,‖.−a1‖) ‖h‖

1
r

L
d
d+r (λd)

(n− 1)−
1
d ,

where κG,Z,P
d,r,M,C0,p(A,‖.−a1‖) ≤

2C2
0 r

1
d

d
1
dMd+rV

1
d
d

p(A,‖.−a1‖)
1
d

minε∈(0, 1
3 ) ϕr(ε)

− 1
d .

Remark 2.9. (a) If A = Rd, then p(A, ‖.− a‖) = 1 for every a ∈ Rd.
(b) The most typical unbounded sets satisfying (13) are convex cones that is cones K ⊂ Rd of vertex
0 with 0 ∈ K (K 6= ∅) and such that λx ∈ K for every x ∈ K and λ ≥ 0. For such convex cones K
with λd(K) > 0, we even have that the lower bound

p(K) := inf
{
λd(B(x, t) ∩K)
λd(B(x, t)) ;x∈ K, t > 0

}
=
λd
(
B(0, 1) ∩K)

)
Vd

> 0.

Thus if K = Rd+, then p(K) = 2−d.

The proof of theorem 2.8 is based on the following lemma.

Lemma 2.10. Let ν = f.λd be a probability measure on Rd where f is almost radial non-increasing
on A∈ B(Rd) w.r.t. a1 ∈ A, A being star-shaped relative to a1 and satisfying (13). Then, for every
x∈ A and positive t∈ (0, ‖x− a1‖],

ν(B(x, t)) ≥Mp(A, ‖.− a1‖)(2C2
0 )−dVdf(x)td

where C0 ∈ [1,+∞) satisfies, for every x ∈ Rd,
1
C0
‖x‖0 ≤ ‖x‖ ≤ C0‖x‖0.

Proof. For every x ∈ A and t > 0,

ν(B(x, t)) =
∫
B(x,t)

fdλd ≥
∫
B(x,t)∩A∩{f≥Mf(x)}

fdλd ≥ Mf(x)λd
(
B(x, t) ∩A ∩ {f ≥Mf(x)}

)
and

B(x, t) ∩ (A \ {a1}) ∩B‖.‖0(a1, ‖x− a1‖0) ⊂ B(x, t) ∩A ∩ {f ≥Mf(x)}.

Now, assume 0 < t ≤ ‖x − a1‖ ≤ C0‖x − 1‖0. Setting x′ :=
(
1− t

2C0‖x−a1‖0

)
x + t

2C0‖x−a1‖0
a1 ∈ A

(since A is star-shaped with respect to a1), we notice that, for y ∈ B
(
x′, t

2C2
0

)
⊂ B‖.‖0

(
x′, t

2C0

)
,

‖y − x‖ ≤ ‖y − x′‖+ C0‖x′ − x‖0 ≤
t

2C2
0

+ C0

∥∥∥∥ t

2C0‖x− a1‖0
(x− a1)

∥∥∥∥
0

= t

2C2
0

+ t

2 ≤ t

and

‖y − a1‖0 ≤ ‖y − x′‖0 + ‖x′ − a1‖0 ≤
t

2C0
+
∥∥∥∥(1− t

2C0‖x− a1‖0

)
(x− a1)

∥∥∥∥
0

= ‖x− a1‖0,

so that, B
(
x′, t

2C2
0

)
⊂ B(x, t) ∩B‖.‖0(a1, ‖x− a1‖0). Consequently,

ν(B(x, t)) ≥Mf(x)λd
(
B

(
x′,

t

2C2
0

)
∩A

)
.

Moreover, t
2C2

0
≤ t

2 ≤
1
2‖x− a1‖ ≤ ‖x′ − a1‖. Hence, we have

λd

(
B

(
x′,

t

2C2
0

)
∩A

)
≥ p(A, ‖.− a1‖)λd

(
B

(
x′,

t

2C2
0

))
= p(A, ‖.− a1‖)(2C2

0 )−dtdλd(B(0, 1)).

�
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Proof of Theorem 2.8. Consider

ν = hr.λd := h
d
d+r∫

h
d
d+r dλd

.λd.

Notice that hr is alsmost radial non-increasing on A w.r.t. a1 with parameterM
d
d+r so that Lemma 2.10

yields for every x∈ A and t∈ [0, ‖x− a1‖]

ν
(
B(x, t)

)
≥M

d
d+r p(A, ‖ · −a1‖)(2C2

0 )−dVdhr(x)td.

Consequently, using that ∫
Rd
h
− r
d

r dP = ‖h‖
L

d
d+r (λd)

,

the assertion follows from Proposition 2.3.

Remark 2.11. Note that, by applying Hölder inequality with the conjugate exponents p = 1 + r
d and

q = 1 + d
r , one has

∫
Rd
h(ξ)

d
d+r dξ ≤

(∫
Rd
h(ξ)(1 ∨ |ξ|)r+δdξ

) d
d+r

(∫
Rd

dξ

(1 ∨ |ξ|)d(1+ δ
r

)

) r
d+r

.

Consequently, since

∫
Rd

dξ

(1 ∨ |ξ|)d(1+ δ
r

)
< +∞, one deduces that ‖h‖

1
r
d
d+r
� σ1+ δ

r
r+δ .

We note that Zador theorem implies lim infn n
1
d er(a(n), P ) ≥ lim infn n

1
d er,n(P,Rd) ≥ Qr(P )

1
r . The

next proposition may appear as a refinement of Pierce’s Lemma and Theorem 2.8 in the sense that it
gives a lower convergence rate for the discrete derivative of the quantization error, that is its increment.

Proposition 2.12. Assume
∫
Rd ‖x‖rdP (x) < +∞. Then,

lim inf
n

n1+ r
d min

1≤i≤n

(
er(a(i), P )r − er(a(i+1), P )r

)
> 0.

Proof. We start by choosing N > 0 such that P (B(0, N)) > 0. Proposition 2.1 yields, for every

probability measure ν on Rd, for every n ≥ n0 and c ∈
(
0, 1

2

)
,

er(a(n), P )r − er(a(n+1), P )r

≥ (1− c)r − cr

(c+ 1)r
∫
B(0,N)∩supp(P )

ν

(
B

(
x,

c

c+ 1d
(
x, a(n)

)))
d
(
x, a(n)

)r
dP.

We choose ν = U(B(0, N)). Then, for every x ∈ B(0, N), t ≤ N and x′ =
(
1− t

2N
)
x, one has

B
(
x′, t2

)
⊂ B(x, t) ∩B(0, N) since, for every y ∈ B

(
x′, t2

)
,

‖y − x‖ ≤ ‖y − x′‖+ ‖x′ − x‖ ≤ t

2 + t

2N ‖x‖ ≤ t

and

‖y‖ ≤ ‖y − x′‖+ ‖x′‖ ≤ t

2 +
(

1− t

2N

)
‖x‖ ≤ t

2 +
(

1− t

2N

)
N ≤ N.

Consequently,

ν(B(x, t)) ≥
λd(B(x′, t2))
λd(B(0, N)) = (2N)−dtd.
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Moreover, we denote C := supn≥1 maxx∈B(0,N)∩supp(P ) d(x, a(n)) which is finite because a(n) ∈ conv(supp(P )).
Consequently, for every n ≥ n0 and every c ∈

(
0, 1

2

)
such that

c

c+ 1C ≤ N ,

er(a(n), P )r − er(a(n+1), P )r ≥ (1− c)r − cr

(c+ 1)r
(

c

c+ 1

)d
(2N)−d

∫
B(0,N)

d(x, a(n))d+rdP (x)

≥ (1− c)r − cr

(c+ 1)r
(

c

c+ 1

)d
(2N)−dP (B(0, N))ed+r

d+r(a
(n), P (.|B(0, N))).

