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In this paper, a new idea is developed for improving the agent intelligence. In fact with
the presented Convolutional Neural Network (CNN) approach for knowledge classifica-
tion, the agent will be able to manage its knowledge. This new concept allows the agent
to select only the actionable rule class, instead of trying to infer its whole rule base ex-
haustively. In addition, through this research, we developed a comparative study between
the proposed CNN approach and the classical classification approaches. As foreseeable
the deep learning method outperforms the others in term of classification accuracy.

Keywords: Deep Learning; Data Mining; Cognitive Agent; Knowledge management; Su-
pervised Classification.

1. Introduction

Since about thirty years, several researches from artificial intelligence community

provide competitive approaches to accelerate the Knowledge Discovery from Data

(KDD) process. Nowadays, the impressive evolution of Machine Learning and Data

Mining (MLDM) methods furnishes a tremendous amount of knowledge. Our chal-

lenge in this contribution, is to mine these knowledge in order to extract meta-

knowledge and/or meta-models. This will allow access to a more abstract level, and

to get only the most important and interesting knowledge. The meta-knowledge

extraction process is reached by the extension of data mining techniques to deal

with knowledge[1]. However, the meta-model extraction is realised by performing

machine learning models to classify knowledge. These various process are shown

schematically in figure1.

In this study, a new convolutional neural network approach for knowledge clas-

sification is designed, developed, and then compared to the classical classification

methods such as: Multilayer Perceptron Networks, Naive Bayes, Support Vector

Machine, and K-Nearest Neighbors.
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Another challenge is managed by this work, which consists of scaling-up knowl-

edge processing. From this paper, a new parallelization of the proposed CNN model

is implemented on the DGX1a server, which features 8 GPUs based on the Volta

cards. This solution allows to deal with more than one million rows of knowledge,

and performs learning step thirty times faster than the sequential model on one

CPU.

A very interesting architecture of cognitive agent can be deduced from this study.

In this context, the new agent is able to manage its rule base using the proposed

knowledge classification package. With this new module, the inference engine select

only the actionable rule class at the arrival of a new fact, instead of trying to deduce

the whole rule base.

Fig. 1. The General Workflow

The rest of this paper is organized as follows: Next section shows the concept of

knowledge mining. In section III the suggested algorithms of induction rules mining

are described. Then, experimental results are shown in section IV compared to the

deep learning algorithms. After that, a new architecture of the intelligent agent is

aDGX-1 is a line of Nvidia produced servers and workstations which specialize in using GPGPU
to accelerate deep learning applications. https://www.rave.com/dgx-1/

https://www.rave.com/dgx-1/
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introduced. Finally we conclude by making some remarks and talking about future

perspectives.

2. Related Works

Our interest in this study revolves around two main subjects which are; scalable

cognitive agent, and knowledge classification in general which involves induction

rules mining.

For the first subject, we found very few papers with ideas about the notion of

scalable cognitive agent. As in [2], the authors develop a scalable multi-agent learn-

ing algorithms for solving the winner determination problem in combinatorial double

auctions. Or in [3], where the authors present a new simulation model using agent

based model, under cognitive agent-based computing approach for self-organized

shape formation in swarm robots. And, nothing about the paradigm that we would

like to cover in this article. However, we notice that biologists and psychologists are

showing interest in the study of scalable brain [4].

What can be said about the second topic, is that the literature offers a large

spectrum of detailed research on pattern recognition. Knowledge classification in-

cluding simple data and other patterns have been examined intensively over the last

decade. In the following, we will review some pattern classification studies.

The authors in [5] apply text categorization for political blog posts classification.

Their idea of identifying left versus right political alignment is quite different from

our classification process, since we are interested by multi-label classification. Using

a Naive Bayes classifier coupled with forward feature selection, they were able to

outperform SVMs. Given their success, we also implement a Naive Bayes approach

for the comparative study. In the same topic, in paper[6], an efficient convolutional

neural network is applied to extract lexical and sentence level features for relation

classification.

In Biomedicine domain, the authors of [7] proposed an efficient convolutional

neural networks approach, for biomedical text classification. In [8] a new hybridiza-

tion of SVM classification algorithm based on the information entropy with par-

ticle swarm optimization is proposed in order to improve the classification accu-

racy of biomedical datasets. Their results demonstrate that the proposed algorithm

achieved good accuracy in biomedicine prediction.

More recently, several research studies are exploring the outcomes of the ap-

plication of machine learning approaches on social networks. Such as [9][10][11] in

which several new algorithms are developed for twitter sentiments classification.

The idea in [12] is very close to the concept that we would like to introduce.

The authors develop a new evolutionary approach through ontological model for

data and knowledge classification. The proposed genetic algorithm allows to obtain

an effective solution of the classification problem in multidimensional space, and

different variants of classes sorting in the ontology. In our study, we compare the

performances of classification methods on big knowledge base. The result of this
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process can be used as an ontology, since the aim of our study is to discover existing

relations between knowledge classes.

