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Abstract

We propose a sequential design method aiming at the estimation of
an extreme quantile based on a sample of dichotomic data correspond-
ing to peaks over a given threshold. This study is motivated by an
industrial challenge in material reliability and consists in estimating
a failure quantile from trials whose outcomes are reduced to indica-
tors of whether the specimen have failed at the tested stress levels.
The solution proposed is a sequential design making use of a splitting
approach, decomposing the target probability level into a product of
probabilities of conditional events of higher order. The method con-
sists in gradually targeting the tail of the distribution and sampling
under truncated distributions. The model is GEV or Weibull, and se-
quential estimation of its parameters involves an improved maximum
likelihood procedure for binary data, due to the large uncertainty as-
sociated with such a restricted information.

Consider a non negative random variable X with distribution function
G. Let X1, .., Xn be n independent copies of X. The aim of this paper is
to estimate q1−α, the (1− α)-quantile of G when α is much smaller than
1/n. We therefore aim at the estimation of so-called extreme quantiles. This
question has been handled by various authors, and we will review their results
somehow later. The approach which we develop is quite different since we do
not assume that the Xi’s can be observed. For any threshold x, we define
the r.v.

Y =

{
1 if X ≤ x
0 if X > x
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which therefore has a Bernoulli distribution with parameter G(x). We may
choose x, however we do not observeX, but merely Y. Therefore any inference
on G suffers from a severe loss of information. This kind of setting is common
in industrial statistics: When exploring the strength of a material, or of a
bundle, we may set a constraint x, and observe whether the bundle breaks
or not when subjected at this level of constraint.

In the following, we will denote R the resistance of this material, we ob-
serve Y. Inference on G can be performed for large n making use of many
thresholds x. Unfortunately such a procedure will not be of any help for ex-
treme quantiles. To address this issue, we will consider a design of experiment
enabling to progressively characterize the tail of the distribution by sampling
at each step in a more extreme region of the density. It will thus be assumed
in the following that we are able to observe Y not only when R follows G
but also when R follows the conditional distribution of R given {R > x}.
In such a case we will be able to estimate q1−α even when α < 1/n where
n designates the total number of trials. In material sciences, this amounts
to consider trials based on artificially modified materials; in the case when
we aim at estimation of extreme upper quantiles, this amounts to strengthen
the material. We would consider a family of increasing thresholds x1, .., xm
and for each of them realize K1, .., Km trials, each block of iid realizations
Y ’s being therefore functions of the corresponding unobserved R’s with dis-
tribution G conditioned upon {R > xl}, 1 ≤ l ≤ m. design which allows for
the estimation of extreme quantiles.

The present setting is therefore quite different from that usually consid-
ered for similar problems under complete information. As sketched above
it is specifically suited for industrial statistics and reliability studies in the
science of materials.

From a strictly statistical standpoint, the above description may also be
considered when the distribution G is of some special form, namely when
the conditional distribution of R given {R > x} has a functional form which
differs from that of G only through some changes of the parameters. In
this case, simulation under these conditional distributions can be performed
for adaptive choice of the thresholds xl’s, substituting the above sequence
of trials. This sequential procedure allows to estimate iteratively the initial
parameters of G and to obtain q1−α combining corresponding quantiles of
the conditional distributions above thresholds, a method named splitting. In
this method, we will choose sequentially the xl’s in a way that q1−α will be
obtained easily from the last distribution of x conditioned upon {R > xm}.
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In safety issues or in pharmaceutical control, the focus is usually set on
the behavior of a variable of interest (strength, maximum tolerated dose) for
small (or even very small) levels. In these settings the above considerations
turn to be equivalently stated through a clear change of variable, considering
the inverse of the variable of interest. As an example which is indeed at the
core of the motivation for this paper, and in order to make this approach more
intuitive, we first sketch briefly the industrial situation which motivated this
work in Section 1. We look at a safety property, namely thresholds x which
specify very rare events, typically failures under very small solicitation.

As stated above, the problem at hand is the estimation of very small
quantiles. Classical techniques in risk theory pertain to large quantiles es-
timation. For example, the Generalized Pareto Distribution, to be referred
to later on, is a basic tool in modeling extreme risks and exceedances over
thresholds. Denoting R the variable of interest and R̃ := 1/R, then obviously,

for x > 0, {R < x} is equivalent to
{
R̃ > u

}
with u = 1/x. In this paper we

will therefore make use of this simple duality, stating formulas for R, start-
ing with classical results pertaining to R̃ when necessary. Note that when qα
designates the α−quantile of R and respectively q̃1−α the (1− α)−quantile

of R̃, it holds qα = 1/q̃1−α.The resulting notation may seem a bit cumber-
some; however the reader accustomed to industrial statistics will find it more
familiar.

This article is organized as follows. Section 1 formalizes the problem in
the framework of an industrial application to aircraft industry. In Section
2, a short survey of extreme quantiles estimation and of existing designs of
experiment are studied as well as their applicability to extreme quantiles
estimation. Then, a new procedure is proposed in Section 3 and elaborated
for a Generalized Pareto model. An estimation procedure is detailed and
evaluated in Section 4. Then an alternative Weibull model for the design
proposed is presented in Section 5. Lastly, Sections 6 and 7 provide a few
ideas discussing model selection and behavior under misspecification as well
as hints about extensions of the models studied beforehand.
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1 Industrial challenge

1.1 Estimation of minimal allowable stress in material
fatigue

In aircraft industry, one major challenge is the characterization of extreme
behaviors of materials used to design engine pieces. Especially, we will con-
sider extreme risks associated with fatigue wear, which is a very classical
type of damage suffered by engines during flights. It consists in the progres-
sive weakening of a material due to the application of cyclic loadings a large
number of times that can lead to its failure. As shown in Figure 1, a loading
cycle is defined by several quantities: the minimal and maximal stresses σmin

et σmax, the stress amplitude σa = σmax−σmin

2
, and other indicators such as the

stress ratio σmin

σmax
.

Figure 1: Loading cycle on a material

The fatigue strength of a given material is studied through experimen-
tal campaigns designed at fixed environmental covariates to reproduce flight
conditions. The trials consist in loading at a given stress level a dimensioned
sample of material up to its failure or the date of end of trial. The lifetime
of a specimen is measured in terms of number of cycles to failure, usually
subject to right censoring.

The campaign results are then used to study fatigue resistance and are
represented graphically in an S-N scale (see figure 2). S-N curves highlight
the existence of three fatigue regimes. Firstly, low cycle fatigue corresponds
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Figure 2: S-N curve

to short lives associated with high levels of stress. Secondly, during high cycle
fatigue, the number of cycles to failure decreases log-linearily with respect to
the loading. The last regime is the endurance limit, in which failure occurs
at a very high number of cycles or doesn’t occur at all. We will focus in
the following on the endurance limit, which is also the hardest regime to
characterize since there is usually only few and scattered observations.

In this framework, we are focusing on minimal risk. The critical quan-
tities that are used to characterize minimal risk linked to fatigue damage
are failure quantiles, called in this framework allowable stresses at a given
number of cycles and for a fixed level of probability. Those quantiles are of
great importance since they intervene in decisions pertaining engine parts
dimensioning, pricing decisions as well as maintenance policies.

1.2 Formalization of the industrial problem

The aim of this study is to propose a new design method for the character-
ization of allowable stress in very high cycle fatigue, for a very low risk α
of order 10−3. We are willing to obtain a precise estimation method of the
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α−failure quantile based on a minimal number of trials.
Denote N the lifetime of a material in terms of number of cycles to failure

and S the stress amplitude of the loading, in MPa. Let n0 be the targeted
time span of order 106 − 107 cycles.