Now, using that
(
ed+r
d+r

(
a(n), P (.|B(0, N))

))
n≥1

is nonincreasing and relying on Zador’s theorem, we

deduce
lim inf

n
n1+ r

d min
1≤i≤n

(
er(a(i), P )r − er(a(i+1), P )r

)
> 0.

�

Remark 2.13. For every m,n ∈ N, if we denote Wb(a(n)) the Voronöı cell associated to the sequence
a(n) of centroid b ∈ a(n) and use the fact that er(a(n+1), X) ≤ er(a(n) ∪ {b}, X) for every b ∈ Rd, we
deduce

er(a(n), X)r − er(a(n+m), X)r =
∑
b∈a(n)

∫
Wb(a(n+m))

(
d(x, a(n))r − ‖x− b‖r

)
dP

+
∑

b∈a(n+m)\a(n)

∫
Wb(a(n+m))

(
d(x, a(n))r − ‖x− b‖r

)
dP

=
∑

b∈a(n+m)\a(n)

∫
Wb(a(n+m))

(
d(x, a(n))r − d(x, a(n) ∪ {b})r

)
dP

≤ mer(a(n), X)r − er(a(n+1), X)r.

Consequently, considering n = i and knowing that l→ er(a(l), X) is non-increasing, one has

min
1≤i≤n

(
er(a(i), X)r − er(a(i+1), X)r

)
≥ 1
m

(
er(a(n), X)r − er(a(m), X)r

)
.

3 Distortion mismatch

We address now the problem of distortion mismatch, i.e. the property that the rate optimal decay
property of Lr-quantizers remains true for Ls(P )-quantization error for s ∈ (0,+∞). This problem
was originally investigated in [11] for optimal quantizers. If s ≤ r, the monotonicity of the Ls-norm as
a function of s ensures that any Lr-optimal greedy sequence remains Ls-rate optimal for the Ls-norm.
The challenge is when s is larger than r. The problem is solved in [16] for s ∈ (0,+∞) relying on an
integrability assumption of the b-maximal function Ψb. However, we give an additional nonasymptotic
result for s ∈ (r, d+ r) in the following theorem, in the same settings as for Theorem 2.3, considering
auxiliary probability distributions ν satisfying (7).

Theorem 3.1. Let P be such that
∫
Rd ‖x‖rdP (x) < +∞. Let s ∈ (r, d + r). Let (an) be an Lr-

optimal greedy sequence for P . For any distribution ν and Borel function gε : Rd → R+, ε ∈ (0, 1
3),

satisfying (7), for every n ≥ 3,

es
(
a(n), P

)
≤ κGreedy

d,r,ε

(∫
g
− s
d+r−s

ε dP

) d+r−s
s(d+r)

(∫
g
− r
d

ε dP

) 1
d+r

(n− 2)−
1
d

where κGreedy
d,r,ε = 2

1
d
(
r
d

) r
d(d+r) V

− 1
d

d ϕr(ε)−
1
d .
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Proof. We assume 1
gε
∈ L

s
d+r−s (P ) so that 1

gε
∈ L

r
d (P ) since s

d+r−s ≥
s
d ≥

r
d . Inequality (10) from

the proof of Proposition 2.3 still holds, i.e.

er(a(n), P )r − er(a(n+1), P )r ≥ C
∫
gε(x)d

(
x, a(n)

)d+r
dP (x).

with, for every c∈ (0, ε
1−ε ]∩(0, 1/2), C = Vd ϕr

(
c
c+1

)
where ϕr(u) =

(
1
3r − u

r
)
ud. The reverse Hölder

inequality applied with p = s
d+r ∈ (0, 1) and q = − s

d+r−s ∈ (−∞, 0) yields that

er(a(n), P )r − er(a(n+1), P )r ≥ C1es
(
a(n), P

)d+r

where C1 = C
( ∫

g
− s
d+r−s

ε dP
)− d+r−s

s . Hence, knowing that k 7→ es
(
a(k), P

)
is non-increasing and

summing between n and 2n− 1, we obtain for n ≥ 1

n es(a(2n−1), P )d+r ≤
2n−1∑
k=n

es
(
a(k), P

)d+r ≤ 1
C1

2n−1∑
k=n

er(a(k), P )r − er(a(k+1), P )r ≤ 1
C1
er(a(n), P )r.

Finally, since 2
⌈
n
2
⌉
− 1 ≤ n, we have es

(
a(n), P

)
≤ es

(
a2dn2 e−1, P

)
and we derive that

n

2 es
(
a(n), P

)d+r ≤
⌈
n

2

⌉
es
(
a(n), P

)d+r ≤
⌈
n

2

⌉
es
(
a2dn2 e−1, P

)d+r
≤ 1
C1
er
(
ad

n
2 e, P

)r
.

Consequently, plugging in C1,

es
(
a(n), P

)
≤
( 2
C1

) 1
d+r

n−
1
d+r er

(
ad

n
2 e, P

) r
d+r

= 2
1
d+rV

− 1
d+r

d ϕr

(
c

c+ 1

)− 1
d+r

(∫
g
− s
d+r−s

ε dP

) d+r−s
s(d+r)

n−
1
d+r er

(
ad

n
2 e, P

) r
d+r

.

Consequently, one can deduce from Proposition 2.3, for n ≥ 3,

es
(
a(n), P

)
≤2

1
dV
− 1
d

d

(
r

d

) r
d(d+r)

(∫
g
− s
d+r−s

ε dP

) d+r−s
s(d+r)

(∫
g
− r
d

ε dP

) 1
d+r

ϕr

(
c

c+ 1

)− 1
d

(n− 2)−
1
d .

Hence, the result is owed to the fact that ϕr
(

c
c+1

)
≤ ϕr (ε) for c ∈ (0, ε

1−ε ]. �

Corollary 3.2. Let s ∈ (r, d+ r). Assume , for δ > 0,∫
‖x‖

ds
d+r−s (log+‖x‖)

s
d+r−s+δdP (x) < +∞ (14)

then
lim sup

n
n

1
d sup

{
es
(
a(n), P

)
: (an)Lr-optimal greedy sequence for P

}
< +∞.

Proof. The proof is divided in two steps.

Step 1: Let δ > 0 be fixed and β = 1 + (d+r−s)δ
s . Just as in the proof of Theorem 2.4(b), we set

ν(dx) = γr,δ(x)λd(dx) where

γr,δ(x) = Kδ,r

(1 ∨ ‖x− a1‖)d (log(‖x− a1‖ ∨ e))β
, with Kδ,r =

(∫
dx

(1 ∨ ‖x− a1‖)d (log(‖x− a1‖ ∨ e))β

)−1

,
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is a probability density with respect to the Lebesgue measure on Rd. The density γr,δ is radial non-
increasing on the whole Rd w.r.t. a1 (and ‖ · ‖0 = ‖ · ‖) so that p(‖ · −a1‖) = 1 by Remark 2.9(a) and,
in turn, Lemma 2.10 yields for every x∈ Rd and t ≤ ‖x− a1‖

ν
(
B(x, t)

)
≥ 2−dVdγr,δ((x)td.

