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Introduction 
The manufacturing industry is among the top wealth-generating sectors of the global economy, which accounted for 
15.3% and 10% of the total European and American workforce in 2018, respectively [1], [2]. Despite its crucial role, 
it is facing a critical challenge based on a reduction of skilled labour availability. This trend is imposing a bottleneck 
on growth due to the demands of an increasingly competitive market. The ageing workforce is not helping this 
shortfall either, as the available workforce is less able to perform burdensome industrial tasks in an efficient and 
productive manner. 

Efforts are being made to respond to such challenges in the manufacturing scenarios, and to promote higher 
quality and more efficient operations. Manufacturing automation by means of robots is widely known as a promising 
approach to combat such human-centric issues that have been brought about by inherited layouts and processes. Such 
automation efforts attempt to make complex operations easier for employees to comprehend and support the 
completion of physically demanding tasks. However, today’s solutions require huge initial investments and are often 
bespoke for particular scenarios; hence they are not flexible enough to cover all of the requirements of a dynamic, 
high-mix production environment, typical for small and medium enterprises (SMEs). These solutions also demand, 
and to a certain extent dictate, very specific layouts and work-cell formats that are ‘robot friendly’ [3].  

Towards a unified perspective of boosting the competitiveness of the European manufacturing industry, in 2012, 
the European Commission set the goal of raising manufacturing’s share of gross domestic product (GDP) in Europe 
from 15 % to 20 % by 2020 [4]. In this direction, more companies have been encouraged to realize the potential of 
Industry 4.0, to achieve higher levels of automation, autonomous processes and machinery, and data exchange in 
manufacturing domains, to respond to the customisation needs of the future. Customised products are best produced 
close to the market, to quickly respond to customer needs and to reduce delivery times. This change implies 
challenges to the way work and resources are organised within a factory to guarantee cost-effective productivity and 
quality and to reduce waste. In this vision, Human-Robot Collaboration (HRC) frameworks have a high potential, 
since they combine human beings' creativity and craftsmanship with the precision, repetition speed, and consistency 
of robots to perform complex skill-demanding tasks while improving work ergonomics. In addition, they can be 
redeployed to other tasks much more easily. The quality of industrial production is improved, the yield of smaller lot 
sizes is increased and the working conditions for humans are improved [5]. In fact, HRC has been a crucial enabler 
of the current industrial revolution, and will be at the core of the upcoming fifth industrial revolution [6]. 

To create HRC systems that can radically increase the flexibility and productivity of manufacturing while 
improving the ergonomics of the workplace, four fundamental aspects, i.e., technology, flexibility, interaction quality 
and standardization, must be covered comprehensively (see Figure 1). This has been the aim of the first wave of 
projects on development cobots itself (e.g., in Europe, AMARSI, SAPHARI, PHRIENDS), and subsequently, on 
development of their control and high-level interfaces (e.g., in Europe, SOPHIA), whose motto is “human-centred 
and modular design”. Two distinct objectives of the new wave is to improve competitiveness [3], and to reduce work-
related musculoskeletal disorders, which represent the single largest category of industrial diseases in first-world 
counties [7]. 
 



 
Figure 1. Several fundamental aspects, in addition to the technology advancement, must be taken into account to create flexible, 
productive, and ergonomic HRC systems. 

 
HRC technology 
Several technologies must be in place to enable humans and robots to work together to achieve shared goals. In this 
section, we place our focus on human monitoring, sensing and feedback interfaces, and shared intelligence aspects 
of the HRC technology, which have been less discussed in HRC literature, in comparison to the traditional safety and 
control aspects of the collaborative robots. 
 
Human Kinodynamic Monitoring 
The traditional solutions for ergonomic monitoring of industrial workers are mostly based on heuristic algorithms 
(e.g. using the ergonomics assessment worksheet (EAWS)) and do not have the required resolution for determining 
the function of individual muscles. This ultimately limits the design of effective technologies personalized to 
individual workers. Common monitoring techniques rely on simple measurements (e.g. limb accelerometry or 
kinematics) where the worker’s ergonomics is determined based on whole-body postures. However, even 
kinematically correct postures may underlie negative muscle compensatory strategy that could increase mechanical 
tensions and loads on musculoskeletal tissues. Although complex and advanced biomechanical analyses exist, these 
are bounded to laboratory settings and are not viably transferable to factory settings because they often involve 
lengthy data acquisition and time-consuming offline analyses with quantitative results being generated only weeks 
after the initial subject’s assessment. In factory settings, the accurate assessment of worker’s musculoskeletal function 
should be performed via non-invasive sensing technologies that require short preparation time as well as advanced 
yet rapid musculoskeletal function-probing techniques that can provide instant data on the human musculoskeletal 
mechanics [8]–[10].  