Define the allowable stress sα at n0 cycles and level of probability α= 10−3

the level of stress that guarantee that the risk of failure before n0 does not
exceed α:

sα = sup {s : P(N ≤ n0|S = s) ≤ α} (1)

We will now introduce a positive r.v. R = Rn0 modeling the resistance of
the material at n0 cycles and homogeneous to the stress. R is the variable of
interest in this study and its distribution P is defined as:

P(R ≤ s) = P(N ≤ n0|S = s). (2)

Thus, the allowable stress can be rewritten as the α−quantile of the
distribution of R,

sα = qα = sup {s : P(R ≤ s) ≤ α} . (3)

However, R is not directly observed. Indeed, the usable data collected at
the end of a test campaign consists in couples of censored fatigue life - stress
levels (min(N, n0), s) where s is part of the design of the experiment. The
relevant information that can be drawn from those observations to charac-
terize R is restricted to indicators of whether or not the specimen tested has
failed at s before n0. Therefore, the relevant observations corresponding to
a campaign of n trials are formed by a sample of variables Y1, ..., Yn with for
1 ≤ i ≤ n,

Yi =

{
1 if Ri ≤ si
0 if Ri > si

where si is the stress applied on specimen i.

Note that the number of observations is constrained by industrial and
financial considerations; Thus α is way lower than 1/n and we are considering
a quantile lying outside the sample range.

While we motivate this paper with the above industrial application, note
that this kind of problem is of interest in other domains, such as broader
reliability issues or medical trials through the estimation of the maximum
tolerated dose of a given drug.
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2 Extreme quantile estimation, a short sur-

vey

As seen above estimating the minimal admissible constraint raises two issues;
on one hand the estimation of an extreme quantile, and on the other hand
the need to proceed to inference based on exceedances under thresholds.
We present a short exposition of these two areas, keeping in mind that the
literature on extreme quantile estimation deals with complete data, or data
under right censoring.

2.1 Extreme quantiles estimation methods

Extreme quantile estimation in the univariate setting is widely covered in the
literature when the variable of interest X is either completely or partially
observed.

The usual framework is the study of the (1−α)−quantile of a r.v X, with
very small α.

The most classical case corresponds to the setting where x1−α is drawn
from a n sample of observations X1, . . . Xn. We can distinguish estimation
of high quantile, where x1−α lies inside the sample range, see Weissman 1978
[22] and Dekkers and al. 1989 [6], and the estimation of an extreme quantile
outside the boundary of the sample, see for instance De Haan and Rootzén
1993 [5]. It is assumed that X belongs to the domain of attraction of an
extreme value distribution. The tail index of the latter is then estimated
through maximum likelihood (Weissman 1978 [22]) or through an extension
of Hill’s estimator (see the moment estimator by Dekkers and al. 1989 [6]).
Lastly, the estimator of the quantile is deduced from the inverse function
of the distribution of the k largest observations. Note that all the above
references assume that the distribution has a Pareto tail. An alternative
modeling has been proposed by De Valk 2016 [7] and De Valk and Cai 2018
[8], and consists in assuming a Weibull type tail, which enables to release
some second order hypotheses on the tail. This last work deals with the
estimation of extreme quantile lying way outside the sample range and will
be used as a benchmark method in the following sections.

Recent studies have also tackled the issue of censoring. For instance,
Beirlant and al. 2007 [2] and Einmahl and al. 2008 [13] proposed a gener-
alization of the peak-over-threshold method when the data are subjected to
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random right censoring and an estimator for extreme quantiles. The idea is
to consider a consistent estimator of the tail index on the censored data and
divide it by the proportion of censored observations in the tail. Worms and
Worms 2014 [23] studied estimators of the extremal index based on Kaplan
Meier integration and censored regression.

However the literature does not cover the case of complete truncation, i.e
when only exceedances over given thresholds are observed. Indeed, all of the
above are based on estimations of the tail index over weighed sums of the
higher order statistics of the sample, which are not available in the problem
of interest in this study. Classical estimation methods of extreme quantiles
are thus not suited to the present issue.

In the following, we study designs of experiment at use in industrial con-
texts and their possible application to extreme quantiles estimation.

2.2 Sequential design based on dichotomous data

In this section we review two standard methods in the industry and in bio-
statistics, which are the closest to our purpose. Up to our knowledge, no
technique specifically addresses inference for extreme quantiles.

We address the estimation of small quantiles, hence the events of interest
are of the form (R < s) and the quantile is qα for small α.

The first method is the staircase, which is the present tool used to char-
acterize a material fatigue strength.

The second one is the Continual Reassessment Method (CRM) which is
adapted for assessing the admissible toxicity level of a drug in Phase 1 clinical
trials.

Both methods rely on a parametric model for the distribution of the
strength variable R. We have considered two specifications, which allow for
simple comparisons of performance, and do not aim at an accurate modelling
in safety.

2.2.1 The Staircase method

Denote P(R ≤ s) = φ(s, θ0). Invented by Dixon and Mood (1948 [10]),
this technique aims at the estimation of the parameter θ0 through sequential
search based on data of exceedances under thresholds. The procedure is as
follows.

Procedure
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Fix

• The initial value for the constraint, Sini,

• The step δ > 0,

• The number of cycles n0 to perform before concluding a trial,

• The total number of items to be tested, K.

The first item is tested at level s(1) = Sini. The next item is tested at
level s(2) = Sini − δ in case of failure and s(2) = Sini + δ otherwise. Proceed
sequentially on theK−2 remaining specimen at a level increased (respectively
decreased) by δ in case of survival (resp. failure). The process is illustrated
in figure 3.

Note that the proper conduct of the Staircase method relies on strong
assumptions on the choice of the design parameters. Firstly, Sini has to be
sufficiently close to the expectation of R and secondly, δ has to lay between
0.5σ and 2σ, where σ designates the standard deviation of the distribution
of R.

Denote P(R ≤ s) = φ(s, θ0) and Yi the variable associated to the issue of
the trial i, 1 ≤ i ≤ K, where Yi takes value 1 under failure and 0 under no
failure, Yi = 1Na≤n0 ∼ B(φ(si, θ0)).

Figure 3: Staircase procedure

Estimation
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Relative error

On the parameter On sα

Mean Std Mean Std

-0.252 0.178 0.4064874 0.304

Table 1: Results obtained using the Staircase method through simulations
under the exponential model.

After the K trials, the parameter θ0 is estimated through maximization
of the likelihood, namely

θ̂ = argmax
θ

K∏
i=1

φ(si, θ)
yi(1− φ(si, θ))

(1−yi). (4)

Numerical results
The accuracy of the procedure has been evaluated on the two models

presented below on a batch of 1000 replications, each with K = 100.

Exponential case
Let R ∼ E(λ) with λ = 0.2. The input parameters are Sini = 5 and

δ = 15 ∈
[
0.5× 1

λ2
, 2× 1

λ2

]
.

As shown in Table 1, the relative error pertaining to the parameter λ is
roughly 25%, although the input parameters are somehow optimal for the
method. The resulting relative error on the 10−3 quantile is 40%. Indeed the
parameter λ is underestimated, which results in an overestimation of the
variance 1/λ2 , which induces an overestimation of the 10−3 quantile.

Gaussian case
We now choose R ∼ N (µ, σ) with µ = 60 and σ = 10. The value of Sini

is set to the expectation and δ = 7 belongs to the interval
[
σ
2
, 2σ
]
. The same

procedure as above is performed and yields the results in Table 2.
The expectation of R is recovered rather accurately, whereas the estima-

tion of the standard deviation suffers a loss in accuracy, which in turn yields
a relative error of 180 % on the 10−3 quantile.

