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Static analysis and design of revolute joint and antiparallelogram joint: a technical report

This technical report details the derivation of the static models of two antagonistically actuated joints: revolute (R) joint and antiparallelogram (X) joint. The conditions for these joints to possess the specified wrench-feasible workspace with the prescribed stiffness are derived. Using these conditions as constraints, a strategy for the optimal design of these joints is proposed with an objective of minimizing the forces required to move them.

Organization of the report

Two antagonistically actuated joints namely, the revolute joint or the R-joint and the antiparallelogram joint, also referred to as the X-joint, are studied in this report. The analysis of the R-joint is carried out in Section 2, and the X-joint in Section 3. The organization of each of these sections are identical and are detailed in the following. Firstly, a generalized coordinate is identified to describe the configuration of the joint, and all the dependent coordinates are obtained in terms of this coordinate for further study. This is followed by static analysis of the joint, where the expression of total potential energy is derived, followed by the equation of static equilibrium and stiffness. Following this, an optimisation problem for the design of these joints is posed and solved in Section 4. Finally, the conclusion of this study is presented in Section 5.

R-joint

A schematic of the R-joint is shown in Fig. 1. It consists of two congruent isosceles triangles, one on top of another, connected by a revolute joint at point o. The joint is equipped with two identical springs (spring constant, k) on either side to impart stiffness into the system. It is actuated by two cables passing through the middle of the springs, by applying forces, F 1 and F 2 , respectively.

Additionally, a point mass M is attached to the segment p 1 p 2 at a distance d. The linear mass density (i.e., mass per unit length) of the links is given by ρ. The generalized coordinate that describes the configuration of the joint is considered to be θ r .

The dependent coordinates l 1 and l 2 are expressed as a function of θ r , for further use in the upcoming sections. The following relations can be obtained using elementary geometric principles:

l 1 = 2 h cos θ r 2 -r sin θ r 2 ; l 2 = 2 h cos θ r 2 + r sin θ r 2 . ( 1 
)
The derivatives of l 1 , l 2 w.r.t. θ r are:

dl 1 dθ r = -h sin θ r 2 + r cos θ r 2 ; dl 2 dθ r = -h sin θ r 2 + r cos θ r 2 ;

(2)

d 2 l 1 dθ 2 r = 1 2 -h cos θ r 2 + r sin θ r 2 ; d 2 l 2 dθ 2 r = - 1 2 h cos θ r 2 + r sin θ r 2 .
(3)

Limits of motion of the R-joint due to singularities

The direction of the applied forces F 1 and F 2 are not defined when l 1 = 0 and l 2 = 0, respectively. Hence, it is not possible to control the manipulator in these configurations, and consequently, they define the boundaries of the wrench-feasible workspace (when no limits are imposed on the forces applied by the tendons) of the joint. This is illustrated in Fig. 2.

Cable-driven manipulators also suffer from force-closure singularities in addition to the singularities observed in parallel manipulators. Force-closure singularities refer to the configurations where the manipulator cannot withstand an arbitrary external wrench applied on one of the links, when all the cables are in tension and locked. For the R-joint, such situations occur when the line of action of force, l 1 or l 2 passes through the point o as illustrated in Fig. 3.

However, the limits of motion are defined by only one of these singularities, depending on the ratio r h . From the Figs. 2 and 3, the following observations on the limits of motion can be made: • Case 1 (r > h): The limit of motion is formed by l i = 0, i = 1, 2, leading to:

θ r ∈ (-π -2 tan -1 r h , π -2 tan -1 r h .
• Case 2 (r < h): Occurrence of force-closure singularity limits the motion, leading to:

θ r ∈ -2 tan -1 r h , 2 tan -1 r h • Case 3 (r = h):
Limit of motion is formed by both l i = 0, i = 1, 2 and force-closure singularity simultaneously: θ r ∈ -π 2 , π 2 . The amplitude of singularity free motion is maximum in this case.

