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aUniversité Paris-Est,Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR
8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée, France

Abstract

The dynamic behaviour of composites containing long soft fibers of elliptic cross

section is studied in the frequency range where the material behaves as a meta-

material. The results of homogenization theory for composites containing soft

inclusions are recalled, showing the conditions that lead to a frequency depen-

dent dynamic density coming from the inner resonance of soft inclusions. The

dynamic density is expressed from the resonance frequencies and participation

factors of the inner inclusions obtained by solving a localization problem. The

solution to this problem is obtained for a composite containing long fibers of

elliptic cross section by using an expansion into Mathieu functions. The set of

resonance frequencies and participation factors can be split into different sub-

sets corresponding to the different symmetries of localization problems related

to different directions of the macroscopic acceleration. All results are found to

be consistent with the extreme cases of aspect ratios corresponding to stratified

media (plane inclusions) and circular fibers.
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1. Introduction

Numerous works were performed during the last decades on metamateri-

als, firstly in the field of electromagnetism and more recently in the field of

acoustics. This field of research can be traced back to 1968 Veselago’s paper

(Veselago, 1968) on electromagnetism, as explained in Shamonina & Solymar5

(2007). For acoustic materials, the main aspect of the behaviour of metama-

terials is the occurrence of bandgaps around given frequencies, similarly to the

case of phononic crystals. So, an experimental evidence for acoustic band gaps

in two-dimensional composites with fibers was obtained by Vasseur et al. (1998)

in such phononic crystals. From a fundamental point of view, it appears that10

interesting properties of acoustic metamaterials come from resonance, either due

to the collective behaviour of inclusions or to the presence of local resonators

(Milton, 2007; Milton & Willis, 2007). This last case corresponds to the oc-

currence of inner resonance. The resonators can be either homogeneous inclu-

sions, composite inclusions, beams or plates. Numerous papers in this field were15

published that either study the properties of metamaterials from a theoretical

approach (Huang & Sun, 2011, 2012; Lee et al., 2009; Baz, 2010; Bigoni et al.,

2013) or display experimentally the properties of such materials (Liu et al., 2000;

Sheng et al., 2003; Naify et al., 2012; Yao et al., 2008; Park et al., 2012). An

important aspect of these works is that the dynamic behaviour exhibits an “ef-20

fective dynamic mass density”, that becomes negative at certain frequencies, as

predicted or observed by several authors (Auriault & Bonnet, 1985; Auriault,

1994; Yao et al., 2008; Liu et al., 2000; Yang et al., 2008).

In the following, the study will be restricted to linearly elastic composites

made of homogeneous inclusions. Even so, the amount of literature devoted to25

this field is impressive. Obtaining the dynamic effective properties of elastic

composites has been effected early by extending the homogenization methods

used for elastostatics, as in the paper of Willis (1981). The development of

this approach led to a model often cited as “Willis model” characterized by

constitutive equations allowing one to compute the macroscopic stress tensor30
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and momentum from macroscopic deformation and velocity (Milton & Willis,

2007). These constitutive equations are non-local in space in most situations,

being usually built using wave-vectors, except for the limit case of vanishing

wavenumbers, as in Willis (2009). The original “Willis model” was built in the

context of statistical homogenization. However, this model was carefully revis-35

ited in the context of periodic media by Nassar et al. (2015). Other homog-

enization approaches are developed, like the one of Sridhar et al. (2018), that

departs from classical approaches where the macroscopic variables are volume

averages of local ones.

An usual method to study elastodynamic problems in the case of periodic me-40

dia is to provide their solution for waves propagating through a periodic compos-

ite by decomposition into Bloch waves (Krokhin et al., 2003; Nemat-Nasser et al.,

2011; Norris et al., 2012). This method allows one to study the collective be-

haviour of the periodic system while inner resonance can come from inner, in-

dependent, resonators (Zhou et al., 2012). The solutions depend essentially on45

the ratios of physical properties of the components of the composite (elastic

parameters and mass densities). Therefore, a strong physical insight can be

gained using an asymptotic series expansion of the dynamic solution for dif-

ferent assumptions on the ratios between physical parameters: elastic coeffi-

cients and mass densities. First results showing by such a method the occur-50

rence of frequency bandgaps in elastic composites were obtained in early works

(Auriault & Bonnet, 1985; Auriault, 1994) but, with the development of the

ideas on metamaterials, new results have been obtained more recently with the

use of asymptotic expansions in dynamic elasticity (Parnell & Abrahams, 2006;

Avila et al., 2005; Babych et al., 2008; Auriault & Boutin, 2012; Soubestre & Boutin,55

2012; Craster et al., 2010; Rallu et al., 2018). It is worthwhile noting that, com-

pared with results coming from other publications in this field, an important

aspect does appear in the papers written by Auriault and al. that are at the

basis of our work (Auriault & Bonnet, 1985; Auriault, 1994; Auriault & Boutin,

2012): it is indeed shown in these papers that different scalings of physical prop-60

erties lead to different macroscopic behaviours. As a consequence, it is of prime
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importance to characterize the scaling properties leading to a specific dynamic

behaviour. As it will be seen in section 2, the homogenization method shows

that a two phase matrix composite with a large contrast of elastic properties but

comparable densities enters in the field of materials characterized by inner res-65

onance which constitute a large category of metamaterials (Boutin et al., 2018;

Zhou et al., 2012). In these composite materials, the inner resonance can be ob-

tained by inner resonators made of homogeneous or composite inclusions. These

materials display a dynamic density, that is characterized mainly by the reso-

nance frequencies of the inclusions. Obviously, the behaviour that is obtained70

from asymptotic homogenization should be consistent with more sophisticated

models. So, Nassar et al. (2016) have shown that several models coming from

asymptotic solutions can be recovered from the full “Willis model”. In a recent

work (Comi & Marigo, 2020), the method of homogenization described there-

after in section 2 has been used in parallel with the computation of Bloch waves75

to predict the frequency bandgaps and it has been shown that the estimation of

bandgaps is equivalent when using both methods under the assumption of large

contrast.

The computation of dynamic density and bandgaps in the case of large con-

trast was effected in Bonnet & Monchiet (2017) in the case of circular fibers80

and spherical inclusions. In this case, the dynamic density is either isotropic

(spherical inclusions) or transversally isotropic (circular fibers), the components

of the dynamic density being identical in this last case for directions of accel-

eration in the plane orthogonal to fibers. However, it is certainly of interest to

find materials that are fully orthotropic, because in this case the bandgaps can85

be all different between themselves for directions of motion along different axes.

The aim of the paper is therefore to study a fiber matrix composite with a large

contrast of elastic properties characterized by an elliptic cross section. In this

case, the mass density of the composite displays a fully orthotropic behaviour.

In section 2, the results of the asymptotic expansion method in the case90

of materials with a large contrast of elastic properties containing homogeneous

inclusions are briefly recalled to point explicitly the set of physical parameters
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leading to inner resonance.

In section 3, the inner motion of composite inclusions made of cylindrical

fibers of elliptic section is studied for an acceleration parallel to the axis of the95

fibers. The eigenfrequencies and dynamic mass densities of these resonators are

obtained by solving a plane elastodynamics problem within an elliptic domain

with the use of Mathieu functions. The case of motion orthogonal to the axis of

fibers is studied in section 4. Section 5 is devoted to the limit case of circular and

very flat fibers. Numerical results are presented in section 6 and one physical100

interest of the composite under study , its use as acoustic polarizer, is described

in section 7 , before the conclusion in section 8.

2. Dynamic behaviour of elastic composites from homogenization by

asymptotic expansion: basic results and discussion

Different methods can be used in order to study the effective properties of105

heterogeneous materials, i.e. properties which are equivalent at the macroscopic

scale to those of the heterogeneous material. This is usually possible when

the microscopic scale (scale of heterogeneities in the microstructure) is small

compared with the macroscopic scale, leading to a small “scaling factor”. In

this case, the problem of periodic heterogeneous materials has been thoroughly110

studied by using asymptotic methods based on assumptions related to the order

of magnitude of the different physical parameters defining the microstructure.

Then, the solution of the problem at the microscopic scale can be obtained as a

series expansion in powers of the “scaling factor”. In this section, the solution by

this method of the elastodynamic problem for the two-phase case (homogeneous115

inclusions) is recalled from Auriault & Bonnet (1985) and Auriault & Boutin

(2012).

2.1. The local equations

Let us consider a periodic composite made of two elastic constituents, each

one being comprised within a part Ωs (volume |Ωs|) of the periodic (microscopic)
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cell Ω, s designing the species. In the following, only matrix inclusion composites

will be studied and therefore s = m for the matrix and s = i for inclusions.