Drawback of the Staircase method
A major advantage of the Staircase lies in the fact that the number of

trials to be performed in order to get a reasonable estimator of the mean is
small. However, as shown by the simulations, this method is not adequate
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Relative error

On µ On σ On sα

Mean Std Mean Std Mean Std

-0.059 0.034 1.544 0.903 -1.753 0.983

Table 2: Results obtained using the Staircase method through simulations
under the Gaussian model.

for the estimation of extreme quantiles. Indeed, the latter follows from an
extrapolation based on estimated parameters, which furthermore may suffer
of bias. Also, reparametrization of the distribution making use of the theo-
retical extreme quantile would not help, since the estimator would inherit of
a large lack of accuracy.

2.2.2 The Continuous Reassesment Method (CRM)

General principle
The CRM (O’Quigley, Pepe and Fisher, 1990[18]) has been designed for

clinical trials and aims at the estimation of qα among J stress levels s1, ..., sJ ,
when α is of order 20%.

Denote P(R ≤ s) = ψ(s, β0). The estimator of qα is

s∗ := arginf
sj∈{s1,...,sJ}

|ψ(sj, β0)− α|.

This optimization is performed iteratively and K trials are performed at each
iteration.

Start with an initial estimator β̂1 of β0, for example through a Bayesian
choice as proposed in [18]. Define

s∗1 := arginf
sj∈{s1,...,sJ}

|ψ(sj, β̂1)− α|.

Every iteration follows a two-step procedure:
Step 1. Perform J trials under ψ(., β0), say R1,1, .., R1,J and observe only

their value under threshold, say Y1,j := 1R1,j<s∗1
, 1 ≤ j ≤ J.

Step i. Iteration i consists in two steps :
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– Firstly an estimate β̂i of β0 is produced on the basis of the information
beared by the trials performed in all the preceding iterations through
maximum likelihood under ψ(., β0) (or by maximizing the posterior
distribution of the parameter).

–
s∗i := arginf

sj∈{s1,...,sJ}
|ψ(s,β̂i)− α|;

This stress level s∗i is the one under which the next K trials Yi,1, . . . , Yi,K
will be performed in the Bernoulli scheme B (ψ(s∗i , β0)).

The stopping rule depends on the context (maximum number of trials or
stabilization of the results).

Note that the bayesian inference is useful in the cases where there is no
diversity in the observations at some iterations of the procedure, i.e when,
at a given level of test s∗i , only failures or survivals are observed.

Application to fatigue data
The application to the estimation of the minimal allowable stress is treated

in a bayesian setting. We do not directly put a prior on the parameter β0, but
rather on the probability of failure. We consider a prior information of the
form: at a given stress level s, we can expect k failures out of n trials. Denote
πs the prior indexed on the stress level s. πs models the failure probability
at level s and has a Beta distribution given by

πs ∼ β(k, n− k + 1). (5)

Let R follow an exponential distribution: ∀s ≥ 0, ψ(s, β0) = ps = 1 −
exp(−β0s).

It follows ∀s, β0 = −1
s

log(1− ps).
Define the random variable Λs = −1

s
log(1 − πs) which, by definition of

πs, is distributed as an k-order statistic of a uniform distribution Uk,n.
The estimation procedure of the CRM is obtained as follows:
Step 1. Compute an initial estimator of the parameter

Λs =
1

L

L∑
l=1

−1

s
log(1− πls)
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Relative error

On the 0.1−quantile On the 10−3−quantile

Mean Std Mean Std

0.129 0.48 -0.799 0.606

Table 3: Results obtained through CRM on simulations for the exponential
model

with πls ∼ β(k, n− k + 1), 1 ≤ l ≤ L. Define

s∗1 := arginf
sj∈{s1,...,sJ}

|(1− exp(−Λssj))− α|.

and perform J trials at level s∗1. Denote the observations Y1,j := 1R1,j<s∗1
, 1 ≤

j ≤ J.
Step i. At iteration i, compute the posterior distribution of the param-

eter:

π∗si ∼ β

(
k +

i∑
l=1

J∑
j=1

Yl,j , n+ (J × i)− (k +
i∑
l=1

J∑
j=1

Yl,j) + 1

)
(6)

The above distribution also corresponds an order statistic of the uniform
distribution Uk+

∑i
l=1

∑J
j=1 Yl,j , n+(J×i). We then obtain an estimate Λs∗1

.

The next stress level s∗i+1 to be tested in the procedure is then given by

s∗i+1 := arginf
sj∈{s1,...,sJ}

|(1− exp(−Λs∗1
sj))− α|.

Numerical simulation for the CRM
Under the exponential model with parameter λ = 0.2 and throughN = 10

iterations of the procedure, and J = 10, with equally distributed thresholds
s1, .., sJ , and performing K = 50 trials at each iteration, the results in Table
3 are obtained.

The 10−3−quantile is poorly estimated on a fairly simple model. Indeed
for thresholds close to the expected quantile, nearly no failure is observed.
So, for acceptable K, the method is not valid; figure 4 shows the increase of
accuracy with respect to K.
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Both the Staircase and the CRM have the same drawback in the context
of extreme quantile estimation, since the former targets the central tendency
of the variable of interest and the latter aims at the estimation of quantiles
of order 0.2 or so, far from the target α = 10−3. Therefore, we propose an
original procedure designed for the estimation of extreme quantiles under
binary information.

Figure 4: Relative error on the 10−3-quantile with respect to the number of
trials for each stress level

3 A new design for the estimation of extreme

quantiles

3.1 Splitting

The design we propose is directly inspired by the general principle of Splitting
methods used in the domain of rare events simulation and introduced by
Kahn and Harris (1951 [16]).
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The idea is to overcome the difficulty of targeting an extreme event by
decomposing the initial problem into a sequence of less complex estimation
problem. This is enabled by the splitting methodology which decompose a
small probability into the product of higher order probabilities.

Denote P the distribution of the r.v. R. The event {R ≤ sα} can be
expressed as the intersection of inclusive events for sα = sm < sm−1 < ... <
s1 it holds:

{R ≤ sα} = {R ≤ sm} ⊂ · · · ⊂ {R ≤ s1}.

It follows that

P(R ≤ sα) = P(R ≤ s1)
m−1∏
j=1

P(R ≤ sj+1 | R ≤ sj) (7)

The thresholds (sj)j=1,...,m should be chosen such that all P(R ≤ sj+1 |
R ≤ sj)j=1,...,m be of order p = 0.2 or 0.3, in such a way that {R ≤ sj+1} is
observed in experiments performed under the conditional distribution of R
given {R ≤ sj}, and in a way which makes α recoverable by a rather small
number of such probabilities P(R ≤ sj+1 | R ≤ sj) making use of (7).

From the formal decomposition in (7), a practical experimental scheme
can be deduced. Its form is given in algorithm 1.
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Procedure 1 Splitting procedure

Initialization
Fix

• the number m of iterations to be per-
formed (and of levels to be tested);

• the level of conditional probabilities p
(laying between 20 and 30 %);

 such that pm ≈ α

• the first tested level s1 (ideally the p−quantile of the distribution of
R);

• the number K of trials to be performed at each iteration.

First step

• K trials are performed at level s1. The observations are the indicators
of failure Y1,1, . . . , Y1,K , where Y1,i = 1(R1,i < s1) of distribution
B (P(R ≤ s1)).

• Determination of s2, p−quantile of the truncated distribution R |
R ≤ s1.

Iteration j = 2 to m

• K trials are performed at level sj under the truncated distribu-
tion of R | R ≤ sj−1 resulting to observations Yj,1, . . . , Yj,k ∼
B (P(R ≤ sj | R ≤ sj−1)).

• Determination of sj+1, the p−quantile of R | R ≤ sj.

