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Abstract

Purpose: The goal of this data challenge was to createractstred dynamic with the
following objectives: 1) teach radiologists the newles of General Data Protection
Regulation (GDPR), while building a large multicéntprospective database of ultrasound,
computed tomography (CT) and MRI patient images, bR)ld a network including
radiologists, researchers, start-ups, large comegamind students from engineering schools,
and 3) provide all French stakeholders working tioge during 5 data challenges with a

secured framework, offering a realistic picturdhe benefits and concerns in October 2018.

Materials and Methods: Relevant clinical questions were chosen by theésdErancaise de
Radiologie. The challenge was designed to respédtranch ethical and data protection
constraints. Multidisciplinary teams with at lease radiologist, one engineering student, and
a company and/or research lab were gathered usfegedt networks, and clinical databases

were created accordingly.

Results: Five challenges were launched: detection of mahisars on MRI, segmentation of
renal cortex on CT, detection and characterizatiliver lesions on ultrasound, detection of
breast lesions on MRI, and characterization of dityrcartilage lesions on CT. A total of
5,170 images within 4 months were provided for thallenge by 46 radiology services.
Twenty-six multidisciplinary teams with 181 contasits worked for one month on the
challenges. Three challenges, meniscal tears, rédx, and liver lesions, resulted in an
accuracy > 90%. The fourth challenge (breast) recdi@2% and the lastone (thyroid) 70%.

Conclusion: Theses five challenges were able to gather a lemgemunity of radiologists,
engineers, researchers, and companies in a very@rod of time. The accurate results of
three of the five modalities suggest that artificreelligence is a promising tool in these

radiology modalities.

Keywords:. Artificial intelligence (Al); Meniscal tears; Bast lesions; Thyroid cartilage;

Liver lesions; Renal cortex.



Introduction

World interest in artificial intelligence (Al) isrgwing rapidly due to the availability of large
and scalable datasets in many industries, advancesmputing power particularly central
processing unit (CPU) and graphics processing @#l), and the never-ending release of
new algorithms. New standards of machine learrsngh as deep learning, have tremendous
impact on radiologic activities [1]. This major clge seems to enable radiologists to leverage
their value, efficiency, accuracy, and personak&attion [2]. Thrall et al. have analyzed key
success factors of such changes in radiology basedalue created, including increased
diagnostic certainty, faster turnaround, bettecontes for patients, and better quality of work
life for radiologists [3]. The strategic positiogiof all participants (patients, radiologists, Al
expert, information technology department) is aaudor a successful transition [4]. The
Canadian Association of Radiologists (CAR) and Emench Society of Radiology (SFR)
published a white paper discussing the importarfcAlocand the probable impact on the
community of radiologists in the near future [3,8, Private and public radiologists have
worked together to include all modalities such la®siound, computerized tomography (CT),
and magnetic resonance imaging (MRI) [7]. At thensatime, the European Union is
reforming data protection legislation via the Gahddata Protection Regulation (GDPR),
with new legislation implemented in May 2018 [8].

The goal of this data challenge, organized by $i#&R during the 2018 Journées
Francophones de Radiologie (JFR), was to createuatwed dynamic with the following
objectives: 1) teach radiologists the new rule&G8fPR while building a large multicentric
prospective database of ultrasound, CT, and MREpiaimages, 2) build a network from
May to September 2018 including public and privaigiologists, researchers, start-ups, large
companies, and students from engineering schoot$,3a provide all French stakeholders
working together during 5 data challenges with eused framework, offering a realistic
picture of the benefits and concerns in Octobei8201

Material and methods

Clinical questions
The feasibility of the challenge was assessed bgam of radiologists and data scientists,
based on a bibliography of existing challenges #ral state of the French ecosystem of

radiology and Al. The goal was set for a minimuntabase of 600 2D images. The organ



societies of the SFR were asked to propose queasfmmthe challenge, considering four
criteria. First, the clinical relevance was judd®dthe radiologists. A literature search was
performed using Pubmed, Kaggle website and graatlertge website for this kind of
competition in order to avoid reproducing an algeaglisting challenge. Data-scientists from
a top French engineering school studied the fdagibf the challenge with the data provided.
The number of exams available per year for eaclstprewas estimated to assure it was
possible to gather the images in a very short dasidime. Only the validated challenges on
a shortlist that would reach the 600-image datalesald be launched and available for
teams. Five clinical questions regarding selectoteria were chosen by the SFR. The
inclusion criteria for each medical question weedirced by the organ society responsible of
the question.

