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Static analysis and design of revolute joint and
antiparallelogram joint: a technical report

Vimalesh Muralidharan

Abstract

This technical report details the derivation of the static models of two antagonistically
actuated joints: revolute (R) joint and antiparallelogram (X) joint. The conditions for these
joints to possess the specified wrench-feasible workspace with the prescribed stiffness are de-
rived. Using these conditions as constraints, a strategy for the optimal design of these joints
is proposed that with an objective of minimizing the forces required to move them.

1 Organisation of the report

Two antagonistically actuated joints namely, the revolute joint or the R-joint and the antiparallel-
ogram joint, also referred to as the X-joint, are studied in this report. The analysis of the R-joint
is carried out in Section 2, and the X-joint in Section 3. The organization of each of these sections
are identical and are detailed in the following. Firstly, a generalized coordinate is identified to
describe the configuration of the joint, and all the dependent coordinates are obtained in terms
of this coordinate for further study. This is followed by static analysis of the joint, where the
expression of total potential energy is derived, followed by the equation of static equilibrium and
stiffness. Following this, an optimisation problem for the design of these joints are posed and solved
in Section 4. Finally, the conclusion of this study is presented in Section 5.

2 R-joint

A schematic of the R-joint is shown in Fig. 1. It consists of two congruent isosceles triangles, one on
top of another, connected by a revolute joint at point o. The joint is equipped with two identical
springs (spring constant, k) on either side to impart stiffness into the system. It is actuated by
two cables passing through the middle of the springs, by applying forces, F1 and F2, respectively.
Additionally, a point mass M is attached to the segment p1p2 at a distance d. The linear mass
density (i.e., mass per unit length) of the links is given by ρ.
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Figure 1: Schematic of the pivot joint.

The generalized coordinate that describes the configuration of the joint is considered to be θr.
The dependent coordinates l1 and l2 are expressed as a function of θr, for further use in the upcoming
sections. The following relations can be obtained using elementary geometric principles:

l1 = 2
(
h cos θr

2 − r sin θr

2

)
; l2 = 2

(
h cos θr

2 + r sin θr

2

)
. (1)

The derivatives of l1, l2 w.r.t. θr are:

dl1
dθr

= −
(
h sin θr

2 + r cos θr

2

)
; dl2

dθr
=
(
−h sin θr

2 + r cos θr

2

)
; (2)

d2l1
dθ2

r
= 1

2

(
−h cos θr

2 + r sin θr

2

)
; d2l2

dθ2
r

= −1
2

(
h cos θr

2 + r sin θr

2

)
. (3)

2.1 Limits of motion of the R-joint due to singularities

The direction of the applied forces F1 and F2 are not defined when l1 = 0 and l2 = 0, respectively.
Hence, it is not possible to control the manipulator in these configurations, and consequently, they
define the boundaries of the wrench-feasible workspace (when no limits are imposed on the forces
applied by the tendons) of the module. This is illustrated in Fig. 2.

Cable-driven manipulators also suffer from force-closure singularities in addition to the singular-
ities observed in parallel manipulators. Force-closure singularities refer to the configurations where
the manipulator cannot withstand an arbitrary external wrench applied on one of the links, when
all the cables are in tension and locked. For the pivot module, such situations occur when the line
of action of force, l1 or l2 passes through the point o as illustrated in Fig. 3.

However, the limits of motion are defined by only one of these singularities, depending on the
ratio r

h
. From the Figs. 2 and 3, the following observations on the limits of motion can be made:
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(a) Singularity for the first cable (b) Singularity for the second cable

Figure 2: Limits of motion for the R-joint due to the vanishing of l1 and l2.

(a) Singularity for the second cable (b) Singularity for the first cable

Figure 3: Limits of motion for the R-joint due to force-closure singularity.
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• Case 1 (r > h): The limit of motion is formed by li = 0, i = 1, 2, leading to:
θr ∈ (−

(
π − 2 tan−1

(
r
h

))
,
(
π − 2 tan−1

(
r
h

))
.