Static analysis of the R-joint

In this section, the equation of static equilibrium and stiffness of the R-joint are obtained using the potential energy approach. The expression of total potential energy of the joint is obtained as the sum of potential due to gravity (U g ), springs (U sp ), and external forces applied by the tendons (U f ), which are computed as follows:

• Gravitational potential: Setting the zero potential to be along the X axis, the potential due to gravity is obtained as follows:

U g = 2ρg r + √ r 2 + h 2 y c cos θ r + M g(d + h) cos θ r , (4) 
where

y c = h(2r+ √ r 2 +h 2 ) 2(r+ √ r 2 +h 2 )
is the distance of the center of mass (COM) of the moving triangle from o. Substituting the expression of y c in Eq. ( 4), results in:

U g = ρg 2r + √ r 2 + h 2 cos θ r + M g(d + h) cos θ r .
(5)

• Elastic potential due to springs: Assuming zero free-lengths for the springs, the spring potential may be computed as follows:

U sp = 1 2 k l 2 1 + l 2 2 = 2k r 2 + h 2 -r 2 -h 2 cos θ r . ( 6 
)
• Work potential due to tendons/cables: Potential due to actuation forces are computed as:

U f = F 1 l 1 + F 2 l 2 = 2F 1 h cos θ r 2 -r sin θ r 2 + 2F 2 h cos θ r 2 + r sin θ r 2 . ( 7 
)
Hence, the total potential energy of the R-joint is obtained to be:

U r =U g + U sp + U f , ( 8 
) U r =ρgh 2r + √ r 2 + h 2 cos θ r + M g(d + h) cos θ r + 2k r 2 + h 2 -r 2 -h 2 cos θ r +2F 1 h cos θ r 2 -r sin θ r 2 + 2F 2 h cos θ r 2 + r sin θ r 2 . ( 9 
)
Differentiation of the total potential (U r ) w.r.t. θ r leads to the equation of static equilibrium, which is of the form: G r = Γ r , where:

G r = C sin θ r , with C = 2k r 2 -h 2 -g M (d + h) + hρ √ h 2 + r 2 + 2r ; (10) Γ r = -F 1 dl 1 dθ r -F 2 dl 2 dθ r = F 1 h sin θ r 2 + r cos θ r 2 + F 2 h sin θ r 2 -r cos θ r 2 . ( 11 
)
The symbol G r represents the wrench due to gravity and the springs, while Γ r represents the external wrench that can be provided by the tendons. Using Eq. ( 2), it can be shown that the coefficients of F 1 and F 2 are positive and negative, respectively, within the limits of motion in all the cases listed in Section 2.1. This result is also intuitive from Fig. 1, as it is apparent that F 1 applies an anticlockwise moment, and F 2 a clockwise moment on the joint, respectively.

Also, the forces provided by the cables are limited physically, leading to:

F 1 , F 2 ∈ [F min , F max ].
Since the coefficient of F 1 (resp. F 2 ) in Γ r is always negative (resp. positive), the maximal (resp.

minimal) boundary of the available wrench Γ max (resp. Γ min ) is obtained when F 1 = F max and

F 2 = F min (resp. F 1 = F min and F 2 = F max ).
Considering these limits on Γ r , it follows that the equation of static equilibrium can be satisfied only when:

G r ∈ [Γ min , Γ max ].
The expression of stiffness of the joint is obtained by considering the second derivative of the total potential function w.r.t. θ r as follows: The configuration of the X-joint is denoted by the orientation angle (θ x ) of the segment connecting the midpoints of the bars 1 and 4 w.r.t. the vertical (see Fig. 4). All the other dependent coordinates can be expressed as a function of θ x , using elementary geometric principles, as follows:

K r = C cos θ r + 1 2 F 1 -h cos θ r 2 + r sin θ r 2 - 1 2 F 2 h cos θ r 2 + r sin θ r 2 . ( 12 
)

