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Abstract. Extreme scale simulation requires fast and scalable algorithms, such as multigrid
methods. To achieve asymptotically optimal complexity it is essential to employ a hierarchy
of grids. The cost to solve the coarsest grid system can often be neglected in sequential
computings, but cannot be ignored in massively parallel executions. In this case, the coarsest
grid can be large and its e�cient solution becomes a challenging task. We propose solving
the coarse grid system using modern, approximate sparse direct methods and investigate the
expected gains compared with traditional iterative methods. Since the coarse grid system only
requires an approximate solution, we show that we can leverage block low-rank techniques,
combined with the use of single precision arithmetic, to signi�cantly reduce the computational
requirements of the direct solver. In the case of extreme scale computing, the coarse grid
system is too large for a sequential solution, but too small to permit massively parallel
e�ciency. We show that the agglomeration of the coarse grid system to a subset of processors
is necessary for the sparse direct solver to achieve performance. We demonstrate the e�ciency
of the proposed method on a Stokes-type saddle point system. We employ a monolithic Uzawa
multigrid method. In particular, we show that the use of an approximate sparse direct solver
for the coarse grid system can outperform that of a preconditioned minimal residual iterative
method. This is demonstrated for the multigrid solution of systems of order up to 1011 degrees
of freedom on a petascale supercomputer using 43 200 processes.

Keywords: E�cient coarse level solver � geometric multigrid � block low-rank � high-performance
computing � hierarchical hybrid grids � multifrontal � sparse direct solver � MUMPS

1 Introduction

Simulations of engineering applications are often based on elliptic partial di�erential equations
(PDEs) and require discretizations with high resolution meshes that result in huge sparse systems
of equations. Multigrid (MG) methods are techniques of choice in a parallel context. MG methods
can be asymptotically optimal, in the sense that the complexity to solve a linear system with
su�cient accuracy grows only linearly with the number of unknowns. This has been shown for the
full multigrid method [12].
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To e�ciently compute the solution, MG methods combine iterative processes on a hierarchy of
meshes. Algebraic multigrid (AMG) methods can construct this hierarchy for completely unstruc-
tured meshes. At the cost of a time and memory expensive setup of the coarse level matrices, the
system size can then be reduced arbitrarily such that the coarsest level equations can be solved by
a direct method [6]. In the case of geometric multigrid (GMG), a mesh hierarchy is required such
that meshes resolve the computational domain with a certain accuracy. Hence, systems that are
still relatively large must be processed even on the coarsest mesh level.

Here, we employ the hierarchical hybrid grids (HHG) [24,11] framework that implements GMG
methods for the solution of linear systems and which achieves excellent performance on state-of-the-
art petascale supercomputers where problems with more than 1013 degrees of freedom (DOFs) [19]
have been solved. We study the solution of saddle point problems arising from the Stokes equation.
These problems are often solved using a Schur complement conjugate gradient (CG) algorithm, or a
preconditioned minimum residual method. Our method of choice is a monolithic MG method using
an Uzawa smoother, see Sect. 2, combined with a classical mildly variable multigrid V-cycle, where
the number of smoothing steps is linearly increased on coarser levels. This all-at-once multigrid
treatment features lower memory requirements and achieves a faster time-to-solution for Stokes
ow equations, see [16,19].

The problems under study here permit the use of Krylov space methods as solver on the coarsest
level. These methods will require a number of iterations growing mildly with the size of the coarsest
grid. Though asymptotically not optimal, the incurred overhead is in many cases still acceptable as
long as the runtime is dominated by the multigrid processing of �ner grids. However, for numerically
challenging problems and when the coarsest grid size is relatively large, such simple coarse grid
solvers may become a bottleneck, especially since each iteration incurs a signi�cant overhead. In
[32], GMG and AMG methods are combined to obtain scalability. First, a mesh re�nement of the
input grid is generated such that GMG method can be applied. Then at the coarsest level (the
input mesh), the AMG method is used to further reduce the system's complexity and solve the
coarse grid problem of the GMG method. In the latter AMG method, the solution of the coarsest
grid problem is delegated to a sequential direct solver that can deliver an accurate solution in a
robust and reliable way. This, however, comes at the price of a high operational and memory cost.

