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GRAPH STRUCTURE VIA LOCAL OCCUPANCY

EWAN DAVIES, ROSS J. KANG, FRANÇOIS PIROT,
AND JEAN-SÉBASTIEN SERENI

Abstract. The first author together with Jenssen, Perkins and Roberts
(2017) recently showed how local properties of the hard-core model on
triangle-free graphs guarantee the existence of large independent sets, of
size matching the best-known asymptotics due to Shearer (1983). The
present work strengthens this in two ways: first, by guaranteeing stronger
graph structure in terms of colourings through applications of the Lovász
local lemma; and second, by extending beyond triangle-free graphs in
terms of local sparsity, treating for example graphs of bounded local
edge density, of bounded local Hall ratio, and of bounded clique number.
This generalises and improves upon much other earlier work, including
that of Shearer (1995), Alon (1996) and Alon, Krivelevich and Sudakov
(1999), and more recent results of Molloy (2019), Bernshteyn (2019) and
Achlioptas, Iliopoulos and Sinclair (2019). Our results derive from a
common framework built around the hard-core model. It pivots on a
property we call local occupancy, giving a clean separation between the
methods for deriving graph structure with probabilistic information and
verifying the requisite probabilistic information itself.
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1. Introduction

1.1. Background and motivation. The asymptotic estimation of Ramsey
numbers is of fundamental importance to combinatorial mathematics [49, 29,
26]. The special case of off-diagonal Ramsey numbers has in itself been critical
in the development of probabilistic and extremal combinatorics [3, 4, 51, 40].
The best known asymptotic upper bound on the off-diagonal Ramsey numbers,
of the form R(3, k) ≤ (1 + o(1))k2/ log k as k →∞, has long remained that
of Shearer [51]. Let us state his result in terms of the size of a largest
independent set in triangle-free graphs of given maximum degree; it has the
above Ramsey number bound as a corollary.
Theorem 1 (Shearer [51]). For any triangle-free graph G of maximum
degree ∆, the independence number of G satisfies, as ∆→∞,

α(G) ≥ (1− o(1))|V (G)| log ∆
∆ .

This bound is sharp up to an asymptotic factor of 2 due to random regular
graphs [42, 14], while the Ramsey number corollary is sharp up to an
asymptotic factor of 4 by the ultimate outcome of the triangle-free graph
process [13, 31].

With somewhat distinct but also classic origins, cf. e.g. [55, 53], the
chromatic number of triangle-free graphs has been intensively studied from
various perspectives for decades. In a recent breakthrough that improved
upon and dramatically simplified a seminal work of Johansson [36], Molloy
analysed a randomised colouring procedure with entropy compression to
show the following; see also [11, 18].
Theorem 2 (Molloy [45]). For any triangle-free graph G of maximum de-
gree ∆, the chromatic number of G satisfies χ(G) ≤ (1 + o(1))∆/ log ∆
as ∆→∞.
As every colour in a proper colouring induces an independent set, note
Molloy’s result matches Shearer’s bound in the sense that it directly implies
the statement in Theorem 1.

The context of both Theorems 1 and 2—in particular, their heuristic
similarity to the corresponding problems in random graphs—hints that some
suitable probabilistic insights could yield a deeper structural understanding
of the class of triangle-free graphs or closely related classes. The present
work is devoted to making this intuition concrete through the use, in concert
with the Lovász local lemma, of the hard-core model, an elegant family of
probability distributions over the independent sets originating in statistical
physics.

A precursor to this is the discovery by the first author together with Jenssen,
Perkins and Roberts [21] that Theorem 1 may, via a local understanding of
the hard-core model, be derived through the probabilistic method’s most
elementary form, i.e. with a bound on the average size of an independent
set; see Subsection 3.2. Previous work of a subset of the authors with
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de Joannis de Verclos [18] found that nearly the same approach yields a
result intermediate to Theorems 1 and 2, in terms of fractional chromatic
number. Building further upon this, here we have developed a unified
framework with which we can handle significantly more general settings,
in two different senses. First, going beyond triangle-free, we treat graphs
with certain neighbourhood sparsity conditions. Second, going beyond the
independence and chromatic numbers (for which we have also obtained new
bounds), we are able to make conclusions not only for occupancy fraction
and local fractional colourings (as in [21, 18, 19]) but also, importantly, for
local list colourings and correspondence colourings (to be discussed more
fully later). Our main result encompasses or improves upon nearly all earlier
work in the area [1, 2, 4, 6, 7, 9, 11, 15, 18, 19, 21, 36, 39, 45, 48, 51, 52, 54].
If one is interested in constructing colourings in polynomial time then our
framework can give such algorithms through the use of an algorithmic version
of the Lovász local lemma, and we give these details in a companion paper
dedicated to this purpose [22]. Here we focus more on the existence of
colourings and are not concerned with algorithms.

In the following subsection we give an informal version of our main result
and the applications to various graph classes. For clarity, we give these state-
ments purely in terms of chromatic number (so along the lines of Theorem 2),
and present a stronger, more general, and significantly more technical version
of our main result in Section 3, and describe subsequent applications in their
own sections. In Subsection 1.3 we introduce the motivation for the technical
strengthening of our results, namely local colouring.

1.2. Framework and applications in terms of chromatic number. In
order to describe our main result, we introduce the hard-core model and
its partition function. It is also helpful to keep in mind the following basic
sequence of inequalities, valid for every graph G:

ω(G) ≤ ρ(G) ≤ χ(G) ≤ ∆(G) + 1,(1)

where ω(G) is the clique number of G, ρ(G) := max{|V (H)|/α(H) | H ⊆ G}
is the Hall ratio of G, and ∆(G) is the maximum degree of G.

Given a graph G, we write I(G) for the collection of independent sets
of G (including the empty set). Given λ > 0, the hard-core model on G at
fugacity λ is a probability distribution on I(G), where each I ∈ I(G) occurs
with probability proportional to λ|I|. Writing I for the random independent
set,

∀I ∈ I(G), P(I = I) = λ|I|

ZG(λ) ,

where the normalising term in the denominator, ZG(λ), is the partition
function (or independence polynomial), defined to be

∑
I∈I(G) λ

|I|. Note
that with λ = 1 this becomes the uniform distribution over I(G). The
occupancy fraction of the distribution is E|I|/|V (G)|. Note α(G) ≥ E|I| by
the probabilistic method.
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Our results rely critically on being able to guarantee a certain property of
the hard-core model we call local occupancy. Given a graph G and λ, β, γ > 0,
we say that the hard-core model on G at fugacity λ has local (β, γ)-occupancy
if, for each u ∈ V (G) and each induced subgraph F of the subgraph G[N(u)]
induced by the neighbourhood of u, it holds that

β
λ

1 + λ

1
ZF (λ) + γ

λZ ′F (λ)
ZF (λ) ≥ 1.(2)

Our main framework is a suite of results of increasing technical difficulty
showing that local occupancy guarantees graph structure in terms of oc-
cupancy fraction, fractional colouring, and list/correspondence chromatic
number. Here we give only an imprecise version of what we obtain for
chromatic number, deferring the full statements of our results to Section 3.

Theorem 3. Suppose that G is a graph of maximum degree ∆ such that
the hard-core model on G at fugacity λ has local (β, γ)-occupancy for some
positive reals λ, β, γ. If γ∆/β = ∆Ω(1) and G satisfies one further technical
condition, then the chromatic number of G satisfies χ(G) ≤ (1 + o(1))γ∆ as
∆→∞.

Practically speaking, to derive good bounds from Theorem 3, it suffices to
determine β, γ > 0 that minimise, in a given graph of maximum degree ∆,
the value of β + γ∆ under the condition of local (β, γ)-occupancy. In all our
applications, having found such reals β, γ, the extra conditions we require are
easily verified. Thus Theorem 3 essentially reduces the problem of bounding
the chromatic number to a local analysis of the hard-core model.

As a key example [21, 18], if G is triangle-free then choosing

β = γ(1 + λ)
1+λ
γλ

e log(1 + λ) and γ = 1 + λ

λ

log(1 + λ)
1 +W (∆ log(1 + λ)) ,(3)

where W (·) is the Lambert W -function (see Subsection 4.1 for more on this
function), suffices for local (β, γ)-occupancy. Moreover, these choices satisfy

β + γ∆ = 1 + λ

λ
exp(W (∆ log(1 + λ))).

By the asymptotic properties of the function W , taking λ = 1/ log ∆ and
applying Theorem 3 thus yields Theorem 2. In Section 8 we discuss the fact
that this choice of (β, γ) is essentially optimal for the class of triangle-free
graphs [21].

We are interested in generalising the condition of having no triangles—a
condition on local density—and applying Theorem 3 to obtain results similar
to Theorem 2. In the first four cases we actually give strict generalisations,
in the sense that Theorem 2 with the same leading constant ‘1’ is a special
case of our results. The final setting is the classic case of bounded clique
number ω which is also a generalisation of triangle-free; however, for this
setting our result does not ‘smoothly’ extend the triangle-free case in the
sense that Theorem 2 outperforms the special case of ω = 2. (The difficulty
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of aligning the cases ω = 2 and ω > 2 is well recognised and subject to an
important conjecture of Ajtai, Erdős, Komlós and Szemerédi [2].)

For our first setting we view a triangle as a cycle and consider the general-
isation to arbitrary lengths. The following result is a common generalisation
of Theorem 2 and Kim’s [39] colouring bound for graphs of girth 5, in the
sense that the conclusion is the same in (asymptotic) strength, but under
the requirement of a single excluded cycle length that is not too large as a
function of the maximum degree. We also note that this is a stronger form of
one consequence from [7, Cor. 2.4], the same result but with neither a specific
leading constant nor any dependence of the cycle length upon maximum
degree.
Theorem 4. For any graph G of maximum degree ∆ which contains no
subgraph isomorphic to the cycle Ck of length k, where k = k(∆) ≥ 3
satisfies k = ∆o(1) as ∆→∞, the chromatic number of G satisfies χ(G) ≤
(1 + o(1))∆/ log ∆.
This result follows from Theorem 3 and a local occupancy analysis given in
Subsections 4.3 and 5.2.

The second setting is to view a triangle-free graph as one that has no
edges in any neighbourhood, and to relax this condition to having ‘few’ edges
in any neighbourhood. This is the same as having a ‘bounded local triangle
count’. More precisely, suppose that G is a graph of maximum degree ∆,
and for some f ≤ ∆2 + 1 the neighbourhood of every vertex in G spans at
most ∆2/f edges. Note that f = ∆2 + 1 corresponds to the triangle-free case.
This problem setting was first considered, in terms of independence number,
by Ajtai, Komlós and Szemerédi [4] and by Shearer [51], and, in terms of
chromatic number, by Alon, Krivelevich and Sudakov [7], Vu [54], and more
recently by Achlioptas, Iliopoulos and Sinclair [1]. Via a local occupancy
analysis and an iterative splitting procedure given in Subsections 4.3, 5.3
and 5.4, we show how Theorem 3 implies the following.
Theorem 5. For any graph G of maximum degree ∆ in which the neighbour-
hood of every vertex in G spans at most ∆2/f edges, where f = f(∆) ≤ ∆2+1,
the chromatic number of G satisfies χ(G) ≤ (1 + o(1))∆/ log

√
f as f →∞.

This asymptotically matches the known fractional bound [19], affirms [19,
Conj. 3], and improves the chromatic number bounds in [1] by about a
factor 2 in nearly the entire range of rates for f as a function of ∆. The
bound is sharp up to an asymptotic factor of between 2 and 4 due to a
random regular construction or a suitable blow-up, cf. [51, 19]. Though
the analysis of the hard-core model and selection of suitable (β, γ) for local
occupancy in this setting has essentially already been done [19], here we have
a simpler and more general argument from which we deduce Theorems 4
and 5, cf. Section 5.

In fact, we have been able to naturally combine the settings of Theorems 4
and 5 and give a result for graphs with the property that each vertex is
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contained in few k-cycles. We actually only require the weaker condition that
for each u ∈ V (G), the induced neighbourhood subgraph G[N(u)] contains
at most t copies of the path Pk−1 on k − 1 vertices.

Theorem 6. For any graph G of maximum degree ∆ in which the subgraph
induced by each neighbourhood contains at most t copies of Pk−1, where
t = t(∆) ≥ 1/2 and k = k(∆) ≥ 3 satisfy ∆/(k +

√
t)→∞ as ∆→∞, the

chromatic number of G satisfies

χ(G) ≤ (1 + o(1)) ∆
log(∆/(k +

√
t))
.

Note that with k = 3 and t = ∆2/f we essentially have the form of Theorem 5,
as the requirement that ∆/(3 +

√
t)→∞ becomes the requirement that f →

∞. We outline the relevant local occupancy analysis in Subsection 5.5. The
algorithmic question of whether the colourings guaranteed by Theorems 4–6
can be constructed in polynomial time is tackled in our companion paper [22].
In short (and in the setting of list colouring), for constant k and small
enough t such constructions follow from our framework given some significant
additional work.

For our fourth setting, consider the situation where G has some prescribed
local independent set structure. More concretely, suppose that there is
some ρ ≥ 1 such that every neighbourhood induces a subgraph of Hall ratio
at most ρ. Note that by (1) taking ρ = 1 corresponds to the triangle-free case.
Also by (1), we see that this condition is satisfied if every neighbourhood
in G induces a subgraph of chromatic number at most ρ. Motivated by the
corresponding problem for bounded clique number (which we will discuss
further shortly), Alon [6] implicitly considered this problem setting and gave
an upper bound on the independence number of such graphs G. It was also
considered by Johansson [37] and Molloy [45] in the context of chromatic
number, and more recently by Bonamy et al. [15]. By optimising a local
analysis of the hard-core model (given in Subsection 4.2 and Section 6) and
then applying Theorem 3, we obtain the following (which we note also implies
Theorem 2).

Theorem 7. There is a monotone increasing function K : [1,∞)→ [1,∞)
satisfying K(1) = 1 and K(ρ) = (1 + o(1)) log ρ as ρ → ∞ such that the
following holds. For any ρ ≥ 1 and graph G of maximum degree ∆ in which
the neighbourhood of every vertex u ∈ V (G) induces a subgraph of Hall ratio
at most ρ, the chromatic number of G satisfies χ(G) ≤ (K(ρ)+o(1))∆/ log ∆
as ∆→∞.

Again by the random regular graph, this bound is of the correct asymptotic
order. For details about the parameter K, which improves upon all earlier
leading asymptotic constants, see Subsection 4.1. It is possible that the
bound in Theorem 7 is correct up to a multiplicative constant independent
of ρ, but it is unclear to us how to devise a construction certifying this.
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Finally, suppose that G has bounded clique number ω. So ω = 2 corre-
sponds to the triangle-free case. Equivalently, assume all neighbourhoods
induce subgraphs that are Kω-free. This setting is classic (cf. [2]) and re-
lated to the central problem of determining the asymptotic behaviour of the
off-diagonal Ramsey numbers R(1 + ω, k), for ω ≥ 2 fixed and k →∞. Our
contribution in this setting (via Theorem 3 and the local hard-core analysis
given in Subsection 7.1) is the following result.

Theorem 8. For any graph G of clique number ω and maximum degree ∆,
the chromatic number of G satisfies as ∆→∞

χ(G) ≤ (1 + o(1)) min
{

(ω − 2)∆ log log ∆
log ∆ , 5∆

√
log(ω − 1)

log ∆

}
.