X-joint

α = 2θ x ; cos φ = b cos 2 θ x -sin θ x √ l 2 -b 2 cos 2 θ x l ; sin φ = b sin θ x + √ l 2 -b 2 cos 2 θ x l ; cos ψ = - b cos 2 θ x + sin θ x √ l 2 -b 2 cos 2 θ x l ; sin ψ = -b sin θ x + √ l 2 -b 2 cos 2 θ x l ; ( 13 
)
l 1 = -b sin θ x + l 2 -b 2 cos 2 θ x ; l 2 = b sin θ x + l 2 -b 2 cos 2 θ x .
Differentiation of l 1 and l 2 w.r.t. θ x yields:

dl 1 dθ x = b cos θ x b sin θ x √ l 2 -b 2 cos 2 θ x -1 ; dl 2 dθ x = b cos θ x b sin θ x √ l 2 -b 2 cos 2 θ x + 1 . ( 14 
)
Further differentiation w.r.t. θ x results in:

d 2 l 1 dθ 2 x = b bl 2 cos 2θ x -b 3 cos 4 θ x (l 2 -b 2 cos 2 θ x ) 3/2 + sin θ x ; d 2 l 2 dθ 2 x = b bl 2 cos 2θ x -b 3 cos 4 θ x (λ 2 -b 2 cos 2 θ x ) 3/2 -sin θ x . ( 15 
)
Unlike the R-joint, the motion of the X-joint is always limited by the occurrence of parallel singularities at θ x = ± π 2 , irrespective of the dimensions of the links.

Static analysis of the X-joint

The expression for total potential energy of the X-joint is obtained in a manner similar to that of the R-joint, as:

U x = -cos 2θ x b 2 k -dgM + (ρ(b + l) + M )g cos θ x l 2 -b 2 cos 2 θ x + kl 2 + F 1 l 1 + F 2 l 2 ; (16)
Differentiating the total potential energy w.r.t. θ x leads to the equation of static equilibrium: G x = Γ x , with:

G x = C 1 sin 2θ x + C 2 sin θ x (2b 2 cos 2 θ x -l 2 ) b √ l 2 -b 2 cos 2 θ x ; where C 1 = 2(b 2 k -M gd), C 2 = bg(M + ρ(b + l)); (17) Γ x = -F 1 dl 1 dθ x -F 2 dl 2 dθ x = F 1 b cos θ x √ l 2 -b 2 cos 2 θ x -b sin θ x √ l 2 -b 2 cos 2 θ x -F 2 b cos θ x √ l 2 -b 2 cos 2 θ x + b sin θ x √ l 2 -b 2 cos 2 θ x , (18) 
The symbols G x and Γ x possess the same physical meaning as in case of the R-joint. It can be shown that the coefficient of F 1 in the expression of Γ x , is positive from the assembly condition l > b and the following argument:

b l 2 b 2 -cos 2 θ x > b sin θ x (= b √ 1 -cos 2 θ x )
. Also, from Eq. ( 18), it is clear that the coefficient of F 2 is negative. This shows that the upper bound Γ x occurs when F 1 = F max , F 2 = F min and the lower bound occurs when

F 1 = F min , F 2 = F max .
The expression of stiffness of the joint is obtained by computing the second derivative of the total potential function w.r.t. θ x as follows:

K x = d(G -Γ) dθ x = dG dθ x + F 1 d 2 l 1 dθ 2 x + F 2 d 2 l 2 dθ 2 x =2C 1 cos 2θ x - C 2 cos θ x (l 2 -b 2 cos 2θ x ) 2 -b 2 (l 2 -b 2 ) cos 2θ x b (l 2 -b 2 cos 2 θ x ) 3/2 +bF 1 bl 2 cos 2θ x -b 3 cos 4 θ x (l 2 -b 2 cos 2 θ x ) 3/2 + sin θ x + bF 2 bl 2 cos 2θ x -b 3 cos 4 θ x (λ 2 -b 2 cos 2 θ x ) 3/2 -sin θ x (19)

Optimal design of the joints

In this study, the link lengths and the spring constant of the joints are considered to be the design variables, while the linear mass density and payload characteristics (ρ, M, d) are treated as parameters whose values are known a priori. The goal is to find optimal designs of the joints, such that the following conditions are met:

• The joint should possess the specified WFW of the general form: [-θ max , θ max ] with θ max < π 2 to avoid singularities.