Computational musculoskeletal models can provide advanced analysis and understanding of body function 
during complex dynamic tasks [11]. Inverse dynamics models have been proposed in which the contribution of 
individual muscles to joint actuation is resolved according to a priori defined optimization criteria, (e.g. minimize 
squared muscle activation sum or metabolic cost of transport) and/or by enforcing pre-selected muscle reflexive rules 
[12]. However, current approaches are dissociated from in vivo body function and therefore limited in describing 
workers’ body function in real-world scenarios. That is, it is not possible to know a priori what the human body 
really optimizes during a working task, if anything at all. Moreover, even though one model can be tuned to reproduce 
experimental data (e.g. electromyography (EMG)) in one instance, synergies between muscles, or even between 
motor units, are highly variable across tasks, training, fatigue levels [13] and directly influenced by the environment, 
e.g. assistive devices or working settings. Therefore, an alternative solution is needed that can capture workers’ true 
muscle activation patterns and convert them into realistic estimates of musculoskeletal forces. A way to do this is by 
developing a new class of data-driven musculoskeletal models. The idea is to combine multi-modal body movement 
sensing with forward dynamics musculoskeletal modelling, i.e. as opposed to state of the art inverse dynamics based 
modelling techniques [14]. Data-driven modelling has been recently proposed for fusing 3D body kinematics and 
muscle electromyography (EMG) recordings and for simulating how muscles activate, how they contract and 
generate mechanical force about multiple skeletal degrees of freedom simultaneously both in upper and lower 
extremities without making any assumptions on muscle recruitment strategies [15]. More recently, these techniques 
were employed to connect robotic exoskeletons and bionic arms with the human neuromuscular system, thereby 
restoring lost motor function in neurologically impaired individuals as well as amputee subjects. Results showed that 
patients could achieve voluntary control of wearable robots and that the performance of the established human-
machine interface did not deteriorate across large time scales, i.e. days and weeks [16].  
 
Sensing and Feedback Interfaces 



To enable an effective interaction between humans and 
robots, it is fundamental to ensure a correct information 
exchange between the natural and the artificial side. This 
requires suitable interfaces to monitor human behaviour - to 
properly plan the execution of the collaborative task - and 
strategies to increase the mutual awareness of the human-
robot dyad. In literature, different solutions have been 
proposed to sense human behaviour in free motion or during 
the interaction with the environment. Regarding kinematic 
sensing, both vision-based and wearable devices have been 
developed with special attention to the hand (e.g. glove-
based system or inertial measurement unit-based solutions, 
see [17], [18], and Figure 2). Recently, commercial and 
research solutions for whole body kinematic tracking have been introduced, see e.g. Xsense 
(https://www.xsens.com), as well as for accurate and wearable EMG acquisition e.g. Trigno by Delsys Inc, or 
FreeEMG by BTS Spa and ground reaction forces (http://www.moticon.de). In parallel, the usage of inertial units 
and low-cost wearable EMG devices (see e.g. Myo Gesture Control Armband (https://www.myo.com/)) has been 
successfully applied to implement body-machine interfaces for the control of and interaction with robotic and 
assistive systems (see e.g. [19]). For what concerns warning feedback to deliver to humans information on 
collaborative robot status, wearable devices usually rely on vibrotactile stimuli, which are also applied for guidance 
and human-robot-team cooperation [20]. Wearable haptic systems can be also an effective and unobtrusive solution 
to reproduce a wider range of haptic cues, since they can be comfortably worn at different body locations and 
stimulate locally the skin, by conveying to it different types of touch stimulations (see [21]). Regarding vision, in 
recent years augmented reality (AR) has gained increasing attention, and different commercial systems are now 
available for AR and for virtual reality (VR), e.g. Oculus Rift, Microsoft Hololens, Google Tango. In AR, components 
of the digital world may be superimposed upon or composed with the real world and used in teleoperation [22]. The 
composite scene can be displayed to the user, e.g. through HMD, to improve situational awareness in human-robot 
collaboration scenarios.  
 