3. The Knowledge Based Agent Concept

Nowadays, in computer science, the word ”agent” is used in various domains. For

this reason, many researchers defined the intelligent agent in different ways. We

quote some of the following definitions:

”An agent is a computer system that is situated in some environment, and that

is capable of autonomous action in this environment in order to meet its design

objectives.” [13]

”Intelligent agents are software entities that carry out some set of operations on

behalf of a user or another program, with some degree of independence or autonomy,

and, in doing so, employ some knowledge or representation of the user’s goals or

desires.” [14]

”Intelligent agents continuously perform three functions: perception of dynamic

conditions in the environment; action to affect conditions in the environment; and

reasoning to interpret perceptions, solve problems, draw inferences, and determine

actions”[15]

According to these definitions, we can say that the agent in artificial intelligence

community, is an autonomous entity with some degree of intelligence. Its main goal

is to develop its knowledge by interacting with the environment for solving problems.

3.1. The Cognitive Agent Architecture

The knowledge based agent, known also as ”cognitive agent”, is an agent which has

a reasoning ability on its knowledge base, with a capacity to manage interactions

with other agents and/or its environment.

It receives knowledge from its environment, in order to develop them using a

knowledge based system like -usually- an expert system. Figure2 illustrates the ar-

chitecture of the cognitive agent, which is composed of three principals components:

• The inference engine: applies logical rules to the knowledge base and de-

duces new knowledge. This process would iterate as long as it can infer

rules.

• The facts base: is a set of knowledge called ”facts” and considered as true.

From these facts, the inference engine will apply the rules from its rule base

to deduce other facts and solve a problem of logic.

• The rules base: consists of some domain encoding of expertise for the sys-

tem. This can be in the form of semantic nets [16], procedural representa-

tions [17], or production rules [18]. In general case, it is represented by pro-

duction rules, called also ”induction rules”. These rules occur in sequences

and are expressions of the form:

if < condition > then < action >
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Fig. 2. The Cognitive Agent Architecture

where if the conditions are true then the actions are executed.

3.2. Induction Rules Representation

Induction rules are in the core of the cognitive agent architecture. In addition,

the results of KDD process with some data mining methods such as decision trees

or association rules mining are declarative knowledge as induction rules shown on

figure 3. For these reasons, this work is designed for induction rules processing.

Fig. 3. Knowledge Discovery Process [19]

An induction rule is a boolean formula of the form: R : X → Y , where X and Y

are sets of clauses. X is called the premise part of the rule and Y its consequence

[20].

The clause is a comparison between two elements as the form: a operator b, where

(a, b) ⊂ (A, V ) i.e A is a set of variables, and V is a set of values.
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3.3. Induction Rules Preliminaries

Defining the mathematical preliminaries of induction rules is a necessary step before

the mining process. In [21] similarity measure formula between two induction rules

r1, r2 is presented as follows:

Similarity(r1, r2) =
|C1 ∪ C2| − |C1 ∩ C2|+ |V1 ∪ V2| − |V1 ∩ V2|

|r1 + r2|

Where: Ci is the set of clauses of Ri, and Vi is the set of variables of Ri.

Afterwards, this formula has been improved in a previous work [22], in order to

speed-up the mining process.

In this study, the induction rules are considered as text. Therefore, this work

summarizes solving the well-known problem of text classification.

Like documents classification problem [23][24], we define intuitively the induction

rules classification (IRC) problem as the task of classifying rules under a predefined

category. More formally, if ri represents a rule of the rule base RB and {c1, c2, ..., cn}
is the set of all the categories, then IRC assigns one category cj to an induction rule

ri .

As in each supervised machine learning task, a rule may be assigned to more

than one category (Ranking Classification), but in this paper only researches on

Hard Categorization (assigning a single category to each rule) are taken into con-

sideration.

4. Data Mining Methods For Knowledge Classification

Classification of a collection consists of dividing the items that make up the collec-

tion into categories or classes [25, 26]. In the context of data mining, classification

is done using a model that is built on historical data. The goal of predictive clas-

sification is to accurately predict the target class for each record in new data. A

classification task begins with build training data for which the target values (or

class assignments) are known. Many classification algorithms use different tech-

niques for finding relations between the predictor attributes values and the target

attributes values in the build data.

According to [27] the algorithms: K-Nearest Neighbours (KNN), Support Vector

Machine (SVM) and Naive Bayes belong to the top ten classification algorithms of

data mining. In the following subsections, a summarised overview of these algo-

rithms is reported.

4.1. Näıve Bayes Classification Approaches

The näıve Bayes classifier is a simple probabilistic approach, which is based on Bayes

theorem with strong and näıve independence assumptions [28]. It is one of the most

basic text classification techniques with various applications, such as email spam
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detection, personal email sorting, document categorization, and sentiments detec-

tion. Despite the naive design and oversimplified assumptions that this technique

uses, Naive Bayes performs well in many complex real-world problems.

Even though it is often outperformed by other techniques such as boosted trees,

random forests, and support vector machines. Näıve Bayes classifier is very efficient

since it is less computationally intensive (in both CPU and memory) and it requires

a small amount of training data. Moreover, the training time with Naive Bayes is

significantly smaller as opposed to alternative methods[29].

There are several näıve Bayes variations. Here we will discuss about two of them:

(1) the multinomial naive Bayes, and (2) the Bernoulli Näıve Bayes. Note that each

can deliver completely different results since they use various models.

In a text classification problem, we use the words of the document (in our case,

the items of clauses attributes/values of the rule) in order to classify it on the

appropriate class. By using the maximum a posteriori (MAP) decision rule, we

come up with the following classifier:

Cmap = arg max
c∈C

(P (c|d)) = argmax
c∈C

[P (c)
∏

16k6nd

P (tk|c)]

Where tk are the tokens (attribute or value) of the rule. C is the set of classes

that are used in the classification. P (c|d) is the conditional probability of class c

given rule d. P (c) is the prior probability of class c, and P (tk|c) is the conditional

probability of token tk given class c.