• Case 2 (r < h): Occurrence of force-closure singularity limits the motion, leading to:
θr ∈

(
−2 tan−1

(
r
h

)
, 2 tan−1

(
r
h

))
• Case 3 (r = h): Limit of motion is formed by both li = 0, i = 1, 2 and force-closure singularity

simultaneously: θr ∈
(
−π

2 ,
π
2

)
. The amplitude of singularity free motion is maximum in this

case.

2.2 Static analysis of the R-joint

The expression of total potential energy of the joint is obtained as the sum of potential due to
gravity (Ug), springs (Usp), and external forces applied by the tendons (Uf):

Ur =Ug + Usp + Uf, (4)

Ur =4
3ρgh(r +

√
r2 + h2) cos θr +Mg(d+ h) cos θr + 2k

(
r2 + h2 −

(
r2 − h2

)
cos θr

)
+ F1l1 + F2l2,

(5)

Differentiation of this expression w.r.t. θr leads to the equation of static equilibrium, which is of the
form: Gr = Γr, where:

Gr = C sin θr, with C = 1
3
(
6k
(
r2 − h2

)
− 4ρgh(r +

√
r2 + h2)− 3Mg (d+ h)

)
; (6)

Γr = −F1
dl1
dθr
− F2

dl2
dθr

= F1

(
h sin θr

2 + r cos θr

2

)
+ F2

(
h sin θr

2 − r cos θr

2

)
. (7)

The symbol Gr represents the wrench due to gravity and the springs, while Γr represents the external
wrench that can be provided by the tendons. Using Eq. (2), it can be shown that the coefficients
of F1 and F2 are positive and negative, respectively, within the limits of motion in all the cases
listed in Section 2.1. This result is also intuitive from Fig. 1, as it is apparent that F1 applies an
anticlockwise moment, and F2 a clockwise moment on the joint, respectively.

Also, the forces provided by the cables are limited physically, leading to: F1, F2 ∈ [Fmin, Fmax].
Since the coefficient of F1 (resp. F2) in Γr is always negative (resp. positive), the maximal (resp.
minimal) boundary of the available wrench Γmax (resp. Γmin) is obtained when F1 = Fmax and
F2 = Fmin (resp. F1 = Fmin and F2 = Fmax). Considering these limits on Γr, it follows that the
equation of static equilibrium can be satisfied only when: Gr ∈ [Γmin,Γmax].

The expression of stiffness of the module is obtained by considering the second derivative of the
total potential function w.r.t. θr as follows:

Kr = C cos θr + 1
2F1

(
−h cos θr

2 + r sin θr

2

)
− 1

2F2

(
h cos θr

2 + r sin θr

2

)
. (8)
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3 X-joint

Figure 4: Schematic of the X-joint.

The schematic of the X-joint is shown in Fig. 4. It contains three moving links 2, 3, 4 and one
fixed link 1. The top and bottom bars (1, 4) are of length b, while the crossed bars (2, 3) are of
length b. It is noted that the condition, l > b must be satisfied for the assembly of the joint. The
other parameters k, ρ,M, d, F1, F2 possess the same definitions as in the case of the R-joint (see
Section 2).

The configuration of the X-joint is denoted by the orientation angle (θx) of the segment con-
necting the midpoints of the bars 1 and 4 w.r.t. the vertical (see Fig. 4). All the other dependent
coordinates can be expressed as a function of θx, using elementary geometric principles, as follows:

α = 2θx;

cosφ =

(
b cos2 θx − sin θx

√
l2 − b2 cos2 θx

)
l

; sinφ =

(
b sin θx +

√
l2 − b2 cos2 θx

)
l

;

cosψ = −

(
b cos2 θx + sin θx

√
l2 − b2 cos2 θx

)
l

; sinψ =

(
−b sin θx +

√
l2 − b2 cos2 θx

)
l

; (9)

l1 = −b sin θx +
√
l2 − b2 cos2 θx; l2 = b sin θx +

√
l2 − b2 cos2 θx.