Ignoring the leading constants for a moment, the first bound is a bound
of Johansson [37] (cf. also [48, 9, 45, 11, 15]), inspired by the correspond-
ing bound of Shearer [52] for independence number; and the second is a
more recent bound of Bonamy, Kelly, Nelson and Postle [15], foreshadowed
by an independence number bound of Bansal, Gupta and Guruganesh [9].
Theorem 8 improves on all of these earlier bounds by some constant factor.
Keep in mind that for the first bound in terms of independence number,
Ajtai, Erdős, Komlós and Szemerédi [2] have famously conjectured a better
asymptotic order, that the log log ∆ factor is unnecessary.

Just as for Theorem 2 and its predecessor in Johansson’s theorem [37], the
proof of Theorem 3 uses a randomised (list) colouring procedure and suitable
applications of the Lovász local lemma to show that sufficiently distant events
in the graph are close to independent. Our approach in fact builds upon the
work of Molloy [45], Bernshteyn [11], and some subsequent studies [15, 18].
In a nutshell, we have incorporated the hard-core model into the earlier
proof method, where previous work had focused on the special case λ = 1
of uniformly chosen independent sets (or partial proper colourings). We
present and prove the full, general version of Theorem 3 in Section 3. An
important feature of our framework is that the easier parts of it—essentially,
for independence number—allow one to have a preview for the possible
stronger results from the harder parts—essentially, for chromatic number—as
they share a similar dependence on the local occupancy properties of the
hard-core model.

1.3. Framework in terms of local colouring. As mentioned, the bounds
in Theorems 1, 2, 4–7 are each tight up to some constant factor (independent
of |V (G)| and ∆), and this is due to some probabilistic constructions that
have all vertex degrees equal. If the (hypothetical) extremal examples are
indeed regular or having all degrees asymptotically equal, it would intuitively
suggest that vertices of maximum degree are of primary importance for such
problems. One might naturally wonder if vertices of lower degree are ‘easier’
to colour in a quantifiable sense. This is the idea behind local colouring.
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It has its roots in degree-choosability as considered by Erdős, Rubin and
Taylor [25], and a more systematic study was recently carried out in [15],
cf. also [41, 18]. It turns out that local analysis of the hard-core model lends
itself well to producing local colourings, in part because our framework easily
incorporates a ‘more local’ version of the condition in (2).

Given a graph G, a positive real λ, and a collection (βu, γu)u of pairs
of positive reals indexed over the vertices of G, we say that the hard-core
model on G at fugacity λ has local (βu, γu)u-occupancy if, for each u ∈ V (G)
and each induced subgraph F of the subgraph G[N(u)] induced by the
neighbourhood of u, it holds that

βu
λ

1 + λ

1
ZF (λ) + γu

λZ ′F (λ)
ZF (λ) ≥ 1.(4)

For our strongest conclusions in terms of correspondence colouring (defined
in Section 2), we may have use of the condition of strong local (βu, γu)u-
occupancy, where we require that (4) hold for all subgraphs F , not necessarily
the induced ones.

Our main theorem, Theorem 12 stated in Section 3, is an explicit, strong
form of Theorem 3 above which says that under (4) and some mild additional
conditions the graph can be properly coloured so that every vertex u of
not too small a degree is coloured from a list of size not much larger that
βu + γu deg(u). It turns out that it is little extra work to expand local
occupancy in the sense of (2), with β and γ depending on the maximum
degree ∆, to local occupancy in the sense of (4), instead with βu and γu
having a dependence on du, for any local sequence (du)u of positive reals. As
a result, for example, a refinement of the local analysis that led to the choices
in (3) (see Section 5 or 6) leads to the following local version of Theorem 2,
cf. [18].

Theorem 9. For any ε > 0 there exist δ0 and ∆0 such that the following
holds for all ∆ ≥ ∆0. Any triangle-free graph of maximum degree ∆ admits
a proper colouring in which each vertex u is coloured from{

1, . . . ,
⌈
(1 + ε) max

{ deg(u)
log(deg(u)/ log ∆) ,

δ0
log δ0

log ∆
}⌉}

.

Analogous refinements of Theorems 4–8 also hold; we defer their precise
statements to later sections as we wish to also consider the settings of list
and correspondence colouring which require further definitions.

One should take notice of the minimum list size condition (i.e. the second
argument of the maximum) in Theorem 9, as well in later statements. We
remark that, if G is of minimum degree at least δ0 log ∆ then the list sizes
are truly local, and one can interchangeably think of a minimum list size
condition as we state, both here and later, or a condition on the minimum
degree of G.

Let us also point out that the minimum list size condition in Theorem 9
has a modest dependence on ∆. As already shown [18] and as discussed later
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here, the corresponding condition for a local fractional colouring result needs
no such dependence. Theorem 9 follows from a substantially stronger list
colouring version. This version does demand, and indeed needs, a minimum
list size depending on ∆, which helps in the proof mainly for concentration
considerations. We discuss this issue further in Subsection 8.2.

1.4. Organisation. In Section 2, we give a quick overview of some termi-
nology as well as some basic and guiding principles/tools from graph theory
and probability. In Section 3, we fully present and prove our main framework
for producing global graph structure from local occupancy properties of
the hard-core model. In Section 4, we give some further preliminary and
general results needed to carry out the specific hard-core analyses for our
applications. In Sections 5–7, we perform several local occupancy analyses
to prove Theorems 4–8 within our framework. In Section 8, we give some
concluding remarks as well as some hints for further study.

2. Notation and preliminaries

2.1. Graph structure. Let G be a graph. We write V (G) and E(G) (or
just V and E) for the vertex and edge sets of G, respectively. If X and Y
are two disjoint subsets of V (G), we let EG(X,Y ) be the set of edges of G
with one end-vertex in each of X and Y . Given u ∈ V (G), we write NG(u)
for the (open) neighbourhood of u, degG(u) = |NG(u)| for the degree of u,
and NG[u] = {u} ∪NG(u) for the closed neighbourhood of u. In all these,
we often drop the subscript if it is unambiguous.

We write I(G) for the collection of independent sets, i.e. vertex subsets
inducing edgeless subgraphs, of G, and the independence number α(G) of G
is the size of a largest set from I(G). A proper k-colouring of G is a partition
of V (G) into k sets from I(G), or equivalently a mapping c : V (G) → [k]
such that c−1({i}) ∈ I(G) for every i ∈ [k], and the chromatic number χ(G)
of G is the least k for which G admits a proper k-colouring.

Given a probability distribution over I(G), writing I for the random
independent set, the occupancy fraction of the distribution is E|I|/|V (G)|.
As noted earlier, when the distribution for I is the hard-core model at fugacity
λ > 0, the occupancy fraction may be rewritten

E|I|
|V (G)| = λZ ′G(λ)

ZG(λ)|V (G)| .

Note again that α(G) ≥ E|I|.
We (first) define fractional colouring in probabilistic terms, in terms of

uniform occupancy. A fractional k-colouring of G is a probability distribu-
tion I over I(G) such that, writing I for the random independent set, it holds
that P(v ∈ I) ≥ 1/k for every vertex v ∈ V (G). The fractional chromatic
number χf (G) is the least k for which G admits a fractional k-colouring.
Note that a fractional k-colouring of G has occupancy fraction at least 1/k,
and so α(G) ≥ |V (G)|/χf (G). One can also see fractional colouring as a
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relaxation of usual colouring in that χf (G) ≤ χ(G), which follows by defining
the fractional k-colouring arising from selecting uniformly at random one of
the independent sets associated to the colours of a proper k-colouring of G.

One equivalent, but maybe more concrete, definition of a fractional k-
colouring of G is an assignment w of pairwise disjoint intervals contained
in [0, k) to independent sets of G such that

∑
I∈I(G),I3v |w(I)| = 1 for

all v ∈ V (G). Such a colouring naturally induces an assignment of subsets
(of measure 1) to the vertices of G, namely c(v) =

⋃
I∈I(G) : I3v w(I) for

each v ∈ V (G), such that c(u) and c(v) are disjoint whenever uv ∈ E(G).
In another direction, we also consider structural parameters that are

significantly stronger than the chromatic number. A mapping L : V (G)→(Z+

k

)
is called a k-list-assignment of G; a colouring c : V (G)→ Z+ is called an

L-colouring if c(v) ∈ L(v) for any v ∈ V (G). We say that G is k-choosable if
for any k-list-assignment L of G there is a proper L-colouring of G. The list
chromatic number (or choosability) χ`(G) of G is the least k such that G is
k-choosable. By a constant k-list-assignment, G admits a proper k-colouring
if it is k-choosable.

The list chromatic number is a classic colouring parameter, cf. e.g. [5];
however, we are also able to extend our framework to the newer, but even
stronger notion of correspondence chromatic number introduced by Dvořák
and Postle [24]. We mainly adopt the notation of Bernshteyn [11]. Given a
graph G, a cover of G is a pair H = (L,H), consisting of a graph H and a
mapping L : V (G)→ 2V (H), satisfying the following requirements:

(i) the sets {L(u) : u ∈ V (G)} form a partition of V (H);
(ii) for every u ∈ V (G), the graph H[L(u)] is complete;
(iii) if EH(L(u), L(v)) 6= ∅, then either u = v or uv ∈ E(G);
(iv) if uv ∈ E(G), then EH(L(u), L(v)) is a matching (possibly empty).

A cover H = (L,H) of G is k-fold if |L(u)| = k for all u ∈ V (G). An H -
colouring of G is an independent set in H of size |V (G)|. The correspondence
chromatic number (or DP-chromatic number) χc(G) is the least k for which G
admits an H -colouring for any k-fold cover H of G. Note that every k-list-
assignment L translates into a k-fold cover (hence the common lettering), and
an independent set in H of size |V (G)| corresponds to a proper L-colouring
of G. This implies that χ`(G) ≤ χc(G).

Note that, as for (list) colouring, this stronger parameter remains amenable
to inductive approaches. For instance, it can be related to the following den-
sity parameter through a greedy colouring procedure. Writing δ(H) for the
minimum degree of a graph H, the degeneracy δ∗(G) of G is maxH⊆G δ(H).
The degeneracy of G is clearly bounded by the maximum degree ∆(G) of G.
It is worth noting that we will also make use of the closely related density
notion of maximum average degree mad(G) of G, defined to be

mad(G) = max
H⊆G
|V (H)|≥1

2|E(H)|
|V (H)| ,
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and satisfies δ∗(G) ≤ mad(G) < 2δ∗(G).
Synthesising the above discussion, here is an enlarged version of (1):

ω(G) ≤ ρ(G) ≤ χf (G) ≤ χ(G) ≤ χ`(G)(5)
≤ χc(G) ≤ δ∗(G) + 1 ≤ ∆(G) + 1.

In this work, we focus on upper bounds for the second to the sixth
parameters in (5), especially in graph classes defined according to local
structural conditions (which in turn are often defined with parameters lying
along the above sequence of inequalities).

For perspective, we next make a few general remarks regarding strictness
of the inequalities in (5). For the first, we have, in relation to the sharpness of
Theorem 1, already mentioned the existence of a family of graphs with clique
number 2 over which ρ is unbounded. For the second, it was only very recently
shown by Dvořák, Ossona de Mendez, and Wu [23] (cf. also [12]) the existence
of a family of graphs with Hall ratios at most 18 and unbounded fractional
chromatic numbers. It remains an interesting open problem of Harris [32] to
determine whether ρ(G) is always at least some constant fraction of χf (G) for
triangle-free graphsG. For the third inequality in (5), it is well known that the
Kneser graphs KGn,k (which are triangle-free if n < 3k) satisfy χ(KGn,k) =
n − 2k + 2 and χf (KGn,k) = n/k, cf. Lovász [44]. For the fourth to sixth
inequalities, the complete d-regular bipartite graph Kd,d satisfies χ(Kd,d) = 2,
χ`(Kd,d) = (1 + o(1)) log2 d [25], χc(Kd,d) = (1/2 + o(1))d/ log d [10], and
δ∗(Kd,d) = d (as d→∞).

As described in Subsection 1.3, we in fact prove our results in the context
of more refined versions of χf , χ, χ`, and χc, by individually restricting the
‘amount’ of colour available per vertex. For χ` and χc, we do so by allowing
the lower bound condition on |L(v)| to vary as a function of parameters
of N(v), such as the degree deg(v) of the vertex v. On the other hand, for χf
and χ we do so by moreover demanding (as in Subsection 1.3) that the colour
or set of colours assigned to v be chosen only from an interval (of length
depending on deg(v)) whose left endpoint is at the origin. For the local
colouring results we prove in the former situation, we invariably assume some
mild but uniform minimum list size that is defined in terms of the maximum
degree of the graph. We discuss this further in Subsection 8.2.

2.2. Probabilistic tools. Given a probability space, the {0, 1}-valued ran-
dom variables X1, . . . ,Xn are negatively correlated if for each subset S
of {1, . . . , n},

P
(
Xi = 1,∀i ∈ S

)
≤
∏
i∈S

P(Xi = 1).

Chernoff bound for negatively correlated variables ([47]). Given a
probability space, let X1, . . . ,Xn be {0, 1}-valued random variables. Set X =∑n
i=1 Xi and Yi = 1−Xi for each i ∈ {1, . . . , n}. If the variables X1, . . . ,Xn
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are negatively correlated, then
∀δ > 1, P

(
X ≥ (1 + δ)EX

)
≤ e−δEX/3.

If the variables Y1, . . . ,Yn are negatively correlated, then

∀η ∈ (0, 1), P
(
X ≤ (1− η)EX

)
≤ e−η2EX/2.

Lopsided Lovász local lemma ([28], cf. [8]). Given a probability space,
let E = {A1, . . . , An} be a set of (bad) events. Suppose for each i ∈ [n] there
is some Γ(i) ⊆ [n] such that |γ(i)| ≤ d and for all S ⊆ [n] \ Γ(i) it holds that

P

Ai
∣∣∣∣∣ ⋂
j∈S

Aj

 ≤ p.
If 4pd ≤ 1, then the probability that none of the events in E occur is positive.

3. The framework

In this section we describe our framework in better detail now that we are
equipped with the requisite notation from Subsection 2.1. This continues
the discussion we began in Subsections 1.2 and 1.3.

3.1. The general theorems. The condition (2) of local occupancy is very
close to a lower bound on the occupancy fraction of the hard-core model
in G, and the following result has an elementary proof following from basic
properties of the hard-core model, see Subsection 3.2.

Theorem 10 (cf. [18, 19, 20, 21]). Suppose G is a graph of maximum degree ∆
such that the hard-core model on G at fugacity λ has local (β, γ)-occupancy
for some λ, β, γ > 0. Then its occupancy fraction satisfies

1
|V (G)|

λZ ′G(λ)
ZG(λ) ≥

1
β + γ∆ .

In particular, the independence number of G satisfies

α(G) ≥ |V (G)|
β + γ∆ .

A crucial realisation, made essentially in [18], is that the same argument
in conjunction with a greedy colouring procedure [18, Lem. 3], cf. also [46,
Ch. 21], leads to the fractional relaxation of Theorem 2 (and any other setting
in which we can prove local occupancy). Moreover, under the condition in (4)
instead of (2), it permits a clean local formulation. From the arguments given
below in Subsection 3.2 together with [18, Lem. 3], we obtain the following.