Due to the fact that computers can handle numbers with specific decimal point

accuracy, calculating the product of the above probabilities will lead to float point

underflow. This means that we will end up with a number so small, that will not

be able to fit in memory and thus it will be rounded to zero, rendering our analysis

useless. To avoid this problem, we will maximize the sum of their logarithms instead

of maximizing the product of the probabilities.

Cmap = argmax
c∈C

[logP (c) +
∑

16k6nd

logP (tk|c)]

Thus, instead of choosing the class with the highest probability, we choose the

one with the highest log score. Given that the logarithm function is monotonic, the

decision of MAP remains the same.

The last problem that we address is if a particular attribute/value does not

appear in a particular class, then its conditional probability is equal to 0. If we use

the first decision method (product of probabilities) the product becomes 0; however,

if we use the second (sum of their logarithms) the log(0) is undefined. To avoid this,

we will use add-one or Laplace smoothing by adding 1 to each count:

P (t|c) =
Tct + 1∑

t′∈V (Tct′ + 1)
=

Tct + 1∑
t′∈V (Tct′) +B′
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Where B′ is equal to the number of terms contained in the vocabulary V .

Now, examine two common näıve Bayes variations which differ on the way that

they calculate the conditional probabilities of each feature and on the scoring of

each category.

4.1.1. Bernoulli Näıve Bayes

The Bernoulli variation, as described by [30], generates a boolean indicator about

each token of the vocabulary equal to 1 if the token belongs to the examining rule

and 0 if it does not. This variation is different from the multinomial model, because

it takes into account the non-occurring clauses within a rule. While in multinomial

variation, only the number of token occurrences is enumerated. Both the training

and the testing algorithms are presented in algorithm1.

Algorithm 1 Bernoulli Näıve Bayes Algorithm

Train BernoulliNB(C,D)

1- V ← Extract V ocabulary(D).

2- N ← Count Docs(D) .

3- For each (c ∈ C) do

4- Nc ← Count Docs In Class(D, c)

5- prior[c]← Nc/N

6- For each (t ∈ V ) do

7- Nct ← CountDocsInClassContainingTerm(D, c, t)

8- condprob[t][c]← (Nct + 1)/(Nc + 2)

9- return V, prior, condprob

ApplyBernoulliNB(C, V, prior, condprob, d)

1- Vd ← ExtractTermsFromDoc(V, d)

2- For each (c ∈ C) do

3- score[c]← logprior[c]

4- For each (t ∈ V ) do

5- IF (t ∈ Vd) Then

6- score[c]+ = logcondprob[t][c]

7- else

8- score[c]+ = log(1− condprob[t][c])
return argmaxc∈Cscore[c]

4.1.2. Multinomial Näıve Bayes Algorithm

This variation, as explained by [30], estimates the conditional probability of a par-

ticular clause (attribute / value) given a class as the relative frequency of term t in
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rules belonging to class c.

p(t|c) =
Tct∑

t′∈V Tct′

Thus, this variation takes into account the number of occurrences of a term t in

training documents from class c, including multiple occurrences.

Both the training and the testing algorithms are presented in algorithm2.

Algorithm 2 Multinomial Näıve Bayes Algorithm

Train MultinomialNB(C,D)

1- V ← Extract V ocabulary(D).

2- N ← Count Docs(D) .

3- For each (c ∈ C) do

4- Nc ← Count Docs In Class(D, c)

5- prior[c]← Nc/N

6- textc ← ConcatenatTextOfAllDocsInClass(D, c)

7- For each (t ∈ V ) do

8- Tct ← CountTokensOfTerm(textc, t)

9- For each (t ∈ V ) do

10- condprob[t][c]← Tct + 1∑
t′(Tct′ + 1)

11- return V, prior, condprob

ApplyMultinomialNB(C, V, prior, condprob, d)

1- W ← ExtractTokensFromDoc(V, d)

2- For each (c ∈ C) do

3- score[c]← logprior[c]

4- For each (t ∈W ) do

5- score[c]+ = logcondprob[t][c]

return argmaxc∈Cscore[c]

4.2. Support Vector Machine Approach

Support vector machines (SVM) have exhibited superb performance in binary clas-

sification tasks. Intuitively, SVM aims at searching for a hyperplane that separates

the two classes of data with the largest margin (the margin is the distance between

the hyperplane and the point closest to it)[31, 32].

For example, suppose we are given a vector space representation of n documents

(in our case of rules). In the bag-of-words model, each vector di has a component for

each term feature, which is proportional to its importance (term frequency or TFIDF

are commonly used). Each rule vector is normalized and associated with one of the

two labels, +1 or −1. The training data is thus {(dj , ci), j = 1, ..., n}, ci ∈ {−1,+1}.
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A linear SVM finds a vector w and a scalar constant b, such as: ∀i, ci(wci.dj+b) ≥
1, and ||w|| is minimized.

Most discriminative classifiers, including SVMs, are essentially two-class clas-

sifiers. A standard method of dealing with multi-class problems is to create an

ensemble of yes/no binary classifiers, one for each label. This method is called ”one-

vs-others” [33]. For each label li, the positive class includes all documents which

have li as one of their labels and the negative side includes all other documents.