The last estimated quantile sm provides the estimate of sα.

3.2 Sampling under the conditional probability

In practice batches of specimen are put under trial, each of them with a
decreasing strength; this allows to target the tail of the distribution P itera-
tively.

16



Figure 5: Sampling under the strengh density at n0 cycles

In other words, in the first step, points are sampled in zone (I). Then in
the following step, only specimen with strength in zone II are considered, and
so on. In the final step, the specimen are sampled in zone IV. At level sm, they
have a very small probability to fail before n0 cycles under P, however under
their own law of failure, which is P(. | R ≤ sm−1), they have a probability of
failure of order 0.2.

In practice, sampling in the tail of the distribution is achieved by intro-
ducing flaws in the batches of specimens. The idea is that the strength of the
material varies inversely with respect to the size of the incorporated flaws.
The flaws are spherical and located inside the specimen (not on its surface).
Thus, as the procedure moves on, the trials are performed on samples of
materials incorporating flaws of greater diameter. This procedure is based
on the hypothesis that there is a correspondence between the strength of the
material with flaw of diameter θ and the truncated strength of this same
material without flaw under level of stress s∗, i.e. we assume that noting Rθ

the strength of the specimen with flaw of size θ, it holds that there exists s∗

17



such that
L(Rθ) ≈ L(R | R ≤ s∗).

Before launching a validation campaign for this procedure, a batch of
27 specimen has been machined including spherical defects whose sizes vary
between 0 and 1.8mm (see Figure 6). These first trials aim at estimating
the decreasing relation between mean allowable stress and defects diameter
θ. This preliminary study enabled to draw the abatement fatigue curve as a
function of θ, as shown in Figure 7.

Figure 6: Coupons incorporating spherical defects of size varying from 0 mm
(on the left) to 1.8 mm (on the right)

Figure 7: Mean allowable stress with respect to the defect size
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Results in Figure 7 will be used during the splitting procedure to select the
diameter θ to be incorporated in the batch of specimens tested at the current
iteration as reflecting the sub-population of material of smaller resistance.

3.3 Modeling the distribution of the strength, Pareto
model

The events under consideration have small probability under P. By (7) we are
led to consider the limit behavior of conditional distributions under smaller
and smaller thresholds, for which we make use of classical approximations
due to Balkema and de Haan (1974[1]) which stands as follows, firstly in the
commonly known setting of exceedances over increasing thresholds. Denote
R̃ := 1/R.

Theorem 1. For R̃ of distribution F belonging to the maximum domain
of attraction of an extreme value distribution with tail index c, i.e. F ∈
MDA(c), it holds that: There exists a = a(s) > 0, such that:

lim
s→∞

sup
0≤x<∞

∣∣∣∣1− F (x+ s)

1− F (s)
−
(
1−G(c,a(x)

)∣∣∣∣ = 0

where G(c,a) is defined through

G(c,a)(x) = 1− exp

{
−
∫ x

a

0

[(1 + ct)+]−1 dt

}

where a > 0 and c ∈ R.

The distribution G is the Generalized Pareto distribution GPD(c, a) is
defined explicitly through

1−G(x) =

{
(1 + c

a
x)−1/c when c 6= 0

exp(−x
a
) when c = 0

where x ≥ 0 for c ≥ 0 and 0 ≤ x ≤ −a
c

if c < 0.
Generalized Pareto distributions enjoy invariance through threshold con-

ditioning, an important property for our sake. Indeed it holds, for R̃ ∼
GDP (c, a) and x > s,
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P
(
R̃ > x | R̃ > s

)
=

(
1 +

c(x− s)
a+ cs

)−1/c

(8)

We therefore state:

Proposition 2. When R̃ ∼ GPD(c, a) then, given
(
R̃ > s

)
, the r.v. R̃− s

follows a GPD(c, a+ cs).

The GPD’s are on the one hand stable under thresholding and on the
other appear as the limit distribution for thresholding operations. This
chain of arguments is quite usual in statistics, motivating the recourse to
the ubiquous normal or stable laws for additive models. This plays in favor
of GPD’s as modelling the distribution of R̃ for excess probability inference.
Due to the lack of memory property, the exponential distribution which ap-
pears as a possible limit distribution for excess probabilities in Theorem 1
do not qualify for modelling. Moreover since we handle variables R which
can approach 0 arbitrarily (i.e. unbounded R̃) the parameter c is assumed
positive.

Turning to the context of the minimal admissible constraint, we make use
of the r.v. R = 1/R̃ and proceed to the corresponding change of variable.

When c > 0, the distribution function of the r.v. R writes for nonnegative
x:

Fc,a(x) = (1 +
c

ax
)−1/c. (9)

For 0 < x < u, the conditional distribution of R given {R < u} is

P(R < x | R < u) =

(
1−

c( 1
x
− 1

u
)

a+ c
u

)−1/c

which proves that the distribution of R is stable under threshold condi-
tioning with parameter (au, c) with

au = a+
c

u
. (10)

In practice at each step j in the procedure the stress level sj equals the
corresponding threshold 1/s̃j , a right quantile of the conditional distribution

of R̃ given
{
R̃ > s̃j−1

}
. Therefore the observations take the form Yi =

1Ri<sj−1
= 1R̃i>s̃j−1

, i = 1, . . . , Kj.
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A convenient feature of model (9) lies in the fact that the conditional
distributions are completely determined by the initial distribution of R ,
therefore by a and c. The parameters aj of the conditional distributions are
determined from these initial parameters and by the corresponding stress
level sj; see (10).

3.4 Notations

The distribution function of the r.v. R̃ is a GPD(cT , aT ) of distrubution
function G(cT ,aT ). Note G(cT ,aT ) = 1−G(cT ,aT ).

Our proposal relies on iterations. We make use of a set of thresholds
(s̃1, ..., s̃m) and define for any j ∈ {1, ...,m}

G(cj ,aj)(x− s̃j) = P( R̃ > x
∣∣∣ R̃ > s̃j)

with cj = cT and aj = aT + cT s̃j where we used (8).
At iteration j, denote (ĉ, â)j the estimators of (cj, aj).Therefore 1 −

G(ĉ,â)j(x − s̃j) estimates P( R̃ > x
∣∣∣ R̃ > s̃j). Clearly, estimators of (cT , aT )

can be recovered from (ĉ, â)j through ĉT = ĉ and âT = â− ĉ s̃j.

3.5 Sequential design for the extreme quantile estima-
tion

Fix m and p , where m denotes the number of stress levels under which the
trials will be performed, and p is such that pm = α.

Set a first level of stress, say s1 large enough (i.e. s̃1 = 1/s1 small enough)
so that p1 = P(R < s1) is large enough and perform trials at this level. The
optimal value of s1 should satisfy p1 = p, which cannot be secured. This
choice is based on expert advice.

Turn to R̃ := 1/R. Estimate cT and aT , for the GPD (cT , aT ) model

describing R̃, say (ĉ, â)1, based on the observations above s̃1 (note that under
s1 the outcomes of R are easy to obtain, since the specimen is tested under
medium stress).

Define
s̃2 := sup

{
s : G(ĉ,â)1 (s− s̃1) < p

}
the (1 − p)−quantile of G(ĉ,â)1 . s̃2 is the level of stress to be tested at the
following iteration.
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Iterating from step j = 2 to m − 1, perform K trials under G(c1,a1) say

R̃j,1, .., R̃j,K and consider the observable variables Yj,i := 1R̃j,i>s̃j . Therefore

the K iid replications Yj,1, .., Yj,K follow a Bernoulli B(G(cj−1,aj−1) (s̃j − s̃j−1)),
where s̃j has been determined at the previous step of the procedure. Estimate
(cj, aj) in the resulting Bernoulli scheme, say (ĉ, â)j. Then define

s̃j+1 := sup
{
s : G(ĉ,â)j (s− s̃j) < p

}
= G−1

(ĉ,â)j
(1− p) + s̃j,

which is the (1− p)−quantile of the estimated conditional distribution of R̃

given {R̃ > s̃j}, i.e. G(ĉ,â)j , and the next level to be tested.