Theorem 11. Suppose G is a graph such that the hard-core model on G at
fugacity λ has local (βu, γu)u-occupancy for some λ > 0 and some collection
(βu, γu)u of pairs of positive reals. Then G admits a fractional colouring in
which each vertex u is coloured with a subset of the interval

[0, βu + γu deg(u)).
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In particular, the fractional chromatic number of G satisfies
χf (G) ≤ β + γ∆,

where β = maxu βu, γ = maxu γu, and ∆ is the maximum degree of G.

The importance of this realisation is that it hints at a generalisation via the
hard-core model and, simultaneously, an extension along (5) of Theorem 1. In
this work we confirm both of these subject to some mild additional conditions.
The following is our main result and the list and correspondence colouring
generalisation of Theorem 3.

Theorem 12. Suppose that G is a graph of maximum degree ∆ ≥ 26 such
that the hard-core model on G at fugacity λ has local (βu, γu)u-occupancy for
some λ > 0 and some collection (βu, γu)u of pairs of positive reals. Suppose
also for some ` > 7 log ∆ that we are given a cover H = (L,H) of G that
arises from a list-assignment of G, and that satisfies for all u ∈ V (G) that

|L(u)| ≥ βu
λ

1 + λ

`

1−
√

(7 log ∆)/`
+ γu deg(u),(6)

and
ZF (λ) ≥ 8∆4,(7)

for all induced subgraphs F ⊆ G[N(u)] on at least `/8 vertices. Then G
admits an H -colouring.

If H does not arise from a list-assignment, then strong local (βu, γu)u-
occupancy is sufficient for an H -colouring.

Observe that the lower bound on |L(u)| in (6) is equal to

λ

1 + λ

`

1− η

(
βu + γu

deg(u)
λ

1+λ
`

1−η

)
,

where η =
√

(7 log ∆)/` < 1. In all of our applications we are able to
show local (βu, γu)u-occupancy with a family of parameters that depends
on some arbitrary local sequence (du)u of positive reals. For the strongest
fractional colouring statements our method can give, we take du = deg(u)
and minimise βu + γu deg(u) subject to local (βu, γu)u-occupancy. The
reformulation above shows that we can reuse this same optimisation problem
for list/correspondence colouring, except that we minimise

βu + γu
deg(u)
λ

1+λ
`

1−η
.

In both cases we are interested in the choices of βu, γu > 0 which, subject to
local (βu, γu)u-occupancy, minimise βu + γudu for the given sequence (du)u.

Roughly, our framework shows how one obtains a good fractional chromatic
number result via an understanding of the hard-core model on the level of
expectation, and how with enough verified to guarantee concentration one
also obtains a comparable result for (list/correspondence) chromatic number.
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A reader may wish to consider Theorem 12 and [15, Thm. 1.13], another
result with related conclusions, in juxtaposition. Our framework has at its
heart the hard-core model, which has conceptual and technical advantages:

• most importantly, it allows us to match or surpass all of the best
asymptotic results in the area, smoothly extending the seminal bound
of Shearer [51] to various locally sparse graph classes;
• in terms of occupancy fraction, the bounds we obtain within our
framework are asymptotically tight in some cases (e.g. triangle-free
graphs, cf. [21]), presenting a natural limit to these methods;
• it naturally threads along (5), from Hall ratio through (importantly!)
fractional chromatic number to list/correspondence colouring, via
local occupancy;
• in the comparison between local occupancy and strong local occu-
pancy, it provides an intuitive distinction between list colouring and
correspondence colouring; and
• it lends itself to conveniently producing good local results as per
Subsection 1.3, indeed matching or bettering earlier results in this
direction [15, 18] (see Subsection 8.2).

3.2. Main ideas and proof of Theorem 10. To clarify the motivation for
our approach, we discuss in detail the properties of the hard-core model that
we exploit. This section serves as a warm-up for the proof of Theorem 12 and
comprises a proof of Theorem 10. Moreover, the product of these arguments,
fed to [18, Lem. 3], yields Theorem 11. This is an aggregation and distillation
of ideas earlier substantiated [18, 19, 20, 21].

Given a graph G of maximum degree ∆, let I be drawn from the hard-core
model on G at fugacity λ. We are interested in a lower bound on E|I|, as this
implies a lower bound on the independence number α(G). We may rewrite
E|I|, the expected number of vertices of G occupied by I, in terms of the
partition function:

E|I| =
∑

I∈I(G)
|I| λ

|I|

ZG(λ) = λZ ′G(λ)
ZG(λ) .

We shall rely on a special local property of the hard-core model, which
essentially states that I restricted to certain induced subgraphs is itself
distributed as the hard-core model (at the same fugacity).

More precisely, given X ⊆ V (G), write FX for the random subgraph of
G[X] induced by the set of vertices obtained from the following random
experiment. Reveal I \X and let the set UX of externally uncovered vertices
of X consist of those vertices in X with no neighbour in I \X. Then let FX

be the subgraph of G induced by UX . Formally,
FX = G[X \N(I \X)].

All of our results depend on the following fundamental fact about the
behaviour of I ∩X in terms of FX . As an aside, we remark that this fact
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was key to Bernshteyn’s application of the lopsided Lovász local lemma [11,
Eqn. (#)], and, as we will see later, is just as important for us.

Spatial Markov property. For any graph G and any X ⊆ V (G), if I is a
random independent set drawn from the hard-core model on G at fugacity λ >
0, then I ∩ X is distributed according to the hard-core model on FX :=
G[X \N(I \X)] at fugacity λ.

Proof. Let I0 be an arbitrary independent set of G−X and let us condition
on the fact that I \X = I0. It follows that I ∩X is contained in X \N(I0).
For any independent set I1 contained in X \N(I0), we have

P(I ∩X = I1 | I \X = I0) = P(I = I0 ∪ I1 ∧ I \X = I0)
P(I \X = I0) = P(I = I0 ∪ I1)

P(I \X = I0)

= λ|I0∪I1|

ZG(λ) ·
ZG(λ)∑

I∈I(FX) λ
|I∪I0|

= λ|I1|∑
I∈I(FX) λ

|I| ,

which completes the proof as ZFX (λ) =
∑
I∈I(FX) λ

|I|. �

Armed with this fact, and given u ∈ V (G), let us now consider the
terms P(u ∈ I), the probability that u is occupied by I, and E|N(u)∩ I|, the
expected number of neighbours of u occupied by I, in turn. For convenience,
we write IN(u) for an independent set drawn from the hard-core model
on FN(u) at fugacity λ.

We derive the conditional probability P(u ∈ I | I ∩ N(u) = ∅) by re-
vealing I \ {u}. The spatial Markov property implies that it is λ/(1 + λ).
Thus

P(u ∈ I) = P(u ∈ I ∧ I ∩N(u) = ∅) = λ

1 + λ
P(I ∩N(u) = ∅)

= λ

1 + λ
P(IN(u) = ∅) = λ

1 + λ
E

1
ZFN(u)(λ) ,

where we used the spatial Markov property again in the second line. Similarly,

E|N(u) ∩ I| = E|IN(u)| = E
λZ ′FN(u)

(λ)
ZFN(u)(λ) .

Now we see where condition (4) enters: since FN(u) is an induced subgraph
of G[N(u)] we deduce from (4) that

βuP(u ∈ I) + γuE|I ∩N(u)| = E
[
βu

λ

1 + λ

1
ZFN(u)(λ) + γu

λZ ′FN(u)
(λ)

ZFN(u)(λ)

]

=
∑
F

P(FN(u) = F )
(
βu

λ

1 + λ

1
ZF (λ) + γu

λZ ′F (λ)
ZF (λ)

)
≥ 1,

where the summation runs over all induced subgraphs F of G[N(u)]. Al-
though (4) is more general, the above motivates the label ‘local occupancy’.



GRAPH STRUCTURE VIA LOCAL OCCUPANCY 17

Writing β = maxu βu and γ = maxu γu, we then have

∀u ∈ V (G), βP(u ∈ I) + γE|I ∩N(u)| ≥ 1,

and summed over u ∈ V (G) this gives

βE|I|+ γ∆E|I| ≥ |V (G)|,

because each vertex v appears deg(v) ≤ ∆ times in∑
u∈V (G)

∑
v∈N(u)

P(v ∈ I) =
∑

u∈V (G)
E|I ∩N(u)|.

So we have

α(G) ≥ E|I| ≥ |V (G)|
β + γ∆ ,

which by uniformly taking (βu, γu) = (β, γ) is (a slightly stronger version of)
the independence number conclusion required for Theorem 10.

3.3. Proof of Theorem 12. We next show that our main result, Theo-
rem 12, follows from a more technical statement. Since we envisage future
utility of this more general result, we state it now and give its proof after
showing how it immediately implies Theorem 12.

Theorem 13. Suppose G is a graph of maximum degree ∆ such that the hard-
core model on G at fugacity λ has local (βu, γu)u-occupancy for some λ > 0
and some collection (βu, γu)u of pairs of positive reals. Suppose, for some
collection (`u, ηu)u of pairs of positive reals satisfying ηu < 1 for all u, that
we are given a cover H = (L,H) of G that arises from a list-assignment
of G, and that satisfies for all u ∈ V (G) that

1 + λ

βuλ
(|L(u)| − γu deg(u)) ≥ max

{
`u

1− ηu
,

6 log(2∆)
η2
u

}
,(8)

and

ZF (λ) ≥ 8|L(u)|∆3(9)

for all induced subgraphs F ⊆ G[N(u)] on more than `∗u := minv∈N(u) `v/8
vertices. Then G admits an H -colouring.

If H does not arise from a list-assignment, then strong local (βu, γu)u-
occupancy is sufficient for an H -colouring.

Proof of Theorem 12. Without loss of generality |L(u)| ≤ ∆, or else we can
easily colour u last; so the assumption (7) on ZF (λ) when F is an induced
subgraph of G[N(u)] implies (9).

We take a uniform choice ηu = η =
√

(7 log ∆)/`, which by the assumption
on ` is less than 1. Then as ∆ ≥ 26 we have

`

1− η ≥ ` = 7 log ∆
η2 ≥ 6 log(2∆)

η2 .
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To satisfy (8) we observe that our choice of lower bound on |L(u)| and the
above calculations mean

1 + λ

βuλ
(|L(u)| − γu deg(u)) ≥ `

1− η ≥
6 log(2∆)

η2 .

Thus an application of Theorem 13 completes the proof. �

The rest of this section is devoted to the proof of Theorem 13. We use a
two-phase method for proving the existence of H -colourings via the hard-
core model and the Lovász local lemma. This builds upon several previous
proofs beginning with the breakthrough of Molloy [45], cf. [11, 15, 18]. Note
that all previous work regarded only the uniform case, whereas here it is
crucial that we extend to the general hard-core model.

For the proof, we have chosen to adopt the terminology of Bernshteyn [11].
Suppose we are given a graphG and a cover H = (L,H) ofG. For U ⊆ V (G),
define L(U) =

⋃
u∈U L(u). Define H∗ to be the subgraph of H obtained

by removing the edges inside L(u) for all u ∈ V (G); as Bernshteyn does,
we write deg∗H (x) instead of degH∗(x). For I ∈ I(H), the domain of I is
dom(I) = {u ∈ V (G) : L(u) ∩ I 6= ∅}. Any set I ∈ I(H) corresponds to a
partial H -colouring of G, where the set of coloured vertices of G is dom(I).
We have convenient subscript notation to refer to the uncoloured graph that
remains and its induced cover. Let GI = G − dom(I) and HI = (LI , HI)
be the cover of GI given by HI = H −NH [I] and LI(u) = L(u) \NH [I] for
all u ∈ V (GI). Now by definition if I ′ is an HI -colouring of GI then I ∪ I ′
is an H -colouring of G.

The concluding, second phase is standard in probabilistic graph colouring
(cf. [46]) and is often referred to as the ‘finishing blow’. The version we
employ is a local form, and it follows easily from the Lovász local lemma,
albeit without any attempt to optimise the multiplicative constant 1/8.

Lemma 14 ([18]). Let H = (L,H) be a cover of a graph G. Suppose there
is a function ` : V (G)→ N≥3, such that |L(u)| ≥ `(u) for all u ∈ V (G) and
deg∗H (x) ≤ minv∈N(u) `(v)/8 for all x ∈ L(u). Then G is H -colourable.

There are two interrelated conditions in the above lemma which guarantee
an H -colouring, first that there are large enough lists, and second that these
lists do not create too much local competition for colours.

Standing assumptions. From here until the end of the section, we will
always assume that G is a graph and H = (L,H) is a cover of G satisfying
the conditions of Theorem 13 for some λ > 0 and some collection (βu, γu, `u)u.

In the main, first phase of the method, it will suffice to find some I ∈ I(H),
i.e. a partial H -colouring of G, such that, for the uncoloured graph GI that
remains, the induced cover HI satisfies the two conditions of Lemma 14.
That is, the conclusion of Theorem 13 follows from the following lemma.

Lemma 15. There exists I ∈ I(H) such that |LI(u)| ≥ `u and deg∗H (x) ≤ `∗u
for all x ∈ LI(u) and all u ∈ V (GI).
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Lemma 15, in turn may be derived from the following pair of bounds
on the probability of certain undesirable events in a random partial H -
colouring of G. Naturally, these events correspond closely to the conditions
of Lemma 14.

Lemma 16. Fix u ∈ V (G) and J ∈ I(H[L(V (G) \ N [u])]). If I′ is a
random independent set drawn from the hard-core model on H[LJ(N(u))] at
fugacity λ, then writing I = J ∪ I′ the following bounds hold.

(a) P(|LI(u)| < `u) ≤ 1/(8∆3).
(b) P

(
∃x ∈ LI(u) with deg∗HI

(x) > `∗u

)
≤ 1/(8∆3).

The derivation of Lemma 15 from Lemma 16 is analogous to a key derivation
made by Molloy [45] using the entropy compression method. Bernshteyn [11]
soon after showed that this could be done instead with the lopsided Lovász
local lemma. By now this derivation is standard, cf. e.g. [15], but since it
provides a clear connection, via the spatial Markov property, between the
hard-core model and the local lemma, we have decided to include it for
completeness (and nearly verbatim from [11]).

Proof of Lemma 15. Let I be a random independent set from the hard-core
model on H at fugacity λ. For each u ∈ V (G), define Bu to be the event{
u /∈ dom(I) and either |LI(u)| < `u or ∃x ∈ LI(u) with deg∗HI(x) > `∗u

}
.

The probabilistic method ensures the desired conclusion if the probability
that none of the events Bu occurs is positive.

For each u ∈ V (G), take Γ(u) = N3[u] (that is, the set of all vertices
within distance 3 of u). Since |Γ(u)| ≤ ∆3, it will be sufficient, by the
lopsided Lovász local lemma, to prove that for all S ⊆ V (G) \ γ(u),

P

Bu
∣∣∣∣∣ ⋂
j∈S

Bv

 ≤ 1
4∆3 .