These materials comply with the equations for the conservation of momentum

which write for an harmonic motion at radial frequency ω:

div(σ(s)) + ρ(s)ω
2u(s) = 0, (1)

where ρ(s) is the mass density, u(s) is the displacement field and σ(s) the local

stress tensor complying with the linearly elastic constitutive equations:120

σij(s) = aijkl(s)εkl(s). (2)

σij(s) and aijkl(s) are the components of the stress, and elasticity tensors

within the constituents, while εkl(s) are the components of the linear strain

tensor derived from the local displacement field u(s).

All fields, except the displacement field, are assumed Ω-periodic, i.e. periodic

over the unit cell Ω. Additionally, the continuity of the displacements and125

tractions at the interface Γ between constituents is considered:

[σ.N]Γ(M) = 0, (3)

and

[u]Γ(M) = 0, (4)

for any point M over Γ, where N denotes the normal to Γ at M and where

the brackets denote the jump at the interface between the constituents:

[f ]Γ(M) = f(m) − f(i). (5)

2.2. Asymptotic expansion and scaling assumptions

As it will be shown thereafter, the inner resonance appears when the physical130

parameters comply with a suitable scaling. It is customary to study this scaling

by using the scale ratio given by:

ε =
l

L
, (6)
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where l is a characteristic size of the periodic cell and L is a characteristic size

of the macroscopic domain, with ε << 1. The main idea of the asymptotic

expansion (Bensoussan et al., 1978) is to consider any field v as expressed by a

function of two position variables x and y. The second one y defines practically

the position of the cell within the macroscopic domain and the first one x is

“amplified” by the factor 1
ε in order to study what happens within the (small)

periodic cell. Then, the asymptotic expansion of any field v is performed along

powers of ε by considering that x and y are “independent” variables, giving:

v = v(0)(x,y) + εv(1)(x,y) + ε2v(2)(x,y) + ... (7)

At this stage, it is necessary to introduce a scaling between physical param-

eters in order to reach an interesting situation, from a physical point of view.

In fact, the interesting situation, i.e. the one leading to inner resonance, is ob-135

tained when the inclusions are very soft compared with the matrix. Indeed, it

has been proved in Auriault & Bonnet (1985) that the interesting situation is

obtained when the elasticity tensors of both phases comply with:

||a(i)||/||a(m)|| = O(ε2), (8)

where ||a(s)|| is a norm of elasticity tensor a(s). For the mass densities,

they are assumed of the same order of magnitude. The composite must com-140

ply simultaneously with these two conditions (on elasticity tensors and mass

densities) to lead to inner resonance without collective resonance. As shown

by Auriault & Boutin (2012), this scaling is consistent for studying the case of

wavelengths in the matrix that are large compared to the period size, so the

order of magnitude of the wavelength Λcan be Λ = O(L).145

2.3. Effective behaviour

Under these conditions, by comparing the different terms of the asymptotic

expansion (Auriault & Bonnet, 1985; Auriault & Boutin, 2012), the following

results have been obtained:
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• The displacement within the matrix is given by:

u(m) = u
(0)
(m)(y) + εu

(1)
(m)(x,y), (9)

where the local (x-dependent) displacement u
(1)
(m) is given by:150

u
(1)
(m)(x,y) = ξ(x) : E(y) + û

(1)
(m)(y). (10)

The last term is a contribution to the macroscopic displacement at the lo-

cation of the cell (function only on the “slow”position variable y) and the

macroscopic deformation E = εy(u
(0)
(m)) is obtained by differentiation of

u
(0)
(m) with respect to the macroscopic position variable y, denoted by the

lower index. ξ(x) is the static “localization tensor” (Milton, 2002) which155

produces the local displacement when submitting, in the static case, the

solid (containing voids in place of inclusions) to the macroscopic deforma-

tion E. As a consequence, the effective elasticity tensor aeff is constant

and given by the one of a composite material containing holes in place of

soft inclusions. This is obviously consistent with the assumption on the160

ratio of elastic properties.

• The displacement within the inclusion is given by:

u
(0)
(i) (x,y) = u

(0)
(m)(y) +w(x,y), (11)

where the relative displacement w(x,y) is the solution of:

divx(a(i) : εx(w)) + ρ(i)ω
2w

= −ρ(i)ω2u
(0)
(m)(y),

(12)

with the boundary condition w = 0 over the interface Γ between matrix

and inclusion (no relative displacement at the interface). In this equation,

the divergence and εx correspond now to the differentiation using the space165

variable x. The right hand side of the equation corresponds to inertia

forces coming from the acceleration of the matrix around the inclusion,
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that does not depend on the local variable, due to the large value of the

wavelength within the (stiff) matrix.

The solution w of this problem is obviously linear in u
(0)
(m) and can be170

written:

w(x,y, ω) = α(x, ω).u
(0)
(m)(y), (13)

where α is a second order frequency dependent localization tensor. It is

worthwhile noticing that this localization tensor is solution of a boundary

value problem limited to the inclusion instead of concerning the overall

periodic cell as in classical static homogenization.175

• The effective dynamic equation is finally given by:

div(aeff : E) = −ω2 1

|Ω|
∫
Ω

ρu(0)dΩ (14)

= −ω2 1

|Ω|
[
|Ωm|ρ(m)u

(0)
(m) + ρ(i)

∫
Ωi

u
(0)
(i) dΩ

]

= −ω2 1

|Ω|
[
|Ωm|ρ(m)u

(0)
(m) + ρ(i)

∫
Ωi

[u
(0)
(m) +w]dΩ

]
.

Using the expression of w = α.u
(0)
(m) allows us to factorize u

(0)
(m), leading

to

div(aeff : E) = −ω2ρeff (ω).u
(0)
(m), (15)

where ρeff (ω) is a second order tensor given by

ρeff (ω) =< ρ > δ + n(i)ρ(i) < α >(i) . (16)

In equation (15), the first term appears as the divergence of Σ = aeff .E,

i.e the divergence of the macroscopic stress tensor. The dynamic term

on the right hand side of (14) shows that −ω2ρeff (ω).u
(0)
(m) corresponds

to the time derivative of the overall momentum. In addition, it will be180

shown thereafter that, at low frequencies, the factor of the local accelera-

tion −u(0)ω2 becomes the overall density. As a consequence, it is natural
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to consider this factor in the overall dynamic equation, ρeff (ω), as a gen-

eralization of the density of the composite, i.e. a frequency dependent

“dynamic density”.185

In equation (16), δ is the second order identity tensor, n(s) is the volume

concentration of phase s, < · > denotes the volume average over the

periodic cell and < · >(s) denotes the volume average over domain Ωs.

As shown above, an important result is that the dynamic density can be

obtained by studying the dynamic response of the inclusion when submitted

to the acceleration of the matrix −ω2u
(0)
(m) with fixed boundary conditions (in

the reference frame moving with the matrix). A first consequence is that

the motion within the inclusion depends only on the (nearly constant) motion

within the matrix around the inclusion: it means that there is no collective be-

haviour of the inclusions and no need to use the computational methods related

to collective behaviour, like Bloch waves or multipole expansion. In addition,

it can be shown that using Bloch waves expansion or the procedure described

above from suitable scaling assumptions predict the same band-gaps within

the material (Comi & Marigo, 2020) in the case of large contrast. The ob-

tained overall behaviour corresponds to the physical notion of inner resonance

(or “locally resonant” materials), this kind of resonance being obtained often

by using inner resonators acting as “spring-mass” systems, like composite in-

clusions (inner mass within a soft elastic coating acting as a spring), which

constitute many metamaterials(Auriault & Boutin, 2012; Bigoni et al., 2013;

Huang & Sun, 2011; Liu et al., 2000). Therefore, the important result at the

basis of our study is that inner resonators can be also obtained using homoge-

neous inclusions instead of composite ones, such materials being obviously easier

to build. There is in addition a strong similarity between the inner resonance

obtained by composite inclusions and homogeneous inclusions: the elasticity

tensor of the coating of composite inclusions and the one of the soft homoge-

neous inclusion must be of the same order compared to the one of the matrix

in order to obtain inner resonance (Auriault & Boutin, 2012), and similarly for
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the densities of the inclusions. Due to this local resonance and to the nature of

the dynamic localization problem, the behaviour of a set of independent inclu-

sions can be obtained by studying separately each inclusion and combining the

contribution of all these separate inclusions. Considering a set of N inclusions

Ωq, q = 1..N , the dynamic density is obtained by:

ρeff (ω) =< ρ > δ +
∑
q

nqρq < α >q . (17)

where all tensors < α >q are obtained independently using the method defined

above.190

This result if of prime importance, because it allows one to predict the

dynamic density of a set of separate inclusions within the periodic cell. By

extension, this gives also a means to provide the dynamic density in the case

of a random distribution of inclusions. Another important aspect of the overall

elastodynamic behaviour is that the constitutive equations are local in space con-195

trarily to the most general elastodynamic behaviour that is nonlocal in space,

this being often characterized by constitutive equations where wave vectors en-

ter explicitly. In comparison, due to the frequency dependence, the dynamic

equation described above is local in space but non local in time: the inverse

Fourier transform of the term containing the dynamic density is expressed by200

using a convolution.