In this work, we consider the use of a modern, approximate sparse direct solver based on low-
rank approximations | a technique which can signi�cantly reduce the asymptotic complexity of the
solver at the price of a controlled loss of accuracy. An approximate direct solver is acceptable for the
purpose of solving the MG coarse grid problem [27,12]. Even though several low-rank techniques
have been proposed in the past, to the best of our knowledge, this article represents the �rst attempt
at applying them to extreme scale multigrid solvers.

Scaling MG methods on the largest supercomputers is a challenging task and requires well-
designed software structures and advanced performance aware implementation techniques. The
deterioration of the parallel e�ciency on coarser grid levels is especially problematic in MG solvers.
On coarser grid levels, the amount of computation decreases at a faster rate than the communication
volume, and so the communication overhead becomes larger. To alleviate this trend, a better load-
balancing and possibly a redistribution of the grids on fewer processes, namely agglomeration,
may become necessary. The need for agglomeration techniques is emphasized, e.g., in [28] where
recursive process agglomeration is used to scale MG in PETSc [7]. The general idea here is to adapt
the number of working processes to the size of the problem to achieve a better balance between
communication and computation. The coarser the problem, the smaller the number of processes
involved, in order to avoid an unnecessary large volume of communication. While in this article, we
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base our agglomeration strategy on heuristics, a performance model is used in [30] for a structured
MG scenario to predict the best agglomeration strategy. In [31], the GMG solver is constructed by
starting from a coarse grid. In each successive step of re�nement, the grids are then distributed to
the available processes.

In this article, we study the e�ciency of MG with an agglomeration method applied to an ap-
proximate direct solver as coarse level solver for examples with increasing size and model complexity.
We use the MUMPS solver [5,4] that is based on the block low-rank (BLR) format [1]. We combine
this approach with an additional reduction of memory and computational cost through the use of
single precision oating-point arithmetic. Scaling results are presented for up to 43 200 processes on
the Hazel Hen petascale supercomputer. Our results demonstrate that the BLR method, combined
with agglomeration and single precision arithmetic, can be used for approximating the coarse level
problem in large scale simulations with improved e�ciency. The total time spent on the coarse grid
over the MG cycles is decreased by up to 50% when using MUMPS in single precision with block
low-rank approximation compared to using a Krylov based iterative solver.

The rest of this article is structured as follows: In Sect. 2, we briey introduce the model, the
�nite element discretization and the general multigrid setup. Then, in Sect. 3.1, the data structure,
the parallelization and the matrix-free techniques of the HHG framework are presented. Sect. 3.2
focuses on the deteriorating scalability of a simple Krylov based coarse level solver. In Sect. 4.1, we
describe the conversion of the HHG data structure to standard sparse matrix data formats such that
external solver libraries can be interfaced. In Sect. 4.2, we describe the master-slave agglomeration
technique. Then, we introduce the MUMPS framework in Sect. 5.1. The BLR method within the
MUMPS framework is presented in Sect. 5.2. Sect. 6.1 considers MUMPS as standalone solver in
several scaling experiments and Sect. 6.2 analyses the combined solvers in a weak scaling scenario.
We show that the new coarse grid solvers leads to a faster overall time to solution when the model
problem is su�ciently large and numerically hard.

2 Model problem, discretization and solver

Let 
 � R
3 be an open and bounded domain. We consider the Stokes-type problem with velocity

u and pressure p of the form

�div
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with the forcing term f , the Dirichlet boundary conditions g and the positive scalar viscosity �.
Here we assume that g satis�es the compatibility condition

�
@


g � n ds = 0 where n is the unit
outer-normal. Problems of this structure can be found in mantle convection simulations where they
represent the most time-consuming computational tasks [8]. The viscosity in such problems can vary
by several orders of magnitude and is typically non-linearly depending on u. For simplicity, we here
neglect the non-linearity for the following consideration. We impose non-homogeneous Dirichlet
boundary conditions derived from plate velocity data obtained by [29] on the surface and no-slip
conditions at the core-mantle boundary.