Security and data protection

Regarding GDPR, a French regulation office, Comimisdlationale Informatique et Libertés
(CNIL), was consulted to assure the project desiga compliant. A methodology reference
was chosen in order to ease the data collectiotier®s& were provided a letter with all
necessary information. The data collected couly twel used for the aim of this challenge,
and only one image per exam was selected to awatién identification. An ethical chart
was written by the Al group of the SFR and requitbd signature of every radiologist
uploading exams to the database. The data wasdsidtiein the Gustave Roussy Institute
server to guarantee the same security as to dlipetgent data. Two separate phases were
designed for the project: a collection phase, whiatta could only be uploaded to the server
by users identified, and a competition phase, whahgthe treated and checked data could be

downloaded by identified team leaders.

Communication and team gathering

The teams were to have at least one radiologi&t,emgineering student, and a research lab
and/or company. The networks of the JFR and SFRe weed to gather radiologists. For
students and research labs, the networks of Fr@maduate Schools and Universities and

Life Imaging were used.

Companies that subscribed to JFR and data amalstartups were informed. Each
could subscribe online by completing a form witk thformation required. The organization

team published the contestant's contact informadiah the teams were allowed to gather at



their convenience. After three months, the chakestaff proposed team compositions to
contestants as an icebreaker. Only the teams ulitbdmposition were allowed to participate
and access the datasets. The inclusion criteriatw#odals were published on the challenge
website. Data were uploaded by each radiologigictir to the website. Contestants could
access the event details, the team's contact iatoym and the link to download datasets
online. WordPress was used to develop the welvgitie different plug-ins for uploading data

and user management.

Inclusion and challenge phases
When the inclusion phase began on May' PB18, radiologists used several networks to
participate in the data collection: the SFR, JFRbsite and newsletters, the challenge

website, and the French organ societies.

To motivate the radiology centers, inclusion stattas sent twice a week to all the
radiologists registered online and graphs showhggitclusion dynamic were included. The
teams received access to the first part of thesdttaon September "15and the second part
on October 1%. Work stations with internet access were availdbleeach team within the
congress center of the JFR. The competition wascked on October 142018, along with
the publication of the validation dataset. Eachmidead one hour to send the result of their
work. Winning teams were announced on Octob&t 15

Results

Renal cortex (CT)

Because glomerular filtration, an important clinieasessment of renal functions [9], is the
main function of the renal cortex, there has beearsiderable interest assessing renal cortex
volume and thickness [9, 10]. Indeed, renal cdrtrotume and thickness have been proven to
be effective biomarkers for renal function in masiyical situations. Applications include
identifying patients with kidney that function weah the context of evaluating potential
kidney donors, choosing the best resection planmage of partial nephrectomy for a better
preservation of renal function for urological tmeant, and the assessment of clinical
outcomes post-operatively. A non-invasive evaluatb cortex thickness is therefore critical
and automatic segmentation of the renal cortexdcqlhy a key role for functional and

morphological renal assessments [11, 12]. Howenastal cortex segmentation is complex



because the anatomy of renal cortex varies in shagesize, and is not easily distinguished

from neighboring tissues (i.e. vessels and reraiheos) because of similar intensity.

For this question, participants only had one tagkerforming automatic segmentation
of the clinical cortex. The images were given inftNiiles as the segmentation mask. For the
test set, participants returned a binary image wighsame size and format as the images in
the trial set. One scanner image in the coronaigylablique along the major axis, of the
kidney before and after injection of contrast matexas requested for upload.

Breast lesions (MRI)

Breast MRI is a key imaging tool for breast lesthagnosis and characterization [13]. Major
indications of breast MRI are cancer staging, tjang findings in equivocal lesions,
treatment evaluation after neoadjuvant chemotherapmyl cancer screening in high-risk
women [13]. Breast MRI is known to have high sewisyt but sometimes lacks specificity. A
challenge specific to staging breast cancer issagsg which contrast uptake is malignant vs.
benign, as many types of contrast-uptakes arel@jsand when normal breast tissue may also
show multiple contrast-uptakes. In addition, bremsticer increasingly appears as multifocal
lesions, especially in high-grade breast tumorthose with positive Her2 receptors. Thus,
there is a need to improve breast lesion charaetésn on MRI, despite the current use of
multimodal sequences such as T2-weighted imagind) @iffusion-weighted imaging to

improve breast lesion characterization [14].