Consequently, Theorem 3.1 yields, for n ≥ 3,

es
(
a(n), P

)
≤Cd,r,δ

(∫
(1 ∨ ‖x− a1‖)r (log(‖x− a1‖ ∨ e))β

r
d dP (x)

) 1
d+r

×
(∫

(1 ∨ ‖x− a1‖)
sd

d+r−s (log(‖x− a1‖ ∨ e))δ+
s

d+r−s dP (x)
) d+r−s
s(d+r)

(n− 2)−
1
d

where Cd,r,δ ≤ 21+ 1
dV
− 1
d

d

(
r
d

) r
d(d+r) K

− 1
d

δ,r minε∈(0, 1
3 )(1 + ε)dε

β
dϕr(ε)−

1
d .

Step 2: Just as in the proof of Theorem 2.4(b), we have

(1 ∨ ‖x− a1‖)r (log(‖x− a1‖ ∨ e))β
r
d ≤ 2(r−1)++(β r

d
−1)+

(
‖x‖r log+ ‖x‖β

r
d +A1‖x‖r +A2

)
and

(1 ∨ ‖x− a1‖)
sd

d+r−s (log(‖x− a1‖ ∨ e))δ+
s

d+r−s ≤2( ds
d+r−s−1)++(δ+ s

d+r−s−1)+

×
(
‖x‖

ds
d+r−s log+ ‖x‖

δ+ s
d+r−s +B1‖x‖r +B2

)
where A1, A2, B1 and B2 are constants depending only on r, d, s, δ and a1. Since, s

d+r−s ≥
r
d , one has

ds
d+r−s > r and δ+ s

d+r−s ≥ β
r
d , so that the two above quantities are finite (by assumption (14)). The

result is deduced from the fact that sup
{
‖a1‖ : a1∈ argminξ∈Rder({ξ}, P )

}
<∞. �

4 Algorithmics

An important application of quantization is numerical integration. Let us consider the quadratic case
r = 2 and an L2-optimal greedy quantization sequence a(n) for a random variable X with distribution
PX = P . Since we know that e2(a(n), X) = ‖X − a(n)‖2 converges to 0 when n goes to infinity, this
means that a(n) converges towards X in L2 and hence in distribution. So, denoting

(
Wi(a(n))

)
1≤i≤n the

Voronöı diagram corresponding to a(n), one can approximate E[f(X)], for every continuous function
f : Rd → R, by the following cubature formula

I(f) := E[f(X)] ≈
n∑
i=1

pni f(a(n)
i ) (15)

where, for every i ∈ {1, . . . , n}, pni = P
(
X ∈ Wi(a(n))

)
represents the weight of the ith Voronöı

cell corresponding to the greedy quantization sequence a(n) = {a(n)
1 , . . . , a

(n)
n }. When the function

f satisfies certain regularities, one can establish error bounds for this quantization-based cubature
formula, we refer to [22] for more details. For example, if f is [f ]Lip-Lipschitz continuous, one has∣∣∣∣∣

n∑
i=1

pni f(a(n)
i )− E[f(X)]

∣∣∣∣∣ ≤ [f ]Lip er(a(n), X).

so one can approximate E[f(X)] with an O(n−
1
d ) rate of convergence.

When working on the unit cube [0, 1]d, it is natural to compare an optimal greedy sequence of the
uniform distribution U([0, 1]d) and a uniformly distributed sequence with low discrepancy used in the
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quasi-Monte Carlo method (QMC). A [0, 1]d-valued sequence ξ = (ξn)n≥1 is uniformly distributed if
µn = 1

n

∑n
k=1 δξk converges weakly to λd|[0,1]d

(where λd denotes the Lebesgue measure on (Rd,B(Rd))).
It is well known (see [14] for example) that (ξn)n≥1 is uniformly distributed if and only if

D∗n(ξ) = sup
u∈[0,1]d

∣∣∣∣∣ 1n
n∑
i=1

1ξi∈[0,u]d − λd([0, u]d)
∣∣∣∣∣ → 0 as n→ +∞.

The above modulus is known as the star-discrepancy of ξ at order n and can be defined, for fixed
n ∈ N, for any n-tuple (ξ1, . . . , ξn) whose components ξk lie in [0, 1]d. There exists many sequences

(Halton, Kakutani, Faure, Niederreiter, Sobol’, see [3, 22] for example) achieving a O
(

(logn)d
n

)
rate of

decay for their star-discrepancy and it is a commonly shared conjecture that this rate is optimal, such
sequences are called sequences with low discrepancy. By a standard so-called Hammersley argument,
one shows that if a [0, 1]d−1-valued sequence ζ = (ζn)n≥1 has low discrepancy i.e. there exists a real

constant C(ζ) ∈ (0,+∞) such that D∗n(ζ) ≤ C(ζ) (logn)d−1

n , for every n ≥ 1, then, for every n ≥ 1, the

[0, 1]d-valued n-tuple
(
(ζk, kn)

)
1≤k≤n

satisfies

D∗n

((
(ζk,

k

n
)
)

1≤k≤n

)
≤ C(ζ)(logn)d−1

n
.

The QMC method finds its gain in the following error bound for numerical integration. Let (ξ1, . . . , ξn)
be a fixed n-tuple in ([0, 1]d)n, then, for every f : [0, 1]d → R with finite variation (in the Hardy and
Krause sense, see [18] or in the measure sense see [3, 22]),∣∣∣∣∣ 1n

n∑
i=1

f(ξk)−
∫

[0,1]d
f(u)du

∣∣∣∣∣ ≤ V (f)D∗n(ξ1, . . . , ξn). (16)

where V (f) denotes the (finite) variation of f . So, for this class of functions, an O
(

(logn)d−1

n

)
or

O
(

(logn)d
n

)
rate of convergence can be achieved depending on the composition of the sequence. How-

ever, the class of functions with finite variation becomes sparser in the space of functions defined
from [0, 1]d to R and it seems natural to evaluate the performance of the low-discrepancy sequences
or n-tuples on a more natural space of test functions like the Lipschitz functions. This is the purpose
of Pröınov’s theorem reproduced below.

Theorem 4.1. (Proinov, see [23]) Let (Rd, ‖.‖∞). Let ξ = (ξ1, . . . , ξn) a sequence of [0, 1]d. For
every continuous function f : [0, 1]d → (R, |.|∞), we define the uniform continuity modulus of f by
w(f, δ) = supξ,ξ′∈[0,1]d,|ξ−ξ′ |∞≤δ |f(ξ) − f(ξ′)| where |u|∞ = max1≤i≤d |ui| if u = (u1, . . . , ud). Then,
for every n ≥ 1, ∣∣∣∣∣ 1n

n∑
i=1

f(ξi)−
∫

[0,1]d
f(x)dx

∣∣∣∣∣ ≤ Cdw(f,D∗n(ξ)
1
d ),

where Cd is a constant lower than 4 and depending only on the dimension d.
In particular, if f is [f ]Lip−Lipschitz and ξ has low discrepancy, one has∣∣∣∣∣ 1n

n∑
i=1

f(ξi)−
∫

[0,1]d
f(x)dx

∣∣∣∣∣ ≤ Cd [f ]LipD∗n(ξ)
1
d ≤ Cd [f ]Lip

log n
n

1
d

.