A consequence of the boundary value problem obtained above is that the

solution of (12) can be obtained knowing the dynamic modes of the inclusion

with such boundary conditions. These dynamic modes up are solutions of:

div(a(i) : εx(u
p)) + ρ(i)ω

2
pu

p = 0, (18)

for radial eigenfrequencies ωp, and the localization tensor α is an explicit205

function of eigenmodes given by:

α =
∑
p

ω2

ω2
p − ω2

up⊗ < up >(i)

< ||up||2 >(i)
. (19)
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It follows from (19) that the dynamic density tends to infinity and becomes

negative at each eigenfrequency of the inclusion. It can be seen also that α tends

to zero as the frequency tends to zero. As a consequence, the dynamic density

tends to the static density at low frequencies. The effective dynamic density is210

a function of the volume average of α over the inclusion domain Ωi, denoted by

h =< α >(i). An important case corresponds to inclusions being symmetrical

with respect to three orthogonal planes. In this case, tensor h is diagonal in a

reference frame containing the symmetry planes. Its three diagonal components

can be computed by applying successively the acceleration γ of the matrix along215

the three axes,i.e. γ = ej , j = 1..3.

Finally, the dynamic density is diagonal and its components are given by :

ρjj(eff) =< ρ > +n(i)ρ(i)hjj , (20)

where

hjj(ω) =
∑
p

Kp
jj

ω2

ω2
p − ω2

. (21)

For eigenmode p, the participation factor Kp
jj is given by:

Kp
jj =

(< up >(i) .ej)
2

< ||up||2 >(i)
. (22)

In these expressions, there is no sum over index j. Finally, the eigenfre-

quencies and eigenmodes must be obtained for each direction of ej by solving

the “localization problem”. Next, the averages are computed to produce the

participation factors.220

2.4. Remarks

2.4.1. Limit to the infinite set of eigenfrequencies

The solution of the boundary value problem has been obtained by adding in

(20) the contributions coming from the set of all eigenfrequencies. Considering

the boundary value problem related to the dynamic equation within a bounded225

domain, it is known that this set is theoretically infinite. However, it must be

noticed that the main assumption at the basis of this study is that the frequency
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range of the motion must lead to large wavelengths within the matrix. This is

no more valid for high frequencies, as soon as the wavelength related to waves

within the matrix becomes of the same order as the size of inclusions. The230

eigenfrequencies of interest are only those complying with the condition of large

wavelength within the matrix. From a physical point of view, it means that

the spectrum of frequencies contained within the excitation signal must comply

with the condition of large wavelengths, i.e. to be below a high cut-off frequency

ωco. As a consequence it is only useful to obtain the eigenfrequencies below ωco,235

higher resonance frequencies being not concerned.

2.4.2. Fixed boundary condition and substructuring

From the previous developments, it appears that the motion inside the soft

inclusions is obtained from the solution of a boundary value problem with fixed

boundaries. This can be linked to the work of Sridhar et al. (2016) that is240

interested in the production of an enriched macroscopic description of the dy-

namics of the composite. The authors use the well known “Craig-Bampton”

substructuring method (Craig & Bampton, 1968) that describes the dynamic

displacement within inclusions by its projection onto the inner modes with a

fixed boundary, as in the present solution.245

2.4.3. The question of infinite effective density at resonance

There is finally a questionable point in the expression of the dynamic density:

this one tends to infinity at eigenfrequencies, which is not physically acceptable.

In fact, it is possible to show that taking into account a small damping within

the inclusions leads to finite values of the dynamic density (Auriault & Boutin,250

2012), without affecting significantly the resonance frequencies and the stop

bands. In addition, it may be noticed that the displacement inside the inclusion

tends also to infinite, simultaneously with the strain and stress fields. It means

that the assumption of negligible stresses within the inclusions due to the large

stiffness contrast is no more valid near the peak of resonance (when ||ε(i)|| ≈255

ε−2||ε(m)||). This can explain why a non constant effective elasticity tensor was
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observed for stratified media in Willis (2009) for a ratio of elastic constants of

0.05 and not in a similar computation in Auriault & Bonnet (1985). However,

this appears for very large inner displacements and strains and does not affect

the determination of the frequencies bandgaps, that is the most important result.260

3. Solution of the localization problem for a longitudinal motion

This localization problem has been solved previously in the case of cylindrical

homogeneous inclusions of circular cross section and in the case of spherical

homogeneous inclusions (Bonnet & Monchiet, 2017). We will now consider the

case of cylindrical inclusions with an elliptic cross section, whose radii are a and265

b as shown in Fig.1

x1

x2 x3

2a

2b

Figure 1: Geometry of the composite: fibers with elliptic cross section characterized by radii

a and b.

Different solutions can be used to obtain the solution of the problem within

an elliptic domain. The solution in polar coordinates can be used for elliptic

14



shapes being not too far from a circle (Bazzali, 2014; Ancey et al., 2013), but

the use of elliptic coordinates is known to provide better solutions for small270

values of aspect ratios, due to the orthogonality of the harmonic solutions in

elliptic coordinates (this was suggested by Hackman (1984) for ellipsoidal inclu-

sions, but we have checked it again for elliptical inclusions during this work). In

addition, it is known that the elementary solutions in elliptical coordinates, i.e.

Mathieu functions, are orthogonal and it will be seen thereafter that this leads275

to the decoupling of the motion along Mathieu functions of different orders for

a longitudinal motion, which is particularly useful. This solution in elliptical

coordinates will be used in the following. As seen previously, this localization

problem is solved in a reference frame moving with the matrix, the local variable

being the relative displacement inside the inclusion with respect to the matrix280

and the excitation being provided by inertia forces f induced by the accelera-

tion of the matrix around the inclusion, given by f = ρω2u
(0)
(m). From a practical

point of view, the symmetry of the problem induces that the tensor h is diago-

nal in a referential frame oriented along the symmetry axes of the fibers. Each

component of this tensor can be obtained by considering successively the accel-285

eration of the matrix around the inclusion (leading to inertia forces) directed

along the natural axes of the system. There are therefore three partial localiza-

tion problems. The axes are defined by the unit vectors e1, e2, e3. e3 is directed

along the direction of the fibers and e1, e2 are directed along the axes of the

elliptic cross section as it can be seen in Fig. 1. The main axis of the ellipse is290

oriented along e1. For the acceleration along e3, the motion is antiplane, while

a plane motion occurs in the two other cases.

Due to the nature of the chosen accelerations and to the geometry of the

fibers, it can be shown that plane and antiplane motions do not depend on x3. In

the following, the three partial localization problems will be solved successively,295

this section being devoted to the longitudinal motion. From now on, it is obvious

that the subscripts x and y are no more useful in the differential operators

describing the localization problems and will be suppressed. Concerning the

elastic parameters, the material of the fibers will be considered as isotropic and
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homogeneous, characterized by the Lamé constants λ, μ.300

3.1. Solution of the antiplane problem

The antiplane motion is governed by the equation

μΔw3 + ρω2w3 + f3 = 0. (23)

The form of this equation is the one of Helmholtz equation. Its solution is

given in classical books for elliptic coordinates.

3.1.1. Elliptic coordinates

The elliptic coordinates are related to cartesian coordinates x1, x2 by the305

following relations (Morse & Feshbach, 1953):

x1 = c cosh ξ cos η

x2 = c sinh ξ sin η,

where 0 ≤ ξ <∞ and 0 ≤ η < 2π, ξ is the radial coordinate (0 ≤ ξ <∞) and η

is the angular coordinate (0 ≤ η < 2π), 2c being the focal length of the ellipse.

The axes of the ellipse are c cosh ξ and c sinh ξ. The ratio of these axes is the

aspect ratio f = tanh ξ.310

The case of the circle is obtained asymptotically for c = 0 and ξ = ∞ with

ceξ

2 → R, leading to x1 = R cos η and x2 = R sin η. The metric tensor in the

curvilinear frame is given by g11 = g22 = c2J2 with

J2 =
1

2
(cosh 2ξ − cos 2η).