In practice a conservative choice for m is given by m =
⌈
logα
logp

⌉
, where d.e

denotes the ceiling function. This implies that the attained probability α̃ is
less than or equal to α.

The m stress levels s̃1 < s̃1 < · · · < s̃m = q̃1−α satisfy

α̃ = G(s̃1)
m−1∏
j=1

G(ĉ,â)j
(s̃j+1 − s̃j)

= p1p
m−1

Finally by its very definition s̃m is a proxy of q̃1−α.
Although quite simple in its definition, this method bears a number of

drawbacks, mainly in the definition of (ĉ, â)j . The next section addresses this
question.

4 Sequential enhanced design in the Pareto

model

In this section we focus on the estimation of the parameters (cT , aT ) in the

GPD(cT , aT ) distribution of R̃. One of the main difficulties lies in the fact

that the available information does not consist of replications of the r.v. R̃

under the current conditional distribution G(cj ,aj) of R̃ given
(
R̃ > s̃j

)
but

merely on very downgraded functions of those.
At step j we are given G(ĉ,â)j and define s̃j+1 as its (1− p)−quantile.

Simulating K r.v. R̃j,i with distribution G(cj ,aj), the observable outcomes
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Minimum Q25 Q50 Mean Q75 Maximum
67.07 226.50 327.40 441.60 498.90 10 320.00

Table 4: Estimation of the (1−α)−quantile, s̃α = 469.103, through procedure
3.5 with K = 50

s̃m for K = 30 s̃m for K = 50
s̃α Mean Std Mean Std

469.103 1 276.00 12 576.98 441.643 562.757

Table 5: Estimation of the (1−α)−quantile, s̃α = 469.103, through procedure
3.5 for different values of K

are the Bernoulli (p) r.v.’s Yj,i := 1R̃j,i>s̃j+1
. This loss of information with

respect to the R̃j,i ’s makes the estimation step for the coefficients (ĉ, â)j+1

quite complex; indeed (ĉ, â)j+1 is obtained through the Yj,i’s, 1 ≤ i ≤ K.
It is of interest to analyze the results obtained through standard Max-

imum Likelihood Estimation of (ĉ, â)j+1. The quantile q̃1−α is loosely esti-
mated for small α; as measured on 1000 simulation runs, large standard de-

viation of ̂̃q1−α is due to poor estimation of the iterative parameters (ĉ, â)j+1.
We have simulated n = 200 realizations of r.v.’s Yi with common Bernoulli
distribution with parameter G(cT ,aT )(s̃1). Figure 8 shows the log likelihood
function of this sample as the parameter of the Bernoulli G(c′,a′)(s̃0) varies
according to (c′, a′) . As expected this function is nearly flat in a very large
range of (c′, a′) .

This explains the poor results in Table 5 obtained through the Splitting
procedure when the parameters at each step are estimated by maximum
likelihood, especially in terms of dispersion of the estimations. Moreover,
the accuracy of the estimator of q̃1−α quickly decreases with the number K
of replications Yj,i, 1 ≤ i ≤ K.

Changing the estimation criterion by some alternative method does not
improve significantly; Figure 9 shows the distribution of the resulting esti-
mators of q̃1−α for various estimation methods (minimum Kullback Leibler,
minimum Hellinger and minimum L1 distances - see their definitions in Ap-
pendix ??) of (cT , aT ) .

This motivates the need for an enhanced estimation procedure.
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Figure 8: Log-likelihood of the Pareto model with binary data

4.1 An enhanced sequential criterion for estimation

We consider an additional criterion which makes a peculiar use of the iterative
nature of the procedure. We will impose some control on the stability of the
estimators of the conditional quantiles through the sequential procedure.

At iteration j − 1, the sample Yj−1,i , 1 ≤ i ≤ K has been generated
under G(ĉ,â)j−2

and provides an estimate of p through

p̂j−1 :=
1

K

n∑
i=1

Yj−1,i. (11)

The above p̂j−1 estimates P
(
R̃ > s̃j−1 | R̃ > s̃j−2

)
conditionally on s̃j−1 and

s̃j−2. We write this latter expression P
(
R̃ > s̃j−1 | R̃ > s̃j−2

)
as a function

of the parameters obtained at iteration j , namely (ĉ, â)j.The above r.v’s
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Figure 9: Estimations of the α−quantile based on the Kullback-Leibler, L1
distance and Hellinger distance criterion

Yj−1,i stem from variables R̃j−1,i greater than s̃j−2. At step j, estimate

then P
(
R̃ > s̃j−1 | R̃ > s̃j−2

)
making use of G(ĉ,â)j . This backward estimator

writes
G(ĉ,â)j(s̃j−1)

G(ĉ,â)j(s̃j−2)
= 1−G(ĉ,â)j(s̃j−1 − s̃j−2).

The distance ∣∣(G(ĉ,â)j(s̃j−1 − s̃j−2)
)
− p̂j−1

∣∣ (12)

should be small, since both G(ĉ,â)j(s̃j−1− s̃j−2) and p̂j−1 should approximate
p.

Consider the distance between quantiles∣∣∣(s̃j−1 − s̃j−2)−G−1
(ĉ,â)j

(1− p̂j−1)
∣∣∣ . (13)

An estimate (ĉ, â)j can be proposed as the minimizer of the above ex-
pression for (s̃j−1 − s̃j−2) for all j. This backward estimation provides co-
herence with respect to the unknown initial distribution G(cT ,aT ). Would
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we have started with a good guess (ĉ, â) = (cT , aT ) then the successive
(ĉ, â)j, s̃j−1 etc would make (13) small, since s̃j−1 (resp. s̃j−2) would estimate

the p−conditional quantile of P
(
.| R̃ > s̃j−2

)
(resp. P

(
.| R̃ > s̃j−3

)
).

It remains to argue on the set of plausible values where the quantity in
(13) should be minimized.

We suggest to consider a confidence region for the parameter (cT , aT ) .
With p̂j defined in (11) and γ ∈ (0, 1) define the γ−confidence region for p
by

Iγ =

[
p̂j − z1−γ/2

√
p̂j(1− p̂j)
K − 1

; p̂j + z1−γ/2

√
p̂j(1− p̂j)
K − 1

]
where zτ is the τ−quantile of the standard normal distribution. Define

Sj =
{

(c, a) :
(
1−G(c,a)(s̃j − s̃j−1)

)
∈ Iγ

}
.

Therefore Sj is a plausible set for (ĉT , âT ).
We summarize this discussion:
At iteration j, the estimator of (cT , aT ) is a solution of the minimization

problem

min
(c,a)∈Sj

∣∣∣(s̃j−1 − s̃j−2)−G−1
(c,a+cs̃j−2)(1− p̂j−1)

∣∣∣ .
The optimization method used is the Safip algorithm (Biret and Bronia-
towski, 2016 [3]) As seen hereunder, this heuristics provides good perfor-
mance.

4.2 Simulation based numerical results

This procedure has been applied in three cases. A case considered as reference
is (cT , aT ) = (1.5, 1.5); secondly the case when (cT , aT ) = (0.8, 1.5) describes
a light tail with respect to the reference. Thirdly, a case (cT , aT ) = (1.5, 3)
defines a distribution with same tail index as the reference, but with a larger
dispersion index.