This suggests that, at least for a commonly encountered class of regular functions, the curse of
dimensionality is more severe with QMC than with quantization due to the extra (logn)1− 1

d factor in
QMC. This is the price paid by QMC for considering uniform weights pi = 1

n , i = 1, . . . , n.
With greedy quantization sequences, we will show that it is possible to keep the n−

1
d rate of

decay for numerical integration but also keep the asset of a sequence which is a recursive formula for
cubatures.
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4.1 Optimization of the algorithm and the numerical integration in the 1-dimensional
case

Quadratic optimal greedy quantization sequences are obtained by implementing algorithms such as
Lloyd’s I algorithm, also known as k-means algorithm, or the Competitive Learning Vector Quantiza-
tion (CLVQ) algorithm, which is a stochastic gradient descent algorithm associated to the distortion
function. We refer to [17] (an extended version of [16] on ArXiv) where greedy variants of these pro-
cedures are explained in detail. According to Lloyd’s algorithm, the construction of the sequences is
recursive in the sense that, at the iteration n, we add one point an to {a1, . . . , an−1}, and we denote

{a(n)
1 , . . . , a

(n)
n } an increasing reordering of {a1, . . . , an} where the new added point is denoted by a

(n)
i0

.
Since the other points are frozen, we can notice that the local inter-point inertia σ2

i defined by

σ2
i :=

∫ a
(n−1)
i+ 1

2

a
(n−1)
i

|a(n−1)
i − ξ|2P (dξ) +

∫ a
(n−1)
i+1

a
(n−1)
i+ 1

2

|a(n)−1
i+1 − ξ|2P (dξ), i = 0, . . . , n− 1 (17)

(where a
(n−1)
0 = −∞, a

(n−1)
n = +∞ and a

(n−1)
i+ 1

2
= a

(n−1)
i +a(n−1)

i+1
2 with a

(n−1)
1
2

= −∞, a
(n−1)
n− 1

2
= +∞)

remains untouched for every i ∈ {0, . . . , n − 1} except σ2
i0 (the inertia between the point a

(n)
i0

added

at the n-th iteration and the following point) and σ2
i0−1 (the inertia between a

(n)
i0

and the preceding
point). Thus, at each iteration, the computation of n inertia can be reduced to the computation of
only 2, thereby reducing the cost of the procedure. Likewise, the weights pni = P (Wi(a(n))) of the
Voronöı cells remain mostly unaffected. The only cells that change from one step to another are the

cell Wi0(a(n)) having for centroid the new point a
(n)
i0

and the two neighboring cells Wi0−1(a(n)) and

Wi0+1(a(n)). Thus, the online computation of cell weights just needs 3 calculations instead of n (or
2 in case the added point is the first or last point in the reordered sequence). The utility of the
weights of the Voronöı cells is featured in the numerical integration allowing to approximate E[f(X)]
for f : Rd → R by the quadrature formula (15) using the reordered sequence a(n). Thus, based on the
fact that only 3 Voronöı cells are modified at each iteration, one can deduce an iterative formula for
the approximation of I(f) by In(f), requiring the storage of only 2 weights and 2 indices, as follows

In(f) = In−1(f)− pn−f(a(n)
i0−1)− pn+f(a(n)

i0+1) + (pn+ + pn−)f(a(n)
i0

)

= In−1(f)− pn−(f(a(n)
i0−1)− f(a(n)

i0
))− pn+(f(a(n)

i0+1)− f(a(n)
i0

)), (18)

where

• a(n)
i0

is the point added to the greedy sequence at the n-th iteration, in other words, it is the
point an,

• a(n)
i0−1 and a

(n)
i0+1 are the points lower and greater than a

(n)
i0

, i.e. a
(n)
i0−1 < a

(n)
i0

< a
(n)
i0+1,

•
pn− = P

([
a

(n)
i0− 1

2
, a

(n)
mil

])
and pn+ = P

([
a

(n)
mil, a

(n)
i0+ 1

2

])
. (19)

where a
(n)
i0± 1

2
=
a

(n)
i0

+ a
(n)
i0±1

2 and a
(n)
mil =

a
(n)
i0+1 + a

(n)
i0−1

2 , with a0 = −∞ and an = +∞.

Practically, this numerical iterative method can be applied without storing the whole ordered greedy
quantization sequence nor computing the weights of the Voronöı cells, which could appear as significant
drawbacks for quantization. Instead, it requires the possession of 2 indices of 2 particular points of
the non-ordered greedy quantization sequence and 2 weights. In fact, one can start by determining
the indices n and n of the points preceding and following an in the ordered sequence, in other words,
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the points in the non-ordered sequence corresponding to a
(n)
i0−1 and a

(n)
i0+1. Then, we will be able to

compute the weights pn− et pn+ to finally proceed with the iterative approximation of I(f) according
to (18).

4.2 Product greedy quantization (d > 1)
In higher dimensions, greedy quantization has always the recursive properties, so it gets interesting to
apply the same numerical improvements as in the one-dimensional case. However, the construction of
multidimensional greedy quantization sequences is complex and expensive since it relies on complicated
stochastic optimization algorithms. As an alternative, one can use one-dimensional greedy quantization
grids as tools to obtain multidimensional greedy quantization sequences in some cases.

4.2.1 How to build multi-dimensional greedy product grids

Multidimensional greedy quantization sequences can be obtained as a result of the tensor product of
one-dimensional sequences, when the target law is a tensor product of its independent marginal laws.
These grids are, of course, not optimal nor asymptotically optimal but they allow to approach the
multidimensional law.
Let X1, . . . , Xd be d independent L2-random variables taking values in R with respective distributions
µ1, . . . , µd and a1,(n1), . . . , ad,(nd) the corresponding greedy quantization sequences. By computing
the tensor product of the d one-dimensional greedy sequences of the laws µ1, . . . , µd, we obtain the
d-dimensional greedy quantization grid a1,(n1) ⊗ . . . ⊗ ad,(nd) of the product law µ = µ1 ⊗ . . . ⊗ µd,

given by
(
a

(n)
j

)
1≤j≤n =

(
a

1,(n1)
j1

, . . . , a
d,(nd)
jd

)
1≤j1≤n1,...,1≤jd≤nd

of size n =
d∏
i=1

ni. The corresponding

quantization error is given by

er(a1,(n1) ⊗ . . .⊗ ad,(nd), X1 ⊗ . . .⊗Xd)r =
d∑

k=1
er(ak,(nk), Xk)r. (20)

Moreover, the weights p
(n)
j of the d-dimensional Voronöı cells

(
Wj
(
a(n)))

1≤j≤n can be computed from

the weights pk,nk , k = 1, . . . , d, of the Voronöı cells
(
W k,nk
i

(
ak,(nk)))

1≤i≤nk
of each one-dimensional

greedy quantization sequence, via

pj = p1,n1
j1
× . . .× pd,ndjd

∀jk ∈ {1, . . . , nk},∀k ∈ {1, . . . , d}, ∀j ∈ {1, . . . , n}.