We discretize 
 by an initial tetrahedral mesh T0 and construct by uniform mesh re�nement a
hierarchy of meshes T0 = fT`; ` = 0; : : : ; Lg, L > 0. For the discretization of (1), we apply the equal-
order linear �nite elements for velocity and pressure, see e.g. [17]. This equal-order discretization is
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known to be unstable and must be stabilized [13]. To this end, we apply the pressure stabilization
Petrov-Galerkin (PSPG) technique [23]. Using (component-wise) nodal basis functions for velocity
and pressure, we obtain a hierarchy of 2� 2-block structured linear systems�

A` G`

D` �C`

��
u`
p`

�
=

�
f`
g`

�
(2)

with u` 2 R
nu;` and p` 2 R

np;` . The dimensions of the velocity and the pressure space are denoted
by nu;` and np;`. The divergence of the deviatoric stress operator in (1) can be associated with
A`, the gradient with G`, and the divergence operator with D`. The C`-block originates from the
PSPG-stabilization.

The e�cient solution of this block system on large scale computations is studied in a number
of recent articles [14,35]. In [19], di�erent types of solvers are compared and it is found that a
monolithic multigrid method for velocity and pressure combined performs best in terms of time-to-
solution and memory. The family of uniformly re�ned meshes T is used to construct the multigrid
mesh hierarchy. We will use this hierarchy to construct a geometric multigrid method in the form
of a mildly variable V {cycle that we will denote by Vvar. The Vvar{cycle has the same form as a
V {cycle but adds for each coarser level an additional number of smoothing steps. In our case, we
add for each level two additional steps, each in the pre- and post-smoothing.

In this method, an Uzawa-type smoother is used that acts on velocity and pressure unknowns
separately, see [36] and [16]. In the following, we will refer to this monolithic MG variant as the
all-at-once Uzawa MG method. The transfer operators are de�ned as linear interpolation for each
component and their adjoint operators for restriction. Since this multigrid method acts on the whole
Stokes system, we have to solve on the coarsest grid level again a saddle point problem. Although
this problem is by several orders of magnitude smaller than the �ne grid problem, it can still
become large for extreme scale simulations. In theoretical considerations, one often assumes that
the coarsest grid problem is solved exactly. Getting this high accuracy can become computationally
expensive in practice, e.g. using a direct solver. A popular alternative is to solve this coarse problem
approximately. In this case, the tolerance has to be carefully selected to keep a mesh independent
convergence of the multigrid scheme. Our present study will explore di�erent strategies to e�ciently
get such an approximated solution on the coarse grid problem in large scale and extreme scale
computations.

3 Hierarchical hybrid grids

For our studies the hierarchical hybrid grids (HHG) framework [11] will be used that provides data
structures, parallelization and matrix-free concepts for extreme scale geometric multigrid com-
putations. Here HHG serves as test environment to explore coarse level strategies in large scale
simulations. For similar data structure concepts, we refer to [25,18].

3.1 Data structure, parallelization, matrix-free assembly

In this section, we briey review the data structures and the parallel implementation of the consid-
ered multigrid framework. For more details, we refer to [20,19,8] and the references therein. HHG
organizes the nodal points of the mesh by employing the hierarchy of uniformly structured meshes
T . Through the re�nement, grid points are generated on the edges, faces and within each input
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grid tetrahedron, also called macro tetrahedron. In the case of two tetrahedra this is illustrated in
Fig. 1 (left). Each of these nodes on each level of re�nement are located on either the vertex, edge,
face or the volume of the original macro tetrahedra. This is used to classify the nodes on each mesh
level and to de�ne container data structures that guarantee a unique assignment of each node to
one container. In a distributed memory architecture, we can assign each container uniquely to one
processor.

To enable an e�cient parallel communication across process boundaries, an additional layer of
halos (ghost layers) is introduced that holds copies of master data, i.e. the original data, on other
memory units. The data in these ghost layers can only be read and the values must be updated
when the master data is modi�ed so that they hold consistent values. When the respective container
is located on the same memory unit, this is achieved with a simple memory copy routine, otherwise,
when the data is on di�erent memory units in the network, it is sent by message passing using
the message passing interface (MPI). Eventually, it is necessary to introduce additional copies of
vertex, edge and face data structure to implement the MPI communication e�ciently. In Fig. 1
(right), the ghost layer enrichment for two input mesh tetrahedra and the face container between
them is illustrated.

Fig. 1. left: two re�ned input elements; right: ghost layer structure of two input elements.