Shared Intelligence 
Task allocation schemes are developed to share the work between human and robot, depending on different factors 
such as capabilities, execution time, performance etc. A  hierarchical framework for task allocation was developed  
that assigns a full sequence of atomic tasks based on the capabilities of each agent [23]. Similarly, in [24] complex 
tasks are split into basic subtasks and attributed depending on their skills. The decision-making algorithms are often 
based on a multiple-criteria approach using a cost function, such as in [25], use Markov decision to determine the 
best execution plan [26]. Other allocation algorithms have been proposed to extend the task assignment scheme to 
the multi-human multi-robot context [27]. Authors in [26], [27] also took ergonomics into consideration when 
developing the task allocation scheme.   
 On the other hand, the principle of path planning algorithms is to generate suitable trajectories for the robotic 
arm by using, e.g. cubic interpolation functions, spline functions, or coverage path planning. Those solutions are 
often only valid for static environments, making them ill-suited for collaborative scenarios. The online method for 
constrained handling is traditionally to use closed-form laws such as potential field methods [30], or anti-windup 
strategies [31]. The former is able to avoid collisions by generating a field of repulsive forces around the obstacle, 
but is typically unable to deal with actuator saturation. The Model Predictive Control (MPC) is a general purpose 
control solution able to handle both state and input constraints in real-time. This method is based on the idea of 
solving at each time instant a constrained optimal control problem over a receding horizon. The disadvantages is the 
high computational load, although recent advancements in computational power have made it feasible to implement 
MPC on robots, MPC schemes are not commonly used in mechatronic applications due to their high computational 
cost and their need of having a precise model. Therefore methods as the Explicit Reference Governor (ERG) [32] 
can enforce both state and input constraints without having to solve an online optimization problem, so it can be 
computed real-time. 

When applying task allocation schemes more criteria than the relative performance can be considered. These 
criteria might refer to reliability, number of personnel workload or safety [33]. Regardless of which criteria are used 
in order to apply a function allocation scheme, work designers have to be aware of the fact, that the “automation of 
functions may introduce new work tasks for the operator that are not directly related to any single function” [34]. 
 
HRC Flexibility 
Cox Jr [35] defines manufacturing flexibility as “the quickness and ease with which plants can respond to changes 
in market conditions”. Hence, HRC flexibility is needed at two layers: to adapt to the aforementioned manufacturing 

Figure 2. Wearable and lightweight sensing and feedback 
mechanisms can improve the usability and performance of 
the HRC systems. 



flexibility typical for Industry 4.0 (due, e.g. to the variety of part shapes and weights, each with small batch size) and 
to adapt to the worker intentions and commands (which may vary from one person to the other). Several specific 
manufacturing applications are reported in the research literature, where cobots have addressed collaborative 
assembly of a homokinetic mechanical joint [36] and of cellular phones [37], among several others. Yet, all the above 
research works target specific applications, and it is rare to see a cobot capable of addressing multiple and diverse 
factory tasks. Ideally, such cobot should be mobile, dexterous, bimanual and easily reprogrammable. A platform 
developed with such flexibility in mind is the mobile cobot BAZAR [38] (see Figure 3), with its open intuitive 
programming software OpenPHRI [39], but this is still mainly a research prototype. BAZAR integrates a variety of 
hardware devices, an integration that is nowadays eased by the diffusion of the Robot Operating System (ROS, 
https://www.ros.org). Another example is the MOCA platform [40], whose advanced flexibility has demonstrated in 
manufacturing [41], teleoperation [40], etc. 

Indeed, in the authors’ view, ROS has been disruptive in robotics, making modular programming available to 
everyone and facilitating integration of software and hardware likewise. In this sense, ROS contributes to pave the 
way towards the sought-after “Graal” of HRC flexibility. ROS is a middleware, which provides services designed 
for a heterogeneous computer cluster, as those generally present in robot applications. These services include, among 
others: 

- hardware device abstraction and control,  
- implementation of common robotics algorithms (i.e., for mapping and navigation, perception, localization, 

etc) in  C++, Python, and Lisp,  
- a graph representation of the architecture of running processes, 
- communication between the mentioned - both synchronous and asynchronous - processes,  
- package management. 
The ROS language-independent tools and most of its C++, Python, and Lisp libraries are open source software, 

free for both commercial and research use. Because of these open-source software dependencies, the main ROS 
libraries are supported only on Unix-like systems - typically Ubuntu Linux. The fact that ROS was designed with 
open-source in mind has spread it quickly throughout the robotics research community. More recently, ROS-
Industrial (https://rosindustrial.org/) is succeeding in attracting the attention of industrials towards the features of 
ROS. ROS-Industrial - also open-source - extends the capabilities of ROS to manufacturing automation and robotics, 
by including libraries, tools and drivers for industrial hardware. Its focus is more on striving towards software 
robustness and reliability, which meet the needs of industrial applications.  

