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On the cyclicity of the rational points group of abelian varieties over finite
fields

Alejandro J. Giangreco-Maidana

Aix Marseille Université, CNRS, Centrale Marseille, I2M UMR 7373, 13453 Marseille, France

Abstract

We propose a simple criterion to know if an abelian variety A defined over a finite field Fq is cyclic, i.e., it
has a cyclic group of rational points; this criterion is based on the endomorphism ring EndFq

(A). We also
provide a criterion to know if an isogeny class is cyclic, i.e., all its varieties are cyclic; this criterion is based
on the characteristic polynomial of the isogeny class. We find some asymptotic lower bounds on the fraction
of cyclic Fq -isogeny classes among certain families of them, when q tends to infinity. Some of these bounds
require an additional hypothesis. In the case of surfaces, we prove that this hypothesis is achieved and, over
all Fq -isogeny classes with endomorphism algebra being a field and where q is an even power of a prime, we
prove that the one with maximal number of rational points is cyclic and ordinary.

Keywords: group of rational points, cyclic, abelian variety, finite field
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1. Introduction

The group structure of elliptic curves (EC) defined over finite fields has a theoretical interest, but also
an interest in applications to cryptography and error-correcting codes. More precisely, those elliptic curves
with cyclic groups of rational points are of special interest for various problems (see for example [7], [9] and
[6]). In many algorithms that use elliptic curves over finite fields one chooses it at random, thus, knowing
such statistics can be useful.

The structure of all possible groups for EC over a finite field was discovered (independently) in [15],
[12],[18] and [21]. However, this result does not provide immediately the statistics for cyclic EC over a given
field or its extensions, which was explored in [19] and [20]. See also [1], where the realizability of possible
groups for EC was studied from a statistical point of view.

There are many other closely related topics which were considered in the literature. In [16] and [11] the
order of points on the groups of rational points was studied, in particular lower bounds for the exponent (the
largest order), and some applications as well. Also, the exponent under base field extensions was examined
in [8]. This question is closely related to the question about cyclicity, since cyclicity is equivalent to the fact
that the exponent equals the cardinality of the group of rational points.

For both theoretical and practical interests, it is very natural to extend this investigation to abelian
varieties of higher dimensions. Many facts are still unknown in this case. Nevertheless, in a recent paper [14],
Rybakov gives a very explicit description of all possible groups of rational points of an abelian variety in a
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given isogeny class. His result is formulated in terms of the Newton polygon of the variety and the Hodge
polygon of the group. In particular, from this description it follows that varieties with cyclic group of rational
points always exist in an isogeny class. In [2] it is shown that for abelian surfaces, “very split” groups of
rational points occur with density zero. This result agree with the general framework of the Cohen–Lenstra
heuristics, which establish that groups with a higher number of automorphisms appear less frequently, since
the very split groups have many more automorphisms than the cyclic group of the same size.

Another related and widely explored topic is maximal curves, i.e., those with a maximal number of rational
points, such curves are very important for applications. Goppa showed that the applications of EC to coding
theory are interesting only if the curve has many rational points ([5]). Theoretical and practical bounds were
explored and many algorithms to construct it were proposed. Relating “maximal” abelian varieties with its
structures of rational points does not seem to be a simple task, but with many promising applications.

In cryptography, the Discrete Logarithm Problem is extensively used in such systems and, under some
conditions, cyclic groups are suitable for these purposes ([4]). In many applications, security is based on
working with big cyclic subgroups of the group of rational points.

Another interesting related topic is counting isomorphism classes of abelian varieties defined over a fixed
finite field. In the 1-dimensional case, this corresponds to compute class numbers of some orders in quadratic
number fields, and in the general case, this was treated for example (very recently) in [23]. Isomorphism
classes can be grouped in isogeny classes. In [3], DiPippo and Howe developed some techniques and gave
an asymptotic formula (with explicit error terms) for the number of isogeny classes of n-dimensional abelian
varieties over the finite field with q elements, for fixed n and q tending to infinity.

In this paper we give some statistical results concerning cyclic isogeny classes, namely, in Theorem 2.2
we present a simple criterion to know if an isogeny class is cyclic, i.e., all its varieties have a cyclic group
of rational points, this criterion is based on the characteristic polynomial of the isogeny class. Further, in
Theorems 2.3 and 2.6 we give asymptotic lower bounds on the fraction of cyclic isogeny classes when some
coefficients on the characteristic polynomial corresponding to these isogeny classes are fixed. Theorem 2.6
needs an extra condition and, we show that for “good” coefficients, this condition holds true for abelian
surfaces. Finally, we prove in Theorem 4.3 that under some restrictions, isogeny classes of abelian surfaces
defined over finite fields with maximal number of rational points are cyclic and ordinary. Also, we give some
examples of families of cyclic isogeny classes of abelian surfaces.