Differentiation of l1 and l2 w.r.t. θx yields:
dl1
dθx

= b cos θx

(
b sin θx√

l2 − b2 cos2 θx
− 1

)
; dl2

dθx
= b cos θx

(
b sin θx√

l2 − b2 cos2 θx
+ 1

)
. (10)

Further differentiation w.r.t. θx results in:
d2l1
dθ2

x
= b

(
bl2 cos 2θx − b3 cos4 θx

(l2 − b2 cos2 θx)3/2 + sin θx

)
; d2l2

dθ2
x

= b

(
bl2 cos 2θx − b3 cos4 θx

(λ2 − b2 cos2 θx)3/2 − sin θx

)
. (11)
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Unlike the R-joint, the motion of the X-joint is always limited by the occurrence of parallel singu-
larities at θx = ±π

2 , irrespective of the dimensions of the links.

3.1 Static analysis of the X-joint

The expression for total potential energy of the X-joint is obtained in a manner similar to that of
the pivot joint, as:

Ux = − cos 2θx
(
b2k − dgM

)
+ (ρ(b+ l) +M)g cos θx

√
l2 − b2 cos2 θx + kl2 + F1l1 + F2l2; (12)

Differentiating the total potential energy w.r.t. θx leads to the equation of static equilibrium: Gx =
Γx, with:

Gx = C1 sin 2θx + C2 sin θx (2b2 cos2 θx − l2)
b
√
l2 − b2 cos2 θx

; where C1 = 2(b2k −Mgd), C2 = bg(M + ρ(b+ l));

(13)

Γx = −F1
dl1
dθx
− F2

dl2
dθx

= F1b cos θx

(√
l2 − b2 cos2 θx − b sin θx√

l2 − b2 cos2 θx

)
− F2b cos θx

(√
l2 − b2 cos2 θx + b sin θx√

l2 − b2 cos2 θx

)
,

(14)

The symbols Gx and Γx possess the same physical meaning as in case of the pivot joint. It can be
shown that the coefficient of F1 in the expression of Γx, is positive from the assembly condition l > b

and the following argument: b
√

l2

b2 − cos2 θx > b sin θx(= b
√

1− cos2 θx). Also, from Eq. (14),
it is clear that the coefficient of F2 is negative. This shows that the upper bound Γx occurs
when F1 = Fmax, F2 = Fmin and the lower bound occurs when F1 = Fmin, F2 = Fmax.

The expression of stiffness of the module is obtained by computing the second derivative of the
total potential function w.r.t. θx as follows:

Kx =d(G− Γ)
dθx

= dG
dθx

+ F1
d2l1
dθ2

x
+ F2

d2l2
dθ2

x

=2C1 cos 2θx −
C2 cos θx

(
(l2 − b2 cos 2θx)2 − b2 (l2 − b2) cos 2θx

)
b (l2 − b2 cos2 θx)3/2 (15)

+bF1

(
bl2 cos 2θx − b3 cos4 θx

(l2 − b2 cos2 θx)3/2 + sin θx

)
+ bF2

(
bl2 cos 2θx − b3 cos4 θx

(λ2 − b2 cos2 θx)3/2 − sin θx

)
(16)

4 Optimal design of the joints

In this study, the link lengths and the spring constant of the joints are considered to be the design
variables, while the linear mass density and payload characteristics (ρ,M, d) are treated as param-
eters whose values are known a priori. The goal is to find optimal designs of the joints, such that
the following conditions are met:
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• The joint should possess the specified WFW of the general form: [−θmax, θmax] with θmax <
π
2

to avoid singularities.