• The joint stiffness must be non-negative throughout the WFW for all admissible values of forces satisfying the equation of static equilibrium. Additionally, the stiffness must be equal to a prescribed value (K 0 > 0) when no actuation forces (F 1 , F 2 ) are applied and equal to (K 1 > 0) at the boundary of the WFW.

• The force required to move the joint must be a minimum.

Due to symmetry of the joints about their respective zero orientations, ensuring [0, θ max ] ∈ WFW, ensures that [-θ max , 0] ∈ WFW. Similar arguments can be made about the non-negativeness of the stiffness of the joints as well. This makes it sufficient to study just one half of the problem, i.e., θ r > 0 and θ x > 0. In the following, the positive boundary of WFW is denoted by θ rm for the R-joint, and θ xm for the X-joint. In order to satisfy the conditions listed above, a system of equations and inequalities have been formulated for the two joints as shown in Table 1 (assuming

F min = 0)
. Physically, the first two conditions ensure that no singularities occur within the WFW and that the positive boundary of the WFW is formed by the intersection of the curves G r (resp. G x ) and Γ max . The third and fifth conditions ensure that the stiffness of the joint is equal to K 0 in the Table 1: Formulation of the stipulated conditions for the R-joint and the X-joint. R-joint X-joint

l 1 (θ rm ) > 0 (20a) G r (θ rm ) + F max dl 1 dθ r (θ rm ) = 0 (20b) K r (θ r = 0, F 1 = 0, F 2 = 0) = K 0 (20c) K r (θ r = 0, F 1 = F max , F 2 = F max ) ≥ 0 (20d) K r (θ r = θ rm , F 1 = F max , F 2 = 0) = K 1 (20e) No singularities when θ xm < π 2 (21a) G x (θ xm ) + F max dl 1 dθ x (θ xm ) = 0 (21b) K x (θ x = 0, F 1 = 0, F 2 = 0) = K 0 (21c) K x (θ x = 0, F 1 = F max , F 2 = F max ) ≥ 0 (21d) K x (θ x = θ xm , F 1 = F max , F 2 = 0) = K 1 (21e)
absence of applied forces, and equal to K 1 at the boundary of the WFW. The remaining condition ensures that the joint possesses a non-negative stiffness at the zero orientation when maximum forces are applied. The ratio of link lengths: η(= r h ) for the R-joint and λ(= l b ) for the X-joint have been introduced into the formulation, eliminating the variables h and l, respectively. This is because the ratio provides more insights into the problem and also simplifies the resulting expressions considerably. The conditions in Table 1 are then derived in terms of the joint parameters in the Sections 4.1 and 4.2. Using these expressions, design optimization problems for the R-joint and the X-joint are formulated and solved in the following.

Optimal design of the R-joint

It is noted that the set of design variables of the R-joint is formed by r, η, and k. From Eq. (20a), the following condition is obtained:

η < cot θ rm 2 (22)
Equation (20c) yields:

C = K 0 (23)
Substituting the expression of C from Eq. (10) into the above equation and solving for k results in:

k = 1 2 (η 2 -1) r 2 gηM (dη + r) + g η 2 + 1 + 2η ρr 2 + η 2 K 0 (24)
From the above equation, it is clear the condition η > 1 is necessary to ensure that k remains positive. Equation (20b) leads to:

-C sin θ rm + r η F max sin θ rm 2 + F max r cos θ rm 2 = 0 (25)
Substituting for C from Eq. ( 23) into Eq. ( 25) and solving for F max yields:

F max = K 0 η sin θ rm r η cos θrm 2 + sin θrm 2 (26)
From Eq. ( 20e), one obtains:

C cos θ rm + 1 2 F max r sin θ rm 2 - r cos θrm 2 η -K 1 = 0 (27)
Upon substitution of the expressions for C and F max from Eqs. ( 23) and ( 26) into the Eq. ( 27):

K 0 sin θ rm η sin θrm 2 -cos θrm 2 2 η cos θrm 2 + sin θrm 2 + K 0 cos θ rm -K 1 = 0 (28)
Solving for η from the above equation, results in:

η = K 0 (1 -cos θ rm ) + 2K 1 K 0 (1 + cos θ rm ) -2K 1 tan θ rm 2 (29)
The above equation provides a simple relationship between the design specifications (θ rm , K 0 , K 1 )

and η. This is quite interesting because for a given set of specifications, the ratio of link dimensions remains fixed, irrespective of the payload (M, d) and the material of the links (ρ). It is noted that the specifications K 0 , K 1 , and θ rm , must allow the bounds on: η ∈]1, cot θrm 2 [ to be satisfied, for the existence of feasible designs. By substituting the expression of η from Eq. ( 29) into Eqs. ( 24) and ( 26), it is possible to find k and F max solely in terms of r, the only design variable left in this problem.

The inequality in Eq. ( 20d), results in:

C -F max r η ≥ 0 (30)
Substituting the conditions in Eqs. ( 23) and ( 26), leads to:

η ≥ tan θ rm 2 2 cos θ rm 2 -1 (31)
Given that θ rm ∈]0, π 2 [, it is apparent that right hand side of the above inequality would always be less than 1. But, from Eq. ( 24), it has been shown that η > 1 is a necessary condition for k to be positive. Thus, the inequality in Eq. ( 31) remains satisfied by default without any imposing any additional conditions.

Hence, an optimization problem for the minimization of applied force may be posed as follows:

Minimize r F max (r) = K 0 (1 -cos θ rm ) + 2K 1 r sin θ rm 2 subject to r ∈ [0.025, 0.1] , k ∈ [0, 2000] , ( 32 
)
where r is the only design variable in this problem. The constraint on η is not mentioned in the problem as it should be satisfied by the choice of K 0 , K 1 , and θ rm . Bounds on the variables r and k have been imposed in the problem due to practical considerations, such as, availability of corresponding components in the market and ease of fabrication/assembly. Using Eq. ( 24), equivalent algebraic conditions on r, corresponding to bounds on k can be obtained. For instance, the condition k ≤ k max (= 2000) leads to a quadratic expression in r that must be non-negative:

2 η 2 -1 k max -g η 2 + 1 + 2η ρ r 2 -M gηr -η 2 (K 0 + M gd) ≥ 0 (33)
It is noted that the expression of η is known from Eq. ( 29), but has not been substituted, to keep the resulting expressions short. In the limiting case when the inequality in Eq. ( 33) becomes an equality, the solutions for r can be found analytically as follows:

r 1 = M gη -g 2 η 2 M 2 + 4η 2 2 (η 2 -1) k max -g √ η 2 + 1 + 2η ρ (K 0 + dgM ) 2 2 (η 2 -1) k max -g √ η 2 + 1 + 2η ρ , ( 34 
)
r 2 = M gη + g 2 η 2 M 2 + 4η 2 2 (η 2 -1) k max -g √ η 2 + 1 + 2η ρ (K 0 + dgM ) 2 2 (η 2 -1) k max -g √ η 2 + 1 + 2η ρ (35)
The feasible range of r corresponding to the inequality in Eq. ( 33) will reduce the design space to r ∈ [r 1 , r 2 ] or r ∈ (-∞, r 1 ) (∞, r 2 ), depending upon the values assigned to the parameters in the problem. These conditions would be used for defining the feasible design space of the R-joint.

It is recalled from Eq. ( 24) that the constraint: k ≥ 0 would be satisfied by default when η > 1.