The rest of this paper is organized as follows: in Section 2 we briefly recall some general facts about
abelian varieties over finite fields and we state our results more precisely; in Section 3 we prove Theorems
2.2, 2.3 and 2.6 and, Section 4 is devoted to abelian surfaces.

2. Preliminaries and Statement of the Results

For the general theory of abelian varieties see for example [10], and for precise results over finite fields,
see [22].

Let q = pr be a power of a prime, and let k = Fq be a finite field with q elements. Let A be an
abelian variety of dimension g over k. For an extension field K of k, we denote by EndK(A) the ring of
K-endomorphism of A and by End0

K(A) = (EndK(A)) ⊗ Q its endomorphism algebra, the latter being an
invariant of its isogeny class A, we can denote it by End0

K(A). For an integer n, denote by n̂ the ratio of n
to the product of different prime divisors of n; and by A[n] the group of n-torsion points of A over Fq , i.e.,
the kernel of the multiplication endomorphism [n]. Then

A[n] ∼= (Z/nZ)2g, p - n
A[p] ∼= (Z/pZ)i, 0 ≤ i ≤ g

(1)
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For a fixed prime ` (6= p), the Tate module T`(A) is defined by lim←−A[`n]. The Frobenius endomorphism
F of A acts on T`(A) by a semisimple linear operator, and its characteristic polynomial fA(t) is called
Weil polynomial of A. Tate proved in [17] that the isogeny class A of abelian variety is determined by its
characteristic polynomial fA(t) and, if A is simple, fA(t) = hA(t)e for some irreducible polynomial hA and
the center of End0

k(A) is isomorphic to the number field Q(F ) ∼= Q[t]/(hA(t)). The cardinality of the group of
rational points A(k) of A equals fA(1), and thus, it is an invariant of the isogeny class. For a prime number
`, v` denotes the usual `-adic valuation. We denote by P the set of prime integers and by P(n) the set of
prime divisors of n.

For an elliptic curve E, we have that E(Fq ) is non-cyclic if and only if there exist a prime ` 6= p such that
E[`] ⊆ E(Fq ). This is not the case for higher dimensional varieties, however, a slightly different criterion
holds:

Lemma 2.1. If A is simple, then

A(Fq ) is not cyclic ⇐⇒ ∃ϕ ∈ EndFq
(A), [fA(1)/`] = ϕ ◦ (1− F ) for some prime divisor `|fA(1).

Note that in this case we do not require ` 6= p. Note also that if such ϕ exists, it has to be defined over
Fq and it belongs to the center of its endomorphism ring. This lemma is an easy consequence of the theory
of abelian varieties over finite fields and we will prove it here within the proof of Theorem 2.2. Lemma 2.1
implies that abelian varieties with few endomorphism are more likely to be cyclic. The group structure of an
abelian variety is not necessarily determined by its endomorphism ring, but from Lemma 2.1 it follows that
the property of being cyclic or not depends on its endomorphism ring, and thus, it is an invariant of it.

We say that A is cyclic if the group A(Fq ) is cyclic. Counting cyclic varieties in a given isogeny class is
the same as counting some fractional ideals in the center of End0

Fq
(A). In this paper we will focus on cyclic

isogeny classes, i.e., those that contain only cyclic varieties. We have the following criterion:

Theorem 2.2. Let A be a g-dimensional Fq -isogeny class of abelian varieties corresponding to the Weil

polynomial fA(t). Then A is cyclic if and only if f ′A(1) is coprime with f̂A(1).

This can be proved by using Rybakov’s Theorem ([14]) when End0
Fq

(A) is commutative, and we shall
prove it using the Lemma 2.1 in the general case. Note that we do not require A to be simple.

Every Weil polynomial has the form

fA(t) = t2g + a1t
2g−1 + · · ·+ agt

g + ag−1qt
g−1 + . . . a1q

g−1t+ qg ∈ Z[t], (2)

and for simplicity, we write it as fq,(a1,...,ag)(t).
Denote by Sg(q) the set of g-dimensional isogeny classes A of abelian varieties defined over the finite field

Fq , and by Sgc (q) the subset of cyclic isogeny classes. The size of Sg(q) is c(g)(1 − 1/p)qg(g+1)/4, when q
tends to infinity and c(g) is a constant depending only on the dimension g (see [3] for details). We write
(a1, . . . , ag) ∈ Sg(q) if the polynomial fq,(a1,...,ag)(t) defines such an isogeny class.