To enable e�cient parallel computations, load-balancing is also an important aspect. In HHG,
the computational load can be identi�ed with the dimensional complexity of the container data
structures. Asymptotically, the volume containers produce the largest computational load, since
they hold 3D data. Therefore, they are equally distributed to computing processes. The lower
dimensional containers are then assigned to the processes with the largest process id of the phys-
ically neighboring volume containers. The same distribution is used for the whole mesh hierarchy
such that the communication structure does not change between mesh levels. A drawback is that
lower dimensional container are not equally distributed, but in our previous studies, no consequent
major load imbalance was observed. However, we have found that the coarse grid may become a
performance bottleneck. This will be considered in more detail in Sect. 4.

Matrix-free techniques are applied within HHG to avoid storing the FE matrices. In the classical
assembly of the HHG framework only one stencil (i.e. a matrix row) needs to be stored per container
so that superior performance [11] can be achieved. However, for curved domains such as the spherical
shell that we consider in the following, the nodes that are generated through re�nement do not reside
on the boundary and thus do not �t with a simple single stencil representation. In this case, the �ne
grid nodes must be projected onto the spherical surface, leading to di�erent entries in each row of
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the sti�ness matrix, i.e. for each stencil. Thus the FE stencils have to repeatedly be recomputed for
each node and each time they are applied, e.g., for a matrix-vector multiplications. In [9,8], we have
developed an e�cient method that recovers the performance of the original HHG implementation
also on curved domains and for problems with variable viscosity. This surrogate assembly technique
replaces the computation of the local element matrices by an inexpensive polynomial approximation.

3.2 Matrix-free Krylov based coarse level solver

We study a problem that is motivated by geophysical simulations [8]. This leads to the Stokes
problem (1) on the spherical shell 
 = fx 2 R

3 : rcmb < kxk2 < rsrfg, where rcmb = 0:55 and
rsrf = 1 correspond to the inner and outer mantle boundary, and force term f = Ra � x

kxk , where

Ra = 3:49649 � 104 is the dimensionless Rayleigh number and � the normalized Earth's mantle
temperature, as obtained from real-world measurements [33]. We discretize the spherical domain by
an initial mesh T0 and apply the uniform re�nement strategy to construct the hierarchy of meshes
T . The mesh hierarchy has a depth of L = 8, where 2 levels give a properly de�ned coarsest grid
problem, and 6 levels are used in the MG hierarchy.

On �ner grids, the boundary grid points would not reside on the curved boundary so that
we use the previously described projection method and apply the matrix-free surrogate assembly
technique for problems with di�erent viscosity variations. In particular, we consider either the iso-
viscous case (�(x; T ) � 1) or a viscosity pro�le, similar to the one used in [15], given by lateral and
radial variations

�(x; T ) = exp

�
2:99

1� kxk2
1� rcmb

� 4:61T

�( 1
10
� 6:3713d3a for kxk2 > 1� da

1 otherwise;
(3)

where da is the relative thickness of the asthenosphere. Thus, the Earth mantle is assumed to have
layers with di�erent viscosity characteristics. In particular, the asthenosphere, i.e. the outermost
layer is assumed to be mechanically weaker. In the geophysics community, determining its depth
is still an open research question [15,8]. Here, we choose a depth of 410 km that corresponds to
a viscosity jump of a factor 145. To close the system, we apply the suitable Dirichlet boundary
conditions introduced in Sect. 2. Eq. (2) can now be solved using the monolithic Uzawa multigrid
method by iterating until a residual reduction of �ve orders of magnitude has been reached. Note,
in geodynamic simulations that are subject to several types of error, e.g., model or measurement
error, the speci�ed tolerance is suitable to obtain a solution with an approriate accuracy.

It now remains to choose a coarse level solver. Initially, we employ the standard method pro-
vided by the HHG package, i.e., a block-preconditioned minimal residual (PMINRES ) iteration.
This choice is motivated by the fact that Krylov space methods can be easily implemented and
parallelized. This is executed until the coarse level problem in each V-cycle has been solved with an
accuracy corresponding to a reduction of the preconditioned residual by three orders of magnitude.
The preconditioner here consists of velocity and pressure block preconditioner. For the velocity
block, a Jacobi-preconditioned conjugate gradient (PCG) method is applied and for the pressure
block a scaling by the lumped mass-matrix preconditioner for the pressure is used. The accuracy of
the PCG method is speci�ed by a relative residual reduction of two orders of magnitude. However,
the error reduction depends on the condition number of the system matrix which deteriorates with
the mesh size, and an increasing number of iterations becomes necessary to solve the coarse grid
problem with su�cient accuracy. The e�ciency of the approach in many cases of interest has been
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Table 1. Total run-times (in seconds) of the Vvar application: total, �ne and coarse grid timings for the
asthenosphere scenarios iso-viscous and jump-410. The number of iterations of the MG method (it) and
the average number of iterations of the coarse grid solver (C.it) are also displayed.