The first-order necessary condition for F max to achieve a local minima requires the vanishing of its derivative w.r.t. r. However, it is found that dFmax dr

= -K 0 (1-cos θrm)+2K 1 r 2
sin θrm 2 , is negative for all feasible values of the design variables and parameters. This implies that F max decreases with increase in r, and its minimum value would occur when r is as large as possible within the feasible design space defined by the constraints in Eq. ( 32). Further information on the minimum value of force and the corresponding design variables can be obtained by studying the behavior of F max inside the design space with numerical values for the parameters.

Optimal design of the X-joint

It is noted that the set of design variables of the X-joint is formed by: b, λ, and k. Equation (21b) results in:

bF max cos θ xm sin θ xm √ λ 2 -cos 2 θ xm -1 + C 1 sin 2θ xm + C 2 sin θ xm (2 cos 2 θ xm -λ 2 ) √ λ 2 -cos 2 θ xm = 0 (36)
Equation (21e) leads to:

bF max λ 2 cos 2θ xm -cos 4 θ xm (λ 2 -cos 2 θ xm ) 3/2 + sin θ xm + 2C 1 cos 2θ xm -K 1 - C 2 cos θ xm (λ 2 -cos 2θ xm ) 2 -(λ 2 -1) cos 2θ xm (λ 2 -cos 2 θ xm ) 3/2 = 0 (37)
From Eq. ( 36) and ( 37), it is possible to solve for F max and C 1 as follows:

F max = C 2 λ 4 sin θ xm tan 2 θ xm + K 1 tan θ xm (λ 2 -cos 2 θ xm ) 3/2 b cos θ xm (λ 2 -cos 2 θ xm ) 3/2 -sin 3 θ xm (38) C 1 = γ 1 K 1 + γ 2 C 2 (39) 
where

γ 1 = sec 2 θ xm (λ 2 -cos 2 θ xm ) 2 sin θ xm √ λ 2 -cos 2 θ xm + sin 2 θ xm -cos 2 θ xm + λ 2 (40) γ 2 = λ 4 sec 3 θ xm -cos θ xm sin θ xm λ 2 -cos 2 θ xm + 2 sin 2 θ xm + 3λ 2 + tan θ xm λ 2 sin θ xm + λ 2 -1 λ 2 -cos 2 θ xm + sin 2 θ xm λ 2 -cos 2 θ xm + 2 cos 3 θ xm 2 λ 2 -cos 2 θ xm sin θ xm λ 2 -cos 2 θ xm + sin 2 θ xm -cos 2 θ xm + λ 2 (41)
Equation ( 21c) is of the form:

2C 1 - C 2 (λ 2 -2) √ λ 2 -1 -K 0 = 0 (42) 
Substituting for C 1 Eq. ( 39) into Eq. ( 42) leads to:

2γ 1 K 1 + γ 3 C 2 -K 0 = 0, where γ 3 = 2γ 2 - λ 2 -2 √ λ 2 -1 (43)
Substituting the expression of C 2 from Eq. ( 17) into Eq. ( 43), one obtains a quadratic equation in b as: ρgγ 3 (λ + 1)b 2 + M gγ 3 b + 2γ 1 K 1 -K 0 = 0. Dividing throughout w.r.t. the leading term, results

in: b 2 + M ρ(λ+1) b + 2γ 1 K 1 -K 0 ρgγ 3 (λ+1) = 0.
The two solutions to this equation are given by:

b = - M 2ρ(λ + 1) ± M 2ρ(λ + 1) 2 - 2γ 1 K 1 -K 0 ρgγ 3 (λ + 1) (44) 
The solution involving "-" before the square root is clearly negative. Thus, only the solution involving "+" must be considered to ensure b > 0. After certain simplifications the expression of b in terms of λ can be written as follows:

b = γ 2 3 g 2 M 2 -4γ 3 g(λ + 1)ρ(2γ 1 K 1 -K 0 ) -γ 3 gM 2γ 3 g(λ + 1)ρ (45)
Using this expression of b, it is possible to obtain C 2 (from Eq. ( 17)), and then C 1 in terms of λ.