Table 6 shows that the estimation of q̃1−α deteriorates as the tail of the
distribution gets heavier; also the procedure underestimates q̃1−α.

Despite these drawbacks, we observe an improvement with respect to the
simple Maximum Likelihood estimation; this is even more clear, when the
tail of the distribution is heavy. Also, in contrast with the ML estimation,
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Parameters Relative error on s̃α

Mean Std

c = 0.8, a0 = 1.5 and s̃α = 469.103 -0.222 0.554

c = 1.5, a0 = 1.5 and s̃α = 31621.777 -0.504 0.720

c = 1.5, a0 = 3 and s̃α = 63243.550 0.310 0.590

Table 6: Mean and std of relative errors on the (1 − α)−quantile of GPD
calculated through 400 replicas of procedure 4.1.

the sensitivity with respect to the number K of replications at each of the
iterations plays in favor of this new method: As K decreases, the gain with
respect to Maximum Likelihood estimation increases notably, see Figure 11.

4.3 Performance of the sequential estimation

As stated in chapter 2, there is to our knowledge no method dealing with
similar question available in the literature. Therefore we compare the re-
sults of our method, based on observed exceedances over thresholds, with
the results that could be obtained by classical extreme quantiles estimation
methods assuming we have complete data at our disposal; those may be seen
as benchmarks for an upper bound of the performance of our method.

4.3.1 Estimation of an extreme quantile based on complete data,
de Valk’s estimator

In order to provide an upper bound for the performance of the estimator,
we make use of the estimator proposed by De Valk and Cai (2016). This
work aims at the estimation of a quantile of order pn ∈ [n−τ1 ;n−τ2 ], with
τ2 > τ1 > 1 , where n is the sample size. This question is in accordance
with the industrial context which motivated the present paper. De Valk’s
proposal is a modified Hill estimator adapted to log-Weibull tailed models.
De Valk’s estimator is consistent, asymptotically normally distributed, but
is biased for finite sample size.We briefly recall some of the hypotheses which
set the context of de Valk’s approach.

Let X1, . . . , Xn be n iid r.v’s with distribution F , and denote Xk:n the k−
order statistics. A tail regularity assumption is needed in order to estimate
a quantile with order greater than 1− 1/n.
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The red line stands stands for the real value of sα

Figure 10: Estimations of the (1 − α)−quantile of two GPD obtained by
Maximum Likelihood and by the improved Maximum Likelihood method

Denote U(t) = F−1 (1− 1/t), and let the function q be defined by

q(y) = U(ey) = F−1
(
1− e−y

)
for y > 0.
Assume that

lim
y→∞

log q(yλ)− log q(y)

g(y)
= hθ(λ) λ > 0 (14)

where g is a regularly varying function and

hθ(λ) =

{
λθ−1
θ

if θ 6= 0
log λ if θ = 0

de Valk writes condition 14 as log q ∈ ERVθ(g).

Remark : Despite its naming of log-Generalized tails, this condition also
holds for Pareto tailed distributions, as can be checked, providing θ = 1.

We now introduce de Valk’s extreme quantile estimator.
Let

ϑk,n :=
n∑
j=k

1

j
.
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The red line stands stands for the real value of sα

Figure 11: Estimations of the (1− α)−quantile of a GPD(0.8, 1.5) obtained
by Maximum Likelihood and by the improved Maximum Likelihood method
for different values of K.

29



Let q(z) be the quantile of order e−z = pn of the distribution F . The
estimator makes use of Xn−ln:n, an intermediate order statistics of X1, .., Xn,
where ln tends to infinity as n→∞ and ln /n→ 0.

de Valk’s estimator writes

q̂(z) = Xn−ln:n exp

{
g(ϑln,n)hθ

(
z

ϑln+1,n

)}
. (15)

When the support of F overlaps R− then the sample size n should be
large; see de Valk ([8]) for details.

Note that, in the case of a GPD(c, a), parameter θ is known and equal
to 1 and the normalizing function g is defined by g(x) = cx for x > 0.

4.3.2 Loss in accurracy due to binary sampling

In Table 7 we compare the performance of de Valk’s method with ours on the
model, making use of complete data in de Valk’s estimation, and of dichoto-
mous ones in our approach. Clearly de Valk’s results cannot be attained
by the present sequential method, due to the loss of information induced
by thresholding and dichotomy. Despite this, the results can be compared,
since even if the bias of the estimator clearly exceeds the corresponding bias
of de Valk’s, its dispersion is of the same order of magnitude, when handling
heavy tailed GPD models. Note also that given the binary nature of the
data considered, the average relative error is quite honorable. We can assess
that a large part of the volatility of the estimator produced by our sequential
methodology is due to the nature of the GPD model as well as to the sample
size.

5 Sequential design for the Weibull model

The main property which led to the GPD model is the stability through

threshold conditioning. However the conditional distribution of R̃ given
{
R̃ > s

}
takes a rather simple form which allows for some variation of the sequential
design method.
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Relative error on the (1− α)−quantile

Parameters On complete data On binary data

Mean Std Mean Std

c = 0.8, a0 = 1.5 and sα = 469.103 0.052 0.257 -0.222 0.554

c = 1.5, a0 = 1.5 and sα = 31621.777 0.086 0.530 -0.504 0.720

c = 1.5, a0 = 3 and sα = 63243.550 0.116 0.625 0.310 0.590

Table 7: Mean and std of the relative errors on the 1− α−quantile of GPD
on complete and binary data for samples of size n = 250 computed through
400 replicas of both estimation procedures.
Estimations on complete data are obtained with de Valk’s method; estima-
tions on binary data are provided by the sequential design.

5.1 The Weibull model

Denote R̃ ∼ W (α, β), with α, β > 0 a Weibull r.v. with scale parameter

α and shape parameter β. let G denote the distribution function of R̃ , g
its density function and G−1 its quantile function. We thus write for non
negative x

G(x) = 1− exp

(
−
(x
α

)β)
for 0 < u < 1, G−1(u) = α(− log(1− u))1/β

The conditional distribution of R̃ is a truncated Weibull distribution

for s̃2 > s̃1, P(R̃ > s̃2 | R̃ > s̃1) =
P(R̃ > s̃2)

P(R̃ > s̃1)

= exp

{(
−
(s2

α

)β
+
(s1

α

)β)}
Denote Gs2 the distribution function of R̃ given

(
R̃ > s̃2

)
.

The following result helps. For s̃2 > s̃1,
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log P(R̃ > s̃2 | R̃ > s̃1) =

[(
s̃2

s̃1

)β
− 1

]
log P(R̃ > s̃1) (16)

Assuming P(R̃ > s̃1) = p, and given s̃1 we may find s̃2 the conditional

quantile of order 1− p of the distribution of R̃ given
{
R̃ > s̃1

}
. This solves

the first iteration of the sequential estimation procedure through

log p =

[(
s̃2

s̃1

)β
− 1

]
log p

where the parameter β has to be estimated on the first run of trials.
The same type of transitions holds for the iterative procedure; indeed for

s̃j+1 > s̃j > s̃j−1

log P(R̃ > s̃j+1 | R̃ > s̃j) =

[
log P(R̃ > s̃j+1 | R̃ > s̃j−1)

log P(R̃ > s̃j | R̃ > s̃j−1)
− 1

]
log P(R̃ > s̃j | R̃ > s̃j−1)

=

[
s̃βj−1 − s̃

β
j+1

s̃βj−1 − s̃
β
j

− 1

]
log P(R̃ > s̃j | R̃ > s̃j−1)

(17)

At iteration j the thresholds s̃j and s̃j−1 are known; the threshold s̃j+1 is the

(1− p)− quantile of the conditional distribution, P(R̃ > s̃j+1 | R̃ > s̃j) = p,
hence solving

log p =

[
s̃βj−1 − s̃

β
j+1

s̃βj−1 − s̃
β
j

− 1

]
log p

where the estimate of β is updated from the data collected at iteration j.