By definition, the outcome of any Bv is determined by the set I ∩ L(N2[v]).
If v ∈ V (G) \ Γ(u), then the distance between u and v is at least 4, and so
N2[v] ⊆ V (G) \N(u). Thus it suffices to show that

P(Bu | I ∩ L(V (G) \N(u)) = J) ≤ 1
4∆3

for all J ∈ I(H[L(V (G)\N(u))]). To that end, fix such an independent set J .
We may assume that u /∈ dom(J), i.e. J ∈ I(H[L(V (G) \N [u])]), or else the
probability we want to bound is automatically zero. Let I′ = I ∩ L(N(u)).
By the spatial Markov property, I′, under the conditioning event, is a random
independent set from the hard-core model on H[LJ(N(u))] at fugacity λ.
Therefore, it follows from Lemma 16 that

P(Bu | I ∩ L(V (G) \N(u)) = J) ≤ 1
8∆3 + 1

8∆3 = 1
4∆3 . �
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For the remainder of the section, we focus on Lemma 16, which is all that
is left to complete the proof of Theorem 13. First let us briefly compare it to
previous work. In order to obtain good leading constants, we have to work
with the event in (b) above, rather than the event that u has more than `u
neighbours v in GI with `v ≥ `u, which was used before [15]. The event more
closely resembles the one used in the triangle-free proofs of [11, 18, 45]. A
way of tackling (b) in more general settings is the main technical advance of
this part of the proof.
Further standing assumptions. From here until the end of the section,
we will always assume that u is a fixed vertex, J is a fixed independent set,
and I and I′ are random independent sets as in Lemma 16.

We require some additional notation. For x ∈ L(u), let Λx be the layer
of x given by Λx = NH∗J

(x). This consists of the colours in LJ(N(u)) that
conflict with x, and so for distinct x, y ∈ L(u) the layers Λx and Λy are
necessarily disjoint.

Note the following key property of how I′ is distributed on the sets Λx,
which corresponds to a fact about externally uncovered neighbours in this
setting. As in Subsection 3.2, let us write UΛx for the set of vertices obtained
by revealing I′ \Λx and taking those vertices in Λx that in the graph H∗J are
not adjacent to any vertex of I′ \ Λx. Then write FΛx = H[UΛx ] and, for
brevity, I′Λx = I′ ∩ Λx. By the spatial Markov property, I′Λx is distributed
according to the hard-core model on the graph FΛx at fugacity λ.

It is important to notice thatH[Λx] is isomorphic to a subgraph of G[N(u)],
as is FΛx . Moreover, if the cover H is derived from a list-assignment, then
H[Λx] and FΛx are isomorphic to induced subgraphs of G[N(u)]. In either
case, the assumptions of the theorem permit us to apply (4).

We deal with Lemma 16(a) via the following result.
Lemma 17. Writing

mu = 1 + λ

βuλ
(|L(u)| − γu deg(u)),

we have E|LI(u)| ≥ mu and P
(
|LI(u)| ≤ (1− ηu)mu

)
≤ e−η2

umu/2.
Proof. Note that P(x ∈ LI(u)) = P(|I′Λx | = 0) because x ∈ LI(u) if and only
if |I′Λx | = 0, and hence from the key property and (4) we have

βu
λ

1 + λ
P(x ∈ LI(u)) + γuE|I′Λx | ≥ 1,

which we sum over all x ∈ L(u) to obtain

|L(u)| ≤ βu
λ

1 + λ
E|LI(u)|+ γu

∑
x∈L(u)

E|I′Λx | ≤ βu
λ

1 + λ
E|LI(u)|+ γu deg(u).

The last inequality holds because E
∑
x∈L(u) |I′Λx | is the expected number of

neighbours of u which are H -coloured by I′, which is clearly at most deg(u).
Rearranging immediately yields the first conclusion of Lemma 17.
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For the second, note that E|LI(u)| is a sum of indicator variables Xx for
the events {|I′Λx | = 0} with x ∈ L(u). The result then follows directly from
the Chernoff bound stated in Subsection 2.2, if we show that the random
variables Yx := 1−Xx are negatively correlated.

The required negative correlation was shown formally by Bernshteyn [11]
(in the triangle-free case), and is somewhat intuitive here. Consider the
random partial H -colouring represented by I′. Given x ∈ L(u), if |I′Λx | = 0
then no colours conflicting with x are chosen for vertices in N(u). This
makes other colours more likely to be chosen, such as those which conflict
with x′ ∈ L(u) \ {x}. We repeat Bernshteyn’s argument for completeness.

It is enough to show that for all x ∈ L(u) and Y ⊆ L(u) \ {x} we have

P(x /∈ LI(u) | Y ∩ LI(u) = ∅) ≤ P(x ∈ LI(u)),

which is equivalent to

P
(
I′ ∩NH∗(y) 6= ∅ for all y ∈ Y | I′ ∩NH∗(x) = ∅

)
≥ P(Y ∩ LI(u) = ∅),

which holds because the sets NH∗(x) and NH∗(Y ) are disjoint. �

To deal with Lemma 16(b) we use the following result.

Lemma 18. For any x ∈ L(u), writing

B′x =
{
x ∈ LI(u) and deg∗HI(x) > `∗u

}
,

we have P(B′x) ≤ 1/(8|L(u)|∆3).

Proof. When x ∈ LI(u) we must have |I′Λx | = 0 and hence deg∗HI
(x) = |UΛx |,

as some x′ ∈ NH∗J
(x) remains a member of NH∗I

(x) only if x′ is in UΛx (or
else x′ is adjacent to some member of I′ \ Λx). In the case |I′Λx | = 0, every
vertex of UΛx contributes to deg∗HI

(x). Then B′x occurs if and only if both
|UΛx | > `∗u and |I′Λx | = 0. So it suffices to show whenever |UΛx | > `∗u that

P(x ∈ LI(u)) ≤ 1
8|L(u)|∆3 .

By the key property we have P(x ∈ LI(u)) = 1/ZFΛx
(λ), and then the

desired bound follows from (9). Note that removing edges from F only
increases ZF (λ) so the ‘induced’ condition suffices. �

Proof of Lemma 16. For part (a), Lemma 17 gives

P(|LI(u)| < `u) ≤ P
(
|LI(u)| ≤ (1− ηu)mu

)
≤ e−η2

umu/2 ≤ 1
8∆3 ,

where in the first and last inequalities we used the condition on mu in (8).
For part (b), Lemma 18 and a union bound gives

P
(
there is x ∈ LI(u) with deg∗HI(x) > `∗u

)
≤

∑
x∈L(u)

P(B′x) ≤ 1
8∆3 . �
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In Theorem 13, we have attempted to keep the statement as general as
possible in case this might be useful for some future applications of our
framework. The reader will soon notice that all applications given in the
present work (via Theorem 12) take a uniform choice of (`u)u. Using a result
of Haxell [33] instead of Lemma 14, one may, if so desired, increase to 1/2
the 1/8 factor for the size of F used to verify (7) or (9), or even arbitrarily
close to 1 via the result of Reed and Sudakov [50] when restricted to list
colouring.

4. Further prerequisites

In Sections 5–7, we perform several local hard-core analyses that are needed
to justify the consequences of our framework, those stated in Subsection 1.2.
This section provides a few more preliminaries for such analyses. Some of
these analyses give rise to terms best expressed in terms of the Lambert
W -function, several properties of which we describe in Subsection 4.1. We
repeatedly (locally) apply two general bounds on the expected size of a
random independent set, which are given in Subsections 4.2 and 4.3.

4.1. The Lambert W -function. We will be interested in the solutions to
equations such as y = xex and y = ex/ log x which cannot be expressed with
elementary functions, and we collect the necessary material here.

The equation y = xex is well studied and the solution gives rise to the
Lambert W -function. This has two real branches, and we write W for the
‘upper’ or principal branch and W−1 for the ‘lower’ or negative real branch,
see Figure 1. That is, both W and W−1 are the inverse of x 7→ xex but
W : [−1/e,∞) → [−1,∞), and W−1 : [−1/e, 0) → (−∞,−1], see [17] for
more details, and proofs of the properties we discuss below.

− 1
e 1 2

−1

−2

−3

x

W
W−1

Figure 1. The functions W (x) (solid line) and W−1(x)
(dashed line)
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For the upper branch, we will use that as x→∞ we have

W (x) = log x− log log x+ o(1),

and note that W (x)eW (x) = x implies eW (x) = x/W (x) if x 6= 0. This latter
property clearly holds for any branch of W .

We encounter the lower branch as a solution to the equation x log(1/x) =
1/(ey). A little rearranging gives (log x)elog x = −1/(ey), and hence log x is
given by some branch of the Lambert W -function applied to −1/(ey). If we
know that x ∈ (0, 1/e) and y ≥ 1 then the solution is

x = eW−1(−1/(ey)) = 1
ey
· 1
−W−1(−1/(ey)) .

For brevity we introduce K : [1,∞) → [1,∞) for the function K(y) =
−W−1(−1/(ey)) appearing above. Then for x ∈ (0, 1/e) and y ≥ 1 we have

x log 1
x

= 1
ey

=⇒ x = 1
eyK(y) .

Standard properties of W−1 give that K is continuous, increasing, and as
x→∞ satisfies K(x) ∼ log x, see [17].

For yet another equation we only need an asymptotic solution, but up to
an additive o(1) error term. Suppose that x and y are positive reals such
that

y = ex

log x.

Then as y →∞ we have

x = log y + log log log y + o(1).

To see this, substitute x = log y + log log log y + z to obtain

ez log log y = log(log y + log log log y + z).

If z = 0 the left-hand side is too small, but for constant z and large enough y
the left-hand side is too large, so z > 0 and z = o(1).

Similarly, if x and y are positive reals such that

y = xex

log x,

then as y →∞ we have

x = log y − log log y + log log log y + o(1).

4.2. The hard-core model and entropy. In this subsection, we develop
a refinement of an entropy argument of Shearer [52]. See e.g. the book by
Alon and Spencer [8] for an introduction to the necessary entropy material.
Some minor changes to Shearer’s proof are necessary to handle a general
positive fugacity λ, but the case λ = 1 of the proof below simply corresponds
to a rather precise description of Shearer’s original method. The result is
most useful when one has control of the term K

(
yλ/ logZF (λ)

)
. It boils
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down to bounding the number of independent sets in F in terms of the size
of F , and in later relevant sections we establish such results in context.

Lemma 19. For any graph F on y vertices and any positive real λ,

λZ ′F (λ)
ZF (λ) ≥

logZF (λ)
K
(
yλ/ logZF (λ)

) .
Proof. In the proof we write Z instead of ZF (λ) for brevity and write log2
for the base-2 logarithm. For x ∈ (0, 1), let

h(x) = −x log2 x− (1− x) log2(1− x)

be the binary entropy function (also satisfying h(0) = h(1) = 0). For the
hard-core model on F at fugacity λ, we write I for a random independent set
and φ = E|I|/y for the occupancy fraction. We desire a lower bound on E|I|.
We first prove that

logZ ≤ yφ log(eλ/φ).(10)

To this end, we compute the entropy H(I),

H(I) = −
∑

I∈I(F )

λ|I|

Z
log2

λ|I|

Z
= log2 Z −

∑
I∈I(F )

|I|λ
|I|

Z
log2 λ

= log2 Z − E|I| log2 λ,

so that by the subadditivity of the entropy and the concavity of h we have

log2 Z = E|I| log2 λ+H(I)

≤ E|I| log2 λ+
∑

u∈V (F )
H(1u∈I)

= yφ log2 λ+
∑

u∈V (F )
h
(
P(u ∈ I)

)
≤ y

(
φ log2 λ+ h(φ)

)
.

Inequality (10) follows since for all x ∈ (0, 1] we have h(x) ≤ x log2(e/x), and
h(0) = 0 = limx→0 x log2(e/x). Note that we only use logarithms to base 2
in the above calculations, and work with the natural logarithm elsewhere,
including in (10).

The right-hand side of (10) is an increasing function of φ because the
partial derivative with respect to φ is y log(λ/φ) and in the hard-core model

φ = 1
y

∑
u∈V (F )

P(u ∈ I) ≤ 1
y

∑
u∈V (F )

P(u ∈ I | N(u) ∩ I = ∅) = λ

1 + λ
< λ.

Hence we bound φ from below by solving (10) with equality, leading to

φ

eλ
log eλ

φ
= logZ

eyλ
.
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The right-hand side lies in [0, 1/e] since Z ≤ (1 + λ)y. The exact solution is
naturally expressed in terms of the function K (see Subsection 4.1), giving

E|I| = yφ ≥ logZF (λ)
K
(
yλ/ logZF (λ)

) . �

4.3. The hard-core model with bounded average degree. The follow-
ing lemma has essentially already appeared [19].

Lemma 20. For any graph F on y vertices with average degree d and any
positive real λ,

λZ ′F (λ)
ZF (λ) ≥

λ

1 + λ
y(1 + λ)−d, and

logZF (λ) ≥

y log(1 + λ) if d = 0,
y
d

(
1− (1 + λ)−d

)
if d > 0.

Proof. We apply the analysis from Subsection 3.2 to F . Let I be a random
independent set from the hard-core model at fugacity λ on F . First, we have
for any u ∈ V (F ),

P(u ∈ I) = λ

1 + λ
P(I ∩N(u) = ∅) ≥ λ

1 + λ
(1 + λ)− deg(u),

because the spatial Markov property gives that I∩N(v) is a random indepen-
dent set drawn from the hard-core model on the subgraph FN(v) of F [N(v)] in-
duced by the externally uncovered neighbours of u. The final inequality comes
from the fact that any realisation of FN(v) has ZFN(v)(λ) ≤ (1 + λ)deg(u).
The lemma follows by convexity:

E|I| =
∑

u∈V (F )
P(u ∈ I) ≥ λ

1 + λ

∑
u∈V (F )

(1 + λ)− deg(u)

≥ λ

1 + λ
y(1 + λ)−d,

and integrating this bound gives the required lower bound on logZF (λ). �

Note that the above lower bound on logZF (λ) smoothly weakens as d
increases from zero, in that the expression for d = 0 is simply the limit
when d tends to 0 of the expression for positive d (in fact with equality
instead of inequality).

5. Bounded local maximum average degree

In this section we prove generalisations of Theorems 4–6. The key idea
is to weaken the condition of triangle-freeness to having bounded average
degree in any subgraph of a neighbourhood.
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5.1. Local occupancy with bounded local mad. We begin with the
relevant local occupancy result.

Lemma 21. Let (au)u be a sequence of nonnegative real numbers indexed by
the vertices of a graph G such that mad(G[N(u)]) ≤ au for each u ∈ V (G).
Then the following statements hold for any λ > 0.

(i) For any collection (du)u∈V (G) of positive reals, a choice of parameters
that minimises βu + γudu for all u ∈ V (G) subject to strong local
(βu, γu)u-occupancy in the hard-core model on G at fugacity λ is

γu := 1 + λ

λ

(1 + λ)au log(1 + λ)
1 +W (du(1 + λ)au log(1 + λ))

βu := γu(1 + λ)
(1+λ)1+au

γuλ
−au

e log(1 + λ) ,

and under this choice, for all u ∈ V (G),

βu + γudu = 1 + λ

λ

du(1 + λ)au log(1 + λ)
W (du(1 + λ)au log(1 + λ)) .

(ii) For any u ∈ V (G) and any subgraph F of G[N(u)] on y vertices,

logZF (λ) ≥
{
y log(1 + λ) if au = 0,
y
au

(1− (1 + λ)−au) if au > 0.