During application, the set of labels associated with a document dj is {k}, such as:

wk.dj + bk > 0. This is the basic SVM method that serves as a baseline against

which we compare other methods.

4.3. K-Neighbors Approach

One of the simplest, and rather trivial classifiers is the rote classifier, which mem-

orizes all training data and performs classification only if the attributes of the test

object match one of the training examples exactly[34]. A more sophisticated ap-

proach, k-nearest neighbor (kNN) classification [27], finds a group of k objects in

the training set that are closest to the test object and bases the assignment of a

label on the predominance of a particular class in this neighborhood. There are

three key elements of this approach: a set of labeled objects, a distance or similarity

metric to compute distance between objects, and the value of parameter k, which

represents the number of nearest neighbors.

To classify an unlabeled object, the distance of this object to the labeled objects

is computed, its k-nearest neighbours are identified, and the class labels of these

nearest neighbours are then used to determine the class label of the object.

Algorithm3 provides a high-level summary of the nearest neighbor classification

method. Given a training set DR and a test object z = (x′, y′) the algorithm

computes the distance (or similarity) between z and all the training objects (x, y) ∈
DR to determine its nearest-neighbor list: Dz. (xi is the training data of objecti,

while yi is its class. Likewise, x′ the data of the test object and y′ is its class.)

Once the nearest-neighbors list is obtained, the test object is classified based on the

majority class of its nearest neighbors:

Majority V oting y′ = argmaxv
∑

xi,yi∈Dz

I(v = yi).

where v is a class label, yi is the class label for the ith nearest neighbors, and

I() is an indicator function that returns the value 1 if its argument is true and 0

otherwise.

The basic nearest neighbors classification uses uniform weights. Namely, the

value assigned to a query point is computed from a simple majority vote of the near-

est neighbors. Under some circumstances, it is better to weight the neighbors such

as nearer neighbors contribute more to the fit. This is why we implemented these

two variants, and we name them respectively ”Uniform knn” and ”Distant knn”.
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Algorithm 3 KNN for induction Rules Classification [35]

input: - a training rule set DR

- a parameter k : an integer between 1 and the number of rules already classified

DR.

- z : the test rule to classify.

For (each classified rule in DRi) do

Calculate the distance Dist(z, DRi).

end for

- Dz ← Select the k nearest neighbors (z);

For (each class ) do

Majority V oting : y′ = argmaxv
∑

xi,yi∈Dz

I(v = yi).

end for

- Attribute to z the class (y′).

5. Machine Learning Techniques overview

5.1. Multilayer Perceptron Neural Networks Classifiers

The basic unit in a neural network is called ”neuron” or ”unit”. Each neuron receives

a set of inputs, which are denoted by the vector Xi [36][37], which in this case,

corresponds to the token frequencies in the ith rule. Each neuron is also associated

with a set of weights A, which are used for computing a function f() of its inputs.

A typical function which is often used in the neural network is the linear function

as follows: pi = A.Xi. We assume that the class label is denoted by yi. The goal of

this approach is to learn the set of weights A with the use of the training set. The

idea is to start off with random weights, and gradually update them when a mistake

is done by applying the current function on the training example. The magnitude

of the update is regulated by a learning rate µ. This forms the core idea of the

perceptron algorithm.

Algorithm 4 Perceptron Algorithm [37]

inputs: Learning Rate: µ

Training rules (Xi, yi)∀i ∈ {1...n} .

Initialize weight vectors in A to 0 or small random numbers.

Repeat

– Apply each training rule to the neural network

– if ((A.Xi) does not matches yi) then

update weigts A based on learning rate µ.

until weights in A converge.
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5.2. Convolutional Neural network Classifier

A Convolutional Neural Network (CNN) is comprised of one or more convolutional

layers, and then followed by one or more fully connected layers as in a standard

multilayer neural network. The neurons of a convolutional layer are grouped in fea-

ture maps sharing the same weights, so the entire procedure becomes equivalent

to convolution [38, 39]. Convolutional layers are usually followed by a nonlinear

activation-layer, in order to capture more complex properties of the input data.

Pooling layers are used to subsample the previous layer, by aggregating small rect-

angular subsets of values. Maximum or average pooling is often applied by replacing

the input values with the maximum or the average value, respectively. Finally, one

or more dense layers are put in place, each followed by an activation-layer, which

produce the classification result.

The training of CNNs is performed similarly to that of classical Multilayer Per-

ceptron Networks, by minimizing a loss function using gradient descent-based meth-

ods and back-propagation of the error.

5.3. The CNN Model for Knowledge Classification

Our CNN model is inspired by the contribution of [40] in text classification. Since

its model demonstrated well performant results, we adapted it in our study for

induction rules classification. It is mainly composed of three convolutional layers

followed by a non-linearity, max pooling and a soft-max classification layer. In the

following, we give a brief explanation of the main components of our network: rules

matrix, activations, convolutional, pooling and soft-max layers.

Fig. 4. Model architecture with two channels for an example sentence [41]

5.3.1. The input matrix

First, the input to the model are induction rules represented as a matrix. Each

row of this matrix corresponds to one token,( typically a variable or a value of
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the rule clauses). Typically, these vectors are word embeddings (low-dimensional

representations) like word2vec or GloVe, but they could also be one-hot vectors

that index the word into a vocabulary like in our case. For a 10 word rule using a

100-dimensional embedding we would have a 10*100 matrix as our input.