• The joint stiffness must be non-negative throughout the WFW for all admissible values of
forces satisfying the equation of static equilibrium. Additionally, the stiffness must be equal
to a prescribed value (K0 > 0) when no actuation forces (F1, F2) are applied and equal
to (K1 > 0) at the boundary of the WFW.

• The force required to move the joint must be a minimum.

Due to symmetry of the joints about their respective zero orientations, ensuring [0, θmax] ∈
WFW, ensures that [−θmax, 0] ∈WFW. Similar arguments can be made about the non-negativeness
of the stiffness of the joints as well. This makes it sufficient to study just one half of the prob-
lem, i.e., θr > 0 and θx > 0. In the following, the positive boundary of WFW is denoted by θrm

for the R-joint, and θxm for the X-joint. In order to satisfy the conditions listed above, a system of
equations and inequalities have been formulated for the two joints as shown in Table 1 (assuming
Fmin = 0). Physically, the first two conditions ensure that no singularities occur within the WFW
and that the positive boundary of the WFW is formed by the intersection of the curves Gr (resp. Gx)
and Γmax. The third and fifth conditions ensure that the stiffness of the joint is equal to K0 in the

Table 1: Formulation of the stipulated conditions for the R-joint and the X-joint.
R-joint X-joint

l1(θrm) > 0 (17a)

Gr(θrm) + Fmax
dl1
dθr

(θrm) = 0 (17b)

Kr(θr = 0, F1 = 0, F2 = 0) = K0 (17c)

Kr(θr = 0, F1 = Fmax, F2 = Fmax) ≥ 0 (17d)

Kr(θr = θrm, F1 = Fmax, F2 = 0) = K1 (17e)

No singularities when
(
θxm <

π

2

)
(18a)

Gx(θxm) + Fmax
dl1
dθx

(θxm) = 0 (18b)

Kx(θx = 0, F1 = 0, F2 = 0) = K0 (18c)

Kx(θx = 0, F1 = Fmax, F2 = Fmax) ≥ 0 (18d)

Kx(θx = θxm, F1 = Fmax, F2 = 0) = K1 (18e)

absence of applied forces, and equal to K1 at the boundary of the WFW. The remaining condition
ensures that the joint possesses a non-negative stiffness at the zero orientation when maximum
forces are applied. The ratio of link lengths: η(= r

h
) for the R-joint and λ(= l

b
) for the X-joint have

been introduced into the formulation, eliminating the variables h and l, respectively. This is be-
cause the ratio provides more insights into the problem and also simplifies the resulting expressions
considerably. The conditions in Table 1 are then derived in terms of the joint parameters in the
Sections 4.1 and 4.2. Using these expressions, design optimization problems for the R-joint and the
X-joint are formulated and solved in the following.
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4.1 Optimal design of the R-joint

It is noted that the set of design variables of the R-joint is formed by r, η, and k. From Eq. (17a)
following condition is obtained:

η < cot θrm

2 (19)

Equation (17c) yields:

C = K0 (20)

Substituting the expression of C from Eq. (6) into the above equation and solving for k results in:

k = η2

2r2 (η2 − 1)

(
K0 + 4r2

3η2ρg
(
η +

√
η2 + 1

)
+Mg

(
d+ r

η

))
(21)

From the above equation, it is clear the condition η > 1 is necessary to ensure that k remains
positive. Equation (17b) leads to:

−C sin θrm + r

η
Fmax sin θrm

2 + Fmaxr cos θrm

2 = 0 (22)

Substituting for C from Eq. (20) into Eq. (22) and solving for Fmax yields:

Fmax = K0η sin θrm

r
(
η cos θrm

2 + sin θrm
2

) (23)

From Eq. (17e), one obtains:

C cos θrm + 1
2Fmaxr sin θrm

2 −
r cos θrm

2
η

−K1 = 0 (24)

Upon substitution of the expressions for C and Fmax from Eq. (20) and (23) into the Eq. (24):