5.2 Numerical results

Similarly as in Sections 4.2 and 4.3 we explore the performance of the se-
quential design estimation on the Weibull model. We estimate the (1− α)−
quantile of the Weibull distribution in three cases. In the first one, the scale
parameter a and the shape parameter b satisfy (a, b) = (3, 0.9). This cor-
responds to a strictly decreasing density function, with heavy tail. In the
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Relative error on the (1− α)−quantile

Parameters On binary data On complete data

Mean Std Mean Std

a0 = 3, b0 = 0.9 et sα = 25.69 0.282 0.520 0.127 0.197

a0 = 3, b0 = 1.5 et sα = 10.88 -0.260 0.490 0.084 0.122

a0 = 2, b0 = 1.5 et sα = 7.25 -0.241 0.450 0.088 0.140

Table 8: Mean and std of relative errors on the (1− α)−quantile of Weibull
distributions on complete and binary data for samples of size n = 250 com-
puted through 400 replicas.
Estimations on complete data are obtained with de Valk’s method; estima-
tions on binary data are provided by the sequential design.

second case, the distribution is skewed since (a, b) = (3, 1.5) and the third
case is (a, b) = (2, 1.5) and describes a less dispersed distribution with lighter
tail.

Table 8 shows that the performance of our procedure here again depends
on the shape of the distribution. The estimators are less accurate in case 1,
corresponding to a heavier tail. Those results are compared to the estimation
errors on complete data through de Valk’s methodology. As expected, the
loss of accuracy linked to data deterioration is similar to what was observed
under the Pareto model, although a little more important. This can be
explained by the fact that the Weibull distribution is less adapted to the
splitting structure than the GPD.

6 Model selection and misspecification

In the above sections, we considered two models whose presentation was
mainly motivated by theoretical properties. As it has already been stated
in paragraph 3.3, the modeling of R̃ by a GPD with c strictly positive is
justified by the assumption that the support of the original variable R may
be bounded by 0. However, note that the GPD model can be easily extended
to the case where c = 0. It then becomes the trivial case of the estimation
of an exponential distribution.
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Though we did exclude the exponential case while modeling the excess
probabilities of R̃ by a GPD, we still considered the Weibull model in section
5, which belongs to the max domain of attraction for c = 0. On top of being
exploitable in the splitting structure, the Weibull distribution is a classical
tool when modeling reliability issues, it thus seemed natural to propose an
adaptation of the sequential method for it.

In this section, we discuss the modeling decisions and give some hints on
how to deal with misspecification.

6.1 Model selection

The decision between the Pareto model with tail index strictly positive and
the Weibull model has been covered in the literature. There exists a variety
of tests on the domain of attraction of a distribution.

Dietrich and al. (2002 [9]) Drees and al. (2006 [12]) both propose a test
for extreme value conditions related to Cramer-von Mises tests. Let X of
distribution function G. The null hypothesis is

HO : G ∈MDA(c0).

In our case, the theoretical value for the tail index is c0 = 0. The former test
provides a testing procedure based on the tail empirical quantile function,
while the latter uses a weighted approximation of the tail empirical distri-
bution. Choulakian and Stephens (2001 [4]) proposes a goodness of fit test
in the fashion of Cramer-von Mises tests in which the unknown parameters
are replaced by maximum likelihood estimators. The test consists in two
steps: firstly the estimation of the unknown parameters, and secondly the
computation of the Cramer-von Mises W 2 or Anderson-Darling A2 statistics.
Let X1, . . . , Xn be a random sample of distribution G. The hypothesis to be
tested is: HO: The sample is coming from a GPD(c0, â). The associated test
statistics are given by:

W 2 =
n∑
i=1

(
Ĝ(x(i))−

2i− 1

2n

)2

+
1

12n
;

A2 = −n− 1

n

n∑
i=1

(2i− 1)
{

log(Ĝ(x(i))) + log(1− Ĝ(x(n+ 1− i))
}
,

where x(i) denotes the i−th order statistic of the sample. The authors provide
the corresponding tables of critical points.
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Jurekov and Picek (2001 [15]) designed a non-parametric test for deter-
mining whether a distribution G is light or heavy tailed. The null hypothesis
is defined by :

HcO : x1/c0(1−G(x)) ≤ 1 ∀x > x0 for some x0 > 0

with fixed hypothetical c0. The test procedure consists in splitting the data
set in N samples and computing the empirical distribution of the extrema of
each sample.

The evaluation of the suitability of each model for fatigue data is precar-
ious. The main difficulty here is that it is not possible to perform goodness-
of-fit type tests, since firstly, we collect the data sequentially during the pro-
cedure and do not have a sample of available observations beforehand, and
secondly, we do not observe the variable of interest R but only peaks over
chosen thresholds. The existing tests procedures are not compatible with
the reliability problem we are dealing with. On the first hand, they assume
that the variable of interest is fully observed and are mainly semi-parametric
or non-parametric tests based on order statistics. On the other hand, their
performances rely on the availability of a large volume of data. This is not
possible in the design we consider since fatigue trial are both time consuming
and extremely expensive.

Another option consists of validating the model a posteriori, once the
procedure is completed using expert advices to confirm or not the results.
For that matter, a procedure following the design presented in 3.2 is currently
being carried out. Its results should be available in a few months and will
give hints on the most relevant model.

6.2 Misspecification

In paragraph 3.3, we assumed that R̃ initially follows a GPD. In practice,
the distribution may have its excess probabilities converge towards it as the
thresholds increase but differ from a GPD. In the following, let us assume that
R̃ does not follow a GPD (of distribution function F ) but another distribution
G whose tail gets closer and closer to a GPD.

In this case, the issue is to control the distance between G and the the-
oretical GPD and to determine from which thresholding level it becomes
negligible. One way to deal with this problem is to restrict the model to a
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class of distributions that are not so distant from F : Assume that the dis-
tribution function G of the variable of interest R̃ belongs to a neighborhood
of the GPD(c, a) of distribution function F , defined by:

Vε(F ) =

{
G : sup

x
|F̄ (x)− Ḡ(x)|w(x) ≤ ε

}
, (18)

where ε ≥ 0 and w an increasing weight function such that limx→∞w(x) =∞.
Vε(F ) defines a neighborhood which does not tolerate large departures

from F in the right tail of the distribution.

Let x ≥ s, it follows from (18) a bound for the conditional probability of
x given R > s:

F̄ (x)− ε/w(x)

F̄ (s) + ε/w(s)
≤ Ḡ(x)

Ḡ(s)
≤ F̄ (x+) + ε/w(x)

F̄ (s)− ε/w(s)
. (19)

When ε = 0, the bounds of (19) match the conditional probabilities of the
theoretical Pareto distribution.

In order to control the distance between F and G, the bound above may
be rewritten in terms of relative error with respect to the Pareto distribution.
Using a Taylor expansion of the right and left bounds when ε is close to 0, it
becomes:

1− u(s, x).ε ≤
Ḡ(x)

Ḡ(s)

F̄ (x)

F̄ (s)

≤ 1 + u(x, s).ε, (20)

where

u(s, x) =

(
1 + cs

a

)1/c

w(s)
+

(
1 + cx

a

)1/c

w(x)
.