proc.
DOFs iso-viscous jump-410

�ne coarse it total �ne coarse e�. C.it it total �ne coarse e�. C.it

1 920 5:37 � 109 9:22 � 104 4 312.8 309.0 3.8 1.00 25.13 15 1186.0 1132.6 53.4 1.00 68.13
15 360 4:29 � 1010 6:96 � 105 5 439.5 429.8 9.7 0.89 18.40 13 1188.0 1091.3 96.8 0.87 48.62
43 200 1:21 � 1011 1:94 � 106 8 735.0 713.1 21.9 0.85 17.00 14 1404.0 1241.5 162.5 0.79 48.43

demonstrated in previous publications [19], but also its limitations have been shown when viscosity
models as (3) are considered [8].

We carry out our experiments on Hazel Hen, a petascale supercomputer at the HLRS in Stuttgart
ranked on position 35 of the TOP500k list (November 2019). Hazel Hen is a Cray XC40 system
with Haswell Intel Xeon E5-2680 v3 processors. Each compute node is a 2-socket system, where
the 12 cores of each processor constitute a separate NUMA (non-uniform memory access) domain.
Hazel Hen o�ers 64 GB per NUMA domain, which means around 5.3 GB per core. Hazel Hen uses
the Cray Aries interconnect. The supercomputer has 185 088 cores in total for a theoretical peak
performance of 7.42 PFLOPS/s.

In Tab. 1, we present the total run-times (in seconds) of a Vvar{cycle application for the sce-
nario iso-viscous and the scenario jump-410, where the asthenosphere has a depth of 410 km. The
displayed parallel e�ciency is equal to the average total timing per iteration for the middle and
large test cases compared to the average total timing per iteration for the smallest one. We observe
that the scalability is better in the iso-viscous case than for variable viscosity jump-410, where the
e�ciency decreases to less than 80%. For a more detailed analysis of the run-time behavior, we also
distinguish between the �ner grids and coarsest grid compute times. While the average run-time
for the �ne grids stays stable for both scenarios, resp. 89.14s and 88.68s for the largest problem,
the average run-time for the coarse grid solution is getting worse with 11.61s with the scenario
jump-410, compared to 2.74s in the case of iso-viscous. This is explained by the increased average
number of iterations (C.it) for the convergence of PMINRES in the jump-410 scenario. Also, we
observe that the average run-time per iteration for the �ne grids are robust in the weak scaling
while the average timing per iteration for the coarse grid deteriorates. Note that this is expected,
since we are using a sub-optimal coarse level solver and since the coarse grid problem size grows
when scaling to larger number of processors.

The number of iterations required for the Vvar{cycle to reduce the residual by �ve orders of
magnitude depends also on the shape of the elements in the triangulation of the input mesh. The
iteration number is not constant when re�ning the mesh due to the viscosity variation and possibly
ill-shaped elements. For the iso-viscous case, we observe that the iteration number decreases to only
four iterations, while for the scenario jump-410 it still remains below 15 iterations. In the following,
we propose an alternative fast and robust coarse level solver.

khttps://www.top500.org
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4 Coarse level strategies

Scaling GMG on large computing systems is hard in the sense that on the coarse grid levels the
granularity deteriorates. Commonly, an agglomeration of data onto fewer processors is used to com-
pensate for this e�ect. Thus the coarsest grid problems are redistributed. The remaining processors
can either perform redundant computations or the unneeded processors stay idle [31,30]. To make
di�erent coarse grid solvers available and thus help improve the HHG multigrid e�ciency, we link
an external software library to the HHG framework. The e�ciency of these external solvers is also
limited with excessive number of processors so that agglomerating the coarse grid data to a suit-
able number of processors is essential. In our implementation, processors which are not used by
the external solver will stay idle. Within the MUMPS solver, for instance, some of the idle cores
from the agglomeration could be employed for an increased MPI distributed parallelism or for a
shared memory parallelism using OpenMP. However, in practice the granularity of each parallel
task could then decrease further, thus slowing down the execution. A systematic study of shared
versus distributed memory parallelism in MUMPS is out of the scope of this paper.

