SMAD: A tool for automatically annotating the smile intensity along a video record

Stéphane Rauzy and Mary Amoyal

Laboratoire Parole et Langage CNRS & Aix Marseille Université, France

stephane.rauzy@univ-amu.fr, mary.amoyal@univ-amu.fr

Analysis of smiles in conversational corpus

Smile considered as an "interactive facial gesture" (Bavelas and Gerwing, 2007)

- Convey some information during the collaborative process (e.g. the co-construction of Common Ground during the interaction)
- Require a smile representation more subtle than presence versus absence of smile, e.g. the 5 levels Smiling Intensity Scale of Gironzetti et al. (2016)

Manual annotation of smile is a time consuming task : 1 hour of manual annotation for 1 minute of video

Any automatic tool reducing the annotation time is welcome!

The Smiling Intensity Scale (SIS, Gironzetti et al., 2016)

Neutral facial expression (S0):

No smile, no flexing of the zygomaticus (no AU12) $\,$

Closed mouth smile (S1):

Flexing of the zygomaticus (AU12), may show flexing of the orbicularis oculi (AU6 or AU7).

Open mouth smile (S2):

Showing upper teeth (AU25), plus AU12, AU6 or AU7.

Wide open mouth smile (S3): Showing lower and upper teeth (AU25 and AU26, plus AU12, AU6 or AU7.

Laughing smile (S4):

Jaw dropped (AU25 and AU26 or AU27), plus AU12, AU6 or AU7.

The OpenFace toolkit

OpenFace (Baltrušaitis et al., 2018) is a state-of-the-art open source software coming from the field of Computer Vision and Machine Learning.

From a video record, OpenFace performs head tracking, facial landmark detection, head pose estimation, facial action unit recognition and eye-gaze estimation.

- Input: A video record
- Output for each video frame:
 - Facial landmark positions
 - Head pose angles
 - Intensities of the facial Action Units (AUs)

Figure: Example of a frame capture of the OpenFace processed video.

10TH HRC 2020, Rauzy&Amoyal e-poster SMAD: Automatic annotation of smiles on the SIS scale

AU OpenFace measurements vs manual annotations

Figure: An example of the temporal correlation of the zygomaticus AU12 intensity measured by OpenFace (the red curve) with the manually annotated smiles on the SIS system (blue curve).

Building up the automatic annotation engine

A "small" training dataset with SIS manual annotations and AU measurements (1300 labeled intervals from S0 to S4).

- A 4 steps HMM-like process:
 - Find time intervals with S0 label vs group S1S2S3S4 label
 - Among the remaining group, find intervals S1 vs S2S3S4
 - Iterate until step 4 which split the intervals in S3 or S4
- The label prediction at time t depends on the AU measurements and of the previous label at time t-1
- Each AU intensity contributes differently to each step (see table of coefficients below)

Name	Step 1	Step 2	Step 3	Step 4	
AU06	-	0.45	0.67	0.62	
AU07	0.26	-	0.15	0.21	
AU12	0.64	0.22	-	0.17	
AU25	0.10	0.33	0.18	-	
	1				4.3.5.4.3

10TH HRC 2020, Rauzy&Amoyal e-poster SMAD: Automatic annotation of smiles on the SIS scale

The smiles automatic annotation engine SMAD

Ouput of SMAD: A sequence of adjusted time intervals labeled from S0 to S4 following the SIS system.

Figure: Example of SMAD output formated for the ELAN software.

イロト イポト イヨト イヨト

We performed two kinds of evaluation:

• Using the 1 hour manually annotated corpus and the standard metrics (confusion matrix, precision, recall, Cohen kappa, ...).

The overall accuracy is of 68%. Classes S0 and S4 obtain very good scores, the distinction between classes S1, S2 and S3 is more fuzzy.

- Evaluation of the time saving by comparing:
 - The time spent for manually correcting the labels and interval time boundaries of the automatic SMAD ouput
 - The time for manually annotate the data without pretreatment

A gain of a factor 10 in annotation time (6 hours to correct 1 hour of video as compared to 60 hours of annotation without pretreatment)

A D D A D D A D D A D D A

- The methodology (manual correction of the SMAD automatic smile output) has been applied successfully to PACO (Amoyal et al., 2020), a 5 hours corpus of conversational data built up for analyzing the impact of common ground in spontaneous face-to-face interaction
- SMAD is an open source and collaborative project, so feel free to contribute! The SMAD scripts and documentation are available at the github url:

```
https://github.com/srauzy/HMAD
```

- 同下 - 三下 - 三下 -