The jacobian J0 of the transformation from (ξ, η) to (x1, x2) is J0 = c2J2. All

points of an elliptic section can be obtained for η between 0 and 2π and ξ315

between 0 and ξe, this last value being related to points on the boundary of the

ellipse.
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3.1.2. Solution of Helmholtz equation using elliptic coordinates

The Helmholtz operator in elliptic coordinates is given (without body forces)

by (Morse & Feshbach, 1953):

Δw3 +
ω2

v2s
w3 = Δw3 + k2w3 =

1

c2J2

(
∂2w3

∂ξ2
+
∂2w3

∂η2

)
+
ω2

v2s
u3 = 0,

where vs is the velocity of shear waves, with v2s = μ/ρ, and ks = ω/vs is the

wave number.320

The solution of this equation is found by separation of variables. The part

related to the angular coordinate is solution of the historical Mathieu equation,

used primarily to study the vibration of membranes (Mathieu, 1868):

Y ′′(η) + [Λ− 2qs cos(2η)]Y (η) = 0, (24)

where Λ is a separation constant and qs = 1
4c

2k2s . Similarly, the part re-

lated to the radial coordinate is solution of the modified Mathieu equation325

(Abramowitz & Stegun, 1972):

Z ′′(ξ)− [Λ− 2qs cosh(2ξ)]Z(ξ) = 0. (25)

The solutions of the equation in Y (η) are periodic only for discrete values

of Λ(qs), known as “characteristic values”. Knowing these characteristic val-

ues, the general periodic solution of Mathieu equation can be expanded along

trigonometric functions as:

w3 =

∞∑
j=0

Djcej(η, qs)Mcj(ξ, qs) + Ejsej(η, qs)Msj(ξ, qs), (26)

where cej (resp.sej) are obtained from a series of cosinus (resp. sinus) and

Mcj,Msj are solutions of the modified Mathieu equation, named usually radial

Mathieu functions. They are described below. Several notations and definitions

can be used for these functions. Our notation refers to the definition of radial330

Mathieu functions introduced by Meixner & Schäfke (1954), recalled thereafter.

As it will be seen thereafter, it is of prime importance to distinguish even and

odd values of j, because they correspond to distinct symmetries of the solution.

Finally, the different Mathieu functions found in the literature are given by:
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ce2m(η, qs) =

∞∑
r=0

A
(2m)
2r (qs) cos 2rη

se2m+2(η, qs) =

∞∑
r=0

B
(2m+2)
2r (qs) sin 2rη

ce2m+1(η, qs) =

∞∑
r=0

A
(2m+1)
2r+1 (qs) cos(2r + 1)η

se2m+1(η, qs) =

∞∑
r=0

B
(2m+1)
2r+1 (qs) sin(2r + 1)η.

These functions have a period π for even indices and a period 2π for odd in-335

dices. The Fourier coefficients, for example A
(2m)
2r (qs), are related to specific

characteristic values. Indeed, introducing the Fourier expansion of ce2m(η, qs)

into equation (24), one obtains an infinite homogeneous system of linear equa-

tions. It can be expressed as an eigenvalue problem characterized by an infinite

matrix(see Appendix A) : the eigenvalues of this matrix constitute the set of340

separation constants, denoted by Λ = a2m and the components of the related

eigenvectors are the Fourier coefficients A
(2m)
2r . Similarly, the separation con-

stants related to B
(2m+2)
2r (resp. A

(2m+1)
2r+1 , B

(2m+1)
2r+1 ) are denoted by Λ = b2m

(resp. Λ = a2m+1, b2m+1). In the following, these Fourier coefficients will be

considered as the terms of a square matrix [A] (or [B]) and indexed by r and345

m. Obtaining the characteristic values and the related Fourier coefficients has

been the subject of numerous works. The numerical method used to obtain this

set of coefficients is described in Appendix A, where the related references are

recalled.

Different kinds of radial functions can be associated to these angular func-

tions. However, it is recognized today that the best expressions for the radial

functions are the ones using the series of products of Bessel functions intro-

duced by Meixner & Schäfke (1954). As an example, the radial function associ-

ated with ce2m and corresponding to the kind of boundary conditions described
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previously is given by:

Mc2m(ξ) =
1

εsA
(2m)
2s

∞∑
k=0

(−1)k+mA
(2m)
2k [Jk−s(u1)Jk+s(u2) + Jk+s(u1)Jk−s(u2)] ,

(27)

where u1 =
√
qse

−ξ, u2 =
√
qse

ξ, εs = 2 when s = 0 and εs = 1 otherwise.350

s is a “free” parameter. This parameter is often chosen arbitrarily as s = 0

or s = 1, depending on the type of radial function, but this choice is far from

being optimal. A first reason is that A
(2m)
2s (qs) is outside the diagonal as soon

as m and s are different. However, it is easy to see that for small values of qs

(i.e. ellipses being almost a circle) the matrix [A] is almost diagonal. So, this355

procedure leads to a division by A
(2m)
2s (qs) that is very small . From another

point of view, it is of prime importance to check the procedure near the limit

case of circular cylinders, where the solution is a simple expression of Bessel

functions. A second reason is that this choice leads to very bad solutions when

m is increasing, as observed by Bibby & Peterson (2013). These authors have360

shown that the best way to reduce the computational error for large values of

m is to choose the value of s leading to the highest value of |A(2m)
2s (qs)|, for a

given value of m. This choice, named “tuning method” by these authors, has

been adopted in the following. More details are given in Appendix A.

3.2. Eigenfrequencies for a longitudinal motion365

The eigenfrequencies are obtained by writing that the displacement is null

on the boundary of the inclusion, leading to:

w3(η, ξe) =

∞∑
p=0

Dpce2p(η, qs)Mc2p(ξe, qs) = 0.

At this stage, it may be recalled that the Mathieu functions are orthogonal,

complying with the following relations:

∫ 2π

0

ce2pce2qdη = πδpq, (28)

where δpq is the Kronecker symbol. Multiplying the expansion of w3 by ce2m

and integrating over η, one finds that πMc2m(ξe, q) = 0. This shows that the
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values of q leading to the eigenfrequencies are the zeros of Mc2m(ξe, q). For370

each value of m, this equation has a set of solutions which are denoted by q
(l)
s(m),

where l represents the indices of eigenfrequencies related to a given value of m.

These equations are solved, for a fixed aspect ratio, on a given frequency

range, by splitting this frequency range into small intervals and looking for the

intervals leading to a sign change ofMc2m(ξe, qs). Next, the zero of this function375

over each found interval is obtained by using classical numerical methods.

3.3. Participation factors

The participation factors are given from a given eigenfunction up by:

Kp
jj =

(
〈up〉(i) .ej

)
〈
‖up‖2

〉
(i)

2

=
I2j

S.Mj
,

where S is the section of the fiber, given by S = π.a.b, ej is a unit vector

along the direction of the macroscopic acceleration and 〈·〉(i) is the average over380

the plane of the inclusion. The integrals over the section are:

Ij =

∫
Ωi

up.ejdS

Mj =

∫
Ωi

||up||2dS.

For the case under consideration, u is parallel with e3 and these integrals

are obtained by:

I
(l)
3(m) =

∫
S

ce2m(η, q
(l)
s(m))Mc2m(ξ, q

(l)
s(m))J0dξdη

M
(l)
3(m) =

∫
S

[
ce2m(η, q

(l)
s(m))Mc2m(ξ, q

(l)
s(m))

]2
J0dξdη.

3.3.1. Computation of I3

Taking into account the expression of the Jacobian, I
(l)
3(m) can be written as385
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I
(l)
3(m) =

c2

2
(Tη1(m)Uξ2(m) − Tη2(m)Uξ1(m))

=
c2

2
I∗,

where

Tη1(m) =

∫ 2π

0

ce2mdη

Tη2(m) =

∫ 2π

0

ce2m cos 2ηdη

Uξ1(m) =

∫ ξe

0

Mc2mdξ

Uξ2(m) =

∫ ξe

0

Mc2m cosh 2ξdξ,

all functions being computed for qs = q
(l)
s(m). The angular Mathieu functions are

expanded along a trigonometric series:

ce2m(η, q) =

∞∑
r=0

A
(2m)
2r (qs) cos 2rη.

As a consequence, all terms of the expansion of the first two functions Tη1(m) and

Tη2(m) can be obtained in a closed form. The related expressions are given in

appendix C. For Uξ1(m) and Uξ2(m), they are computed by numerical integration

over the segment [0, ξe].390

3.3.2. Computation of M3

Similarly, M3 can be obtained by

M
(l)
3(m) =

c2

2
(Vη1Wξ2 − Vη2Wξ1)

=
c2

2
M∗,

with
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Vη1 =

∫ 2π

0

(ce2m)2dη

Vη2 =

∫ 2π

0

(ce2m)2 cos 2ηdη

Wξ1 =

∫ ξe

0

(Mc2m)2dξ

Wξ2 =

∫ ξe

0

(Mc2m)2 cosh 2ξdξ.