K0 sin θrm
(
η sin θrm

2 − cos θrm
2

)
2
(
η cos θrm

2 + sin θrm
2

) +K0 cos θrm −K1 = 0 (25)

Solving for η from the above equation, results in:

η = K0(1− cos θrm) + 2K1

K0(1 + cos θrm)− 2K1
tan θrm

2 (26)

The above equation provides a simple relationship between the design specifications (θrm, K0, K1)
and η. This is quite interesting because for a given set of specifications, the ratio of link dimensions
remains fixed, irrespective of the payload (M,d) and the material of the links (ρ). It is noted that
the specifications K0, K1, and θrm, must allow the bounds on: η ∈]1, cot θrm

2 [ to be satisfied, for
the existence of feasible designs. By substituting the expression of η from Eq. (26) into Eqs. (21)
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and (23), it is possible to find k and Fmax solely in terms of r, the only design variable left in this
problem.

The inequality in Eq. (17d), results in:

C − Fmax
r

η
≥ 0 (27)

Substituting the the conditions in Eqs. (20) and (23), leads to:

η ≥ tan θrm

2

(
2 cos θrm

2 − 1
)

(28)

Given that θrm ∈]0, π2 [, it is apparent that right hand side of the above inequality would always be
less than 1. But, from Eq. (21), it has been shown that η > 1 is a necessary condition for k to be
positive. Thus, the inequality in Eq. (28) remains satisfied by default without any imposing any
additional conditions.

Hence, an optimization problem for the minimization of applied force may be posed as follows:

Minimize
r

Fmax(r) = K0(1− cos θrm) + 2K1

r
sin θrm

2
subject to r ∈ [0.025, 0.1] ,

k ∈ [0, 2000] ,

(29)

where r is the design variable of this problem. The constraint on η is not mentioned in the problem
as it should be satisfied by the choice of K0, K1, and θrm. Bounds on the variables r and k have
been imposed in the problem due to practical considerations, such as, availability of corresponding
components in the market and ease of fabrication/assembly. Using Eq. (21), equivalent algebraic
conditions on r, corresponding to bounds on k can be obtained. For instance, the condition k ≤
kmax(= 2000) leads to a quadratic expression in r that must be non-negative:(

6
(
η2 − 1

)
kmax − 4g

(√
η2 + 1 + η

)
ρ
)
r2 − 3Mgηr − 3

(
Mbdη2 + η2K0

)
≥ 0 (30)

It is noted that the expression of η is known from Eq. (26), but it has not been substituted, to keep
the resulting expressions short. In the limiting case when the inequality in Eq. (30) becomes an
equality, the solutions for r can be found analytically as follows:

r1 =
3gηM −

√
9g2η2M2 − 4

(
6 (η2 − 1) kmax − 4g

(√
η2 + 1 + η

)
ρ
)

(−3dgη2M − 3η2K0)

2
(
6 (η2 − 1) kmax − 4g

(√
η2 + 1 + η

)
ρ
) , (31)

r2 =
3gηM +

√
9g2η2M2 − 4

(
6 (η2 − 1) kmax − 4g

(√
η2 + 1 + η

)
ρ
)

(−3dgη2M − 3η2K0)

2
(
6 (η2 − 1) kmax − 4g

(√
η2 + 1 + η

)
ρ
) (32)

The feasible range of r corresponding to the inequality in Eq. (30) will reduce the design space
to r ∈ [r1, r2] or r ∈ (−∞, r1)⋃(∞, r2), depending upon the values assigned to the parameters in
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the problem. These conditions would be used for defining the feasible design space of the R-joint.
Similar constraints would be defined for the constraint: k ≥ kmin, as well.

The first-order necessary condition for Fmax to achieve a local minima requires the vanishing of
its derivative w.r.t. r. However, it is found that dFmax

dr = −K0(1−cos θrm)+2K1
r2 sin

(
θrm

2

)
, is negative for

all feasible values of the design variables and parameters. This implies that Fmax decreases with
increase in r, and its minimum value would occur when r is as large as possible, while satisfying
the constraints specified in Eq. (29). Further information on the minimum value of force and the
corresponding design variables can be obtained by studying the behavior of Fmax inside the design
space with numerical values for the parameters.