Our first approach is to fix a vector a = (a1, . . . , ag−1) ∈ Zg−1 of g − 1 integers, and define two sets of
possible values of ag:

Ia(q) := {z ∈ Z|(a1, . . . , ag−1, z) ∈ Sg(q)}, (3)

Ia,c(q) := {z ∈ Z|(a1, . . . , ag−1, z) ∈ Sgc (q)}. (4)

It is obvious that Ia(q) is finite and non empty from a certain value of q = q(a). Fixing a prime p, we are
interested on the proportion

rp,a(n) :=

∑n
i=1 #Ia,c(p

i)∑n
i=1 #Ia(pi)

, (5)
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when n tends to infinity.
Finally, we define the polynomial h(X,a) := gfX,(a,z)(1)−f ′X,(a,z)(1) (in fact, it is independent of z), and

we have

Theorem 2.3. Given a ∈ Zg−1 and a prime p, then

lim inf rp,a(n) ≥ 1− p

p− 1

1−
∏

`∈P(h(p,a))

(
1− 1

`2

)(1− 1

pg/2

)
+

1

pg/2

 . (6)

Remark 2.4. Note that the limit of rp,a does not necessarily exist. Also, it is easy to see that if p� 0, this
bound is approximately ∏

`∈P(h(p,a))

(
1− 1

`2

)
,

which is greater than 1/ζ(2) = 0.6 . . . , where ζ is the Riemann zeta function.

Let us follow now a different approach by fixing a vector b = (b1, . . . , bg) ∈ Zg of g integers, we want to
study when fq,b(t) defines a cyclic isogeny class over Fq when q varies over the power of primes. We consider
this problem in two ways: (i)q varies over primes and (ii) we fix a prime p and q varies over the powers of p.

For our next result, we will need an extra hypothesis, which we make explicit as follows:

Hyp(b): there exist integers η(b), t(b) and s(b) with no common factor, such that the only
possible divisors of fq,b(1) and f ′q,b(1) are divisors of η and tq + s.

Remark 2.5. The key idea is that these values, in particular η, are independent of q. Such η can always be
obtained by successive Euclidean division, since we can see f and f ′ as polynomials in Q[q]; but it is not sure
to have a linear polynomial in q, with the condition of no common factors. Observe that η can be chosen as a
product of different prime numbers. For the 2-dimensional case, we will see in Section 4 that this hypothesis
holds for a wide range of values of b, and we will explicit them.

Then we are interested on the following proportions:

xb(n) =
#{` ≤ n prime|b ∈ Sgc (`)}
#{` ≤ n prime|b ∈ Sg(`)}

, (7)

yp,b(n) =
#{i ≤ n|b ∈ Sgc (pi)}
#{i ≤ n|b ∈ Sg(pi)}

, (8)

when n tends to infinity. Note that the above fractions are defined from a big enough n. Then our next
result is

Theorem 2.6. Given b1,b2 ∈ Zg and a prime number p > 2 such that

1. Hyp(bi) holds, with η, t and s given,
2. p doesn’t divide the last coordinate of b2, and
3. the multiplicative group (Z/η(b2)Z)∗ is generated by p.

Then

1. lim inf xb1
(n) ≥ L1 and, 2. lim inf yp,b2

(n) ≥ L2,

where

Li =
∏

`∈P(η(bi))\P(t(bi)s(bi))

`− 2

`− 1
, i = 1, 2.

4



Remark 2.7. As we can see, this bound depends on the choice of (η, t, s). We can verify that if (η1, t1, s1)
and (η2, t2, s2) verify Hyp(b) for some fixed b, then ((η1, η2), t1, s1) also does. Also, if (η, t1, s1) and (η, t2, s2)
verify Hyp(b), and if there exist a prime ` ∈ P(t2s2) \ P(t1s1) dividing η, then (η/`, t1`, s1`) also verifies
Hyp(b). This allows us to optimize the bound in that way. However, in Section 4 we will see with an
example that Theorem 2.6 does not provide necessarily the best bound.

Example 2.8. As example, we discuss the case of elliptic curves. Here we have

fq,a(1) = (1 + a) + q and f ′q,a(1) = 2 + a,

thus, Hyp(a) holds for all values of a if we take η(a) = 2 + a,
t(a) = 1,
s(a) = 1 + a.