Proof. Let u be an arbitrary vertex of G, and suppose that F ⊆ G[N(u)]
has y vertices. By assumption we know that F has average degree at most au,
and so Lemma 20 directly yields (ii). For (i) we note that ZF (λ) ≤ (1 + λ)y
and hence by Lemma 20 we have

βu
λ

1 + λ

1
ZF (λ) + γu

λZ ′F (λ)
ZF (λ) ≥

λ

1 + λ

(
βu(1 + λ)−y + γuy(1 + λ)−au

)
,

and we define the right-hand side to be g(y).
The function g is strictly convex with a stationary minimum at

y∗ = au +
log

(
βu
γu

log(1 + λ)
)

log(1 + λ) ,

and if we set g(y∗) = 1 for strong local (βu, γu)-occupancy, and solve for βu
we obtain the definition given in the statement of the lemma. Then the
function βu + γudu is strictly convex in γu, and the given γu is the unique
minimiser. One checks that, indeed, setting βu and γu to the announced
values, and writing Du for du(1 + λ)au log(1 + λ), we have

βu = 1 + λ

λ
· Du

W (Du) · (1 +W (Du)) ,

and hence

βu + γudu = 1 + λ

λ

(
Du

W (Du)(1 +W (Du)) + Du

1 +W (Du)

)
= 1 + λ

λ

Du

W (Du)
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as announced. Furthermore,

y∗ = W (Du)
log(1 + λ) ,

and hence indeed

g(y∗) = Du · (1 + λ)−W (Du)/ log(1+λ)

W (Du)(1 +W (Du)) + W (Du)
1 +W (Du)

= 1
1 +W (Du) + W (Du)

1 +W (Du) = 1. �

Note the parameters (3) obtained before in [18] for triangle-free graphs arise
in the special case of the above lemma when au = 0 and du = ∆ for all u.

5.2. An excluded cycle length. If a graph contains no subgraph iso-
morphic to the cycle Ck, then the local path length in G is bounded. It
follows from a theorem of Erdős and Gallai [27] that we may use Lemma 21
with au = k − 3 in particular, and then apply the main framework to prove
the following result.

Theorem 22. For any graph G of maximum degree ∆ that contains no
subgraph isomorphic to Ck, for some k ∈ {3, . . . ,∆ + 1}, the following
statements hold.

(i) For any λ > 0, the occupancy fraction of the hard-core model on G
at fugacity λ satisfies

1
|V (G)|

λZ ′G(λ)
ZG(λ) ≥ max

0≤x≤λ

{
x

1 + x

W (∆(1 + x)k−3 log(1 + x))
∆(1 + x)k−3 log(1 + x)

}
.

(ii) For any ε > 0 there exists δ0 such that there is a fractional colouring
of G where each u ∈ V (G) is coloured with a subset of the interval[

0, (1 + ε) max
{ deg(u)

log(deg(u)/k) ,
δ0

log δ0
k

})
.

In particular, the fractional chromatic number of G satisfies χf (G) ≤
(1 + o(1))∆/ log(∆/k) as ∆→∞.

(iii) For any ε > 0 there exist δ0 and ∆0 such that the following holds
for all ∆ ≥ ∆0. If H = (L,H) is a cover of G such that for
each u ∈ V (G)

|L(u)| ≥ (1 + ε) max
{ deg(u)

log(deg(u)/(k log ∆)) ,
δ0

log δ0
k log ∆

}
,

then G is H -colourable. In particular, if k = ∆o(1), then the corre-
spondence chromatic number of G satisfies χc(G) ≤ (1+o(1))∆/ log ∆
as ∆→∞.

Proof. For every vertex u ∈ V (G), no subgraph F of G[N(u)] contains a
(k− 1)-vertex path. Hence a theorem of Erdős and Gallai [27] implies that F
has average degree at most k − 3. Having at our disposal the analysis of the
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hard-core model in graphs with bounded local mad given by Lemma 21 with
au = k − 3 for all u, the theorem follows easily from the main framework.

Setting du = ∆ for all u, statement (i) then follows from Theorem 10 and
the fact that the occupancy fraction of the hard-core model at fugacity λ is
strictly increasing in λ [21, Prop. 1].

Statement (ii) follows from Theorem 11 and some asymptotic analysis.
With du = deg(u) in Lemma 21 we deduce that G admits a fractional
colouring where each vertex u is coloured by a subset of the interval [0, cu)
with

cu := βu + γu deg(u)

= 1 + λ

λ

deg(u)(1 + λ)k−3 log(1 + λ)
W (deg(u)(1 + λ)k−3 log(1 + λ))

.

Take 1/λ = k log δ0. This gives λ = o(1) and kλ = o(1) as δ0 → ∞ since
k ≥ 3. It follows from the asymptotic properties of W (see Section 4.1) that,
if deg(u) ≥ δ0k, then cu ∼ deg(u)/ log(deg(u)/k) as δ0 →∞.

For (iii) we apply Theorem 12. To fulfil (7), it suffices by Lemma 21(ii) to
have

(11) ` ≥


8 log(8∆4)
log(1+λ) if k = 3,

8(k−3) log(8∆4)
1−(1+λ)3−k if k > 3.

because we then have ZF (λ) ≥ 8∆4 for any u ∈ V (G) and any subgraph F
of G[N(u)] on y ≥ `/8 vertices. We set

` =


8 log(8∆4)
log(1+λ) if k = 3,

8 log(8∆4)
λ

1+λ−
k−4

2 ( λ
1+λ )2 if k > 3.

Supposing λ = o(1) and kλ = o(1) as ∆ → ∞, we deduce that (11) holds
provided ∆ is large enough (by the expansion of (1 + λ)3−k = (1− λ

1+λ)k−3),
that ` = ω(log ∆) and hence ` > 7 log ∆ for all large enough ∆, and that

λ

1 + λ

`

1−
√

(7 log ∆)/`
∼ 32 log ∆.

To this end, we choose 1/λ = k log log ∆. Now we apply Lemma 21(i) with

du := max{deg(u), δ0 log ∆}
λ

1+λ
`

1−
√

(7 log ∆)/`

.

Let βu and γu be as given by the lemma in this case. It suffices to suppose that
deg(u) ≥ δ0k log ∆ and, writing η for

√
(7 log ∆)/` to improve readability,
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show that

λ

1 + λ

`

1− η (βu + γudu) = 1 + λ

λ

deg(u)(1 + λ)k−3 log(1 + λ)

W

(
deg(u)
λ

1+λ
`

1−η
(1 + λ)k−3 log(1 + λ)

)
≤ (1 + ε) deg(u)

log(deg(u)/(k log ∆)) ,

which will hold if δ0 and ∆0 are large enough: this follows by the choice of `
and λ and the asymptotic properties of W . �

5.3. Bounded local triangle count. The following result, where we sup-
pose that each vertex of G is contained in at most t triangles, implies and
elaborates upon Theorem 5. With t = ∆2/f we regain the form of Theorem 5.

Theorem 23. For any graph G of maximum degree ∆ in which each vertex
is contained in at most t ≥ 1/2 triangles, the following statements hold.

(i) For any λ > 0, the occupancy fraction of the hard-core model on G
at fugacity λ satisfies

1
|V (G)|

λZ ′G(λ)
ZG(λ) ≥ max

0≤x≤λ

 x

1 + x

W (∆(1 + x)
√

2t log(1 + x))
∆(1 + x)

√
2t log(1 + x)

 .
(ii) For any ε > 0 there exists δ0 such that there is a fractional colouring

of G such that each u ∈ V (G) is coloured with a subset of the interval[
0, (1 + ε) max

{
deg(u)

log(deg(u)/
√
t)
,

δ0
log δ0

√
t

})
.

In particular, the fractional chromatic number of G satisfies χf (G) ≤
(1 + o(1))∆/ log(∆/

√
t) as ∆→∞.

(iii) For any ε > 0 there exist δ0 and ∆0 such that the following holds
for all ∆ ≥ ∆0. If H = (L,H) is a cover of G such that for each
u ∈ V (G)

|L(u)| ≥ (1 + ε) max
{

deg(u)
log(deg(u)/(

√
t log ∆))

,
δ0

log δ0

√
t log ∆

}
,

then G is H -colourable. In particular, if t = ∆o(1), then the corre-
spondence chromatic number of G satisfies χc(G) ≤ (1+o(1))∆/ log ∆
as ∆→∞.

The requirement that t be at least 1/2 is not restrictive: for any t ∈ [0, 1) each
vertex being contained in at most t triangles is equivalent to being triangle-
free. This merely helps us avoid issues with small t when choosing parameters.
Before proving Theorem 23, we compare it with related earlier results. For
convenience we restate a non-local Theorem 23(iii) with t = ∆2/f .



30 E. DAVIES, R. J. KANG, F. PIROT, AND J.-S. SERENI

Corollary 24. For any ε > 0 there exists ∆0 such that the following holds
for all ∆ ≥ ∆0. For any graph G of maximum degree ∆ in which each vertex
is contained in at most ∆2/f triangles, where (log ∆)2/ε ≤ f ≤ ∆2 + 1, we
have χc(G) ≤ (1 + ε)∆/ log

√
f .

Sketch proof. Without loss of generality we may assume that ε is smaller
than an absolute constant. With t = ∆2/f we have ∆/

√
t =
√
f and we

need f large enough in terms of ∆ so that the asymptotic expansion of
W ((1− o(1))

√
f/ log ∆) = (1− o(1)) log

√
f is accurate enough. This occurs

if e.g. f ≥ (log ∆)2/ε when ∆ is large enough in terms of ε. �

Improving on earlier results of Alon, Krivelevich and Sudakov [7] and
Vu [54], a statement similar to Corollary 24 was recently proved by Achliop-
tas, Iliopoulos and Sinclair [1, Thm. II.5] for the list chromatic number.
They however required a much stronger lower bound on f of the form
f ≥ ∆

2+2ε
1+2ε (log ∆)2, this last expression being roughly ∆2−ε. They used this

weaker statement together with a known reduction [7] from the ‘small f ’ case
to the easier ‘large f ’ case to obtain a quantitatively weaker bound than in
Theorem 5 for chromatic number. Armed with our stronger Corollary 24, we
can perform this same reduction but without a noticeable degradation of the
leading constant to obtain Theorem 5. After next showing Theorem 23, we
give the reduction in Subsection 5.4. A large part of the proof of Theorem 23
is omitted, being nearly identical to the corresponding part in the proof of
Theorem 22.

Sketch proof of Theorem 23. Fix a vertex u ∈ V (G) and any subgraph F ⊆
G[N(v)] on y vertices. By assumption, F contains at most t edges. It follows
that the average degree of F is at most

min
{
y − 1, 2t

y

}
≤
√

2t.

Indeed, the first bound is straightforward as there are at most y − 1 possible
neighbours for any vertex in F . The second is also straightforward from the
handshaking lemma. The minimum is maximised at t =

(y
2
)
, which yields

the statement. Thus the theorem follows easily from the main framework
by Lemma 21 with au =

√
2t for all u. The remainder of the proof is nearly

identical to the proof of Theorem 22 but with
√

2t in the place of k − 3, and
it is omitted. �

5.4. Proof of Theorem 5. Due to the condition on f , Corollary 24 does
not directly imply Theorem 5, at least not via (5). Instead we appeal to an
iterative splitting procedure that was used similarly before [7, 1]. We include
the details of the derivation for completeness. This requires two results which
are shown with the help of the Lovász local lemma.

Lemma 25 ([7]). For any graph G of maximum degree ∆ ≥ 2 in which the
neighbourhood of every vertex spans at most s edges, there exists a partition
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V (G) = V1 ∪ V2 such that Vi for i ∈ {1, 2} induces a subgraph of maximum
degree at most ∆/2 + 2

√
∆ log ∆ in which the neighbourhood of every vertex

spans at most s/4 + 2∆3/2√log ∆ edges.

Lemma 26 ([1], cf. also [7]). Given ∆ and f sufficiently large, define the
sequences (∆t)t≥0 and (st)t≥0 as follows: ∆0 = ∆, s0 = ∆2/f , and

∆t+1 = ∆t/2 + 2
√

∆t log ∆t, st+1 = st/4 + 2∆3/2
t

√
log ∆t.

For any δ ∈ (0, 1/100) and ζ > 0 such that ζ(2 + δ) < 1/10, let j be
the smallest nonnegative integer for which f >

(
(1 + δ)∆/2j

)ζ(2+δ). Then
∆j ≤ (1 + δ)∆/2j and sj ≤

(
(1 + δ)∆/2j

)2
/f .

Proof of Theorem 5. Let ε > 0. It suffices to prove that χ(G) ≤ (1 +
ε)∆/ log

√
f for f (and thus ∆) sufficiently large. We may assume that f ≤

∆ε2(2+ε2), otherwise we can apply Corollary 24. Without loss of generality,
we may also assume that ε ≤ 1/11. Let δ = ζ = ε2 (which is indeed less
than 1/100) so that ζ(2 + δ) < 1/10 and we may apply Lemma 26. Let
j = j(∆, f, δ, ζ) be the integer given therein and, starting with the trivial
partition {V (G)}, iterate the following procedure j times to form a partition
of V (G).

In one iteration of the procedure, for each part W of the current partition,
do the following. If the induced subgraph G[W ] has maximum degree at
most 1 then do nothing, or else split W into two parts as given by Lemma 25.

The ultimate partition of V (G) yields at most 2j induced subgraphs of G,
and by Lemma 26 each such subgraph H has maximum degree at most 1,
or it has maximum degree at most ∆∗ := (1 + δ)∆/2j and the property
that every neighbourhood of H spans at most ∆2

∗/f edges. Observe that
∆ζ(2+δ)
∗ < f ≤ (2∆∗)ζ(2+δ) due to the choice of j in Lemma 26 and the fact

that f ≤ ∆ε2(2+ε2) ≤ ((1 + δ)∆/20)ζ(2+δ) —which implies that j ≥ 1. Now
either χ(H) ≤ 2 by (1), or χ(H) ≤ (1 + ζ)∆∗/ log

√
f by Corollary 24 (for f ,

hence ∆∗, sufficiently large). Therefore

χ(G) ≤ 2j max
{

2, (1 + ζ) ∆∗
log
√
f

}
= max

{
2j+1, (1 + ζ)(1 + δ)∆

log
√
f

}
.

We also have

(1 + δ)∆
∆/(4 log

√
f)

= 2(1 + δ) log f < f
1

ζ(2+δ) ≤ 2∆∗ = (1 + δ)∆
2j−1 ,

where the first inequality follows from a choice of large enough f and the
second holds by the above range for f in terms of ∆∗. This bounds the
first argument in the maximisation as it yields that 2j+1 ≤ ∆/ log

√
f .

For the second argument, note that (1 + ζ)(1 + δ) = (1 + ε2)2 ≤ (1 + ε)
since ε ≤ 1/11. �
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5.5. Bounded local cycle count. In Subsections 5.2 and 5.3, we showed
that our analysis of the hard-core model under bounded local mad can be
applied effectively to graph with no Ck and graphs for which each vertex is
contained in few triangles. We next note how to combine these two ideas,
hinting at some further flexibility in our approach.