As previously, the angular Mathieu function can be expanded into a trigono-

metric series, leading to the values given also in appendix C. The radial integrals395

are obtained numerically.

4. Solution for a plane motion

4.1. Solution for a macroscopic acceleration along Ox1

The displacement field is solution of

μ(
∂2u1
∂x21

+
∂2u1
∂x22

) + (λ+ μ)

[
∂2u1
∂x21

+
∂2u2
∂x1∂x2

]
+ ρω2(u1 + U) = 0

μ(
∂2u2
∂x21

+
∂2u2
∂x22

) + (λ+ μ)

[
∂2u2
∂x22

+
∂2u1
∂x1∂x2

]
+ ρω2(u2) = 0,

where−ω2Ue1 is the macroscopic acceleration. The structure of the problem

leads to the following symmetries: u1 is even in x1 and x2 and u2 is odd in x1

and x2. The displacement can be obtained from the potentials ϕ and Ψ by:

u = gradϕ+curlΨ,

where Ψ = ψ.e3.400

The previous symmetries are obtained as soon as ϕ is odd in x1 and even in

x2 and the reverse for ψ. Using elliptic coordinates, this can be achieved if

ϕ ∼
∑

cos(2m+ 1)η

ψ ∼
∑

sin(2m+ 1)η.
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Thus, the potentials are given by

ϕ =
∑

Emce2m+1(η, qp)Mc2m+1(ξ, qp)

ψ =
∑

Fmse2m+1(η, qs)Ms2m+1(ξ, qs),

where Em and Fm are constant. qp and qs are given by:

qp =
1

4
c2
ω2

v2p
= k2cqs

qs =
1

4
c2
ω2

v2s
,

where the ratio of celerities is denoted by kc =
vs
vp

=
√

1−2ν
2(1−ν) .405

From these potentials, the displacement field is obtained by (Eringen & Suhubi,

1978):

uξ =
1

cJ
(
∂ϕ

∂ξ
+
∂ψ

∂η
)

uη =
1

cJ
(
∂ϕ

∂η
− ∂ψ

∂ξ
),

Finally, the displacement field is given by:

(cJ)uξ =
∑

mEmce2m+1(η, qp)Ce
′
2m+1(ξ, qp)

+
∑

m Fmse
′
2m+1(η, qs)Se2m+1(ξ, qs)

(cJ)uη =
∑

mEmce
′
2m+1(η, qp)Ce2m+1(ξ, qp)

−∑
m Fmse2m+1(η, qs)Se

′
2m+1(ξ, qs), (29)

where F ′ is the derivative of F with respect to ξ (or η).

As seen in the previous section, the angular Mathieu functions are known

through their expansion in Fourier series. Introducing this Fourier expansion

into the displacement field leads to:

(aJ)uξ =

∞∑
r=0

cos(2r + 1)ηHr(ξ, ω), (30)
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where Hr is given by:410

Hr(ξ, ω) =
∑

mEm

[
A

(2m+1)
2r+1 (qp)

]
Ce′2m+1(ξ, qp)

+
∑

m Fm

[
B

(2m+1)
2r+1 (qs)(2r + 1)

]
Se2m+1(ξ, qs). (31)

Similarly,

(aJ)uη =

∞∑
t=0

sin(2t+ 1)ηKt(ξ, ω),

with

Kt(ξ, ω) = −∑
mEm

[
A

(2m+1)
2t+1 (qp)(2t+ 1)

]
Ce2m+1(ξ, qp)

−∑
m Fm

[
B

(2m+1)
2t+1 (qs)

]
Se′2m+1(ξ, qs). (32)

Finally, functions H and K are obtained by the matrix product⎡
⎣ H

K

⎤
⎦ =

⎡
⎣ M11 M12

M21 M22

⎤
⎦
⎡
⎣ E

F

⎤
⎦ = [M(ω, ξ)]

⎡
⎣ E

F

⎤
⎦ ,

where the submatrices can be obtained from the Fourier coefficients of Mathieu

functions and from the radial Mathieu functions by the following relations:

M11
rm = A

(2m+1)
2r+1 (qp)Ce

′
2m+1(ξ, qp)

M12
rm = B

(2m+1)
2r+1 (qs)(2r + 1)Se2m+1(ξ, qs)

M21
tm = −A(2m+1)

2t+1 (qp)(2t+ 1)Ce2m+1(ξ, qp)

M22
tm = −B(2m+1)

2t+1 (qs)Se
′
2m+1(ξ, qs).

Compared with the antiplane case, it can be seen that the solution couples415

now all Mathieu functions and their derivatives.

4.1.1. Computation of the eigenfrequencies

The eigenfrequencies are obtained for a non null displacement vanishing at

the boundary. It leads to the search of frequencies ωl being such that [M ] is sin-

gular, or det([M(ωl, ξe)]) = 0. Compared with the case of the previous section,420

it can be seen that it is no more possible to distinguish the eigenfrequencies

related to separate values of m. Now, each eigenfrequency involves all values of

m simultaneously.
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4.1.2. Computation of the participation factors

The participation factors are obtained from the integrals over the elliptic425

section of the components of the displacement field by:

I
(l)
2 =

∫
Ωi

u(l).e1dS

=

∫
Ωi

(u
(l)
ξ eξ + u(l)η eη).e1dS

=

∫
Ωi

(u
(l)
ξ eξ.e1 + u(l)η eη.e1)dS

M
(l)
2 =

∫
Ωi

∥∥∥u(l)
∥∥∥2

dS.

It involves the projections of the local unit vectors on e1 given by:

eξ.e1 =
sinh ξ cos η

J

eη.e1 = −cosh ξ sin η

J
.

Taking into account the expansion of the components of the displacement

fields leads to the expression of the participation factors:

K
(l)
22 =

[∫ ξe
0 [H0(ξ, ωl) sinh ξdξ −K0(ξ, ωl) cosh ξ] dξ

]2
sinh ξe cosh ξe

∫ ξe
0

(
∑

rH
2
r (ξ, ωl) +

∑
tK

2
t (ξ, ωl)) dξ

.

4.2. Solution for an acceleration along Ox2430

The steps are similar to the previous case. Obviously, the symmetries are

changed, ϕ being now even in x1 and odd in x2 and the reverse for ψ, leading

to:

ψ =
∑

Fmce2m+1(η, qs)Ce2m+1(ξ, qs)

ϕ =
∑

Emse2m+1(η, qp)Se2m+1(ξ, qp).

It leads to the components of the displacement field:

(aJ)uξ =
∑∞

r=0 sin(2r + 1)ηNr(ξ, ω)

(aJ)uη =
∑∞

r=0 cos(2r + 1)ηQr(ξ, ω), (33)
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where Nr and Qr are:435

Nr(ξ, ω) =
∑

mEmB
(2m+1)
2r+1 (qp)Se

′
2m+1(ξ, qp)

−∑
m FmA

(2m+1)
2r+1 (qs).(2r + 1)Ce2m+1(ξ, qs)

Qr(ξ, ω) =
∑

mEmB
(2m+1)
2r+1 (qp)(2r + 1)Se2m+1(ξ, qp)

−∑
m FmA

(2m+1)
2r+1 (qs)Ce

′
2m+1(ξ, qs). (34)

Finally, the Nr (resp. Qr) are the components of [N ] (resp. [Q]) given by

⎡
⎣ N

Q

⎤
⎦ =

⎡
⎣ T 11 T 12

T 21 T 22

⎤
⎦
⎡
⎣ E

F

⎤
⎦ , (35)

where the components of matrix [T ] are obtained from

T 11
rm = B

(2m+1)
2r+1 (qp)Se

′
2m+1(ξ, qp)

T 12
rm = −A(2m+1)

2r+1 (qs)(2r + 1)Ce2m+1(ξ, qs)

T 21
rm = B

(2m+1)
2r+1 (qp)(2r + 1)Se2m+1(ξ, qp)

T 22
rm = −A(2m+1)

2r+1 (qs)Ce
′
2m+1(ξ, qs).

As before, the eigenfrequencies ωl cancel the determinant of [T (ωl, ξe)].

The participation factors are obtained similarly and given by:

K
(l)
33 =

[∫ ξe
0

[N0(ξ, ωl) cosh ξ +Q0(ξ, ωl) sinh ξ] dξ
]2

sinh ξe cosh ξe
∑∞

r=0

∫ ξe
0

[N2
r (ξ, ωl) +Q2

r(ξ, ωl)] dξ
.