Also, since η(a) and s(a) are always coprimes, the bound for Theorem 2.6 takes the form

L =
∏

`∈P(2+a)

`− 2

`− 1
.

Concerning Theorem 2.3, we have that h(p,a) = p − 1, where a can be considered empty. This provides
a complete answer to the fraction of cyclic isogeny classes defined over some finite extension of Fp, and for
p� 0, the bound takes the form ∏

`∈P(p−1)

(
1− 1

`2

)
.

To finish this example, let us say that the question

For which values of q, all isomorphism classes of EC defined over Fq are cyclic?

is answered in Theorem 4.1 in [19], and in view of Theorem 2.2, this is equivalent to

For which values of q, (f̂q,a(1), f ′q,a(1)) = 1 ∀a ∈ [−2
√
q, 2
√
q]?

3. General case: proof of theorems

In this section we prove Theorems 2.2, 2.3 and 2.6.

Proof of Theorem 2.2:
First we consider the case when A is simple. For an abelian variety A ∈ A, the center of its endomorphism
algebra EndFq (A) ⊗ Q is isomorphic to the number field K = Q(π), where π is a root of fA and represents
the Frobenius endomorphism F . For every variety A in A, EndFq (A) ∩K is an order in K (thus contained
in OK), and OK is the endomorphism ring for some B ∈ A by Theorem 3.13 in [22]. For any x ∈ K, we
have that x ∈ OK holds if and only if its (unitary) minimal polynomial has integer coefficients, that is, is an
algebraic integer.
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Denote by N the value fA(1), then Lemma 2.1

A(Fq ) is not cyclic ⇐⇒ ∃ϕ ∈ EndFq
(A), [N/`] = ϕ ◦ (1− F ) for some prime divisor `|N

follows from the fact that A(Fq ) is not cyclic if and only if A(Fq ) = ker(1 − F ) ⊂ ker([N/`]) = A[N/`] for
some `|N , since 1 − F is separable. Since A is simple, if such ϕ exist, it must be in K: if ψ ∈ EndFq (A),
multiplying the previous equation in both sides and subtracting them, we have 0 = (ϕψ − ψϕ) ◦ (1 − F ),
thus, ϕ commutes with ψ. Similarly, we can show that this endomorphism is defined over Fq .

We consider the minimal polynomial p`(t) of N
`(1−π) . All non-leading coefficients of p` are of the form

Ni−1

`i times an integer, except for the coefficient of t2g−1, which equals − f
′(1)
` , and that the constant term

equals N2g−1

`2g .

If A is cyclic, then all elements of { N
`(1−π) , `|N} are algebraic non integers: if not, for some `, N

`(1−π) ∈ OK
and for some abelian variety B with EndFq

(B) ∩K = OK we will have that B(Fq ) is not cyclic. Therefore

p` have some non integer coefficient, either ` - f ′(1), either v`(N) = 1. In consequence, gcd(N̂ , f ′(1)) = 1.

If gcd(N̂ , f ′(1)) = 1, then for any `|N , either (`, f ′(1)) = 1, or v`(N) = 1. In both cases, p` have some
non integer coefficient, and thus, N

`(1−π) /∈ OK . This implies that, for all A ∈ A, there is no ϕ ∈ End(A) with[
N
`

]
= ϕ ◦ (1− F ): if such ϕ exist, it has to be equal to N

`(1−π) , which is a contradiction.

Now we consider the general case. Then A is isogenous to a product
∏
Ai of simple isogeny classes,

and we have that fA(t) =
∏
fi(t), where fi(t) is the characteristic polynomial of Ai. Suppose A is

not cyclic, we have two possibilities: (i) one of its components is not cyclic or (ii) ∃` prime such that

`|(f1(1), f2(1)) (WLOG). In (i), by the first part of the theorem, (f̂1(1), f ′1(1)) > 1 (WLOG), writing

f ′A(t) = f ′1(t)
∏
i>1 fi(t) + f1(t)(

∏
i>1 fi(t))

′ we have that (f̂A(1), f ′A(1)) > 1. In (ii), writing f ′A(t) =

f ′1(t)f2(t)
∏
i>2 fi(t) + f1(t)f ′2(t)

∏
i>2 fi(t) + f1(t)f2(t)(

∏
i>2 fi(t))

′ we have that (f̂A(1), f ′A(1)) > 1. Sup-

pose now that `|(f̂A(1), f ′A(1)), thus, `2|fA(1) and `|f ′A(1). Again, we have two possibilities: (i) `|f1(1)
and `|

∏
i>1 fi(1) or, (ii) `2|f1(1) and ` -

∏
i>1 fi(1). In (i), A is not cyclic. In (ii), writing f ′A(t) =

f ′1(t)
∏
i>1 fi(t) + f1(t)(

∏
i>1 fi(t))

′ we see that `|f ′1(1), thus, A is not cyclic by the first part of the theorem.
Theorem 2.2 is thus proved.