Further, from the definition of C 1 (see Eq. ( 21b)), the spring constant k can be found as:

k = C 1 +2M gd 2b 2
. The inequality in Eq. (21d) provides:

2C 1 - C 2 (λ 2 -2) √ λ 2 -1 + 2bF max √ λ 2 -1 ≥ 0 (46) 
Using Eq. ( 42), the above inequality can be simplified to:

K 0 + 2bF max √ λ 2 -1 ≥ 0 (47)
Since both the terms on the left hand side of the above inequality are positive, it follows that the inequality would be satisfied by default without imposing any additional conditions.

Thus, the optimization problem for the design of the X-joint is posed as follows:

Minimize λ F max (λ) = C 2 λ 4 sin θ xm tan 2 θ xm + K 1 tan θ xm (λ 2 -cos 2 θ xm ) 3/2 b cos θ xm (λ 2 -cos 2 θ xm ) 3/2 -sin 3 θ xm subject to k ∈ [0, 2000], b ∈ [0.05, 0.2], λ ∈]1, 5], ( 48 
)
where λ is the only design variable in this problem (λ = l b ). The bounds on k and b must be transferred to λ, to define the feasible design space for X-joint. However, due to the complicated functional relationship between variables, an equivalent set of algebraic conditions on λ could not be derived. Nevertheless, from a plot of b (resp. k) against λ, it is possible to identify the feasible regions visually, and then compute the corresponding limiting points numerically, to define the feasible design space.

As in the previous case, the first-order necessary condition for F max to attain a minima is obtained from the condition: dFmax dλ = 0. The corresponding algebraic expression is found to be:

dF max dλ = λ tan 3 θ xm C 2 λ 2 (λ 2 -4 cos 2 θ xm ) √ λ 2 -cos 2 θ xm -4 sin 3 θ xm + 3K 1 sin θ xm cos θ xm √ λ 2 -cos 2 θ xm b (λ 2 -cos 2 θ xm ) 3/2 -sin 3 θ xm 2 + λ 4 tan 3 θ xm b (λ 2 -cos 2 θ xm ) 3/2 -sin 3 θ xm dC 2 dλ , ( 49 
)
where (λ 2 -1) 3/2 (52)

dC 2 dλ = - 2K 1 γ 3 dγ 1 dλ + - K 0 -2γ 1 K 1 γ 2 3 dγ 3 dλ , in
Due to the complexity of the associated expressions, it is very difficult to obtain the solutions to dFmax dλ = 0, analytically. However, it is possible to solve this equation numerically once the values of parameters in the problem are substituted. Solution to the said equation would provide the stationary points of F max . Firstly, it is essential to check if there are solution(s) that satisfy all the constraints specified in Eq. ( 48). Secondly, such solutions must be classified as a minimum or a maximum or an inflection point, through the second derivative test or by inspecting the plot of F max against λ. In case several minima exist within the feasible design space, then the one that corresponds to the least value of F max must be chosen. On the other hand, if no minima exists, then the solution to this problem must be at/near a boundary of the feasible design space, depending on whether the boundary point is included or not.

Conclusion

The static analysis of two antagonistically actuated joints with a point mass payload has been conducted in this study: the revolute (R) joint and the antiparallelogram (X) joint. An optimal design strategy has been proposed to minimize the actuation forces for a prescribed wrench-feasible workspace (WFW) with a prescribed stiffness at rest and at the WFW bounds. It is possible to use the proposed strategy to design the R-joint and X-joint for the same WFW and compare the optimal designs on the basis of actuation forces and stiffness.
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 2 Figure 2: Limits of motion for the R-joint due to the vanishing of l 1 and l 2 .
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 3 Figure 3: Limits of motion for the R-joint due to force-closure singularity.
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 4 Figure 4: Schematic of the X-joint.
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