Our solution strategy at the coarse level consists of the following four steps:

1. Convert HHG format to sparse matrix data-format.
2. Apply the agglomeration technique.
3. Solve the coarse level problem by the external library.
4. Redistribute and convert the approximation to the HHG format.

4.1 Interfacing the coarse level solver

One of the biggest advantages of the HHG framework is the highly e�cient data format, which
allows to treat systems with a large number of DOFs. On the other hand, the data structure is
not directly suited to link other software packages like HYPRE, MUMPS, PARDISO, PETSc, or
Trilinos , as they rely on assembled matrice contrary to HHG. Being interoperable and making the
exibility and e�ciency of these libraries available is, of course, an important feature for HHG.

Standard sparse matrix data formats have been de�ned as interfaces to solver libraries. We
will employ the compressed-row storage (CRS) format. Also other sparse matrix formats will be
supported like the coordinate list (COO) format since it is also used within the MUMPS solver.
Note here that despite the compressed formats, setting up the sparse matrix can be a costly oper-
ation both in terms of processing to create the index structures, data copying, as well as memory
consumption. Also, if we link the software implemented in double precision to a single precision
coarse grid solver, overhead from static casting to lower precision arithmetic appears. On the �ne
mesh levels, the matrix-free HHG methods can be much more e�cient than processing the stored
matrices.

Essential for all sparse matrix formats is a unique global numbering of the DOFs. We proceed
with an order ascending with the process rank. We �rst number all DOFs of one process and
then continue with the next one. By these identi�cations, the HHG matrices can easily be locally
converted on each process in array-like data structures.

4.2 Master-slave agglomeration

As discussed before, the number of DOFs per process decreases on coarser grid levels. When the bal-
ance between computation and communication worsens, and the communication overhead becomes
a concern, then we propose to accumulate the data of several processes onto a single process.
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We achieve this by a master-slave organization that is similar to [28] but is here implemented
within the HHG framework. In this method, we collect the data from several slave processes and
accumulate it to one master process. This de�nes a reduction factor r 2 N�1 denoting how much
the overall process count jPj is reduced such that we get

m = jPj=r (4)

master processes. Here, we assume, for simplicity, that the reduction factor r is a divisor of jPj. A
case with reduction factor r = 3 andm = 2 is shown in Fig. 2. The master processes then execute the

p0 p1 p2 p3 p4 p5

Fig. 2. Showcase for master-slave agglomeration with reduction factor r = 3.

computations on the accumulated data. The slave processes stay idle during these computations and
wait for the master processes to �nish. Once the master processes have computed the results, these
must still be re-distributed to the slave processes. The application to sparse matrix data formats
involves array-like data structures like C++ vectors, which make the agglomeration technique easy
to implement and e�cient to apply, since we only need to concatenate vectors and let the external
solver be executed by a reduced communicator.

Note that the selection of a suitable r is challenging. It depends on the granularity of the
problems solved by the direct solver and may have to be determined on a case by case basis. Using
the factor r, the agglomeration method can be adapted to the parallel architecture of the machine:
in our case, we have chosen to agglomerate all the data that resides in the same node. This makes it
possible to perform the agglomeration with small communication overhead, but may then put extra
communication burden on the parallel coarse grid solver. At the other extreme, compacting all the
processes inside a same node puts in practice the burden on the memory because of the memory
bound dense kernels used by MUMPS, which is not advisable. These arguments are very pragmatic,
as well as the agglomeration approach. For our problems, the agglomeration of the system matrix
is performed only once, and is then kept in memory on the master processes. Note that for time
dependent problems or when the viscosity of the problem changes, the agglomerated matrix may
have to be updated in each iteration, which is not the case for the problem considered here.