Note that Lemma 3.3.1 in [3] implies that for fixed a ∈ Zg−1, fq,(a,z)(t) always defines an ordinary isogeny
class from a q big enough when p - z, and they are almost all the isogeny classes. This will be important for
the proofs of both theorems that follow, and it will be explained at beginning of the next proof.

Proof of Theorem 2.3:
From now on, a and p are fixed. For simplicity, we denote by Ni and Si the integers #Ia(pi) and the sets of
prime divisors of h(pi,a), with S = S1, respectively. From a certain value of i, Ia(pi) is a finite non-empty
set of integers, thus we can take its maximum max(Ia(pi)) and minimum min(Ia(pi)) values, and we set
Mi = max(Ia(pi))−min(Ia(pi)). Also, we write fi,z(t) instead of fpi,(a,z)(t).

From Weil’s “Riemann Hypothesis”, if z ∈ Ia(pi), then |z| ≤ 2pic, where we set c = g/2. For a big enough
i, among the integers z between −2pic and 2pic, those such that (z, p) = 1 define an ordinary isogeny class
(this follows from the inequality in Lemma 3.3.1 in [3]) and the proportion of such z defining non-ordinary
isogeny classes is less than 1/pi/2 (this follows from Proposition 3.1.3 in [3]). Then we deduce that

Ni/Mi →
p− 1

p
and Mi/4p

ic → 1 when i→∞.
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In order to take advantage of Theorem 2.2, the following elementary lemma allows us to identify the
primes that can simultaneously divide the arithmetic progressions fi,z(1) and f ′i,z(1) (as sequences on z):

Lemma 3.1. Let xn and yn be two arithmetic progressions of difference dx and dy respectively, and let ` be
a prime such that dx 6≡ 0 (mod `). Then `|(xi, yi) for some i if and only if dxyj ≡ dyxj (mod `) for some j.

Proof. First, observe that if the congruence dxyj ≡ dyxj (mod `) is verified for some j, then it verifies for all
i:

dxyi ≡ dx(yi − yj + yj) (mod `)

≡ dxyj + dxdy(i− j)
≡ dyxj + dxdy(i− j)
≡ dy(xj + dx(i− j))
≡ dyxi

Suppose now that dxyj ≡ dyxj (mod `), then we have to solve the system{
x0 + dxi ≡ 0 (mod `)
y0 + dyi ≡ 0 (mod `)

We get that i ≡ −x0d−1x , and thus, y0 + dy(−x0d−1x ) ≡ y0 − (dyx0)d−1x ≡ y0 − dxy0d−1x ≡ 0 (mod `).

We apply the lemma to the sequences fi,z(1) and f ′i,z(1), hence the modular condition becomes g(fi,z(1)−
z) ≡ f ′i,z(1)− gz (mod `) and thus, from the definition of h(pi,a) only the primes in Si can simultaneously
divide fi,z(1) and f ′i,z(1).

For an integer n and a finite set of integers Z, let denote

σ(n,Z) =
∑
i≥1

(−1)i+1
∑

R⊂Z,|R|=i

⌈
n∏

x∈R x
2

⌉
,

ξ(Z) =
∑
i≥1

(−1)i+1
∑

R⊂Z,|R|=i

1∏
x∈R x

2
= 1−

∏
x∈Z

(
1− 1

x2

)
.

Observe that ξ can be defined for infinite subsets of P since ξ(P) converges and, if Z ⊆ Z ′, ξ(Z) ≤ ξ(Z ′).
We will study the sequence 1− rp,a, i.e., we will count non cyclic isogeny classes using the lemma above.

Note that if `2|fi,z(1), then `2 - fi,z+`(1), thus after applying the inclusion-exclusion principle, we can see
that the number #(Ia(pi) \ Ia,c(pi)) of non cyclic isogeny classes for pi is at most σ(Mi, Si).