5. The extremal cases440

The main geometrical parameter of the problem related to elliptical inclu-

sions is the aspect ratio corresponding to the ratio between the radii of the

elliptic section. From a physical point of view, changing the aspect ratio from 1

to small values corresponds to the path from circular fibers to very flat fibers,

i.e. a stratified medium made of a stiff matrix containing very large parallel soft445

plates of finite thickness. So, it is important for the interpretation of the nu-

merical results to know the eigenvalues and participation factors in these limit

cases. The results related to these limit cases are recalled below.
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5.1. Fibers of circular cross section

The eigenfrequencies corresponding to fibers of circular cross section of radius450

R were obtained in Bonnet & Monchiet (2017). The non-dimensional eigenfre-

quencies obtained in this paper defined by ω∗ = ωR/vs, are the zeros of Bessel

function J0 for a longitudinal motion and the solutions of an equation involving

Bessel functions of orders 0 and 1 for a transversal motion.

The eigenfrequencies related to Bessel functions of higher order were dis-455

carded in Bonnet & Monchiet (2017) because they lead to null participation

factors in the case of the circle. However, it will be seen thereafter that the

limit cases of eigenfrequencies for almost circular elliptic fibers contain also

eigenfrequencies that can be related to Bessel functions of higher orders.

Finally these limit cases are the solutions of J2m = 0 for a longitudinal460

macroscopic acceleration and the solutions of

−kcω∗J2m(kcω
∗)J2m(ω∗) + kc(2m+ 1)J2m(kcω

∗)J2m+1(ω
∗)

+(2m+ 1)J2m(ω∗)J2m+1(kcω
∗) = 0, (36)

for a transversal macroscopic acceleration. Participation factors are null for

m �= 0 and given by explicit expressions in Bonnet & Monchiet (2017) form = 0.

5.2. Very flat fibers

In this case, the section of the fibers corresponds to an ellipse of minor radius465

b and a very large major radius. It can be assimilated to the zone comprised

between two parallel planes distant from 2b. The non-dimensional eigenfrequen-

cies are again defined by ω∗ = ωb/vs. For a motion parallel to the mean plane

they are equal to ω∗
n = π/2 + n.π and the participation factors are given by

Kn = 2/ω∗2.470

For a motion perpendicular to the mean plane of the inclusions, the eigen-

frequencies are given by ω∗
n = (π/2 + nπ)/kc and the participation factors by

Kn = 2k2c/ω
∗2.
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6. Numerical results

6.1. Longitudinal motion475

For the longitudinal motion, the solution does not involve compressional

waves. As a consequence, the eigenfrequencies are functions of the shear mod-

ulus μ and of the radii a and b of the fibers. All results can be expressed by

looking for the non-dimensional frequency ω∗ = bω/vs as a function of the as-

pect ratio f = b/a. The length introduced into the non dimensional frequency is480

the smaller radius of the ellipse. The aspect ratios related to decreasing values

of f correspond to ellipses of the same smaller radius and increasing values of

the larger radius.

As explained in section 3, the modes related to Mathieu functions of different

orders are decoupled. So, for each value of order m, one can find a set of485

eigenfrequencies which cancel the value of the radial Mathieu functions at the

surface of the fiber.
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Figure 2: Resonance frequencies for a longitudinal motion as a function of the aspect ratio:

modes related to the first three eigenfrequencies for Mathieu functions of first three orders.

Fig. 2 presents the first three eigenfrequencies of the first three values of

m. It has been checked that, for the limit case of circular cross sections (f =

1), the results recover the values of eigenfrequencies for m = 1 obtained in490

Bonnet & Monchiet (2017). The values for m > 1, f = 1 recover precisely the
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ones obtained for circular fibers and higher indices of Bessel functions given in

the previous section. The limit case of small aspect ratio is also of interest. It

can be seen that the first eigenfrequencies for m = 0, 1, 2 tend to π/2 while the

second (resp. third) eigenfrequencies tend to 3π/2 (resp.5π/2), these limit values495

corresponding to the case of very flat fibers recalled in the previous section.

All eigenfrequencies increase with f , due to the fact that the section of the

ellipse decreases with f when b is constant.

The participation factors that have a significant contribution related to the

eigenfrequencies of Fig. 2 are reported in Fig. 3. It can be seen for almost500

circular sections that the participation factors are null for m > 0 and are not

null form = 0, which corresponds to the results obtained in Bonnet & Monchiet

(2017). However, the curves show that the participation factors increase for

smaller aspect ratios, the contribution for the first eigenfrequencies related to

m > 0 becoming significative. For small aspect ratios, it is no more possible to505

compare the participation factors with those of the plane inclusions. Indeed, the

first participation factor for the plane inclusions must now be compared with

the sum of all first participation factors for all values of m.
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Figure 3: Participation factors for a longitudinal motion as a function of the aspect ratio:

modes related to the 9 cases of Fig. 2 which have a significant contribution.
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6.2. Transversal motion

In the case of a transversal motion, compressional waves and shear waves are510

simultaneously involved in the solution. As a consequence, the results depend

not only on the non dimensional frequency, but also on the Poisson’s ratio.

6.2.1. Effect of the aspect ratio
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Figure 4: Resonance frequencies for a transversal motion along x1 as a function of the aspect

ratio for ν = 0.25: six first modes .

The results have been obtained in the case of an average value of the Pois-

son’s ratio equal to 0.25. The first six eigenfrequencies related to the motion515

along x1 are reported in Fig. 4. Contrarily to the case of the longitudinal

motion, the Mathieu functions of any order contribute to the motion. So, it

is no more possible to separate the different modes as previously. The values

related to f near 1 tend to the 6 first eigenfrequencies for the transversal mo-

tion of the circular cylinder. For small values of f , five of the non dimensional520

eigenfrequencies tend to π/2, while the fourth eigenfrequency tends to 3π/2, re-

covering again the first eigenfrequencies for the plane inclusions. It can be seen

that the curve related to the fourth eigenfrequency crosses the one correspond-

ing to eigenfrequencies 5 and 6. This induces a complication in the numerical

computation. Indeed, for the case of longitudinal motion, the computation of525
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Figure 5: Resonance frequencies for a transversal motion along x2 as a function of the aspect

ratio for ν = 0.25: six first modes .

all eigenfrequencies are decoupled, while in the case of transversal motion, all

results are obtained from a fully coupled system. So, the curves were obtained

by starting from the eigenfrequency for the circle. Next the eigenfrequencies for

decreasing values of f are obtained by looking for decreasing frequencies with

the use of a prolongation algorithm for f < 0.95.530

The first six eigenfrequencies for the motion along x2 are reported in Fig. 5.

The values for f = 1 are obviously identical to the ones obtained in the previous

case. The feature of the results is significantly different from the previous case

for smaller aspect ratios. The first five eigenfrequencies are close to π
2
vp
vs
: this

corresponds to the first eigenfrequency for the plane inclusions. However, the535

sixth eigenfrequency is close to the value ω∗ = π instead of the second eigen-

frequency for the stratified medium. It can be interpreted as follows: as seen

in section 3, in this case, the component u1 is odd in x1 and x2. This can be

achieved if the variation of u1 along x2 is such that u1 ∼ sin(ωx2/cs). The

condition at the surface of the plane inclusion is achieved by ω∗ = ωb/cs = π,540

which can explain the limit value obtained for the sixth eigenfrequency when f

is close to 0.
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Figure 6: Participation factors for a transversal motion along x1 as a function of the aspect

ratio for ν = 0.25: six first modes .
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Figure 7: Participation factors for a transversal motion along x2 as a function of the aspect

ratio for ν = 0.25: six first modes.

The participation factors for the motion along x1 are given in Fig. 6. It

has been checked that the values obtained for f = 1 are the ones obtained for

the circular cylinder. It can be seen that the first participation factor is largely545

dominant, except for small aspect ratios where this factor decreases significantly.

In addition, the fourth and third curves have opposite trends for f around 0.35.

This corresponds to the point where the third and fourth eigenfrequencies are
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almost the same on Fig. 4. In this case, the eigenfrequencies are no more

distinct: there is only one eigenfrequency whose participation factor is the sum550

of the values obtained on the two curves. The crossings of curve 4 with curves

5 and 6 lead to similar perturbations of the general trend.

The participation factors for the motion along x2 are reported in Fig. 7.

The participation factor of the first mode is now decreasing drastically and is

close to 0 for small aspect ratios, while the second participation factor reaches555

almost 0.3 around f = 0.25 and becomes the major contribution to the motion.