The goal was to evaluate whether techniques ofwAuld improve breast lesion
characterization on MRI [15]. For this questiorerhwere two different tasks: the first was to
predict the benign or malignant nature of the lesand the second was to classify the lesion
among 17 types of lesions. Due to a small numbémafies for some lesions, we decided to
have only 4 groups: glandular tissue, infiltratahgctal carcinoma, other benign lesions, and
other malignant lesions. One slice of 3D nativeaigit sequence with injection with the two
breasts visible was provided. The lesion, provestologically or with an anterior MRI, was

requested for upload.

Liver lesions (ultrasound)
Because liver ultrasound is operator-dependentthargy that increases the standardization
and robustness is useful. Until now, few studiesltrasound were published using Al, and

have been focused on breast ultrasound, fatty titmtecn liver, and thyroid nodules [16-18].



For this reason, the radiologists on SFR exploheddetection and characterization of liver
nodules. This is often the primary concern duringabdominal examination and has not been
incorporated into a challenge to date.

For this question, the participants had threeediffit tasks: detect the presence of a
lesion in the image, characterize the lesion aggbesr malignant, and classify among 5 types
of lesions (cyst, angioma, focal nodular hyper@ald&iNH], hepatocellular carcinoma [HCC]
and metastasis). One cross-sectional image ofwaewith the edge apparent and without rib
artifacts or calipers was requested, the gold stahbeing one injected imaging exam or one

biopsy.

Meniscal tears (MRI)

Meniscal tears have an annual incidence estimattaelen 9 and 16 per 10,000 patients [19].
Tears can be either traumatic or degenerative iginoand affect the lateral and/or medial
meniscus, and the orientation can be classifieeeescal (longitudinal, radial, or oblique) or
horizontal. Precise detection and characterizasanucial for proper orthopedic management
[20]. MRI is an important noninvasive diagnostiolt@nd has a reported accuracy above
85%, although direct examination in arthroscopy aigms the gold standard [21]. Proton
density or intermediate-weighted sequences witlsdigpression are the standard of care for
meniscal tear detection [22]. Due to a complexragon in space, three planes (sagittal,
axial and coronal) or 3D sequences are requiregxtmmine every part of the menisci.
However, meniscal tears can be subtle and certathd lesions are frequently missed [22].
Few peer-reviewed articles have focused on mengealysis in MRI using machine learning
to date, with no prospective cohort focusing on sl tears published at the time of the
data challenge [23, 24].

One MRI slice per meniscus was included for th&a ddallenge (proton density or
intermediate-weighted sequences with fat suppreksibo enable analysis of both the
anterior and posterior horn of each meniscus, #Hggttal plane was chosen, with quality
control instructions to avoid partial volume effecon meniscus edges. Patients who
underwent previous knee surgery were not includdth menisci were included for each
patient. These technical choices enabled high degibility in the inclusion process. The
goal of this task was to detect and characterizeisnas lesions, with three different tasks:
detect the presence of a lesion in the meniscualite the fissure (anterior horn or posterior

horn), and characterize the orientation of theufisghorizontal or vertical). MRI examination



has to be performed in the sagittal plane, obtaatell5- or 3T, passing through the anterior

horn of the meniscus, and the anterior and posteam should be clear and well separated.

Thyroid cartilage (CT)

Tumor invasion of the thyroid cartilage by larynearcinoma worsens the prognosis after
radiotherapy treatment and may lead to a prefermgarimary surgery [25]. Conversely, the
absence of tumor invasion of the cartilage leads the choice of radiotherapy,
chemoradiotherapy, or chemotherapy followed byathdirapy [26-28]. On CT, the presence
of lysis and/or condensation is indicative of tunmorasion of thyroid cartilage and tumor
contact with cartilage. The performance of QT €, sensitivity and specificity for the
diagnosis of thyroid cartilage invasion) differsdely in clinical studies depending on the T
stage of the tumor and the presence of imagingwef29, 30]. As a result, it is interesting to
ask Al to identify abnormalities of thyroid cargj@a so as to advise the radiologist and the
multidisciplinary team. The objective of the chalie was to evaluate the feasibility of an

analysis of thyroid cartilage abnormalities byfasial intelligence.