The implementation of d-dimensional grids is not a point-by-point implementation. In fact, at each
iteration n, a(n) is obtained from a1,(n1), . . . , ad,(nd), keeping in mind that n1 × . . . × nd = n. Having
the d one-dimensional sequences, one must add a point to one one-dimensional sequence, generating
this way several points of the multidimensional sequence. At this step, we must choose between d
possibilities: adding one point to only one sequence ak,(nk) among the d marginal sequences, obtaining
a(n1×...×nk−1×(nk+1)×nk+1×...×nd). These d cases are not similar since each one produces a different
error quantization. So, the implementation is not a random procedure. To make the right decision,
one must compute in each case, using (20), the quantization error Ek obtained if we add a point to
ak,(nk) for a k ∈ {1, . . . , d}. In other words, we compute, for k = 1, . . . , d

Ek = er(ak,(nk+1), µk)r +
∑

l∈{1,...,d}\{k}
er(al,(nl), µl)r.

Then, one choses the index i such that Ei = min
1≤k≤d

Ek and, so, one adds a point to the sequence ai,(ni)

and obtains the grid a(n1×...×ni−1×(ni+1)×ni+1×...×nd).
We note that if the marginal laws µ1, . . . , µd are identical, this step is not necessary and the choice of
the sequence to which a point is added, at each iteration, is systematically done in a periodic manner.
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4.2.2 Numerical integration

Similarly to the 1-dimensional case, the majority of the Voronöı cells do not change while passing
from an iteration n to an iteration n + 1. At the n-th iteration, having n1 × . . . × nd points in the
sequence, one adds a new point to a(i,ni). Hence, we will have n1 × . . . × ni−1 × ni+1 × . . . × nd new
created cells having for centroids the new points added to the d-dimensional sequence a(n), and another
2(n1 × . . . × ni−1 × ni+1 × . . . × nd) modified cells, corresponding to all the neighboring cells of the
new added cells. In total, there is 3(n1× . . .×ni−1×ni+1× . . .×nd) new Voronöı cells, while the rest
of the cells remain unchanged. This leads to an iterative formula for quantization-based numerical
integration (where the same principle as in the one dimensional case is applied) as follows

In+1(f) = In(f)− pi,ni+1
−


nk∑
jk=1

k∈{1,...,d}\{i}

∏
k=1,...,d
k 6=i

p
k,(nk)
jk

(
f(a1,(n1)

j1
, . . . , a

i,(ni+1)
i0−1 , . . . , a

d,(nd)
jd

)

−f(a1,(n1)
j1

, . . . , a
i,(ni+1)
i0

, . . . , a
d,(nd)
jd

)
)

− pi,ni+1
+


nk∑
jk=1

k∈{1,...,d}\{i}

∏
k=1,...,d
k 6=i

p
k,(nk)
jk

(
f(a1,(n1)

j1
, . . . , a

i,(ni+1)
i0+1 , . . . , a

d,(nd)
jd

)

−f(a1,(n1)
j1

, . . . , a
i,(ni+1)
i0

, . . . , a
d,(nd)
jd

)
) (21)

Note that in the d-dimensional case, the use of the weights pk,(nk) for k ∈ {1, . . . , d}\{i} of the Voronöı
cells of the other marginal sequences obtained at the previous iteration is essential, as well as the use
the ordered one-dimensional greedy sequences ak,(nk) for k ∈ {1, . . . , d} \ {i}.

5 Numerical applications and examples

5.1 Greedy quantization sequences for Gaussian distribution via Box-Müller

The Box-Müller method allows to generate a random vector with normal distributionN (0, I2), actually
two independent one-dimensional random variables Z1 and Z2 with distribution N (0, 1) by considering
two independent random variables E and U with respective distributions E(1) and U([0, 1]). Then,
2E ∼ E(1

2) and 2πU ∼ U([0, 2π]), so, the two variables

Z1 =
√

2E cos(2πU) et Z2 =
√

2E sin(2πU)

are independent and with normal distribution N (0, 1).
In order to apply greedy properties, we use greedy quantization sequences ε(n1) and u(n2) of respective

distributions E(1) and U [0, 1] to design two N (0, 1)-distributed independent sequences z
(n)
1 et z

(n)
2 ,

of size n = n1 × n2, via the previous formulas so we can get a greedy sequence z(n) of the two-
dimensional normal distribution N (0, I2). The procedure is implemented as described in section 4.2.
At each iteration, we must choose the one-dimensional distribution to which we should add a point.
Thus, we compute the error induced if we add a point to u(n2)

Eu = e2
(
u(n2+1),U [0, 2π]

)2
+ e2

(
ε(n1), E

(1
2

))2
= 4π2e2

(
u(n2+1),U [0, 1]

)2
+ 4e2

(
ε(n1), E (1)

)2
,
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Figure 1: Greedy quantization sequences of the distribution N (0, I3) of size N = 153 designed by Box
Müller method (left) and greedy product quantization (right).

and the error induces if we add a point to ε(n1)

Eε = e2
(
u(n2),U [0, 2π]

)2
+ e2

(
ε(n1+1), E

(1
2

))2
= 4π2e2

(
u(n2),U [0, 1]

)2
+ 4e2

(
ε(n1+1), E (1)

)2
,

and we add a point to u(n2) if Eu < Eε and a point to ε(n1) if Eε < Eu.

To design sequences in dimension d > 2, one uses several couples (Ei, Ui) to get several pairs
(Zi, Zj) and use the wanted number of (Zk)k to obtain multidimensional sequences. In figure 1, we
compare two greedy quantization sequences of the distributionN (0, I3) of size N = 153, one is obtained
using the Box-Müller method based on two greedy exponential sequences E(1) and two greedy uniform
sequences U([0, 1]), and the other obtained by greedy product quantization based on 3 one-dimensional
Gaussian greedy sequences. The weights of the Voronöı cells in both cases are represented by a color
scale (growing from blue to red) and we observe that the weights of the cells in the center have the
highest values and those values decrease as long as we sweep away to the borders, as expected for a
Gaussian distribution.
We should also note that, even if the greedy product quantization of a Normal distribution takes
the shape of a cube (which is unusual fo such distribution), the low values of the Voronöı weights at
the edges of this cube allow to consider such a sequence as a valid approximation of the Gaussian
distribution.

5.2 Pricing of a 3-dimensional basket of European call options

We consider a Call option on a basket of 3 positive risky assets, with strike price K and maturity T ,

with payoff hT =
(∑3

i=1wiXi −K
)

+
where (X1, X2, X3) represent the prices of the 3 traded assets of

the market and wi are positive weights such that
∑3
i=1wi = 1. We consider a 3-dimensional correlated

Black-Scholes model where the prices of the assets are given by

dXi = Xi,t (rdt+ σidWi,t) , Xi,0 = xi,0.

where r is the interest rate, σi the volatility of Xi and the (Wi)i represent a correlated 3-dimensional
Brownian motion, i.e. (Wi,Wj) = ρijt. Then, one has for every i ∈ {1, 2, 3}

Xi = X0,ie
(r−

σ2
i

2 )t+
∑q

j=1 σijWj,t , t ∈ [0, T ].
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Figure 2: Errors induced by the pricing of a 3-dimensional basket of call options V0 in a Black-
Scholes model computed using 3-dimensional greedy normal quantization sequences obtained by Box-
Müller via quadrature formula and by greedy product quantization via a recursive formula and via a
quadrature formula for n = 1, . . . , 30 000 (logarithmic scale).