Theorem 27. For any graph G of maximum degree ∆ in which the subgraph
induced by each neighbourhood contains at most t copies of Pk−1, where t ≥
1/2 and k ≥ 3, the following statements hold.

(i) For any λ > 0, the occupancy fraction of the hard-core model on G
at fugacity λ satisfies

1
|V (G)|

λZ ′G(λ)
ZG(λ) ≥ max

0≤x≤λ

 x

1 + x

W (∆(1 + x)k−3+
√

2t log(1 + x))
∆(1 + x)k−3+

√
2t log(1 + x)

 .
(ii) For any ε > 0 there exists δ0 such that there is a fractional colouring

of G such that each u ∈ V (G) is coloured with a subset of the interval[
0, (1 + ε) max

{
deg(u)

log(deg(u)/(k +
√
t))
,

δ0
log δ0

(k +
√
t)
})

.

In particular, the fractional chromatic number of G satisfies χf (G) ≤
(1 + o(1))∆/ log(∆/(k +

√
t)) as ∆→∞.

(iii) For any ε > 0 there exist δ0 and ∆0 such that the following holds
for all ∆ ≥ ∆0. If H = (L,H) is a cover of G such that for
each u ∈ V (G)

|L(u)| ≥ (1 + ε) max
{

deg(u)
log(deg(u)/((k +

√
t) log ∆))

,

δ0
log δ0

(k +
√
t) log ∆

}
,

then G is H -colourable. In particular, if k +
√
t = ∆o(1), then

the correspondence chromatic number of G satisfies χc(G) ≤ (1 +
o(1))∆/ log ∆ as ∆→∞.

Proof sketch. Fix a vertex u ∈ V (G) and any subgraph F ⊆ G[N(u)] on y
vertices. By assumption, F contains at most t copies of Pk−1. It follows that
the average degree of F is at most

min
{
y − 1, k − 3 + 2t

y

}
≤ k − 3 +

√
2t.

Indeed, the first bound is straightforward as there are at most y − 1 possible
neighbours for any vertex in f . For the second, we only need to remove at
most t edges from F to destroy all copies of Pk−1, so that by the result of
Erdős and Gallai [27] the remaining graph has at most y(k − 3)/2 edges.
Thus F has at most y(k − 3)/2 + t edges, implying the second bound. We
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consider the subcases y ≤
√

2t and y >
√

2t to crudely upper bound the
minimum, from which the statement follows. Thus the theorem follows easily
from the main framework by using Lemma 21 with au = k − 3 +

√
2t for

all u. Indeed the remainder of the proof is nearly identical to the proof of
Theorem 22 but with k − 3 +

√
2t in the place of k − 3. The details are left

to the interested reader. �

5.6. Neighbourhoods with an excluded bipartite subgraph. We re-
mark that by other classic extremal results conclusions akin to those in
Theorem 22 hold for a graph containing no subgraph of the form K1 + Tk−1,
where Tk−1 denotes some arbitrary (k−1)-vertex tree. In fact, similar results
hold (varying in the leading constants) for graphs containing no K1 + H
where H is bipartite. Such observations were already made in [7], where one
uses their analogue of Theorem 5 which has a larger, unspecified leading
constant. Our framework permits the transfer of bounds on the extremal
number of H to chromatic number bounds in (K1 + H)-free graphs with
better leading constants than via the reduction in [7]. For example, in an-
other ‘smooth’ extension of Theorem 2 one can also show with our framework
that for fixed s ≥ t ≥ 1 and G with no K1 + Ks,t, we have the bound
χ(G) ≤ (t+ o(1))∆/ log ∆ as ∆→∞. Of course one can also show a suite of
local, list, and correspondence strengthenings, and even a ‘few copies’ version
along the lines of Theorem 27. We do not give the details as the method
is essentially the same as the other proofs we present in this section. The
main idea is to use an extremal number result to bound mad(G[N(u)]) for
all u ∈ V (G) (in the case mentioned above we use the well-known result on
the Zarankiewicz Problem of Kővári, Sós, and Turán [43]), and then make
suitable choices of ` and λ. With the main work done by our framework
and the details given already in this section, these remaining tasks are quite
straightforward.

6. Bounded local Hall ratio

The following result generalises Theorem 7. Recall that the Hall ratio of a
graph G is ρ(G) = max{|V (H)|/α(H) | H ⊆ G}.

Theorem 28. Let K : [1,∞) → [1,∞) be defined in terms of the lower
branch of the Lambert-W function by K(y) := −W−1(−1/(ey)).

For any graph G of maximum degree ∆ in which the neighbourhood of
every vertex u ∈ V (G) induces a subgraph of Hall ratio at most ρu ≥ 1, and
with ρ := maxu∈V (G) ρu, the following statements hold.

(i) For any λ > 0, setting k(x) = K(ρx/ log(1 + x)), the occupancy
fraction of the hard-core model on G at fugacity λ satisfies

1
|V (G)|

λZ ′G(λ)
ZG(λ) ≥ max

0≤x≤λ

{
W (k(x)∆x/(1 + x))

k(x)∆

}
.
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(ii) For any ε > 0 there exists δ0 such that there is a fractional colouring
of G such that each u ∈ V (G) is coloured with a subset of the interval[

0, (1 + ε) max
{

K(ρu) deg(u)
log(K(ρu) deg(u)) ,

K(ρu)δ0
log(K(ρu)δ0)

})
.

(iii) For any ε > 0 there exist δ0 and ∆0 such that the following holds for
all ∆ ≥ ∆0 and δ = δ0ρ log ∆. If H = (L,H) is a cover of G such
that for each u ∈ V (G)

|L(u)| ≥ (1 + ε) max

 K(ρu) deg(u)
log

(
K(ρu) deg(u)

ρ log ∆

) , K(ρu)δ
log

(
K(ρu)δ
ρ log ∆

)
 ,

then G is H -colourable. In particular, the correspondence chromatic
number of G satisfies χc(G) ≤ (1 + o(1))K(ρ)∆/ log(K(ρ)∆/ρ) as
∆→∞.

Note also that K(ρu) ∼ log ρu as ρu →∞.
6.1. Local occupancy with bounded local Hall ratio. We begin with
the requisite local analysis of the hard-core model, which relies critically on
Lemma 19.
Lemma 29. For any graph G in which the neighbourhood of every vertex
u ∈ V (G) induces a subgraph of Hall ratio at most ρu ≥ 1, the following
holds.

(i) For any λ > 0 and collection (du)u∈V (G) of positive reals, a choice
of parameters that minimises βu + γudu for all u ∈ V (G) subject
to strong local (βu, γu)u-occupancy in the hard-core model on G at
fugacity λ is

βu = 1 + λ

λ
· exp(W (kuduλ/(1 + λ)))

1 +W (kuduλ/(1 + λ)) and

γu = ku
1 +W (kuduλ/(1 + λ)) ,

where ku = K
(
ρuλ/ log(1 + λ)

)
. Moreover, with k = maxu∈V (G) ku

and β and γ obtained by replacing ku in the definitions of βu and γu
by k, the graph G has strong local (β, γ)-occupancy.

(ii) For any u ∈ V (G) and any subgraph F of G[N(u)] on y vertices,

logZF (λ) ≥ y

ρu
log(1 + λ).

Proof. Fix an arbitrary vertex u ∈ V (G), and let F be any subgraph
of G[N(u)] on y vertices. Then since G[N(u)] has Hall ratio at most ρu, the
graph F contains an independent set of size at least y/ρu. This immedi-
ately implies part (ii). We can now bound λZ ′F (λ)/ZF (λ) from below with
Lemma 19:

λZ ′F (λ)
ZF (λ) ≥

logZF (λ)
K(yλ/ logZF (λ)) ≥

logZF (λ)
K(ρuλ/ log(1 + λ)) = logZF (λ)

ku
,
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where the second inequality follows from applying part (ii) in the denominator.
For part (i), we start working with arbitrary positive reals βu, γu, and

show that choosing them as in the statement gives the desired properties.
We have

βu
λ

1 + λ

1
ZF (λ) + γu

λZ ′F (λ)
ZF (λ) ≥ βu

λ

1 + λ
e− logZF (λ) + γu

logZF (λ)
ku

,

which we can minimise over all possible nonnegative values of logZF (λ).
Let the function g : R→ R be defined such that the right-hand side above
is g(logZF (λ)), and note that ku is independent of F . It is easy to verify
that g′′(z) = βu

λ
1+λe

−z > 0, and hence that g is strictly convex. Then
we bound g(logZF (λ)) from below by finding the unique stationary point
of g(z), which must be a global minimum. This occurs at

z∗ = log
(
βu
γu

λ

1 + λ
ku

)
,

giving

g
(

logZF (λ)
)
≥ g(z∗) = γu

ku

(
1 + log

(
βu
γu

λ

1 + λ
ku

))
.

This is equal to 1 when βu is given in terms of γu by

(12) βu = γu
ku

1 + λ

λ
e
ku
γu
−1
,

and taking γu as in the statement of the lemma, that is,

γu = ku
1 +W (kuduλ/(1 + λ)) ,

means βu as given by (12) agrees with βu as in the statement of the lemma.
This completes the proof that G has strong (βu, γu)u-local occupancy.

For local occupancy with uniform (β, γ) parameters it suffices to observe
that increasing βu and γu retains local occupancy, and that βu and γu are
increasing functions of ku, and hence of ρu. This is easy to do with a little
calculus: first, because K : [1,∞)→ [1,∞) is increasing, we deduce that ku
increases with ρu. Second, considering γu and writing t = duλ/(1 + λ)
for convenience, observe that the function x→ x/(1 +W (xt)) is increasing
over [1,∞), its derivative being x→ W (xt)2+W (tx)+1

(W (tx)+1)3 , which is positive if x ≥ 1
as t > 0. Third, considering now βu and using the same notation, the
function x → exp(W (xt))

1+W (xt) is increasing over [1,∞) its derivate being x →
exp(W (xt))·W (xt)2

x·(W (xt)+1)3 , which is positive if x ≥ 1.
We note in addition that one can show the choice of γu (with βu as in (12))

minimises βu + γudu with some calculus similar to the analysis of g. �
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6.2. Proof of Theorem 28.

Proof of Theorem 28. We simply apply the main framework to derive the
results. Lemma 29 gives for each collection (du)u∈V (G) a choice for every u ∈
V (G) of βu and γu such that the hard-core model on G at fugacity λ has
strong local (βu, γu)u-local occupancy, and we compute

βu + γudu = kudu
W (kuduλ/(1 + λ)) .

We will choose du carefully to obtain each part of the theorem.
For (i) we are interested in local occupancy with uniform parameters but

Lemma 29 also gives suitable β and γ for this. Choosing du = ∆, applying
Theorem 10, and recalling that occupancy fraction is monotone increasing
in λ yields (i).

Statement (ii) follows from Theorem 11 and some asymptotic analysis.
With the choice du = max{deg(u), δ} any λ > 0 we have

βu + γu deg(u) ≤ duku
W (dukuλ/(1 + λ)) ,

with λ = 1/ log δ, for large enough δ in terms of ε we have

βu + γu deg(u) ≤ (1 + ε) K(ρu)du
log(K(ρu)du) ,

as required for (ii). For the asymptotic properties of K and W necessary for
the final step we refer to Subsection 4.1.

To obtain (iii) we aim to apply Theorem 12, and hence we must give a
real ` > 7 log ∆ and show that logZF (λ) is large enough for all subgraphs of G
induced by subsets of neighbourhoods of size at least `/8. By Lemma 29(ii),
every graph F induced by a subset of N(u) with y vertices satisfies

logZF (λ) ≥ y

ρu
log(1 + λ).

As before, we may assume that |L(u)| ≤ ∆ for otherwise we can simply colour
such a vertex u at the end. So with ` = 40ρ log ∆/ log(1 + λ), if y ≥ `/8
and ∆ ≥ 8, then

logZF (λ) ≥ 5ρ log ∆
ρu

≥ log(∆5) ≥ log(8∆4),

as required for (7). Since ρ ≥ 1, provided we choose λ smaller than some
absolute constant (e.g. 302) we will have ` > 7 log ∆. Then writing η =√

(7 log ∆)/` we infer that G is H -colourable when

|L(u)| ≥ λ

1 + λ

`

1− η

(
βu + γu

deg(u)
λ

1+λ
`

1−η

)
.

This motivates the choice

du = max {deg(u), δ}
λ

1+λ
`

1−η
,
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so that to apply Theorem 12 it now suffices that

|L(u)| ≥ max

 ku deg(u)
W
(
ku deg(u)(1−η) log(1+λ)

40ρ log ∆

) , kuδ

W
(
kuδ(1−η) log(1+λ)

40ρ log ∆

)
 .

To give an asymptotic analysis of this bound we want to apply W to a
term that tends to infinity. With δ = δ0ρ log ∆ we choose λ such that
log(1 + λ) = 1/ log δ0 so that with δ0 large enough in terms of ε we have
not only ` > 7 log ∆ but also η small enough that the above lower bound
on |L(u)| is implied by

|L(u)| ≥ (1 + ε) max

 K(ρu) deg(u)
log

(
K(ρu) deg(u)

ρ log ∆

) , K(ρu)δ
log

(
K(ρu)δ
ρ log ∆

)
 ,

as required. �

7. Bounded clique number

The following result generalises Theorem 8.

Theorem 30. For any graph G of maximum degree ∆ in which the largest
clique containing any vertex u ∈ V (G) has size at most ωu ≥ 3, the following
statements hold. We write ω = maxu∈V (G){ωu} for an upper bound on the
clique number of G.

(i) For any λ > 0, the occupancy fraction of the hard-core model on G
at fugacity λ satisfies as ∆→∞,

1
|V (G)|

λZ ′G(λ)
ZG(λ) ≥ (1− o(1)) max

{
log ∆

(ω − 2)∆ log log ∆ ,
1

2∆

√
log ∆

log(ω − 1)

}
.

(ii) For any ε > 0 there exists δ0 such that there is a fractional colouring
of G such that each u ∈ V (G) is coloured with a subset of the smaller
of the following two intervals:[

0, (1 + ε) max
{

(ωu − 2)deg(u) log log deg(u)
log deg(u) , (ωu − 2)δ0 log log δ0

log δ0

})
,[

0, (1 + ε) max
{

2 deg(u)
√

log(ωu − 1)
log deg(u) , 2δ0

√
log(ωu − 1)

log δ0

})
.

In particular, the fractional chromatic number of G satisfies

χf (G) ≤ (1 + o(1)) min
{

(ω − 2)∆ log log ∆
log ∆ , 2∆

√
log(ω − 1)

log ∆

}
as ∆→∞.

(iii) For all ε > 0 there exist δ0 and ∆0 such that the following holds for
all ∆ ≥ ∆0 and δ = δ0k where

k = min
{(
e2 log(8∆4)

)ω−1
, exp

(√
4 log(ω − 1) · (1 + ε) log(8∆4)

)}
.
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If H = (L,H) is a cover of G such that for each u ∈ V (G), the size
of L(u) is at least the smaller of the two expressions below,

(1 + ε) max
{

(ωu − 2)deg(u) log log(deg(u)/k)
log(deg(u)/k) , (ωu − 2)δ log log(δ/k)

log(δ/k)

}
,

(1 + ε) max
{

2 deg(u)
√

log(ωu − 1)
log(deg(u)/k) , 2δ

√
log(ωu − 1)

log(δ/k)

}
,

then G is H -colourable.
In particular, the correspondence chromatic number of G satisfies

χc(G) ≤ (1 + o(1)) min
{

(ω − 2)∆ log log ∆
log ∆ , 5∆

√
log(ω − 1)

log ∆

}
as ∆→∞.