While open source robotic hardware seems still utopic - particularly in the industrial context - the breakthrough 
of ROS and of ROS-Industrial as open-source platforms may substantially contribute to the flexibility of future cobots 
worldwide.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Top view of BAZAR (left) and side view of MOCA (right) robots. Their loco-manipulation 
capacities can add a certain level flexibility in manufacturing scenarios. 



HRC Interaction Quality and Acceptance 
When designing and introducing Human-Robot Interaction (HRI) to workplaces in a human-centred way, interaction 
quality plays a key role. Within dyads of humans interacting closely with robots there are several aspects that 
contribute to the quality of the specific interaction. One group of characteristics can be summarized under the concept 
of user-acceptance. The concept of technology user-acceptance comprises a rich research history. A number of 
theories and models bring forward different factors influencing the overall user-acceptance of a specific technology. 
These factors for example include aspects like “subjective norms” one feels are associated with the use of a specific 
technology. However, as shown in literature, the factors “perceived usefulness” and “perceived ease of use” have the 
strongest effect on users’ attitude towards a technology and should therefore be considered carefully [42], [43].  

Different robotic design aspects might weaken or enhance the overall technology acceptance. There is a limited 
but growing amount of research focusing on the experiences of factory workers who collaborate with cobots outside 
the lab (e.g., [44]). In a field study a cobot named Walt was integrated at the manufacturing floor of Audi for a glue 
operation, which has due to the noise in the factory, been equipped with non-verbal communication cues as ability 
to express emotions and understand gesture [45]. In terms of social acceptance of the robot, the interviews performed 
at the end of the study with the operators who used Walt demonstrated that the robot had been accepted as part of the 
team. Furthermore, they mentioned that working with the latest technology actually gave them a sense of pride.  

An additional fundamental aspect contributing to the overall interaction quality refers to the system’s usability. 
The ISO standard 9241-110:2019 (see Table 1) provides general design principles for system design that should also 
be considered in terms of HRI: The principle of "suitability for the task" refers to a meaningful use of the robot that 
is appropriate to the task. "Self-descriptiveness" includes the communication of the robot's mode of operation and 
current status, so that the human worker knows at any time what is happening in the interaction. The principle 
"controllability" describes the possibility of the worker to intervene in the process at any time and thus to maintain 
control over the robot. “Conformity to user expectations" means that the robot’s functionality is always in accordance 
with the expectations of the worker and the operational processes. The principles of "error tolerance" refers to two 
aspects. On the one hand it refers to false user input that can be corrected easily. On the other hand, it refers to the 
possibility of the worker to execute manual corrections in the task or process. “Suitability for individualization" 
describes the possibility of adapting the robot to the needs and abilities of the worker. Finally, the principle of 
"learnability" includes features that support or simplify learning how to operate the robot. 

User-acceptance and fundamental design principles are major aspects that can be used in order to evaluate and 
to describe the HRI quality. There are additional factors that also contribute to the individual HRI quality experience. 
In addition to the principle of “suitability for the task”, special attention must be paid to the tasks remaining with the 
worker when tasks are divided between humans and robots. Thus, unfavourable tasks should not be delegated to the 
worker and a too tight coupling to the robotic system should be avoided. In addition, the process of introducing a 
robotic system should be carefully prepared. A detailed explanation of the purpose and benefits as well as the 
operating characteristics are just as much a part of this as the workers’ opportunity to address possible concerns 
related to the system. A reserved and sceptical workers’ attitude is not unusual and should be addressed in an early 
stage.  

 
Table 1. The ISO standard 9241-110:2019 general principles for system design summarised in the table below. 

ISO 9241-110:2019 General HRI principles for system design 
Suitability for the task The meaningful use of the robot, which is adequate for the task. 

Self-descriptiveness The robot's mode of operation and its status is constantly given, so that the human worker 
is aware of the interaction situation at any time.  

Controllability The possibility of the worker to intervene in the process at any time to maintain control 
over the robot. 

Conformity to user 
expectations 

The robot’s functionality is always in accordance with the expectations of the worker and 
with the operational processes. 

Error tolerance False user input that can be corrected easily and the possibility for the worker to execute 
manual corrections in the task or process. 

Suitability for 
individualization The possibility of adapting the robot to the workers’ needs and abilities. 

Learnability The system includes features that support or simplify learning how to operate the robot. 
 
 
HRC Standardization: Ergonomics 
Prevention of work-related musculoskeletal disorders is possible by implementing ergonomic interventions able to 
improve workers physical conditions in manual handling activities such as heavy load lifting and handling low loads 
at high frequency. In the industry 4.0 era, designing appropriate and effective ergonomic tools means taking into 



consideration all the opportunities offered by technological innovation such as online instrumental-based approaches 
for biomechanical risk assessment and systems for evaluating the physiological and thermal impact of HRC 
technologies use. Furthermore, one of the challenges of the next few years will be the revision of existing ergonomic 
international standards and the development of new ones.  