Our aim is to compute

V0 = e−rTE[hT (XT )] = e−rTE[hT (X1, X2, X3)]

relying on the greedy quantization sequences and using the recursive formula for numerical integration
introduced in the previous sections.
First, we estimate V0 by a quadrature formula according to (15)

V0 =
n∑

j1=1

n∑
j2=1

n∑
j3=1

φ(z1,(n)
j1

, z
2,(n)
j2

, z
3,(n)
j3

)p1,(n)
j1

p
2,(n)
j2

p
3,(n)
j3

.

where (z1,(n), z2,(n), z3,(n)) is a 3-dimensional greedy quantization sequences of the Gaussian distribu-
tion N (0, I3) obtained, on one hand, by the Box-Müller algorithm relying on 2 one-dimensional expo-
nential greedy sequence ε(n1), n1 = 16 and 2 one-dimensional uniform greedy sequence u(n2), n2 = 15
and, on the other hand, by greedy product quantization of 3 one-dimensional sequences of size 32 each.
Then, we estimate V0 by the recursive formula (21) for d = 3 using the greedy product quantization
sequence. We obtain sequences of size 32 000 and we consider

r = 0.1 , σi = 0.3 , Xi,0 = 100 , T = 1 and K = 100.

Moreover, we consider a Brownian motion such that ρ1,1 = ρ1,2 = ρ1,3 = 0.5 and all the others ρi,j ’s
are equal to 0. The reference price is given by a large Monte Carlo simulation with control variate of
size M = 2.107. We consider the control variate

kT =
(
e
∑3

i=1 wi log(Xi) −K
)

+

which is positive and lower than hT owing to the convexity of the exponential. Since e−rTEkt has a
normal distribution with mean (r − 1

2
∑3
i=1wiσ

2
i )T and variance wtσσtwT , it admits a closed form

given by

e−rTEkt = CallBS

( 3∏
i=1

Xwi
i,0e
− 1

2T (
∑3

i=1 wiσ
2
i−w

tσσtw),K, r,
√
wtσσtw, T

)
.
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n BM GPQ GPI

100 1.72 1.68 1.84
1 000 0.07 0.42 0.42
8 000 0.04 0.08 0.08
15 000 0.07 0.08 0.08

Table 1: Errors of the approximation of a 3-dimensional basket of call options V0 in a Black-Scholes
model by Box-Müller with quadrature formula (BM), greedy product quantization with quadrature
formula (GPQ) and greedy product quantization with recursive formula (GPI) for different number of
points n.

We compare the three methods in figure 2 where we represent, in a logarithmic scale, the error
induced by each method as a function of the number of points varying between 1 and 32 000 and in
table 1 where we expose the errors obtained by each method for some particular number of points.
The recursive numerical integration gives the same results as the quadrature formula-based numerical
integration making quantization-based numerical integration less expensive and more advantageous by
reducing the cost in time and storage. Moreover, one deduces that the Box-Müller algorithm is more
accurate than the greedy product quantization. This can be explained by the fact that Box-Müller
sequences fill the space in a way that resembles more to the normal distribution, we can notice a kind
of ball different than the cube observed when implementing greedy product sequences (see figure 1).

6 Further properties and numerical remarks

In this section, we present, based on numerical experiments, some properties of the one-dimensional

quadratic greedy quantization sequences. We recall that a(n) = {a(n)
1 , . . . , a

(n)
n } denotes the reordered

greedy sequence of the n first elements {a1, . . . , an} of (an)n≥1.

6.1 Sub-optimality of greedy quantization sequences

The implementation of a greedy quantization sequence (an)n≥1 of a distribution P and the computation
of the corresponding weights pni of the Voronöı cells Wi(a(n)) for i ∈ {1, . . . , n} defined by (1) is, in
general, not optimal. However, numerical implementations and graphs representing ai 7→ pni = P (X ∈
Wi(a(n))) for different number of points n show that, for certain distributions, the weights of the
Voronöı cells converge towards the density curve of the corresponding distribution when the greedy
sequence has a certain number of points.
For the normal distribution, this is observed when the size of the sequence is equal to n = 2k − 1, for
every integer k ≥ 1. So, we can say that the greedy quantization sequence is sub-optimal since the
subsequence

α(n) = α(2k−1) t.q. n = 2k − 1, k ∈ N∗ (22)

is itself optimal. Regarding the uniform distribution on [0, 1], we can check that there exists 2 sub-
optimal sequences of the greedy sequence defined by

α0 = 3,
αn = 2αn−1 + 1 if n ≡ 1 (mod 3),
αn = 2(αn−1 − 2) + 1 if n ≡ 2 (mod 3),
αn = 2(αn−1 + 2) + 1 if n ≡ 0 (mod 3).


α0 = 11,
αn = 2αn−1 + 1 if n ≡ 1 (mod 3),
αn = 2(αn−1 − 2) + 1 if n ≡ 2 (mod 3),
αn = 2(αn−1 + 2) + 1 if n ≡ 0 (mod 3).

These results explain, in a certain way, the cycloid aspect of the graphs of the quantization error,
the points at which the quantization error reaches its minimum correspond to the optimal subsequences

21



−3 −2 −1 0 1 2 3 −3 −2 −1 0 1 2 3

Figure 3: Representation of ai 7→ pni where (pni )1≤i≤n denote the Voronöı weights corresponding to the
greedy quantization sequence of the normal distribution N (0, 1) implemented by Lloyd’s algorithm
for n = 255 (left), n = 400 (right).

defined above.
Some results for the normal distribution are represented in figure 3 where we observe the unimodal

weights for n = 255 = 28 − 1 and non-unimodal weights for n = 400.
Similarly, the greedy quantization sequence of the Laplace distribution with parameters 0 and 1

admits optimal subsequences taking the form a(2k−1), k ∈ N∗. These observations allow to conjecture
the sub-optimality of such subsequences for symmetrical distributions around 0.

6.2 Convergence of standard and weighted empirical measures

The existence of suboptimal greedy quantization sequences, as detailed previously, gives a motivation
to dig deeper and study the empirical measures associated to a greedy quantization sequences. In fact,
sequences of asymptotically optimal n-quantizers (Γn)n≥1, of an absolutely continuous distribution P
w.r.t. the Lebesgue measure with density f , satisfy some empirical measure convergence theorems
established in [10] (see theorem 7.5 p. 96) and [6] and recalled below, where

P̂n = 1
n

n∑
i=1

δxni and P̃n =
n∑
i=1

P (Wi(Γn))δxni

designate, respectively, the empirical standard measure and the empirical weighted measure associated
to Γn = {xn1 , . . . , xnn}.

Theorem 6.1. Assume P is absolutely continuous w.r.t the Lebesgue measure on Rd with density f .

Let Γn be an asymptotically optimal n-quantizer of P . Then, denoting C =
( ∫

R f
d
d+p (u)du

)−1
, one

has
P̃n ⇒

n→+∞
P and P̂n ⇒

n→+∞
C f

d
p+d (u)du. (23)

We hope to obtain such results for greedy sequences or, at least, for sub-optimal greedy sequences
defined in the previous section. To this end, we “divide” the two limits mentioned in (23), along the
sequence (Wi(a(n)))1≤i≤n of the Voronöı weights associated to (an)n≥1, and we obtain nPl(Wi(a(n))) '
1
C f

1− d
d+p (a(n)

i ) = C−1f
p
d+p (a(n)

i ). Hence, for all i ∈ {1, . . . , n}, the limiting measure of the Voronöı
cells of the greedy sequence is given by

Pl(Wi(a(n))) ' f
p
d+p (a(n)

i )
Cn

(24)
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Figure 4: Comparison of the weights of the Voronöı cells computed online (blue) to the limit weights
of the cells (red) for the exponential distribution E(1) for n = 645 (left) and n = 1 379 (right).