For convenience, we restate the independence number bound that either
of parts (i) and (ii) above immediately yield.

Corollary 31. For any graph G of clique number ω and maximum degree ∆,
the independence number of G satisfies as ∆→∞

α(G) ≥ (1− o(1))|V (G)|max
{

log ∆
(ω − 2)∆ log log ∆ ,

1
2∆

√
log ∆

log(ω − 1)

}
.

As such the simpler parts of our framework lead to improved (and explicit)
leading asymptotic constants in the work of Shearer [52] and of Bansal,
Gupta, and Guruganesh [9, Thm 1.2]. In the former case (which is the
more useful bound when ω is fixed), this therefore constitutes the best
progress towards an earlier-mentioned conjecture of Ajtai, Erdős, Komlós
and Szemerédi [2]. We remind the reader that those authors would have had
little interest in an increased leading constant, but rather in the removal of
the stubborn log log ∆ factor, so as to more cleanly generalise Theorem 1.

Curiously, in our derivation of Theorem 30, particularly in Subsection 7.1,
one would immediately obtain further improvement in the leading constants
were they able to considerably improve in general on the upper bounds for
the Ramsey numbers R(ω, α). But that of course would be an astonishing
breakthrough in the field.

7.1. The hard-core model with bounded clique number. Here is a
mild generalisation of [15, Lem. 4.4], which is a consequence of the Erdős–
Szekeres recurrence for Ramsey numbers [29].

Lemma 32. For any graph F on y vertices that contains no clique of size ω,
any positive real λ, and any positive integer α,

logZF (λ) ≥ α
(

log(yλ)− (ω − 1) log
(
e · α− 1
ω − 1 + e

))
, and(13)

logZF (λ) ≥ α
(

log(yλ)− (α− 1) log
(
e · ω − 1

α− 1 + e

))
.(14)
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Proof. Let R be the Ramsey number R(ω, α). By the assumption on F ,
every subset of V (F ) of size R has an independent set of size α. Note that
every independent set of size α is contained in at most

(y−α
R−α

)
subsets of V (F )

of size R. Thus there are at least(
y

R

)/(
y − α
R− α

)
≥
(
y

R

)α
= exp(α(log y − logR))

independent sets of size α (assuming that y ≥ R). By the result of Erdős
and Szekeres [29], we have R ≤

(α+ω−2
ω−1

)
=
(α+ω−2
α−1

)
. A standard estimate on

the binomial coefficients implies both of the following upper bounds:

logR ≤ log
(
e · α+ ω − 2

ω − 1

)ω−1
= (ω − 1) log

(
e · α− 1
ω − 1 + e

)
, and

logR ≤ log
(
e · α+ ω − 2

α− 1

)α−1
= (α− 1) log

(
e · ω − 1

α− 1 + e

)
.

The announced inequalities then follow from the fact that

ZF (λ) ≥ |{I ∈ I(F ) | |I| = α}| · λα

together with the monotonicity of log. �

Lemma 33. For any graph F on y vertices that contains no clique of size ω
and any positive real λ, the following holds, where we write z = logZF (λ).

(i) We have

z ≥ (ω − 1)2
(

(yλ)1/(ω−1)

e2 − 1
)
,

and as yλ→∞ we have
λZ ′F (λ)
ZF (λ) ≥

1− o(1)
ω − 2

z

log z .

(ii) Supposing that ω →∞ satisfies λ = (ω − 1)o(1) as yλ→∞, we have

z ≥
(1

4 − o(1)
) (log(yλ))2

log(ω − 1) , and

λZ ′F (λ)
ZF (λ) ≥

(1
2 − o(1)

)√
z

log(ω − 1) .

Proof. For (i) we apply (13) with

α− 1 =
⌊
ω − 1
e2 (yλ)1/(ω−1) − (ω − 1)

⌋
,

which can be assumed to be nonnegative as otherwise the desired lower
bound on z is trivially true. This implies that

(ω − 1) log
(
e · α− 1
ω − 1 + e

)
≤ log(yλ)− (ω − 1),
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and hence

z ≥ (ω − 1)α ≥ (ω − 1)2
(

(yλ)1/(ω−1)

e2 − 1
)
,

as desired. Rearranging this gives an upper bound on yλ:

yλ ≤ e2(ω−1)
(

z

(ω − 1)2 + 1
)ω−1

≤ e2(ω−1)(z + 1)ω−1.

For the lower bound on λZ ′F (λ)/ZF (λ) we apply Lemma 19, which means
we want to bound the term K(yλ/z). Since K is increasing we may use
the upper bound on y we just established, and we also use the facts that
as yλ→∞ we have z →∞, and that K(x) ∼ log(x) as x→∞. Then

K(yλ/z) ≤ K
(
e2(ω−1) (z + 1)ω−1

z

)
= (1 + o(1))(ω − 2) log z,

so by Lemma 19 we have, as yλ→∞,
λZ ′F (λ)
ZF (λ) ≥

1− o(1)
ω − 2

z

log z ,

as required.
For (ii), note that we can assume ω ≤ y since no graph on y vertices can

contain a clique on more than y vertices. Then set

α− 1 =
⌊ log(yλ)

2 log((ω − 1)λ)

⌋
,

which is nonnegative because (ω − 1)λ > 1 by assumption. From this choice
we have

(α− 1) log
(
e · ω − 1

α− 1 + e

)
≤ log(yλ)

2 log((ω − 1)λ) log
(

2e(ω − 1) log((ω − 1)λ)
log(yλ) + e

)
≤ log(yλ)

2 log((ω − 1)λ) log (2e(ω − 1) + e) .

As ω →∞, and using the assumption that λ = (ω − 1)o(1), we have

(α− 1) log
(
e · ω − 1

α− 1 + e

)
≤
(1

2 + o(1)
)

log(yλ).

Then by (14) and again using the assumption that λ = (ω − 1)o(1), we have

z ≥ α
(1

2 − o(1)
)

log(yλ) ≥
(1

4 − o(1)
) (log(yλ))2

log(ω − 1) ,

and an upper bound on log(yλ) follows: as yλ→∞

log(yλ) ≤ (2 + o(1))
√
z log(ω − 1).
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Like before we bound K(yλ/z) from above and apply Lemma 19 to obtain
the lower bound on λZ ′F (λ)/ZF (λ). As yλ → ∞ and hence z → ∞, we
deduce from the properties of K and the above bound on yλ that

K(yλ/z) ≤ (2 + o(1))
√
z log(ω − 1),

which gives the result. �

7.2. Local occupancy with bounded clique number. The next result
establishes the local occupancy required to prove Theorem 30, which involves
details for the optimisation tasks necessary to apply Lemma 33 and our
framework. It is the main optimisation needed for the leading constants
in Corollary 31. It is worth remarking here that Lemma 33 already yields
via [15, Thm 1.13] the conclusion of Theorem 8 but with worse leading
asymptotic constants. We would not hold it against a reader uninterested
in particular constants who might be tempted to skip over much of the
remainder of this section.

Lemma 34. For any λ, ξ > 0, there exists d0 > 0 such that the following
holds. For any graph G in which the maximum size of a clique containing a
vertex u ∈ V (G) is at most ωu ≥ 3, and any collection (du)u∈V (G) of positive
reals satisfying du ≥ d0 for all u, there is a choice of parameters that satisfies

βu + γudu ≤ (1 + ξ)2 min
{

(ωu − 2)du log log du
log du

, 2du

√
log(ωu − 1)

log du

}
for all u ∈ V (G) and strong local (βu, γu)u-occupancy in the hard-core model
on G at fugacity λ.

Proof. Let ζ ∈ (0, 1) be a constant to be specified later. Fix an arbitrary
vertex u ∈ V (G), and let F be any subgraph of G[N(u)] on y vertices. As
before, we write z = logZF (λ) for brevity.

For strong local occupancy we must give a choice of βu and γu that is
independent of F and such that

(15) βu
λ

1 + λ
e−z + γu

λZ ′F (λ)
ZF (λ) ≥ 1.

Writing

g1(z) = βu
λ

1 + λ
e−z + γu

1− ζ
ωu − 2

z

log z ,

g2(z) = βu
λ

1 + λ
e−z + γu

1− ζ
2
√

log(ωu − 1)
√
z,

and y0 = y0(ζ, λ) for some large enough constant, it suffices to find βu and γu
such that for all y > y0 we have

min {g1(z), g2(z)} ≥ 1,(16)
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and such that

βu ≥
1 + λ

λ
(1 + λ)y0 .(17)

Indeed, on the one hand, (17) implies (15) in the case y ≤ y0, since ez ≤
(1 + λ)deg(u) ≤ (1 + λ)y0 in this case. On the other hand, (16) and Lemma 33
together yield (15) if y > y0, for y0 large enough in terms of λ and ζ.

Note that if y0 < y ≤ deg(u) then 1 + y0λ ≤ ez ≤ (1 + λ)deg(u). And so
to establish (16) we need to investigate the minimum values of g1 and g2 on
the interval I = [log(1 + y0λ), deg(u) log(1 + λ)].

Let z∗ ≥ e be given by the equation

du
λ

1 + λ
e−z

∗ = 1− ζ
ωu − 2

z∗

log z∗ .(18)

We may ensure that there is a unique solution in [e,∞) because the right-
hand side is an increasing function of z∗ when z∗ ≥ e, the left-hand side is a
decreasing function of z∗, and at z∗ = e the left-hand side is greater than
the right-hand side provided d0 is chosen large enough in terms of λ and ζ.
Writing

τu = du
λ

1 + λ

ωu − 2
1− ζ ,

an asymptotic analysis of (18) gives
z∗ = log τu − log log τu + log log log τu + o(1),

as du, and hence τu, tends to infinity.
Let βu and γu be given by finding the values of βu and γu that solve the

equations g′1(z∗) = 0 and g1(z∗) = 1, and then multiplying each by the factor
1/(1− ζ) > 1, so as to ensure (16). Some elementary calculus checks that
this gives

βu + γudu = 1
1− ζ

1 + λ

λ
ez
∗
,

βu = du(ωu − 2)
(1− ζ)2

log z∗(log z∗ − 1)
z∗((1 + z∗) log z∗ − 1) and

γu = ωu − 2
(1− ζ)2

(log z∗)2

(1 + z∗) log z∗ − 1 .

As du (and hence z∗) tends to infinity, we have

βu ∼
du(ωu − 2)

(1− ζ)2
log z∗

(z∗)2 ∼
du(ωu − 2)

(1− ζ)2
log log(du(ωu − 2))(

log(du(ωu − 2))
)2 and

γu ∼
ωu − 2

(1− ζ)2
log z∗

z∗
∼ ωu − 2

(1− ζ)2
log log(du(ωu − 2))

log(du(ωu − 2)) ,

and thus it follows that

βu + γudu ∼
du(ωu − 2)

(1− ζ)2
log log(du(ωu − 2))

log(du(ωu − 2)) .
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Since βu → ∞ as du → ∞, for d0 large enough in terms of λ and ζ (and
hence y0) we will have (17). Furthermore, choosing ζ small enough in terms
of ξ we have, for large enough d0,

βu + γudu ≤ (1 + ξ)du(ωu − 2) log log(du(ωu − 2))
log(du(ωu − 2)) .

We must now justify that the minimum of g1(z) for z ∈ I is attained at
the stationary point z = z∗ by considering the endpoints of I. For d0 large
enough in terms of λ and ξ (and hence y0) we have

g1(log(1 + y0λ)) > βu
λ

1 + λ

1
1 + y0λ

> 1.

We ignore the case that deg(u) log(1+λ) ≤ z∗ as it is always valid to enlarge I
to include z∗ and show that g1(z) ≥ 1 on the larger interval. This means we
only need to check the right endpoint if deg(u) log(1 + λ) > z∗. In this case,
we have

g1(deg(u) log(1 + λ)) > γu
1− ζ
ωu − 2

deg(u) log(1 + λ)
log(deg(u) log(1 + λ))

> γu
1− ζ
ωu − 2

z∗

log z∗ ∼
1

1− ζ

as du →∞, and so when d0 is large enough g1(deg(u) log(1 + λ)) > 1.
For g2 we give a similar argument, and we redefine z∗, βu and γu rather

than introduce additional notation. Let z∗ ≥ 0 be given by the equation

du
λ

1 + λ
e−z

∗ = 1− ζ
2
√

log(ωu − 1)
√
z∗.

There is a unique solution because the left-hand side is decreasing in z∗

and positive at z∗ = 0, and the right-hand side is increasing in z∗ and zero
at z∗ = 0. The solution satisfies

z∗ = 1
2W

(
8d2

uλ
2 log(ωu − 1)

(1− ζ)2(1 + λ)2

)
∼ log du

as du →∞, where we used the fact that ωu ≤ du.
Let βu and γu be given by finding the values of βu and γu that solve the

equations g′2(z∗) = 0 and g2(z∗) = 1, and then multiplying each by the factor
1/(1− ζ) > 1, so as to ensure (16). Then as du →∞ we have

βu ∼
du

(1− ζ)2

√
log(ωu − 1)

(log du)3 , γu ∼
2

(1− ζ)2

√
log(ωu − 1)

log du
, and

βu + γudu ∼
2du

(1− ζ)2

√
log(ωu − 1)

log du
.
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Choosing ζ small enough in terms of ξ, and for a large enough constant d0
in terms of λ and ξ, we have (17) and

βu + γudu ≤ (1 + ξ)2du

√
log(ωu − 1)

log du
.

To check that the minimum of g2(z) in I is attained at the stationary point z∗,
we notice that for the left endpoint of I we have

g2(log(1 + y0λ)) > βu
λ

1 + λ

1
1 + y0λ

> 1

for d0 large enough. As before, we only need to check the right endpoint of
I if deg(u) log(1 + λ) > z∗, and in this case we have

g2(deg(u) log(1 + λ)) > γu
1− ζ

2
√

log(ωu − 1)
√
z∗ ∼ 1

1− ζ
as du →∞, and so when d0 is large enough g2(deg(u) log(1 + λ)) > 1.

The final step is to obtain the simplified asymptotic forms given in the
lemma. We have two choices of (βu, γu) for each u that satisfy strong local
(βu, γu)u-occupancy, and choosing the best one results in

βu+γudu≤(1 + ξ) min
{
(ωu − 2)du log log(du(ωu − 2))

log(du(ωu − 2)) , 2du

√
log(ωu − 1)

log du

}
.

Note that unless ωu →∞ as du →∞ the first bound achieves the minimum
for all large enough du. When ωu is small enough that logωu = o(log du) the
first bound simplifies as du →∞, and if ωu is larger than this then the second
bound achieves the minimum anyway. This means that by increasing d0 if
necessary, we can ensure that

βu + γudu ≤ (1 + ξ)2 min
{

(ωu − 2)du log log du
log du

, 2du

√
log(ωu − 1)

log du

}
. �

7.3. Proof of Theorem 30.

Proof. For (i), note that for fixed λ we may apply Lemma 34 with du = ∆
for each u, and ξ an arbitrary positive constant. Since ξ is arbitrary we
obtain the desired asymptotic form as ∆→∞. Applying Theorem 10 and
recalling that occupancy fraction is monotone increasing in λ yields (i).