For every finite set T of prime numbers that does not divide h(p,a) (T ⊂ P \ S1 finite), we consider the
polynomial

g(X) = m(g)X + 1, m(g) =

(∏
`∈T

`− 1

)
,

thus, h(pi,a) ≡ h(p,a) 6≡ 0 (mod `) for all ` ∈ T and for all i ∈ g(N), hence Si ⊂ P \ T for all i ∈ g(N).
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We get

1− rp,a(n) ≤
∑
σ(Mi, Si)∑

Ni
≤

∑
i/∈g(N)

Mi +
∑

i∈g(N)
σ(Mi, Si)∑

Ni

≈ p

p− 1

∑
i/∈g(N)

Mi +
∑

i∈g(N)
σ(Mi, Si)∑

Mi

≈ p

p− 1

∑
i/∈g(N)

Mi +
∑

i∈g(N)
Miξ(Si)∑

Mi

≤ p

p− 1

∑
i/∈g(N)

Mi +
∑

i∈g(N)
Miξ(P \ T )∑

Mi

≈ p

p− 1

∑
i/∈g(N)

(pc)i + ξ(P \ T )
∑

i∈g(N)
(pc)i∑

(pc)i

where all the sums are taken over 1 ≤ i ≤ n and ≈ means that both sequences have the same superior limit.
The last sequence converges to

p

p− 1

[
1 + (ξ(P \ T )− 1)

pcm(g)(pc − 1)

pc(m(g)+1) − 1

]
.

As we have the previous reasoning for all finite set T disjoint to S, thus,

lim sup(1− rp,a(n)) ≤ p

p− 1

[
1 + (ξ(S)− 1)(1− 1

pc
)

]
=

p

p− 1

[
ξ(S)

(
1− 1

pc

)
+

1

pc

]
.

Finally

lim inf rp,a ≥ 1− p

p− 1

[
ξ(S)

(
1− 1

pc

)
+

1

pc

]
.

That finish the proof of Theorem 2.3.

Proof of Theorem 2.6:
We write q for ` varying (i) over the primes or (ii) over powers pi when i varies over positive integers.

As a consequence of Dirichlet’s Theorem or Theorem’s hypothesis, the values of q are (asymptotically)
evenly distributed among the invertible congruence classes modulo η, when q varies according to (i) or (ii),
respectively.

Set j(q) = tq + s, then, by Hyp, the condition (j, η) = 1 would imply that bi ∈ Sgc (q), from a certain
value of q when fq,bi

(t) defines an isogeny class.
Observe that (j, η) = 1 if and only if j is invertible in Z/ηZ; then we conclude by using the following

lemma.

Lemma 3.2. Let t, s and n be integers with no common factor, then

#{x ∈ (Z/nZ)∗|tx+ s ∈ (Z/nZ)∗}
#(Z/nZ)∗

=
∏

`∈P(n)\P(ts)

`− 2

`− 1
.
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Proof. Take an ` ∈ P(n) and set m = `v`(n), we have that #(Z/mZ)∗ = m −m/`. If ` - ts we have that
#{x ∈ (Z/mZ)∗|tx+s ∈ (Z/mZ)∗} = m−2m/`. If `|ts, for all x ∈ (Z/mZ)∗ we have that tx+s ∈ (Z/mZ)∗.
We conclude by using the isomorphism Z/nZ ∼=

∏
`|n Z/`v`(n)Z.

4. The case of Abelian Surfaces

In this section we consider the case of abelian surfaces, where the characteristic polynomial takes the form

fA(t) = t4 + at3 + bt2 + aqt+ q2,

thus, we have b = (a, b).

4.1. Theorems applied to Surfaces.

In order to apply Theorem 2.6 to surfaces, we need to verify Hyp(b); and this is a consequence of the
proposition below and the conditions on b that follow:

Proposition 4.1. Let a, b and q be integers, then the common divisors of

N = 1 + a(q + 1) + b+ q2 and

J = 4 + a(q + 3) + 2b

are divisors of η(a, b) := (2a+ b+ 2)(a2 − 4a+ 4b− 16).

Proof. Let ` be a prime divisor of N and J , then it divides

(q + 3)N − (q + 1)J = (q − 1)(q2 + 4q − 1 + b) and

2N − J = (q − 1)(2q + 2 + a).

If ` divides q − 1, then N = q2 − 1 + a(q − 1) + 2a+ b+ 2 ≡ 2a+ b+ 2( mod `). We set

γ = q2 + 4q − 1 + b and

θ = 2q + 2 + a.

So, if ` doesn’t divide q − 1, then it divides γ and θ, and we have

4γ = θ(2q + 6− a) + (a2 − 4a+ 4b− 16).

Finally, the possible common divisors are the divisors of (2a+ b+ 2)(a2 − 4a+ 4b− 16).