In other words, if the greedy sequences satisfy the convergence of the empirical measures, then the
weights of the Voronöı cells, computed by

P (Wi(a(n))) = FP

(
a

(n)
i+ 1

2

)
− FP

(
a

(n)
i− 1

2

)
, (25)

where a
(n)
i+ 1

2
= a

(n)
i +a(n)

i+1
2 for 1 ≤ i ≤ n− 1 and FP is the c.d.f of P , must converge to the limit weights

Pl(Wi(a(N))) given in (24).
Numerical experiments were established for the normal distribution N (0, 1), uniform distribution

U([0, 1]), exponential distribution E(1) and Laplace distribution L(0, 1). We observe positive results
in the four cases, the weights of the Voronöı cells computed online get closer to the limit weights Pl
when n increases. For the gaussian distribution, we observe a more important convergence for the
subsequences a(2k−1) (as predicted). We present, in figure 4 the obtained results for the exponential
distribution where we compare the weights (25) (blue) and the limit weights (24) (red) for different
number of points n.

6.3 Stationarity and ρ-quasistationarity

An interesting question is to see if the greedy sequences are stationary i.e. satisfy

a
(n)
i = E(X|X ∈Wi(a(n))), i = 1, . . . , n,

or can be close to stationarity, a property shared by quadratic optimal quantizers. We compute the
error ‖X̂a(n) − E(X|X̂a(n))‖1 under the standard empirical measure P̂n = 1

n

∑n
i=1 δa(n)

i

, i.e.

n∑
i=1

∣∣∣a(n)
i − E(X|X ∈Wi(a(n)))

∣∣∣ =
n∑
i=1

∣∣∣∣∣a(n)
i −

∫
Wi(a(n)) ξdP (ξ)
P (Wi(a(n)))

∣∣∣∣∣ . (26)

and we hope to observe a convergence to 0, when n increases. But, numerical experiments, conducted
for several probability distributions, show that a(n) cannot be stationary, in the sense of (26). In fact,
we will show, for a specific class of distributions, that greedy quantization sequences are not stationary
(in the sense of (26)), except when n ∈ {1, 3}. We will use the following result given in [13].

Theorem 6.2. (J.C. Kieffer) Let d = 1 and µ a probability distribution with log-concave density.
Then, there exists a unique stationary quantizer of µ.
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Proposition 6.3. Let X be a random variable with distribution P which is symmetric and unimodal
(log-concave density) and a(n) a corresponding greedy quantization sequence. Then, for every n ∈
N \ {1, 3}, the sequence a(n) is not stationary.

Proof. We suppose that E[X] = 0 (symmetric around 0). If it is not the case, a translation gives the
same results. We will detail the proof in 3 cases
� For n = 3: Since E[X] = 0, the first point is a1 = 0. A second point is given by

a2 = argmina∈REX2 ∧ (X − a)2 =
{
∇a2 EX2 ∧ (X − a2)2 =

∫
W2(a(i))

(ξ − a2)dP (ξ) = 0
}
.

Hence, a2 =
∫
W2(a(n)) ξdP (ξ)

P (W2(a(n))) is stationary. The third point is a3 = −a2 by symmetry of P so a3 is also

stationary. Finally, a1 = 0 is also stationary since
∫ a3/2
a2/2 ξdP (ξ) =

∫−a2/2
a2/2 ξdP (ξ) = 0. Consequently,

the sequence a(3) = {−a2; a1; a2} is stationary.
� For n = 2k even: Since P is unimodal, the stationary quantizer is unique, let x(n) be this
quantizer, which is the n-optimal quantizer of P because we know it is stationary. The symmetry of

P lets us know that the quantizer (x(n)
n+1−l)1≤l≤n of P is also stationary, so, for every l ∈ {1, . . . , n},

x
(n)
l + x

(n)
n+1−l = 0. Since n = 2k is even, we have, in particular,

x
(n)
k = −x(n)

n+1−k = −x(n)
n+1−n2

= −x(n)
k+1,

so, x
(n)
k < 0 < x

(n)
k+1 and, since, x

(n)
k et x

(n)
k+1 are two consecutive terms of the grid, we deduce that 0

is not an element of x(n), and hence can not be a point of a stationary quantizer. Consequently, the
greedy sequence starting at a1 = 0 can not be stationary.
� For n = 2k + 1 odd: We consider the greedy non-stationary sequence a(2k) of even size. There
exists, at least, one non-stationary Voronöı cell Wi(a(2k)). Its symmetric cell W2k+1−i(a(2k)) will also
be non-stationary because P is symmetric. So, we have at least 2 non stationary Voronöı cells. While
building the sequence a(2k+1), we add a new point which will be in one of the Voronöı cells without
modifying the others. If the new point is added in one of the non-stationary cells, we know that the
second one will remain untouched, having, at least, one non-stationary cell in a(2k+1). And, if the new
point is not in these cells, then they will remain untouched and there will be, at least, 2 non-stationary
cells in a(2k+1). �

However, further different numerical observations show that most greedy quantization sequences
satisfy a certain criteria that we can call ρ-quasi-stationarity. This criterion approaches to the sta-
tionary character verified by optimal quantizers and can be defined, for r ∈ {1, 2} and ρ ∈ [0, 1],
by

‖X̂a(n) − E(X|X̂a(n))‖r = o(‖X̂a(n) −X‖1+ρ
1+ρ), or

‖X̂a(n) − E(X|X̂a(n))‖r
‖X̂a(n) −X‖1+ρ

1+ρ
−→

n→+∞
0. (27)

It is satisfied by greedy sequences for ρ lower than certain optimal values ρl depending on the distri-
bution P and on the value of r. We expose, in table 2, these values of ρl for r = 1 and r = 2 for the
normal, uniform or Gaussian distribution. This property is important because it brings improvements
to quantization-based numerical integration. The error induced by this integration using standard
cubature formula for functions with ρ-Hölder gradient is bounded by

|Ef(X)− Ef(X̂a(n))| ≤ 1
1 + ρ

[∇f ]ρ‖X − X̂a(n)‖1+ρ
1+ρ
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N (0, 1) U([0, 1]) E(1)
r = 1 ρl = 0.92 ρl = 3

4 ρl = 2
3

r = 2 ρl = 0.47 ρl = 3
8 ρl = 1

3

Table 2: Values of optimal ρl for different distributions and for r ∈ {1; 2}.

while the classical error bound is given by (see [21])

|Ef(X)− Ef(X̂a(n))| ≤ [f ]Lip‖X − X̂a(n)‖p.

In fact, if ρ ∈ [0, 1] and f is a continuous function with ρ-hölder gradient with Hölder coefficient [∇f ]ρ,
we have

Ef(X)− Ef(X̂a(n)) ≤E
(
∇f(X̂a(n))|X − X̂a(n))

+ E
[∫ 1

0

(
∇f

(
X̂a(n) + t(X − X̂a(n))

)
−∇f(X̂a(n))|X − X̂a(n))

dt

]
.