For a given ε close to 0, the relative error on the conditional probabilities
can be controlled upon s. Indeed, then the relative error is bounded by a
fixed level δ > 0 whenever:(

1 + cs
a

)1/c

w(s)
≤ δ

ε

(
1 + cx

a

)1/c

w(x)
.
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7 Perspectives, generalization of the two mod-

els

In this work, we have considered two models for R̃ that exploits the threshold-
ing operations used in the splitting method. This is a limit of this procedure
as the lack of relevant information provided by the trials do not enable a
flexible modeling of the distribution of the resistance. In the following, we
present ideas of extensions and generalizations of those models, based on
common properties of the GPD and Weibull models.

7.1 Variations around mixture forms

When the tail index is positive, the GPD is completely monotone, and
thus can be written as the Laplace transform of a probability distribution.
Thyrion (1964[21]) and Thorin (1977[20]) established that a GPD(aT , cT ),
with cT > 0, can be written as the Laplace transform of a Gamma r.v V

whose parameters are functions of aT and cT : V ∼ Γ
(

1
cT
, aT
cT

)
. Denote v

the density of V ,

∀x ≥ 0, Ḡ(x) =

∫ ∞
0

exp(−xy)v(y)dy

where v(y) =
(aT/cT )1/c

Γ(1/cT )
y1/cT−1 exp

(
−aTy
cT

)
.

(21)

It follows that the conditional survival function of R̃, Ḡsj , is given by:

P(R̃ > s̃j+1 | R̃j > s̃j) = Ḡs̃j(s̃j+1 − s̃j)

=

∫ ∞
0

exp {−(s̃j+1 − s̃j)y} vj(y)dy,

where Vj is a r.v of distribution Γ

(
1

cj
,
aj
cj

)
.

with cj = cT and aj = aj−1 + cT (s̃j − s̃j−1).

Expression (21) gives room to an extension of the Pareto model. Indeed,

we could consider distributions of R̃ that share the same mixture form with
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a mixing variable W that possesses some common characteristics with the
Gamma distributed r.v. V.

Similarly, the Weibull distribution W (α, β) can also be written as the
Laplace transform of a stable law of density g whenever β ≤ 1. Indeed, it
holds from Feller 1971[14]) (p. 450, Theorem 1) that:

∀x ≥ 0, exp
{
−xβ

}
=

∫ ∞
0

exp(−xy)g(y)dy (22)

where g is the density of an infinitely divisible probability distribution.
It follows, for sj < sj+1

P(R̃ > s̃j+1 | R̃j > s̃j) =
exp

{
−(s̃j+1/α)β

}
exp {−(s̃j/α)β}

=

∫∞
0

exp {(−(s̃j+1/α)y} g(y)dy∫∞
0

exp {−(s̃j/α)y} g(y)dy
=

∫∞
0

exp {−(s̃j+1/α)y} g(y)dy

K(sj)

=
1

K(sj)

∫ ∞
0

exp {−s̃j+1u} gα(u))du

with u = y/α and gα(u) = αg(αu)

(23)

Thus an alternative modeling of R̃ could consist in any distribution that
can be written as a Laplace transform of a stable law of density wα,β defined
on R+ and parametrized by (α, β), that complies to the following condition:

For any s > 0, the distribution function of the conditional distribution of R̃
given R̃ > s can be written as the Laplace transform of w

(α,s)
α,β (.) where

x > s,w
(α,s)
α,β (x) =

αwα,β(αx)

K(s)
,

where K(.) is defined in (23).

7.2 Variation around the GPD

Another approach, inspired by Naveau et al. (2016[17]), consists in modifying

the model so that the distribution of R̃ tends to a GPD as x tends to infinity
and it takes a more flexible form near 0.
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R̃ is generated through G−1
(cT ,aT )(U) with U ∼ U [0, 1]. Let us consider now

a deformation of the uniform variable V = L−1(U) defined on [0, 1], and the
transform W of the GPD: W−1(U) = G−1

(cT ,aT )(L
−1(U)).

The survival function of the GPD being completely monotone, we can
choose W so that the distribution of R̃ keeps this property.

Proposition 3. If φ : [0,∞[→ R is completely monotone and let ψ be a
positive function, such that its derivative is completely monotone, then φ(ψ)
est completely monotone.

The transformation of the GPD has cumulative distribution functionW =
L(G(cT , aT )) and survival function W̄ = L̄(G(cT , aT )). G(cT , aT ) is a Berstein
function, thus W̄ is completely monotone if L̄ is also.

7.2.1 Examples of admissible functions:

(1) Exponential form :

L(0) = 0

L(x) =
1− exp(−λxα)

1− exp(−λ)
avec 0 ≤ α ≤ 1 et λ > 0

L(1) = 1

The obtained transformation is: ∀x > 0,

W̄(λ,cT ,aT )(x) = L̄(G(x)) =
exp

(
−λ
[
1− (1 + cT

aT
)−1/cT

]
α
)
− exp(−λ)

1− exp(−λ)

with W̄(λ,cT ,aT )(x) completely monotone.

(2) Logarithmic form:

L(0) = 0

L(x) =
log(x+ 1)

log 2

(
or more generally

log(αx+ 1)

log 2
, α > 0

)
L(1) = 1
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and ∀x > 0,

W̄(cT ,aT )(x) = 1−
log
(

2− (1 + cT
aT

)−1/cT

)
log 2

(3) Root form:

L(0) = 0

L(x) =

√
x+ 1− 1√

2− 1

L(1) = 1

and

W̄(cT ,aT )x) = 1−

√
2− (1 + cT x

aT
)−1/cT − 1

√
2

(4) Fraction form:

L(0) = 0

L(x) =
(α + 1)x

x+ α
, α > 0

L(1) = 1

and

W̄(α,cT ,aT )(x) = 1−
(α + 1)

(
1− (1 + cT x

aT
)−1/c

)
1− (1 + cT x

aT
)−1/cT + α

The shapes of the above transformations of the GPD are shown in Figure
12.

However those transformations do not conserve the stability through
thresholding of the Pareto distribution. Thus, their implementation does
not give stable results. Still they give some insight on a simple general-
ization of the proposed models usable under additional information on the
variable of interest.
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Figure 12: Survival functions associated with transformations of the
GPD(0.8, 1.5)
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8 Conclusion

The splitting induced procedure presented in this article proposes an innova-
tive experimental plan to estimate an extreme quantile. Its development has
been motivated by on the one hand major industrial stakes, and on the other
hand the lack of relevance of existing methodologies. The main difficulty
in this setting is the nature of the information at hand, since the variable
of interest is latent, therefore only peaks over thresholds may be observed.
Indeed, this study is directly driven from an application in material fatigue
strength: when performing a fatigue trial, the strength of the specimen obvi-
ously can not be observed; only the indicator of whether or not the strength
was greater than the tested level is available.

Among the methodologies dealing with such a framework, none is adapted
to the estimation of extreme quantiles. We therefore proposed a plan based
on splitting methods in order to decompose the initial problem into less com-
plex ones. The splitting formula introduces a formal decomposition which
has been adapted into a practical sampling strategy targeting progressively
the tail of the distribution of interest.

The structure of the splitting equation has motivated the parametric hy-
pothesis on the distribution of the variable of interest. Two models exploiting
a stability property have been presented: one assuming a Generalized Pareto
Distribution and the other a Weibull distribution.

The associated estimation procedure has been designed to use the iter-
ative and stable structure of the model by combining a classical maximum
likelihood criterion with a consistency criterion on the sequentially estimated
quantiles. The quality of the estimates obtained through this procedure have
been evaluated numerically. Though constrained by the quantity and quality
of information, those results can still be compared to what would be obtained
ideally if the variable of interest was observed.

On a practical note, while the GPD is the most adapted to the splitting
structure, the Weibull distribution has the benefit of being particularly suit-
able for reliability issues. The experimental campaign launched to validate
the method will contribute to select a model.
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