For this question, there was only one task: chiarae the aspect of the thyroid
cartilage as normal or abnormal (lysis or condeasatOne scanner image of a patient with
an initial check-up that warranted suspicion fawytgeal or hypopharyngeal tumors, was
requested for upload. The slice should be at egdillevel and with a thickness of at least 1

mm.

Communication and team gathering

A total of 323 persons registered online for thallemge, comprised of 45 researchers, 81
students, 78 engineers, and 119 radiologists. & tft26 teams were complete and validated
with 181 persons: 27 researchers, 52 studentsné@eers, and 43 radiologists. The website
generated 5,230 sessions from June to October 2@dl8sions began on May ¥5and the

first images were uploaded at the beginning of JAnwtal of 5,130 images were uploaded
(Fig. 2) from 46 radiology services (30 public, pBvate, 3 cancer centers). The meniscus
and renal cortex challenges collected more imaggs the others. The five challenge groups
submitted more than 600 images each before SeptetBBeand hence were selected for the

challenge.



Data processing

For each medical question, we defined a score ifum¢Eig. 1). Except for the renal cortex

which was evaluated with the Dice Score, theseesfiorctions were linear combinations of
the binary AUC of each label. For instance, forlbheast question, we calculated 5 AUC (one
for the benign/malignant and 4 for each type ofoles). The linear combinations of each
clinical question were defined in agreement witl tbferent radiologist. The formula of the

score as well as the Python file used were providezhch team.

When possible, all images were resampled to theegaixel size and cropped to the
same size. The pixel size and the image size arersln Table 1. To resample the data,
dicom field PixelSpacing (0028, 0030) and the pgthbrary SimplelTK were used. A linear
interpolator was used to do the resampling. Soneg@s were not resampled due to two
reasons: 1) The dicom field PixelSpacing was enagjpiiy to anonymization of the image by
the radiologist, and 2) for ultrasound images, diemm field Pixel Spacing is not relevant.
The images include markers which are used to deterthe size of the image, and this does

not allow an automatic process to standardize asdat

Image size was an important question: the biggerithages, the more difficult the
guestions were. Figure 3 shows a comparison okdmee image centered on the meniscus.
For each clinical question, we performed testsradento find an optimal size of images. To
crop the image, two different methods were usea flist was based on a manual Python
application developed specifically for the projeathich was used for breast, thyroid and
meniscus. For each image, the user clicks on theexeof the lesion and a box was drawn
centered on the click. The cropped image was sasea Nifti file. The Python application
accelerates the process: keyboard keys were assbeith functions like cropping, saving,
or loading the image. This allowed us to processdheds of images per hour. For the renal
cortex, the crop was made automatically: therelmary mask of the renal cortex, so that the
crop can be made around a centroid. The ultrasomnadies were not cropped; all the
information from the scan written on the images twate deleted (Fig. 4). For this, a Python
tool was used to detect the contour of the ultradaoside the images and put O value outside
the ultrasound. This code was adapted to diffeséirasound systems as they do not use the
same encoding. As a result, the participants hdg caw data. The final step of data
preparation was the pre-processing of the labes f{Fig. 5). When the data was uploaded to
the web site, the labels were saved in a unique @8V To have a clean label file, the

following steps were needed: one unique labelMige created for each clinical question, then



all non-relevant information (date of upload) waetied. Categorical labels were converted
to binary labels, and all false characters werared. The file quality and inclusion criteria
were checked by a data-scientist and the refesshblogist for each challenge. The senior
radiologist also replaced the incorrect labels.ofalt of 4,170 images could be used for the
dataset (Table 2).

For each medical question, data were split intedldatasets: train set, validation set,
and test set (Table 3). The labels (lesion or malignant/benign) were equally distributed
between the datasets in order to have the samenpimp Of the 26 teams, 23 submitted
results (Table 4). Six prizes were announced omlé&rt15th: LyPhTe team for renal cortex,
RadioAdvisor and LyPhTe for meniscus fissure, Owkies for liver lesions, SynovIA for
thyroid, and Owkinautes for breast. For each chghe the winning team and its members
were invited on the stage to present their methutl algorithm and to receive their price:

3,000 euros and a publication in a medical journal.