5.3.2. The Convolution

CNNs are responsible for major breakthroughs in image classification and are the

core of most computer vision systems today. We can define convolution operation as

a sliding window function applied to a matrix. This operation is explained schemat-

ically in figure5.

In vision, the filters slide over local patches of an image, but in Natural Language

Processing, filters are typically used to slide over full rows of the token matrix.

Thus, the ”width” of filters is usually the same as the width of the input matrix.

The height, or region size, may vary, but sliding windows in general terms over two

to five words at a time[42].

Fig. 5. Example of a Convolution

5.3.3. Pooling Layers

Pooling layers are typically applied after the convolutional layers. Pooling layers

subsample their input. The most common way to do pooling it to apply a max

operation to the result of each filter. It is not necessarily to pool over the complete

matrix. For example, figure6 shows max pooling for a 2*2 window. In our case,

pooling is applied over the complete output, yielding just a single number for each

filter.

6. Evaluation and Experimentation

The collection of our rule bases is done from public benchmarks. We should have

taken the results of data mining approaches (like: decision tree algorithms, or asso-
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Fig. 6. Example of max pooling in CNN [43]

ciation rules mining) such as the input of our process. But given the slowness of this

procedure, we directly adapt our rule bases from public datasets using the following

transformation formula:

IF (attribute1 = value1) and (attribute2 = value2) and . . . Then (attributen =

valuen)

Where n is the columns number of the dataset. For example, if we have a data row

as in table 1. After transformation step, the obtained rule is shown on table 2.

Product Id Profile Name Helpfulness Summary Text Classes

Denominator (score 0..5)

B00CH1 Carol A. 1 Healthy Dog Food A very healthy dog 4

food. Good for their

digestion. Also for...

Rule Classes

IF (product Id = B00CH1 ) and (Profile Name = Carol A.) and (Helpfulness Den =1) 4

and text =(A very healthy dog food. Good for their digestion. Also for...)

then (summary = Healthy Dog Food)

The authors would like to notice that rules representation as explained in table

2 is just taken as text for classification aims, and not for the inference process. How-

ever, if the goal was a knowledge inference system, we have to select standardized

rules, classify them manually, in order to be able to perform the experimental study.
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Benchmark Attributes Rows Classes

SMS Balanced DataSet 03 12, 000 12

SMS Unblanaced DataSet 03 42, 000 15

San Francisco Crime
09 33, 028 12

Classification Dataset (a subset)

News Aggregator Data Set 09 422, 937 04

Amazon Fine Food Reviews 06 568, 454 06

6.1. Public Datasets Collection

We have implemented our approaches on four public datasets, where, the first

dataset is divided into two variants rule bases: Balanced & Unbalanced SMS

Datasets.

(1) The first dataset known as data smsb. It contains a total of 42,000 instances,

distributed unequally over 15 categories: info, spam, ham, pickup, payment, bus,

reservation, delivery, train, Cab, Hotel, Expiry, Appointment, Movie, Flight.

We have created a variant of this dataset, by removing the first three cate-

gories, and taking exactly 1, 000 instances from each of the remaining 12 cate-

gories. We call this variant: the SMS Balanced Dataset.

(2) The second one is a subset of San Francisco Crime Classificationc. This

dataset is brought by SF Open Data, the central clearing-house for data pub-

lished by the City and County of San Francisco. The benchmark contains inci-

dents derived from San Francisco Police Department Crime Incident Reporting

system. The data ranges from 1/1/2003 to 5/13/2015. The chosen subset in-

cludes 33,028 rows with 9 attributes which are:

• Dates : timestamp of the crime incident.

• Category : category of the crime incident (only in training file), it includes

39 different categories. This is the target variable we are going to predict.

• Descript : detailed description of the crime incident (only in training file).

• DayOfWeek : the day of the week.

• PdDistrict : name of the Police Department District.

• Resolution : how the crime incident was resolved (only in training file).

• Address : the approximate street address of the crime incident.

• X : Longitude.

• Y : Latitude.

(3) The third dataset which is called News Aggregator Datasetd is provided by

Artificial Intelligence Lab at the Faculty of Engineering, Roma Tre University

bhttps://www.kaggle.com/moose9200/data-sms/data
chttps://www.kaggle.com/c/sf-crime/data
dhttps://archive.ics.uci.edu/ml/datasets/News+Aggregator
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- Italy, and it is published on UCI Website [44].

In this dataset, the news are grouped into clusters that represent pages

discussing the same news story. The dataset includes also references to web

pages.

• 422,937 news pages and divided up into four classes.

• 152,746 news of entertainment category.

• 108,465 news of science and technology category.

• 115,920 news of business category.

• 45,615 news of health category.

• Each class is represented by the news category (b = business, t = science

and technology, e = entertainment, m = health)

(4) The fourth benchmark is known as: Amazon Fine Food Reviewse and it

consists of reviews of fine foods from Amazon. The data span a period of more

than 10 years, including all 568,454 reviews up to October 2012. Reviews include

product and user information, ratings, and a plain text review. It also includes

reviews from all other Amazon categories [45]. Data includes:

• Reviews from Oct 1999 - Oct 2012.

• 568,454 reviews.

• 256,059 users.

• 74,258 products.

• 260 users with > 50 reviews.

• 6 classes: from 0 to 5 stars. which represents the satisfaction degree of the

reviewer.