4.2 Optimal design of the X-joint

It is noted that the set of design variables of the X-joint is formed by: b, λ, and k. Equation (18b)
results in:

bFmax cos θxm

(
sin θxm√

λ2 − cos2 θxm
− 1

)
+ C1 sin 2θxm + C2 sin θxm (2 cos2 θxm − λ2)√

λ2 − cos2 θxm
= 0 (33)

Equation (18e) leads to:

bFmax

(
λ2 cos 2θxm − cos4 θxm

(λ2 − cos2 θxm)3/2 + sin θxm

)
+ 2C1 cos 2θxm −K1

−
C2 cos θxm

(
(λ2 − cos 2θxm)2 − (λ2 − 1) cos 2θxm

)
(λ2 − cos2 θxm)3/2 = 0 (34)

From Eq. (33) and (34), it is possible to solve for Fmax and C1 as follows:

Fmax =

(
C2λ

4 sin θxm tan2 θxm +K1 tan θxm (λ2 − cos2 θxm)3/2)
b cos θxm

(
(λ2 − cos2 θxm)3/2 − sin3 θxm

) (35)

C1 = γ1K1 + γ2C2 (36)

where

γ1 = sec2 θxm (λ2 − cos2 θxm)
2
(
sin θxm

√
λ2 − cos2 θxm + sin2 θxm − cos2 θxm + λ2

) (37)

γ2 =
(
λ4 sec3 θxm − cos θxm

(
sin θxm

√
λ2 − cos2 θxm + 2 sin2 θxm + 3λ2

)
+ tan θxm

(
λ2 sin θxm +

(
λ2 − 1

)√
λ2 − cos2 θxm + sin2 θxm

√
λ2 − cos2 θxm

)
+ 2 cos3 θxm

)/(
2
√
λ2 − cos2 θxm

(
sin θxm

√
λ2 − cos2 θxm + sin2 θxm − cos2 θxm + λ2

))
(38)
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Equation (18c) is of the form:

2C1 −
C2 (λ2 − 2)√

λ2 − 1
−K0 = 0 (39)

Substituting for C1 from Eq. (36) into Eq. (39) leads to:

2γ1K1 + γ3C2 −K0 = 0, where γ3 = 2γ2 −
λ2 − 2√
λ2 − 1

(40)

Substituting the expression of C2 from Eq. (13) into Eq. (40), one obtains a quadratic equation in b
as: ρgγ3(λ+ 1)b2 +Mgγ3b+ 2γ1K1 −K0 = 0. Dividing throughout w.r.t. the leading term, results
in: b2 + M

ρ(λ+1)b+ 2γ1K1−K0
ρgγ3(λ+1) = 0. The two solutions to this equation are given by:

b = − M

2ρ(λ+ 1) ±

√√√√( M

2ρ(λ+ 1)

)2

−
(

2γ1K1 −K0

ρgγ3(λ+ 1)

)
(41)

The solution involving “-” before the square root is clearly negative. Thus, only the solution
involving “+” must be considered to ensure b > 0. After certain simplifications the expression of b
in terms of λ can be written as follows:

b =

√
γ2

3g
2M2 − 4γ3g(λ+ 1)ρ(2γ1K1 −K0)− γ3gM

2γ3g(λ+ 1)ρ (42)

Using this expression of b, it is possible to obtain C2 (from Eq. (13)), and then C1 in terms of λ.
Further, from the definition of C1 (see Eq. (18b)), the spring constant k can be found as: k =
C1+2Mgd

2b2 . The inequality in Eq. (18d) provides:

2C1 −
C2 (λ2 − 2)√

λ2 − 1
+ 2bFmax√

λ2 − 1
≥ 0 (43)

Using Eq. (39), the above inequality can be simplified to:

K0 + 2bFmax√
λ2 − 1

≥ 0 (44)

Since both the terms on the left hand side of the above inequality are positive, it follows that the
inequality would be satisfied by default without imposing any additional conditions.