Discussion

The JFR data-challenge covered ultrasound, CT aRdwith 5 clinical questions in parallel.
The contestants had to solve different type ofdaskcluding segmentation, detection, and
characterization. The rate of inclusion of 5,17@g®ms within 4 months was efficient with
large mobilization of 46 centers. The 26 multidiciary teams with 181 contestants
demonstrated impressive gathering of the four conities: radiologists, researchers,
students, and companies. It can be noted that tivaléenges had very good results, with an
AUC over 0.90.

Between 6-24% of the images received had to bdue@ed from the datasets.
Publications from other challenges usually do restctibe the database cleaning process. The
amount of images cleaned out of the database caxflained by the team of radiologists
and data scientists who rigorously analyzed tha datlity. The data quality may have been
increased by regular checkup of the data duringitbiision phase and by giving regular

feedback to each medical center regarding thewgdtaded.

There have been numerous data challenges witbugaformats, datasets, and prices.
A number of these challenges can be found in tren&Challenge website. Most have the
same characteristics: one modality (MRI for BRATS;, for LUNA, Histology for BACH),
one organ (Liver for LITS Challenge, Breast for CEMYON17, and one task (segmentation
for BRATS, Detection for RNSA Challenge) [31-34].



Automatic segmentation is currently a main topicmedical images and machine
learning. In regards to kidney, there are not asynpublications compared to other organs
like lungs or brain. The main difference is thatstnof the articles are based on a machine
learning algorithm such as a graph or random fd&st38], and not a deep learning-based
method, which were used by the participants ofahallenge. Some articles also use 3D MRI
[37], although they have few images (under 100epi).

Concerning breast lesions, the main technique useddata challenges is the
mammography, the gold standard for detecting estdge breast cancer before lesions are
clinically detected. Several challenges have fodusebreast cancer (Digital Mammography
DREAM Challenge [39], CAMELYON [32], or BACH [31])but they all focus only on 3
modalities: mammography, histopathology and ulwasio To our knowledge, this is the first

challenge assessing breast lesions using MRI im{d§e4?2].

For liver lesions, no data challenge was organizgidg US. The current theme is
focused on detecting nonalcoholic fatty liver, atdéa for the development of hepatocellular
carcinoma. The researchers used a hepatic rereat ohefined as a ratio of average brightness
level of the liver and the kidney cortex with a go®UC of 0.97. The author used 540 images
from 54 patients (10 per patient), but until now,publication was available on detection and

characterization of focal lesion [17]

Contrary to lung lesions and breast lesions, rteagorithms for machine learning
have not been frequently used for the knee. In Bieal. study, deep learning was used to
detect anterior cruciate ligament tears and mehisaes on knee MRI [23]. This approach is
similar to that used by the participants in our ligmge except they did not predict the
position and the orientation of the tears. Othéclas focus on cartilage lesion or predicting

osteoarthritis [43].

These five challenges gathered a large communftyragiologists, engineers,
researchers, and companies in a short period @f fifhe results on the three modalities with
an AUC > 0.90 show Al is a promising field on theete radiology modalities. In the future, it
could be useful to increase the number of patiesitts an equal distribution between normal

and abnormal images.
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Figure Captions

Figure 1. For each of the 5 challenges, the score was calculated following different
selection criteria.

Figure 2. For the 5 challenges, the number of images sent was monitored between June
and September 2018.

Figure 3. For the meniscal tears challenge, the images were resized. Figures show
example of change in image resolution (a) Image of 256 x 128 pixels. (b) Image of 256 x
256 pixels. (c) Image of 384 x 256 pixels.

Figure 4. The images of the liver lesion challenge were processed to facilitate the
analysis. Figures show image before and after processing. (a) Ultrasound image before
pre-processing. (b) Ultrasound image after pre-processing.

Table 1. Pixel size and image size after pre-processing.
Table 2. Comparison between images received and images kept for each dataset.
Table 3. Train, validation, and test split.

Table 4. Scores of each teams for the challenges.
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