6.2.2. Effect of the Poisson’s ratio

The eigenfrequencies have been computed for a mean value of aspect ratio

f = 0.5 and increasing values of the Poisson’s ratio up to 0.48. The results
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Figure 8: Resonance frequencies for a transversal motion along x1 as a function of the Poisson’s

ratio for an aspect ratio f = 0.5: six first modes. The squares at ν = 0.5 are the values for

the strictly incompressible case.

corresponding to the motion along x1 are reported in Fig. 8. All resonance560

frequencies increase with ν; the increase is moderate up to 0.4 and becomes

stronger when ν is close to 0.5 (which corresponds to an incompressible material)

more specifically for the first eigenfrequency. The points reported at ν = 0.5

have been obtained by solving the case of a strictly incompressible material,

because the process described in section 4 can no more be used when ν is close565
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to 0.5, the ratio of the celerities becoming infinite. The solution is similar to the

compressible case, except that the dynamic term in the dynamic equation for the

potential ϕ tends to 0. As a consequence, ϕ is the solution of Laplace equation

and is therefore a static, harmonic potential. ψ is still the solution of scalar

Helmholtz equation. The results are compatible with those obtained in the570

compressible case taking into account that the third and fourth eigenfrequencies

for the incompressible case are almost the same. In the case of the motion along
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Figure 9: Resonance frequencies for a transversal motion along x2 as a function of the Poisson’s

ratio for an aspect ratio f = 0.5: six first modes. The squares are obtained for a strictly

incompressible material.

x2, reported in Fig. 9, similar trends are observed, but the steepest part of

the curve is near ν = 0.47, the curve being almost horizontal at ν = 0.5, the

values being nearly the same as for the incompressible case in the last part of575

the curve.

The participation factors for the case of motion along x1 given in Fig. 10

show that the Poisson’s ratio affects sligthly the participation factors up to

ν = 0.3. The curve for the first mode decreases to zero between 0.4 and 0.5 while

the curves for higher modes show a maximum for Poisson’s ratios increasing with580

the order of the mode and tend to zero for ν = 0.5, recovering a null participation

factor for the case of incompressibility, similarly to the case of circular fibers
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Figure 10: Participation factors for a transversal motion along x1 as a function of the Poisson’s

ratio for an aspect ratio f = 0.5: six first modes .
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Figure 11: Participation factors for a transversal motion along x2 as a function of the Poisson’s

ratio for an aspect ratio f = 0.5: six first modes .

(Bonnet & Monchiet, 2017). For the case of the motion along x2, the decrease

of the participation factor of the first mode appears for lower values of ν, the

participation factor of the second mode being more important for ν > 0.3. All585

modes greater than 2 display a peak at values of Poisson’s ratios smaller than

in the case of the motion along x1.
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Figure 12: Ratios of first resonance frequencies for different directions as a function of the

aspect ratio for ν = 0.25 .
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Figure 13: Ratio of resonance frequencies for different directions as a function of the Poisson’s

ratio for f = 0.5.

6.3. Anisotropy effect

One important aspect of composites with elliptic fibers is that the dynamic

density is fully orthotropic, its values being all different along the axes of symme-590

try. This anisotropy is characterized also by the fact that the material displays

stop frequency bands that are different along these axes. From another point of

view, it has been found that the participation factor of the first mode dominates
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for a large range of Poisson’s ratios and aspect ratios. So, denoting by fxi the

first eigenfrequency along xi, we have reported in Fig. 12 the ratio of first res-595

onance frequencies along different directions fx2/fx1 and fx3/fx1 as functions

of the aspect ratio, for ν = 0.25. For f = 1, corresponding to circular fibers,

the material is transversally isotropic, while for lower aspect ratios, the mate-

rial is fully orthotropic, with a ratio of resonance frequencies varying between

0.7 and 1.6. When the aspect ratio tends to 0, the material tends to be again600

transversally isotropic in the plane x1x3.

The effect of Poisson’s ratio is reported on Fig. 13 for an average value of

aspect ratio f = 0.5. It can be seen that the ratio of resonance frequencies is

affected also by the Poisson’s ratio, varying now from 0.6 to 1.3.

6.4. Example of dynamic density605

A composite containing fibers of plastified PVC (Ei = 112MPa, νi = 0.38, ρi =

1500kg/m3) within an aluminium matrix (Em = 72GPa, νm = 0.34, ρm = 2500)

has been studied. The concentration of fibers is 0.5, their smaller radius is 1mm

and the aspect ratio of the sections of fibers is 0.5. Fig. 14 shows the three

components of dynamic density related to the three axes. The first frequency610

stop bands related to the three axes have been indicated by sbi, i = 1..3. It

can be seen that the stop band for the component along x2 is narrower than

the two others. This is due to the smaller value of K22 for the first resonance

frequency along x2, as it can be seen on Fig. 11. It can be seen also that the

component of dynamic density along x3 presents a second stop band within the615

studied frequency range.

7. Practical applications of the composite under study

From the previous subsection, it can be seen that the stop bands are different

along the three directions. It means that sending a plane wave through such a

composite will polarize the waves along different directions. Polarizing electro-620

magnetic waves has many applications and it is predictable that the polarization

of acoustic waves by suitable metamaterials will also be of interest.
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Figure 14: The three components of dynamic density for a composite of aluminium matrix

and PVC fibers with an aspect ratio of 0.5. The first stop band for each direction i is reported

by sbi

The most popular acoustic metamaterials, are made of composite spheres. In

this case, the dynamic density is isotropic. They act as ”spring-mass resonators”

but not as polarizers, because the stop bands are characterized by the same625

frequency ranges for all directions . It means that no wave is transmitted at these

stop bands. By comparison, fiber composites act fully as polarizers. Compared

with optical polarizers a main difference comes from the kind of polarization

that can be obtained: electromagnetic waves are all transversal ones and the

linear polarization restricts only the direction of the transverse electric field to630

be parallel to a specific axis. For acoustic waves in solids, there are transversal

(shear) waves and longitudinal (compressional) waves. So, the polarization can

affect each one of these waves.

Taking into account the results obtained from the previous sections for el-

liptic fibers, the polarizing effect of the composite for different directions of635

propagation is given in table 1. It seems more suitable to build polarizers made
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Elliptical Circular

Resonance frequencies→ f1 f2 f3 f1 = f2 f3

Propagagation along↓
x1 S2S3 PS3 PS2 S3 PS2

x2 PS3 S1S3 PS1 S3 PS1

Table 1: The polarization effect of composites made of circular or elliptic fibers for a propaga-

tion transverse to the direction of the fibers. The table provides the polarization of the waves

obtained after crossing the composite for waves whose spectral contents are within the stop

bands at f1, f2, f3. For example, PS2 means that the transmitted plane wave is characterized

by the components of displacement corresponding to a P wave and a shear wave S2 polarized

along x2.

of plates of metamaterials, the directions of propagation being perpendicular

to the axes of the fibers. Therefore, the direction of propagation has been re-

stricted to x1 and x2. For the sake of comparison, the case of circular fibers is

also reported. For elliptic fibers, it can be seen that the choice of frequency640

range allows us to turn off separately any direction of polarization, while in the

case of circular waves it is possible to turn off either one direction of polarization

or simultaneously two directions of polarization in the plane of the section of

the cylinder. The circular fibers allow us to obtain shear waves polarized along

only one direction, similarly to the case of optical polarization.645

Finally, the use of fibers with elliptical or circular cross sections are comple-

mentary in the design of acoustic polarizers.

8. Conclusion

Composites with a large contrast can be locally resonant under conditions

on elastic properties and densities specified in section 2. The dynamic density650

is a function of the resonance frequencies of the fibers and of the participation

factors related to the resonance frequencies. Composites containing fibers of el-

liptic cross sections have been studied: the dynamic density is fully orthotropic
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in this case, its components being different for different directions of motion

along the axes of symmetry of the fiber. The computation of resonance frequen-655

cies and participation factors has been effected by solving the plane dynamic

problems with the help of Mathieu functions. It needs a significant effort to

use these functions, specially for small aspect ratios. The tuning method of

Bibby & Peterson (2013) has been very helpful in this work.

The computation of resonance frequencies is relatively easy in the case of660

a motion along the direction of fibers. They are given by the zeros of radial

Mathieu functions. For transversal motions, the eigenfrequencies are obtained

from a linear system coupling all radial Mathieu functions.

The non dimensional resonance frequencies are affected by the aspect ratio

of the elliptical section and by the Poisson’s ratio. They decrease continuously665

with decreasing aspect ratio from the values related to the circular cylinder to

the ones related to very flat inclusions when the aspect ratio becomes very small.