6.2. Evaluation Pattern

All the implemented algorithms take 80% of dataset for training and the remaining

20% for test, in which they are evaluated on the two criteria : execution time and

classification accuracy. The classification accuracy Acci of an individual algorithm

i depends on the number of samples correctly classified (true positives plus true

negatives), and is evaluated by the formula1.

Acci =
t

n
∗ 100 (1)

where t is the number of sample cases correctly classified and n is the total

number of sample cases.

6.3. Experimental Results

In this study we use Python language, Tensorflow tool, Keras library with Jupyter

Notebook programming model. All the algorithms are executed and compared using

ehttps://www.kaggle.com/snap/amazon-fine-food-reviews
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various number of GPUs devices of The ROMEO NVIDIA DGX-1f AI super-

computer. The programs execution process is shown in figure7. The results of all

the developed MLDM approaches for induction rules classification are summarized

on table4.

Fig. 7. Experimental Environment Devices

Classification Balanced Unbalanced San Francisco News Amazon

Approach SMS SMS Crimes Aggregator Reviews

Bernoulli Time(sec)=0.028 0.114 0.096 0.471 0.629

Naive Bayes Accuracy= 95.65% 59.85% 54.84% 92.40% 70.98%

Multinomial Time(sec)=0.022 0.058 0.086 0.243 0.525

Naive Bayes Accuracy= 98.98% 67.70% 46.03% 92.22% 64.17%

Linear SVM
Time(sec)=0.190 1.043 1.271 5.525 27.209

Accuracy= 100% 64.56% 57.27% 95.11% 77.92%

KNN Uniform
Time(sec)=1.057 13.354 15.083 – –

Accuracy= 95.21% 63.91% 42.02% – –

KNN Distant
Time(sec)=1.055 12.173 14.538 – –

Accuracy= 96.30% 61.38% 42.72% – –

MPL NN
Time=2sec/epoch 36s/ep 67s/ep 446s/ep 1430s/ep

Accuracy= 100% 67.94% 53.13% 95.34% 79.49%

CNN
Time=43sec/epoch 1711s/ep 544s/ep 22461s/ep 21899s/ep

Accuracy= 98.73% 95.19% 92.18% 76.19% 90.03%

fhttps://www.nvidia.fr/data-center/dgx-1/
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From Table4 we can report many remarks:

• The KNN algorithm cannot handle large rule bases (crashes when dealing with

over then 300,000 rows: out of memory error).

• There is a big difference between algorithms performances when processing

balanced datasets and the others that are not.

• In terms of execution time, the Multinomial Nave Bayes approach gives the

best results, followed by the Bernoulli variant.

• Classification accuracy varies radically depending on the type of processed rule

base.

• In general, the best accuracy scores are obtained by the CNN approach, since

the latter does not yield less than 76%, whatever the type of processed dataset.

Fig. 8. Classification Accuracy on Balanced SMS Rules

Figure 8 shows the classification accuracy comparison of the MLDM approaches

applied on the balanced SMS dataset. According to this figure we remark that in

general, all the compared approaches give very good results, since they get all a

score better than 95,2% on their test set.

In figure 9 the classification accuracy comparison of the MLDM approaches

applied on news aggregator dataset is shown. From this figure we remark that also

here, all the compared approaches get a good classification accuracy. Nevertheless,

if we want details, Linear SVM and MPL Neural Networks are more efficient than

the other algorithms. So, when SVM and MPL NN reach 100% of accuracy, the

CNN approach do not exceed 76.16%.

Figure 10 resumes the classification accuracy scores of the compared MLDM

approaches, applied on three multi-class unbalanced rule bases. Which are from the

left to right; unbalanced sms, San-Francisco Crimes and Amazon Fine Food Reviews
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Fig. 9. Classification Accuracy on Aggregator News Rules

Fig. 10. Classification Accuracy on Multi-class Unbalanced Rule Bases

datasets. We notice on all of them, that the CNN algorithm outperforms clearly the

other approaches. In fact, when CNN algorithm does not fall below 90%. The best

of the other algorithms does not exceed 79.57%.

6.4. Discussion

According to the obtained results, we notice many remarks. The first one is that

KNN algorithm cannot handle large rule sets; in fact, the program crashes with an

out of memory error when dealing with a rule base of more than 300, 000. This is

duo to the fact that KNN algorithm computes all the distances between its test set

and the whole instances of training set, contrary to the other algorithms.

The second remark is about execution time; Nave Bayes approach gives the best

results on this criterion. Effectively, since the parameters of Naive Bayes model

(i.e., a-priori and conditional probabilities) are learnt or rather determined using

a deterministic set of steps, and this involves two very trivial operations that can
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be blindingly fast on modern day computers: counting and dividing. There is no

iterations, no epochs, no error back-propagation. All These reasons make the Naive

Bayes classifier very fast.

Moreover, we can report that the classification accuracy depends strongly on

the type of processed rule bases. i.e. there is a big difference between algorithms

performances when processing balanced and unbalanced datasets. We observe the

same when processing datasets with only four classes, and more than six classes.

With numbers for the balanced rule bases that do not exceed 100,000 rules, the

SVM and multilayer NN give very good results. In addition, the SVM gives good

results for unbalanced rule bases that do not exceed five classes. Otherwise, the best

results are obtained using the CNN algorithm for unbalanced rule bases with more

than five categories.