Since,∫ 1

0

(
∇f

(
X̂a(n) + t(X − X̂a(n))

)
−∇f(X̂a(n))|X − X̂a(n))

dt ≤ [∇f ]ρE|X − X̂a(n) |1+ρ
∫ 1

0
t1+ρdt,

and

E(∇f(X̂a(n))|X − X̂a(n)) = E(∇f(X̂a(n))|X)− E(∇f(X̂a(n))|X̂a(n)) = E
(
∇f(X̂a(n))|E(X|X̂a(n))− X̂a(n))

,

we have

|Ef(X)− Ef(X̂a(n))| ≤ ‖∇f(X̂a(n))‖2‖E(X|X̂a(n))− X̂a(n)‖2 + 1
1 + ρ

[∇f ]ρ‖X − X̂a(n)‖1+ρ
1+ρ.

Hence, if (27) is satisfied, then on can conclude that

lim sup
n

|Ef(X)− Ef(X̂a(n))|
‖X − X̂a(n)‖1+ρ

1+ρ
≤ 1

1 + ρ
[∇f ]ρ (28)

and hence the gain in the quantization-based numerical integration error bounds.

6.4 Discrepancy of greedy sequences

The comparison established, in the beginning of section 4, between greedy quantization-based numer-
ical integration and quasi-Monte Carlo methods, showing a gain of log(n)-factor with greedy quan-
tization in terms of convergence rate, drives us to build a relation, based on Pröınov’s Theorem 4.1,
between the error quantization and the discrepancy. In fact, for every n-tuple Ξ = (ξ1, . . . , ξn) ∈
[0, 1]n, noticing that a Lipschitz function f has always a finite variation and considering the function
f : u → min1≤i≤n |u − ξi| which is 1-Lipschitz (since |mini ai −mini bi| ≤ maxi |ai − bi|) and satisfies

f(ξi) = 0 for every i ∈ {1, . . . , n} and

∫ 1

0
f(u)du = e1(X,U([0, 1])), one applies the Koksma-Hlawka

inequality (16) to f to deduce that

e1(Ξ,U([0, 1])) ≤ D∗n(Ξ). (29)

This motivates us to study the discrepancy of greedy sequences hoping that they can be comparable
to low discrepancy sequences. We compute the discrepancy of greedy quantization sequences, for
d ∈ {1, 2, 3}, using formulas given in [7] (theorems 1, 2 and 3) and recalled below.
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Figure 5: Comparisons of the star discrepancy of the Niederreiter sequence to a greedy product
quantization sequence of the uniform distribution U([0, 1]2) (left) and to a pure greedy quantization
sequence (right) for d = 2.

Theorem 6.4. (a) Let Ξ = (ξi)1≤i≤n be a sequence in [0, 1] and assume ξ1 ≤ . . . ≤ ξn. Then, for
every n ≥ 1

D∗n(Ξ) = max
1≤i≤n

max
{
i

n
− ξi , ξi −

i− 1
n

}
= 1

2n + max
1≤i≤n

∣∣∣∣ξi − 2i− 1
2n

∣∣∣∣ . (30)

(b) Let Ξ = (ξi)1≤i≤n be a sequence in [0, 1]2 where each ξi have two components (x1
i , x

2
i ). Assume

x1
1 ≤ . . . ≤ x1

n. For every i ∈ {1, . . . , n}, we consider (ξi,0, . . . , ξi,i+1) an increasing reordering of
(0, x2

1, . . . , x
2
i , 1). Then,

D∗n(Ξ) = max
1≤i≤n

max
0≤k≤i

max
{
k

n
− x1

i ξi,k , x
1
i+1ξi,k+1 −

k

n

}
. (31)

(c) Let Ξ = (ξi)1≤i≤n be a sequence in [0, 1]3 where each ξi have three components (x1
i , x

2
i , x

3
i ). Assume

x1
1 ≤ . . . ≤ x1

n. For every i ∈ {1, . . . , n}, we consider (ξi,0, . . . , ξi,i+1) an increasing reordering of
(0, x2

1, . . . , x
2
i , 1). For a fixed i and k ∈ {1, . . . , i}, we consider {ηi,k,0, . . . , ηi,k,k+1} an increasing

reordering of {0, x3
1, . . . , x

3
k, 1}. Then,

D∗n(Ξ) = max
1≤i≤n

max
0≤k≤i

max
0≤l≤k

max
{
l

n
− x1

i ξi,kηi,k,l , x
1
i+1ξi,k+1ηi,k,l+1 −

l

n

}
. (32)

Numerical results show that, in the one-dimensional case, greedy sequences can be used as a low
discrepancy sequence. But, when d becomes larger than 1, the situation becomes less convincing. In
fact, if we use pure greedy sequences designed by implementing Lloyd’s algorithm, the discrepancy
of these sequences and that of low discrepancy sequences (Niederreiter sequences for example) are
comparable and the results are not so bad, but the problem that arises is the complexity of the com-
putations making greedy sequences less practical. On the other hand, if we use the greedy product
multidimensional grids to solve this problems, the computation will be less expensive but the numer-
ical experiments show that there is no gain in terms of discrepancy. Figure 5 shows a comparison of
the discrepancy of a Niederreiter sequence in dimension 2 to that of a product greedy quantization
sequence of U([0, 1]2) on the one hand, and to that of pure greedy quantization sequence of U([0, 1]2)
implemented by Lloyd’s algorithm on the other hand, emphasizing the conclusions made.

The positive results obtained in the one-dimensional case encourage us to try and manipulate
low discrepancy sequences, such as Van der Corput sequences, in order to be able to use them as
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Figure 6: Price of a European call in a Black-Scholes model via a usual QMC method (blue), greedy
quantization-based quadrature formula (red) and quadrature formula using VdC sequence with non-
uniform weights (logarithmic scale).

greedy quantization sequences. In other words, we will assign to them a Voronöı diagram, compute
the weights of the corresponding Voronöı cells instead of considering uniform weights and observe the
impact the may bring to numerical integration. To this end, we consider a basic example where we
compute the price of a European call

C0 = E[(XT −K)+]

for a maturity T and a strike price K where the price of the asset Xt at a time t is given by

Xt = x0e
(r−σ

2
2 )t+σ

√
tZt

where r is the interest rate, σ the volatility and (Zt)0≤t≤T is an i.i.d. sequence of random variables with
distribution N (0, 1). We compute the price of this European call via a classical quadrature formula
using the new weights pni assigned to the VdC sequence instead of uniform weights. We consider

T = 1, K = 9, x0 = 10, µ = 0.06, σ = 0.1.

The exact price is approximately equal to 1.5429 due to the closed formula known in the Black-Scholes
case. In figure 6, we compute the error induced by this approximation and we compare it to the one
obtained by a classical quasi-Monte Carlo method (i.e. where we use the uniform weights of a VdC
sequence) and to the one obtained by a quantization-based numerical integration quadrature formula
using a greedy quantization sequence of the U([0, 1])-distribution. We observe that the procedure
using the greedy quantization sequence converges faster than the ones using the Van der Corput se-
quence. Consequently, one can say that greedy sequences are more advantageous than low discrepancy
sequences, even if we assign to them non-uniform weights.
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