Similarly, (ii) arises from Theorem 11 and an application of Lemma 34
with an arbitrary fixed λ > 0, a choice of ξ > 0 such that (1 + ξ)2 < 1 + ε,
and du = max{deg(u), δ} for each u, where δ is equal to the d0 provided by
the lemma.

The remainder of the proof is devoted to proving (iii). To this end, we fix
an arbitrary λ > 0 and ξ > 0 such that (1 + ξ)3 < 1 + ε. In order to apply
Theorem 12, we want a lower bound on ZF (λ) for any graph F ⊆ G[N(u)]
on y vertices. We have the assumption that G[N(u)], and hence F , contains
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no clique of size ωu. Lemma 33 gives the required information, implying that
as y →∞ we have

(19) logZF (λ) ≥ (1− o(1)) max

(ωu − 1)2 (yλ)
1

ωu−1

e2 ,
(log y)2

4 log(ωu − 1)

 ,
because if ωu is bounded as y → ∞ the first term achieves the maximum
for large enough y0, so when the second term achieves the maximum we
have the requisite asymptotic behaviour of ωu (and λ, which is constant) for
applying Lemma 33(ii). Then we choose ` according to ω such that

` = 8 min
{ 1
λ

(
e2 log(8∆4)

)ω−1
, exp

(√
4 log(ω − 1) · (1 + ε) log(8∆4)

)}
.

Since ω ≥ 3, this choice satisfies ` = ω(log ∆) as ∆ → ∞, and thus that
` > 7 log ∆ for large enough ∆0. Via (19) this gives the condition (7) required
by Theorem 12. We then apply Lemma 34 with the chosen λ and ξ, and

du = max {deg(u), δ}
λ

1+λ
`

1−η
,

where η =
√

7(log ∆)/` = o(1) as ∆ → ∞, and δ is large enough that du
is at least the d0 from Lemma 34. This yields suitable βu and γu, and to
complete the proof we must show that our assumptions mean that for large
enough ∆0 we have

|L(u)| ≥ λ

1 + λ

`

1− η (βu + γudu) .

Let us write bu for this right-hand side expression. Since λ is constant
and η = o(1) as ∆→∞, we have

log k ∼ log
(

λ

1 + λ

`

1− η

)
,

which implies that we may replace the term log du with log d′u for d′u =
max{deg(u), δ}/k as follows. From Lemma 34 we have

bu ≤
λ

1 + λ

`

1− η (1 + ξ)2 min
{

(ωu − 2)du log log du
log du

, 2du

√
log(ωu − 1)

log du

}
,

when ∆0 is large enough and δ satisfies

δ ≥ d0
λ

1 + λ

`

1− η ,

which is guaranteed by taking δ0 large enough. This means that as ∆→∞

bu ≤ (1 + o(1))(1 + ξ)2 max{deg(u), δ} ·

min
{

(ωu − 2) log log d′u
log d′u

, 2
√

log(ωu − 1)
log d′u

}
,
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so for large enough ∆0 the 1 + o(1) factor is at most 1 + ξ and we obtain
bu ≤ |L(u)| as required.

To complete the proof of (iii), we next derive the non-local corollary (which
implies Theorem 8), where we replace deg(u) with ∆ and ωu with ω. Let

b1 = (ω − 2)∆ log log(∆/k)
log(∆/k) and b2 = 2∆

√
log(ω − 1)
log(∆/k) ,

and note that as ∆→∞ we have

log k = min
{
O(ω log log ∆),

√
4 log(ω − 1) · (1 + ε) log(8∆4)

}
.

If b1 < b2, then
ω − 2√

log(ω − 1)
<

2
√

log(∆/k)
log log(∆/k) <

2
√

log ∆
log log ∆ .

This means that as ∆ → ∞ ω = O(
√

log ∆/ log log ∆) and hence log k =
o(log ∆). It then follows that

b1 ∼ (ω − 2)∆ log log ∆
log ∆ ,

as required. If b2 ≥ b1, then we consider two cases. If ω − 1 < ∆1/24, then

log k ≤
√

(1 + 2ε)16/24 log ∆

for ∆ large enough, and so (assuming ε < 0.01, say)

b2 ≤
2√

1−
√

(1 + 2ε)16/24
∆
√

log(ω − 1)
log ∆ < 5∆

√
log(ω − 1)

log ∆ ,

as required. And otherwise, provided ∆ is large enough, we have by (5)

χc(G) ≤ ∆ + 1 ≤ (∆ + 1)
√

24 log(ω − 1)
log ∆ < 5∆

√
log(ω − 1)

log ∆ . �

The reader will notice at the end of the proof that an improvement in the
constant below 5 is possible, but not below 4 without a better analysis or
some improvement in Theorem 13 in the condition (9).

8. Concluding remarks

8.1. Ramsey numbers and graph colouring. Ever since the seminal
work of Johansson [36], researchers have intuitively felt that finding as-
ymptotic bounds on the (list) chromatic number of triangle-free graphs is
closely tied to estimation of off-diagonal Ramsey numbers. In particular
it is believed that the bottleneck in bounding the chromatic number from
above is essentially in bounding the independence number from below. Our
work shows this in a concrete sense, and for more general classes of sparse
graphs. Our results are most interesting in the sparsest settings, where it
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seems that the best independence number bounds come from a suitable local
understanding of the hard-core model.

This general belief relating (list) chromatic numbers and independence
numbers is essentially valid when we instead consider the binomial random
graph, cf. [38]; this has affinity to the problem settings considered here.
To elaborate on this further, we present a general family of strengthened
Ramsey numbers, followed by a simple observation. For positive integers k
and `, define the chromatic Ramsey number Rχ(k, `) as the least n such
that for any Kk-free graph G on n vertices, the chromatic number of G
satisfies χ(G) < n/`. With (5) in mind, one can analogously define the
fractional chromatic Ramsey number Rχf (k, `) and the list chromatic Ramsey
number Rχ`(k, `). By (5), we have R(k, `) ≤ Rχf (k, `) ≤ Rχ(k, `) ≤ Rχ`(k, `)
always. The following shows how all of three of these parameters are well
defined and, at least in the symmetric case, obey a similar asymptotic upper
bound as do the classical Ramsey numbers [29].

Proposition 35. Rχ`(k, k) ≤ 2(2+o(1))k as k →∞.

Proof. We prove the following equivalent statement: for any graph G on n
vertices which contains no clique of size 1

2 log2 n, the list chromatic number
of G satisfies χ`(G) ≤ (2 + o(1))n/ log2 n as n → ∞. This uses the same
argument Kahn used to asymptotically determine the list chromatic number
of binomial random graphs, cf. [5].

By the Ramsey number upper bound of Erdős and Szekeres [29], in
any S ⊆ V (G) such that |S| ≥ n/(logn)2, there is guaranteed to be an
independent set of G of size q, for some q satisfying q = (1

2 + o(1)) log2 n as
n→∞. Let L be a k-list-assignment of G where k = dn/qe+ dn/(logn)2e.
Note k = (2 + o(1))n/ log2 n as n → ∞. Repeat as follows for as long as
possible: for each colour x that appears on at least n/(logn)2 lists, colour
all the vertices of some independent set of size q with colour x, and then
remove x from all other lists. Afterwards, every colour appears on fewer
than dn/(logn)2e lists, while every list has at least dn/(logn)2e colours.
Thus an application of Hall’s theorem yields a proper L-colouring of G, as
desired. �

An interesting but perhaps difficult question is the following: is it true that
Rχ(k, k)−R(k, k)→∞ as k →∞? In another direction, the triangle-free
analogue of Proposition 35 remains an intriguing challenge.

Conjecture 36 ([16]). Rχ`(3, k) ≤ (1 + o(1))k2/ log k as k →∞.

By (5), this would imply Shearer’s bound on the off-diagonal Ramsey num-
bers [51]. Not even has the asymptotic order been matched, nor has the
fractional chromatic version been verified. We have a strong feeling that
hard-core methods may be of use here, but it needs another idea or two.

By contrast, it is worth mentioning that the arguments in Subsection 3.2
are sharp, in the sense that the conclusion about occupancy fraction in
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Theorem 10 cannot be asymptotically improved in general. Specifically, the
triangle-free occupancy fraction bound in [21] is asymptotically extremal
due to the random regular graphs. The authors of [21] naturally raised
the question of whether maximum independent set size can be guaranteed
to be large in comparison to average independent set size, especially for
triangle-free graphs, and conjectured the following.

Conjecture 37 ([21]). For any triangle-free graph G of minimum degree δ,
α(G) ≥ (2− o(1))Z ′G(1)/ZG(1)

as δ →∞.

Any partial progress, i.e. with an asymptotic leading constant strictly greater
than 1, would be a major advance in quantitative Ramsey theory as it would
constitute an improvement over Shearer’s bound [51].

8.2. Local colouring of triangle-free graphs. In Section 5 we proved
local colouring results for graphs with no Ck and graphs in which neigh-
bourhoods contain few edges. In Section 6 we did the same for graphs with
bounded local Hall ratio. Each of these settings generalises the condition
of containing no triangles. Specifically, each of Theorem 22 with k = 3,
Theorem 23 with t = 1/2, and Theorem 28 with ρu = 1 for all u implies a
stronger form of Theorem 9 as follows.

Corollary 38. For any ε > 0 there exist δ0 and ∆0 such that the following
holds for all ∆ ≥ ∆0. For any triangle-free graph G of maximum degree ∆,
if H = (L,H) is a cover of G such that

|L(u)| ≥ (1 + ε) max
{ deg(u)

log(deg(u)/ log ∆) ,
δ0

log δ0
log ∆

}
for each u ∈ V (G), then G is H -colourable.

Next we indicate how this result matches or improves upon previous work
about local list/correspondence colourings of triangle-free graphs [18, 15].

In particular, for some (small) fixed ε′ > 0, and a target list size bound of

(1 + ε′) deg(u)
log deg(u) ,

taking ε′′ arbitrarily close to but less than ε′, and then ε > 0 arbitrarily
small so that (1 + ε)(1 + ε′′) < 1 + ε′, Corollary 38 implies that it suffices to
maintain that

log
(deg(u)

log ∆

)
≥ 1

1 + ε′′
log deg(u)

whenever deg(u) ≥ δ, which is implied by δ ≥ (log ∆)(1+ε′′)/ε′′ . When ε′ is
small, this roughly matches [18, Thm. 1] which required δ ≥ (192 log ∆)2/ε′ for
the same bound. When ε′ > 1, the bound on δ can be taken as δ ≥ (log ∆)2

and this improves upon the asymptotic leading factor in [15, Thm. 1.12],
which was 4 log 2 with the same condition on δ.
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We have just illustrated how the form of Corollary 38 allows some limited
trade-off between lowering the leading constant in the bound and lowering
the minimum list size condition. In fact, Theorem 12 allows for an analogous
trade-off more generally in locally sparse graph classes.

One may naturally wonder though if such a minimum list size condition is
truly required. Or perhaps it is a mere technicality that is by-product to our
methods? On the contrary, as already noted [18], some such assumption is
strictly necessarily for local list colouring results, even within the class of
bipartite graphs. The following is an elementary inductive construction.

Proposition 39 ([18]). For any δ, there is a bipartite graph of minimum
degree δ and maximum degree expδ−1(δ) (so a tower of exponentials of height
δ − 1) that is not L-colourable for some list assignment L : V (G) → 2Z+

satisfying |L(u)| ≥ deg(u)/ log deg(u) for all u ∈ V (G).

An interesting challenge is to find as a function of ∆ the best sufficient
minimum list size condition for local list/correspondence colouring of triangle-
free graphs with a target list size of the form, say,

2 deg(u)
log deg(u)

for every vertex u. By the remarks after Corollary 38, it is at most around
(log ∆)2, while (a light adaptation of) the construction of Proposition 39
shows that it is at least some inverse of a tall tower of exponentials.

By contrast, for all of our local colouring results involving χf , we need
no analogous assumption, although we wonder if this is compensated by the
alternative assumption that the colour lists are nested. Relatedly, we would
be curious to know if the minimum list size condition in Theorem 9, say,
could be avoided or significantly reduced.

8.3. Degree bounds. We humbly point out the limitation in our framework
that we only treat graphs of given maximum degree. Shearer [51] (improving
on [4]) proved a stronger form of Theorem 1 with degeneracy δ∗ in the
place of ∆ (cf. (5)). Unfortunately, it is impossible to hope for a similar
strengthening for example in Theorem 2, due to a well-known construction [7].
On the other hand, walking back a little along (5), it might yet be possible
for the occupancy fraction bound in Theorem 10 or the fractional chromatic
number bound in Theorem 11 to hold with degeneracy instead of maximum
degree. If so, in the latter case it would confirm the recent conjectures of
Harris [32] and of Esperet, Thomassé and the second author [30].

8.4. Algorithms. As we alluded to in earlier sections, it is natural to wonder
about the computational effectiveness of the framework we developed: does
it lead to efficient randomized algorithms to colour sparse graphs? This
topic touches upon algorithmic aspects of the Lovász local lemma, but also
raises the question of how to efficiently sample according to the hard-core
distribution at some given fugacity. As it turns out, the sufficient conditions
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provided throughout this work to colour sparse graphs do not automatically
yield randomized polynomial-time algorithms for correspondence colouring.
But the situation is better as soon as one restricts to list colouring. In a
companion work [22], we provide a study of these issues and consider, as
an application, graphs with few short cycles. For any fixed integer k ≥ 3,
we give a randomized polynomial-time algorithm for list colouring graphs
of maximum degree ∆ in which each vertex belongs to at most t copies of
a k-cycle, where 1/2 ≤ t ≤ ∆2ε/(1+2ε)/(log ∆)2. To this end, each list is
required to have size at least (1 + ε)∆/ log(∆/

√
t), thereby providing a direct

generalisation of a recent result of Achlioptas, Iliopoulos and Sinclair [1], who
obtained this statement restricted to k = 3. We point out that our result is
tight up to the algorithmic barrier for colouring random graphs. On the other
hand, it seems more difficult to obtain similar statements for correspondence
colouring. The example of complete bipartite graphs given at the end of
Subsection 2.1 already shows that list and correspondence chromatic numbers
can be very different, but it would be rather interesting to either quantify
some computational differences between list and correspondence colouring,
or devise algorithmic techniques that show the absence of such differences.

8.5. Continuous models. Our work here continues a line of research
started in [20, 21] based on applying some analysis of the hard-core model to
extremal combinatorics. It is important to note that a continuous analogue
of the model, known as the hard-sphere model is also well-studied. Con-
tinuing the theme from [20, 21] in a different direction, Jenssen, Joos, and
Perkins [34, 35] analysed the occupancy fraction of both the hard sphere
model and the hard cap model using ideas that resemble the local occupancy
and local sparsity concepts we discuss here. There are significant issues
with bringing the more complex parts of our framework (that deal with
colourings) to bear on these models and their underlying infinite geometric
graphs, as independent sets in e.g. the hard sphere model have measure zero
in Euclidean space. It would be interesting to apply our framework to related
geometric models where these issues are not present.
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