We have η(a, b) as defined in the proposition and clearly f ′(1) = aq + 4 + 3a+ 2b, thus, we can take η(a, b) = (2a+ b+ 2)(a2 − 4a+ 4b− 16),
t(a, b) = a,
s(a, b) = 4 + 3a+ 2b.

To finish, and in order to have the condition of no common divisor (with the values previously chosen), the
integers in b = (a, b) must verify:

(a, b+ 2) = 1, and a ≡ 1 (mod 2).
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A priori these values are not optimal in the sense of Remark 2.7, and as mentioned previously, Theorem
2.6 does not necessarily provide the optimal bound. For example, observe that Hyp(0, 0) holds with η =
2, t = 1, s = 1, in which case L1 = L2 = 0, which are clearly very bad bounds. But by applying directly
Theorem 2.2 we can have better bounds, first we have:

fq,b(1) = 1 + q2 = (q2 − 1) + 2 and f ′q,b(1) = 4,

thus, fq,b(1) is equivalent to 1 or 2 modulo 4, depending if p equals 2 or not, respectively, thus L1 = L2 = 1.
This is because Theorem 2.6 uses only a weak result:

(f(1), f ′(1)) = 1 ⇒ cyclicity,

and not the stronger equivalence from Theorem 2.2:

(f̂(1), f ′(1)) = 1 ⇔ cyclicity.

Concerning Theorem 2.3 applied to abelian surfaces, this provides the fraction of cyclic isogeny classes with
a fixed trace of Frobenius a and a fixed base field characteristic p. We have that h(p, a) = (p−1)[2(p+1)+a].
Thus, for a = −4 and a Fermat prime p, the lower bound for Theorem 2.3 is 0.75 and we cannot improve it.
Even for primes of form 2`+ 1 (with `� 0 a prime number) we have a good bound, around 0.75.

4.2. Maximal Surfaces

Now, let us discuss about the other topic mentioned in the Introduction, varieties with many rational
points. Rück’s theorem [13] describes polynomials that occurs as Weil polynomials for abelian surfaces with
endomorphism algebra being a field:

Theorem 4.2 (Rück). The set of fA(t) for all abelian varieties A over Fq of dimension 2 whose algebra
End(A)⊗Q is a field is equal to the set of polynomials f(t) = t4 + at3 + bt2 + aqt+ q2 where the integers a
and b satisfy the conditions

1. |a| < 4
√
q, 2|a|√q − 2q < b < a2/4 + 2q,

2. ∆ = a2 − 4b+ 8q is not a square in Z, and

3. either

(a) vp(a) = 0, vp(b) ≥ r/2 and (b+ 2q)2 − 4qa2 is not a square in Zp,
(b) vp(b) = 0, or
(c) vp(a) ≥ r/2, vp(b) ≥ r, and f(t) has no root in Zp.

Concerning this type of isogeny classes, we have the following result

Theorem 4.3. Let q = pr with r even. Consider the Fq -isogeny classes A of abelian surfaces with End0
Fq

(A)
being a field. Then the isogeny class with maximal number of rational points among such classes is ordinary
and cyclic, and corresponds to the Weil polynomial

f(t) = t4 + at3 + bt2 + aqt+ q2, where a = 4
√
q − 3 and b = 6q − 6

√
q + 1.

Proof. For a fixed q, the number of rational points increases with a and b. From the conditions of Rück’s
Theorem we have that the biggest possible values are a = 4

√
q − 3 and b = 6q − 6

√
q + 1 with ∆ = 5, and

the ordinariness is clear.
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Then we have

f(1) = −1− 2
√
q + 3q + 4(

√
q)3 + q2 and

f ′(1) = −3 + 9q + 4(
√
q)3

Writing f(1) and f ′(1) as functions N and j of x =
√
q, respectively, we see that

N(x) = x4 + 4x3 + 3x2 − 2x− 1, j(x) = 4x3 + 9x2 − 3,

and thus,

(14x3 + 49x2 + 28x− 14)j(x)− (56x2 + 98x− 7)N(x) = 35 = 5 · 7

Finally, we can see case by case, that for ` ∈ {5, 7} we cannot have that `|j(x) and `2|N(x) simultaneously:

• for ` = 5,

x (mod 5) 0 1 2 3 4
j (mod 5) 2 0 0 1 2

x (mod 25) 1 2 6 7 11 12 16 17 21 22
N (mod 25) 5 5 5 5 5 5 5 5 5 5

• for ` = 7,

x (mod 7) 0 1 2 3 4 5 6
j (mod 7) 4 5 3 1 2 2 4

Surfaces having more number of rational points N than those considered in Theorem 4.3 are only (in
decreasing order of N):