6.5. The New Intelligent Agent Architecture

As a result of this study, we introduce the new architecture of knowledge classifi-

cation based agent, by adding to the classical architecture the two new packages,

knowledge mining and meta-models, as shown in Figure11.

Fig. 11. The Architecture of Knowledge Classification Based Agent

• Knowledge Mining Package: composed of all the presented knowledge mining

algorithms.

• Meta-models Package: represents the output of the training step of the agent

rule base, using a selected classification algorithm from the knowledge mining

package.

Contrary to the classical agent that infers all its rules sequentially and exhaus-

tively, the knowledge classification based agent is able to deduce only the (action-
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able) class of rules of the new knowledge, using its new packages. The module-

selection process from knowledge mining package depends on the type of rule base

and is guided by Algorithm5.

Algorithm 5 Knowledge Mining Module-Selection

inputs: Agent Rule Base Rb

If (Balanced (Rb) = true) then

meta model← Apply Linear SVM Classifier(Rb);

else

if (nbr classes < 5) then

meta model← Apply Linear SVM Classifier(Rb);

else

meta model← Apply CNN Classifier(Rb);.

6.6. Parallel Model Implementation on multi-GPU

From the obtained results, convolutional neural networks have demonstrated their

ability to achieve the best accuracy rates on almost all of rule bases. However,

their major disadvantage is that they take a lot of time during the learning step,

especially when processing large rule sets. To accelerate the learning stage of the

CNN model, we have developed a parallel models, using multi GPUs devices of

DGX1. The obtained results are summarised in table5.

Dataset 1 CPU 2 GPUs 4 GPUs 8 GPUs

Unbalanced SMS
Time/epoch = 1711 sec 81sec 64 sec 55 sec

Time/step = 51 ms 2 ms 2 ms 2 ms

San Francisco Crimes Time/epoch = 544 sec 27sec 21 sec 20 sec

(subset of 12 categories) Time/step= 21 ms 1 ms 0.795 ms 0.737 ms

News Aggregator
Time/epoch = 22511 sec 1741sec 1447 sec 1340sec

Time/step= 69ms 5 ms 4 ms 4 ms

Amazon Fine Food Time(sec) = 21899 sec 2105sec 1707 sec 1391 sec

Reviews Time/step= 50ms 5ms 4ms 3ms

The large Rule Base Time/epoch = 37531sec 2085sec 1493 sec 1230sec

(1,065,686 rules) Time/step= 46ms 3 ms 2ms 1ms

According to table5 the best results are obtained when using all the available

GPUs (the 8) of the DGX1. For instance figure12 shows how execution time of
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Fig. 12. Training Time Comparison Using Multi-GPU Model on SMS Dataset

the training step change, when dealing with 1CPU, 2GPUSs, 4GPUs, and 8GPUs.

We can clearly remark that when using 8 GPUs, the training step becomes very

faster compared to its execution on the other devices. With numbers, training our

model on unbalance sms dataset takes only 55 seconds for one epoch, instead of

1711 seconds when using one CPU.

Fig. 13. Training Time Comparison Using Multi-GPU Model on the large rule base

The last line of table5 is schematised on figure13. It represents the comparison of

the sequential CNN model to the parallel one on 2,4 and 8GPUs, when processing

the big rule base. The latter is obtained by the fusion of all the four previous rule

sets. It includes 1,062,000 rules with four classes (each class represents the provided

rule set). The classification accuracy here (with CNN model) do not change when
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executing on CPU or GPUs and is equal to 98.79%. For the execution time; training

one epoch on the 8GPUs takes 1230sec i.e 20 minutes. Instead of 37,531sec i.e more

than 10 hours and 25minutes when executed on the CPU1 of DGX.

From these results, we can conclude that, thanks to the parallelization of our

CNN model on the 8 GPUs, the training process becomes till 30 times faster than

the sequential one on 1 CPU.

when training our model on SMS data set, and using the 8 GPUs, the process

becomes 30 times faster than training on one CPU.

7. Conclusion

In this study, a new concept of knowledge rules classification is presented. The

contribution is focused on a comparative study of the popular machine learning

and data mining algorithms which are developed for induction rules classification.

The best results are obtained by the proposed convolutional neural network model,

and are very satisfactory in terms of classification accuracy. Nevertheless, this model

takes a lot of time in its training step. For this reason, we implemented a parallel

version on the GPUs devices of the DGX1, and the results showed that the model

training becomes up to 30 times faster than the sequential one.

Furthermore, we integrated the proposal concept on the classical architecture of

cognitive agent. By incorporating the new packages of meta-knowledge and meta-

models. This new architecture allows to deduce and discover new knowledge very

quickly, thanks to its ability for inferring only the actionable class of rules, unlike

to the classical agent which tries to deduce its whole rule base.

As future perspectives, we expect the implementation of a new hyper-heuristic

that will automatically update the knowledge mining package, and choose the learn-

ing method to apply according to the kind of the intelligent agent rule base. In

addition, we plan to perform this study on very large scale by the deployment on

the Hybrid Romeo cluster.

Acknowledgements

The authors would like to thank Arnaud.R & Fabien.B: our colleagues and admin-

istrators of the DGX1 & ROMEO supercomputers for their helps and suggestions.

References

1. A. Chemchem, F. Alin, M. Krajecki, Deep learning and data mining classifi-

cation through the intelligent agent reasoning, in: 2018 6th International Con-

ference on Future Internet of Things and Cloud Workshops (FiCloudW), 2018,

pp. 13–20. doi:10.1109/W-FiCloud.2018.00009.