Online instrumental-based approaches make use of wearable miniaturized sensors for accurate and precise 
kinematic (joint range of motions), kinetic (forces and torques) and surface electromyography measurement (muscle 
behaviours) [6], [42]. These tools allow: i) direct instrumental evaluations of the biomechanical risk when traditional 
methods are not applicable due to their equations and parameters restrictions ; ii) the rating of standard methods when 
they are applicable. These methods also offer the possibility of classifying the biomechanical risk even in the presence 
of work tasks in which HRC technologies are used. In fact, the traditional methods listed within existing ergonomic 
international standards for manual handling activities (ISO 11228 1-2-3) do not cover the consideration of 
biomechanical risk detection when collaborative technologies in general (e.g., cobots, exoskeletons) are used. This 
gap, together with the need to strengthen the scientific basis on which the standards are based on [46], represents the 
reasons why  existing standards should be supplemented, revised or, if necessary, new standards should be developed. 
The outcomes of HRC related R&D projects have significant industrial relevance. Generated knowledge should be 
transferred into related standardization activities. These standardization activities must have two main objectives: i) 
to disseminate (at an early stage) knowledge about relevant existing standards and standardization activities; ii) to 
assess project results and to analyse them for potentials to be transposed into standards or to be used as input into 
already existing standardization activities. These will contribute to fill the gaps among existing standards in the field 
of HRC. 

In addition to repercussions on ergonomic standards, the use of collaborative technologies needs to be also 
evaluated about its impact on physiological and thermal workers response. In fact, while such technologies are 
considered a promising option in biomechanical risk reduction [47] in several occupational sectors, on the other hand 
their use requires considerations on their suitability, costs, effectiveness and impact on the occupational safety and 
health of workers. One of the most important open issues is, without doubt, the long-term effects of their use on 
human physiology. Objective measurements should be supported by subjective measurements aimed at testing the 
user acceptance of the collaborative technologies by using questionnaire or interview in order to investigate physical 
demand, constraints, perceived usefulness, ease-to-use, intention to use, performance, comfort or discomfort. 
 
HRC Productivity 
From an economical point of view, HRC systems have a great potential to increase productivity in flexible 
manufacturing systems. In many modern factories, the limitations of full automation have already been reached. 
Large industrial robot cells, autonomous conveying technologies, advanced sensor systems for visual control and 
guidance, etc. are state of the art. Nowadays the production of passenger cars, for example, is widely automated 
(approximately 90-95%) until the car reaches the assembly shop. At this final stage of production, still manual human 
work is dominating with a degree of automation not more than 10-20%. There are two main reasons: compared to all 
prior parts of the manufacturing process (press shop, body shop, paint shop) the variety and the filigree of tasks is 
much higher and therefore it demands higher skills and more flexibility from workers. It is either very complicated 
to fully automate such tasks (leading to high risks for downtime) or it is not cost-efficient because available 
technological solutions are too expensive to reach a reasonable return-on-investment (ROI). Hence, cobot systems 
with reduced complexity and lower costs may provide a potential solution for increasing productivity in such work 
systems by supporting some of the ergonomically heavy work of humans in an efficient way. This may reduce the 
number of workers needed for completing all assembly operations (= direct effect on productivity), but it is also 
beneficial for the remaining workers’ health by preventing musculoskeletal disorders and increase production quality 
(= indirect effect on productivity) [48]. In any case, however, as highlighted above, HRC systems have to be designed 
according to basic ergonomic and safety principles and have to consider the needs of the human operators in order to 
solve issues instead of creating new ones, increase efficiency and really help workers and companies.  
 
Conclusion  
Collaborative robots have demonstrated a high potential in addressing the flexibility needs of the increasingly 
competitive industry. They can simultaneously increase productivity, and reduce work related musculoskeletal 
disorders, which represent the single largest category of work-related disease in industrial countries. This can 
contribute to economic growth and creation of better, healthier, and more attractive working environments for the 
future workforce. Because of this unique potential, the collaborative robot market grows on average by about 50% 
each year [49]. It is important to note here that traditional industrial robots are not in danger of extinction; they will 
continue to play an important role in manufacturing, mainly as full-automated systems. Their primary purpose is to 
make high volumes of goods quickly and cheaply, which however, comes with the price of reduced flexibility and 
costly re-deployment.  
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