E2
max, Emax × Emax−1, Emax × Emax−2, E2

max−1 and Emax−1 × Emax−2,

where Emax, Emax−1 and Emax−2 are the elliptic curves defined by its Frobenius traces 2
√
q, 2
√
q − 1 and

2
√
q − 2, respectively. We can easily check, by using Theorem 2.2, that Emax is always not cyclic, Emax−2

is always cyclic, and Emax−1 is cyclic or not, depending on q ≡ 0, 1 (mod 3) or q ≡ 2 (mod 3), respectively
(since 3 is the only possible prime divisor of f(1) and f ′(1)); thus, the cyclicity of Emax−1×Emax−2 depends
only on the cyclicity of Emax−1, since the cardinalities of Emax−1 and Emax−2 are relatively prime.

On the other hand, note that for q = 233 the ordinary class with maximal number of rational points,
among the classes considered in Theorem 4.3, is given by

f(t) = t4 + 438t3 + 72293t2 + 438(233)t+ 236

and is not cyclic since 7|f ′(1) and 49|f(1), so Theorem 4.3 holds only for even powers.
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4.3. Families of cyclic isogeny classes

We finish this section by giving two sequences of cyclic isogeny classes of abelian surfaces in Proposition
4.4 and 4.5. Basically, we get the cyclicity of these families by choosing appropriate values of q and b.

Proposition 4.4. Given an integer b and a power of a prime q = pr > 4, such that:

1. p - b
2. 8
√
q − 4q ≤ b ≤ 4,

3. N0 = b− 3− 2q + q2 is coprime with N ′0 = 2(b− 4)

Let be s =
∏

`∈P(N ′0)
(`− 1). Then for i ∈ Z≥0

fi(t) = t4 − 4t3 + bit
2 − 4qit+ q2i , where qi = pr+is and bi = b+ 2qi,

defines a ordinary cyclic isogeny class Ai of abelian surfaces over Fqi .

Proof. Note that fi(t) = fqi,(−4,bi)(t). Every fi defines an ordinary isogeny class of abelian surfaces since
p - bi, and fi is a Weil polynomial since

8
√
qpis/2 − 4qpis ≤ 8

√
q − 4q ≤ b ⇒ 8

√
qi − 2qi ≤ b+ 2qi = bi

bi = b+ 2qi ≤ 4 + 2qi =
(−4)2

4
+ 2qi.

Observe that f ′qi,(−4,bi)(1) = 4− 4(qi + 3) + 2(b+ 2qi) = N ′0 = f ′q,(−4,b)(1). Also, we have that

fi+1(1)− fi(1) = (ps − 1)[p2(r+is)(ps + 1) + 2pr+is].

Thus, (fi(1), N ′0) = 1 implies (fi+1(1), N ′0) = 1, then if Ai is cyclic, Ai+1 is cyclic as well. We conclude by
using the theorem’s hypothesis.

It is not hard to find values (q, b) verifying the last hypothesis. Moreover, for a fixed prime p, there are
infinite many pairs (r, b) such that (pr, b) verifies it.

Proposition 4.5. Given an integer b and an odd prime p > b+ 2 such that b 6≡ 2 (mod 4) and

∃r ≥ 1, (p2r − 1, b+ 2) = 1,

then for every i ≥ 0,
fi(t) = t4 + bt2 + q2i

defines an ordinary cyclic isogeny class Ai of abelian surfaces over Fqi , where qi = pr+is and

s =
∏

`∈P(b+2)

(`− 1).

Proof. It is easy to check that fi(t) is a Weil polynomial and it defines an ordinary isogeny class since p > b.
Put

c =
∏

`∈P(b+2)

`,
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We have

fi(1) = p2(r+is) − 1 + (b+ 2), i ∈ Z≥0.

Observe that fi(t) = fqi,(0,b)(t) and f ′i(1) = 2(b+ 2). For Ai to be cyclic it is enough to have (fi(1), 2(b+
2)) = 1, and since fi(1) ≡ b + 2 6≡ 0 (mod 4), it is enough to have (fi(1), b + 2) = (fi(1), c) = 1. The
last statement is true since by hypothesis (f0(1), c) = 1 and since c divides the difference fi+1(1) − fi(1) =
p2(r+is)(ps + 1)(ps − 1) (using Fermat’s little theorem).

For a fixed p, big enough, take a prime ` such that 2 < ` < p and ` - p2− 1, then set b = `− 2. This gives
b and p satisfying the proposition hypothesis.
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