The effect of Poisson’s ratio on resonance frequencies is moderate except at the

vicinity of ν = 0.5 corresponding to the strictly incompressible case.

The participations factors corresponding to the first eigenfrequency are the670

main ones for a large set of aspect ratios and Poisson’s ratios. However, they

becomes inferior to the ones related to the second eigenfrequency for small as-

pect ratios in the case of the motion along x2. The participation factors at

increasing orders display a maximum near ν = 0.5, but are all null for strictly

incompressible materials. It means that the participation factors present strong675

perturbations near ν = 0.5 and that the conception of such metamaterials does

not seem feasible for almost incompressible fibers.

The anisotropy of the dynamic density, characterized by the eigenfrequencies

related to different directions of motion, is moderate, the ratio of eigenfrequen-

cies varying from 0.6 to 1.6. However, it gives the ability to obtain different680

frequency bandgaps for waves polarized along different directions. Finally, our

results show that the metamaterial under study acts as a polarizer character-

ized by various polarizations of the elastic waves that complete the ones obtained

using fibers of circular cross sections.
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As a final remark, it is worthwhile mentioning that the localization prob-685

lem that has been solved in this work and in Bonnet & Monchiet (2017) (for

cylindrical or spherical inclusions) is characterized by a null displacement at the

boundary of inclusions. It provides the dynamic density in the case of large

contrast, but it can also contribute for moderate contrasts to a more sophisti-

cated elastodynamic modelling using the Craig-Bampton substructuring method690

(Craig & Bampton, 1968) as in Sridhar et al. (2016).

9. Appendix A: Computation of Mathieu functions

9.1. Separation constants and Fourier coefficients

The first step is the computation of separation constants and the associated

Fourier coefficients of angular Mathieu functions. Let us consider the case of695

Mathieu functions ce2m. The related separation constants and Fourier coeffi-

cients are solutions of the infinite system of linear equations (Bibby & Peterson,

2013) characterized by a symmetric matrix:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
√
2q 0 0 ... 0 ...

√
2q 4 q 0 ... 0 ...

0 q 16 q ... 0 ...

... ... ... ... ... ... 0 ...

... ... ... ... q (2r)2 q ...

... ... ... ... ... ... ... ...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
2A0

A2

A4

...

A2r

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= Λ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
2A0

A2

A4

...

A2r

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(37)

This relation shows that the separation constants Λ, denoted a2m for the

ones related to ce2m, are the eigenvalues of the symmetrical matrix function of700

q introduced in the lefthand side of the previous relation, while Fourier coeffi-

cients A
(2m)
2r are obtained from the components of the related eigenvectors. The

numerical computation must be effected by restricting this matrix to a finite

number N of lines and columns. Several codes have been built to effect this

computation. We used an existing free Matlab package (Cojocaru, 2008). This705

package has been modified to introduce the normalization of the eigenvectors
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described in Abramowitz & Stegun (1972), instead of the one used in the Mat-

lab package. It is obvious that the accuracy on a2m and A
(2m)
2r increases with

N , as seen thereafter.

9.2. Radial Mathieu functions710

As stressed in section 3, the best convergence when computing radial Math-

ieu functions is achieved with the expansion of these functions along products

of Bessel functions. Such an expression for Mc2m has been given in equa-

tion (27). Similar expressions are provided also for Mc2m+1,Ms2m,Ms2m+1

in (Abramowitz & Stegun, 1972). An important parameter is the value of s in715

(27). As explained in section 3, it is of prime importance to take the value

of s as the one (suggested by Bibby & Peterson (2013)) maximizing |A(2m)
2s |,

more specially when dealing with high values of q and small values of the ra-

dial elliptic coordinate ξ. This is the “tuned method” of Bibby and Peterson,

already recommended by Blanch (1946) and Buren & Boisvert (2007). Unfor-720

tunately, numerous authors are still using a fixed value of s (Gutierrez-Vega,

2008; Cojocaru, 2008). It was the case for the author of the Matlab package

cited previously. So, we added into this package the ability to compute the

radial Mathieu functions with adaptable values of s in order to use the “tuned

method”.725

It is worthwhile noticing that the insertion of the free parameter s into the

expression of radial Mathieu functions appeared early (Meixner & Schäfke, 1954;

Blanch, 1946) and is mentioned in the well known Handbook of Mathematical

functions (Abramowitz & Stegun, 1972). However, it seems that its use was

not systematically adopted, even in recent works. Finally, a recent monograph730

Bibby & Peterson (2013) shows the clear advantages to use the “tuned method”.

As it can be seen from the expressions of radial Mathieu functions, their

numerical values depend on the values of A
(2m)
2k . For moderate values of q and

ξ, a number of 24 values of k (orm) is sufficient. However, the value of q increases

significantly for small aspect ratios. So, in this case and more specifically for735

the computation of the participation factors (with an integration starting from
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ξ = 0), the computation uses up to 96 values of m and k (see Appendix B).

We have effected numerous verifications on the eigenfunctions in the case of the

longitudinal motion (equivalent to the case of membrane vibration studied in

(Troesch & Troesch, 1973; Daymond, 1955; Wu & Shivakumar, 2008)) and on740

the values of Fourier coefficients, separation constants and of the radial Mathieu

functions for which numerous tabulations are available (Bibby & Peterson, 2013;

Abramowitz & Stegun, 1972; Bickley, 1945). More details on the convergence

are given below in appendix B.

As a final remark on the computation of Mathieu functions, it can be noticed745

that several works were effected on the computation of asymptotic values of an-

gular and radial Mathieu functions for large values of q (Frenkel & Portugal,

2001; Abramowitz & Stegun, 1972). We checked that these asymptotic expres-

sions can be used for small values of m but unfortunately, they cannot be ex-

tended to the full range of values of m used in the present work, even using the750

5 terms expansion of Goldstein (Goldstein, 1927).

10. Appendix B : Results on convergence

The results depend essentially on the number of terms kept in the matrix

defined in equation (36), i.e. also the number of terms of A2m
2r . The number

of values N kept in the computation is the same for r and m. The basic com-

putation is effected with N = 24. Next, the convergence is checked by using a

second computation with N ′ = 2N = 48. The error of convergence with N = 24

is then given by:

Err0(N) = |FN ′ − FN

FN ′
|, (38)

where F is the quantity of interest, participation factor or resonance frequency.

From a general point of view, the accuracy on the results decreases with q. As

a consequence, it decreases with the aspect ratio and the value of eigenfrequency.755

However, the main source of accuracy loss is the aspect ratio. Therefore, the

accuracy is characterized at a fixed value of aspect ratio by the value of Err

corresponding to the highest value of Err0 on the different eigenfrequencies. If
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the value of Err is higher than 10−4, the value of N is multiplied by 2. The

process is iterated until convergence is reached.
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Figure 15: Error on eigenfrequencies for the longitudinal motion as a function of the aspect

ratio.

760

10.0.1. Longitudinal motion

For the longitudinal motion, Fig. 15 and 16 show the value of Err for two

values of N , N = 24, 48. It can be seen that a value of N = 24 produces values

of very high accuracy for aspect ratios higher than 0.2. However, for smaller

aspect ratios, the value of Err increases. For both kinds of results, a value of765

N = 48 leads to values of Err inferior to 10−4.

10.0.2. Transversal motion

The values of Err are shown in Fig. 17 and 18 for a transversal motion

along x1. It can be seen that similar results are obtained. Now, all results lead

to Err < 10−4 for the eigenfrequencies. On the contrary, the computation of770

participation factors needs to use a value of N = 96 to produce a satisfying
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Figure 16: Error on participation factors for the longitudinal motion as a function of the

aspect ratio.

value of Err. Similar results were obtained for the motion along x2 and are not

reported here.
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Figure 17: Error on eigenfrequencies for the transversal motion along x1
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Figure 18: Error on participation factors for the transversal motion along x1
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11. Appendix C: Explicit expressions of integrals used in the compu-

tation of participation factors775

The integrals used in the computation of I3 for the longitudinal motion are:

Tη1(m) =

∫ 2π

0

ce2mdη = 2πA
(2m)
0

Tη2(m) =

∫ 2π

0

ce2m cos 2ηdη = πA
(2m)
2

Vη1(m) =

∫ 2π

0

(ce2m)2dη = π

[
A

(2m)2
0 +

∞∑
r=0

A
(2m)2
2r

]

Vη2(m) =

∫ 2π

0

(ce2m)2 cos 2ηdη = π

[ ∞∑
r=0

A
(2m)
2r A

(2m)
2r+2 +A

(2m)
2 A

(2m)
0

]
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