2. F.-S. Hsieh, C.-S. Liao, Scalable multi-agent learning algorithms to determine

winners in combinatorial double auctions, Applied Intelligence 43 (2) (2015)

http://dx.doi.org/10.1109/W-FiCloud.2018.00009
https://doi.org/10.1007/s10489-014-0643-9
https://doi.org/10.1007/s10489-014-0643-9


January 21, 2019 16:27 WSPC/INSTRUCTION FILE ws-ijcia

24 REFERENCES

308–324. doi:10.1007/s10489-014-0643-9.

URL https://doi.org/10.1007/s10489-014-0643-9

3. Y. R. Darr, M. A. Niazi, Towards self-organized large-scale shape formation:

A cognitive agent-based computing approach, CoRR abs/1711.06426. arXiv:

1711.06426.

4. C. Eliasmith, O. Trujillo, The use and abuse of large-scale brain models, Cur-

rent Opinion in Neurobiology 25 (2014) 1 – 6, theoretical and computational

neuroscience.

5. K. T. Durant, M. D. Smith, Predicting the political sentiment of web log posts

using supervised machine learning techniques coupled with feature selection, in:

O. Nasraoui, M. Spiliopoulou, J. Srivastava, B. Mobasher, B. Masand (Eds.),

Advances in Web Mining and Web Usage Analysis, Springer Berlin Heidelberg,

Berlin, Heidelberg, 2007, pp. 187–206.

6. D. Zeng, K. Liu, S. Lai, G. Zhou, J. Zhao, Relation classification via convolu-

tional deep neural network, in: Proceedings of COLING 2014, the 25th Inter-

national Conference on Computational Linguistics: Technical Papers, 2014, pp.

2335–2344.

7. A. Rios, R. Kavuluru, Convolutional neural networks for biomedical text clas-

sification: Application in indexing biomedical articles, in: Proceedings of the

6th ACM Conference on Bioinformatics, Computational Biology and Health

Informatics, BCB ’15, ACM, New York, NY, USA, 2015, pp. 258–267.

8. M. Li, X. Lu, X. Wang, S. Lu, N. Zhong, Biomedical classification application

and parameters optimization of mixed kernel svm based on the information en-

tropy particle swarm optimization, Computer Assisted Surgery 21 (sup1) (2016)

132–141.

9. O. Serban, N. Thapen, B. Maginnis, C. Hankin, V. Foot, Real-time processing

of social media with sentinel: A syndromic surveillance system incorporating

deep learning for health classification, Information Processing & Management.

10. S. Liu, X. Cheng, F. Li, F. Li, Tasc:topic-adaptive sentiment classification on

dynamic tweets, IEEE Transactions on Knowledge and Data Engineering 27 (6)

(2015) 1696–1709.

11. G. S. Bhathal, G. Gupta, SENTIMENT ANALYSIS OF ENGLISH TWEETS

USING DATA MINING: Data Mining, Sentiment Analysis, BookRix, 2018.

12. V. Bova, V. Kureichik, D. Zaruba, Data and knowledge classification in intel-

ligence informational systems by the evolutionary method, in: 2016 6th Inter-

national Conference - Cloud System and Big Data Engineering (Confluence),

2016.

13. M. Wooldridge, An introduction to multiagent systems, John Wiley & Sons,

2009.

14. M. Burgin, G. Dodig-Crnkovic, A systematic approach to artificial agents,

CoRR abs/0902.3513. arXiv:0902.3513.

URL http://arxiv.org/abs/0902.3513

15. B. Hayes-Roth, An architecture for adaptive intelligent systems, Artificial In-

http://dx.doi.org/10.1007/s10489-014-0643-9
https://doi.org/10.1007/s10489-014-0643-9
http://arxiv.org/abs/1711.06426
http://arxiv.org/abs/1711.06426
http://arxiv.org/abs/0902.3513
http://arxiv.org/abs/0902.3513
http://arxiv.org/abs/0902.3513


January 21, 2019 16:27 WSPC/INSTRUCTION FILE ws-ijcia

REFERENCES 25

telligence 72 (1) (1995) 329 – 365.

16. P. P. Ruiz, B. K. Foguem, B. Grabot, Improving maintenance strategies from

experience feedback, IFAC Proceedings Volumes 46 (9) (2013) 625–630.

17. T. Winograd, Frame representations and the declarative/procedural contro-

versy, in: D. G. BOBROW, A. COLLINS (Eds.), Representation and Under-

standing, Morgan Kaufmann, San Diego, 1975, pp. 185 – 210.

18. R. Davis, B. Buchanan, E. Shortliffe, Production Rules as a Representation for

a Knowledge-Based Consultation Program, Springer New York, New York, NY,

1985, pp. 3–37.

19. P. P. Ruiz, B. K. Foguem, B. Grabot, Generating knowledge in maintenance

from experience feedback, Knowledge-Based Systems 68 (2014) 4 – 20, enhanc-

ing Experience Reuse and Learning.

20. J. W. Grzymala-Busse, A new version of the rule induction system lers, Fun-

damenta Informaticae 31 (1) (1997) 27–39.

21. H. Drias, A. Aouichat, A. Boutorh, Towards incremental knowledge warehous-

ing and mining, in: S. Omatu, J. F. De Paz Santana, S. R. González, J. M.
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