Thus, the optimization problem for the design of the X-joint is posed as follows:

Minimize
λ

Fmax(λ) = C2λ
4 sin θxm tan2 θxm +K1 tan θxm (λ2 − cos2 θxm)3/2

b cos θxm
(
(λ2 − cos2 θxm)3/2 − sin3 θxm

)
subject to k ∈ [0, 2000],

b ∈ [0.05, 0.2],

λ ∈]1, 5],

(45)
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where λ is the only design variable in this problem (λ = l
b
). The bounds on k and b must be

transferred to λ, to define the feasible design space for X-joint. However, due to the complicated
functional relationship between variables, an equivalent set of algebraic conditions on λ could not
be derived. Nevertheless, from a plot of b (resp. k) against λ, it is possible to identify the feasible
regions visually, and then compute the corresponding limiting points numerically, to define the
feasible design space.

As in the previous case, the first-order necessary condition for Fmax to attain a minima is
obtained from the condition: dFmax

dλ = 0. The corresponding algebraic expression is found to be:

dFmax

dλ =
λ tan3 θxm

(
C2λ

2
(
(λ2 − 4 cos2 θxm)

√
λ2 − cos2 θxm − 4 sin3 θxm

)
+ 3K1 sin θxm cos θxm

√
λ2 − cos2 θxm

)
b
(
(λ2 − cos2 θxm)3/2 − sin3 θxm

)2

+ λ4 tan3 θxm

b
(
(λ2 − cos2 θxm)3/2 − sin3 θxm

) dC2

dλ , (46)

where
dC2

dλ = −2K1

γ3

dγ1

dλ +−K0 − 2γ1K1

γ2
3

dγ3

dλ , in which, (47)

dγ1

dλ =
2γ2

1λ sin θxm cos2 θxm
(
2 sin θxm

√
λ2 − cos2 θxm − cos2 θxm + λ2

)
(λ2 − cos2 θxm)5/2 (48)

dγ3

dλ =
λ3 sec3 θxm

(
2 sin θxm

√
λ2 − cos2 θxm + 3 cos4 θxm − 7 cos2 θxm + λ2 + 3

)
√
λ2 − cos2 θxm

(
sin θxm

√
λ2 − cos2 θxm + sin2 θxm − cos2 θxm + λ2

)2 − λ3

(λ2 − 1)3/2 (49)

Due to the complexity of the associated expressions, it is very difficult to obtain the solutions
to dFmax

dλ = 0, analytically. However, it is possible to solve this equation numerically once the values
of parameters in the problem are substituted. Solution to the said equation would provide the
stationary points of Fmax. Firstly, it is essential to check if there are solution(s) that satisfy all
the constraints specified in Eq. (45). Secondly, such solutions must be classified as a minimum
or a maximum or an inflection point, through the second derivative test or by inspecting the plot
of Fmax against λ. In case several minima exist within the feasible design space, then the one that
corresponds to the least value of Fmax must be chosen. On the other hand, if no minima exists, then
the solution to this problem must be at/near a boundary of the feasible design space, depending on
whether the boundary point is included or not.

5 Conclusion

The static analysis of two antagonistically actuated joints with a point mass payload has been
conducted in this study: the revolute (R) joint and the antiparallelogram (X) joint. An optimal
design strategy has been proposed to minimize the actuation forces for a prescribed wrench-feasible
workspace (WFW) with a prescribed stiffness at rest and at the WFW bounds. It is possible to
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use the proposed strategy to design the R-joint and X-joint for the same WFW and compare the
optimal designs on the basis of actuation forces and stiffness.
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