5 MUMPS: a parallel sparse direct solver

MUMPS (MUltifrontal Massively Parallel direct Solver)�� [5,4] is a package for solving sparse
systems of linear equations like (2) with symmetric (positive-de�nite or inde�nite) or unsymmetric
matrices, using single or double precision real/complex arithmetic. It is based on a direct method
where the matrix is factorized into the product of triangular matrices which are then used to
compute the solution through triangular system solves. In our multigrid context, the use of a sparse
direct solver such as MUMPS as coarse level solver provides two distinct advantages:

��http://MUMPS-solver.org/
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1. Robustness in the sense of the accuracy of the solution, with stable run-times, in cases where
standard iterative solvers show slow convergence.

2. Saving the analysis and factorization in memory, the most time consuming parts, in a prepro-
cessing step. Fast coarse level solves through application of the stored factorization for each
multigrid cycle.

5.1 Method

MUMPS's solver is based on the multifrontal scheme where the factorization of the input sparse
matrix is achieved through a sequence of operations on relatively small dense matrices called fronts;
we refer the reader to [5] for a thorough description of this approach. Like most direct solvers,
MUMPS achieves the solution of a system in three steps:

1. Analysis: at this step a pre-processing of the matrix is performed in order to reduce the �ll-in
(i.e., zero coe�cients that are turned into nonzeros by the numerical factorization) and improve
certain numerical properties of the system (scaling, permutation to a zero-free diagonal); this
is followed by a symbolic factorization which de�nes the dependencies between the unknowns
of the system and organizes the computations to be performed in the next step.

2. Factorization: this step computes the numerical factorization of the system matrix, based on
the outcome of the analysis phase. Two levels of parallelism are available here: one is intrinsic
to the dense linear algebra operations that are applied to each front, the other level comes from
the fact that fronts that do not depend on one another (this relationship is established in the
analysis phase) can be processed concurrently.

3. Solve: in this step the factors computed by the factorization are used to compute the solution
by means of forward elimination and backward substitution operations.

Parallelism in MUMPS is implemented through a hybrid MPI/OpenMP model which makes the
solver suited to modern distributed memory machines equipped with multicore processors.

5.2 Block low-rank approximation

In multigrid methods, the coarse grid is assumed to be solved exactly in theoretical considerations;
in practice, it is common to approximate the coarse grid solution up to a given tolerance. For this
reason, iterative methods are often preferred over standard direct ones which do not allow to control
the accuracy of the solution. However, with the block low-rank (BLR) method, MUMPS o�ers a
mechanism that allows for reducing the cost of the solution if a lower accuracy is acceptable.

Full rank sparse matrices also result in full rank fronts in the sparse factorization. Nonetheless,
it can be proven that for problems in a very broad class of applications, conveniently de�ned
o�-diagonal blocks of the fronts can be approximated with accuracy " using a low-rank product
[10]. Depending on the desired approximation accuracy, this representation can be more or less
compact but in most cases, even with an accuracy close to the working precision, this mechanism
allows for considerably reducing the cost of the linear algebra algorithms both in terms of memory
consumption and oating point operations. Several approaches have been proposed in the literature
to take advantage of this low-rank property. The MUMPS solver is based on a matrix format called
BLR [1,4] where the matrix is partitioned into blocks in a checkerboard fashion and blockwise
low-rank approximations are exploited to signi�cantly reduce the theoretical complexity [2] and
practical cost of the factorization and solve phases. Although even lower theoretical complexities
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can be achieved by using multilevel [3] or hierarchical [21] approximations, the exible BLR format
has proven to be very e�cient in the context of a general purpose, fully-featured sparse solver such
as MUMPS [4,26].
Additionally, running MUMPS in single precision arithmetic decreases the overall memory usage
and time consumption of the solver. This arithmetic can be combined with the BLR approximation
freely with no loss in the accuracy of the solution, as soon as the choice of the parameter " gives
an approximation with accuracy lower or equal to single precision [22].

6 Scaling experiments

In this section, we study the performance of the multigrid solver when combined with a block
low-rank method using single precision arithmetic as coarse level solver for the Stokes problem
introduced in Sect. 3.2. We start with a performance study of the MUMPS solver standalone on the
coarse level system in the Sect. 6.1. Then, we use the best obtained con�gurations to improve the
overall multigrid solver performance in a weak scaling test in Sect. 6.2.

6.1 Performance of the approximate sparse direct solver with agglomeration

While HHG performs well on the �ne grids with a large number of processes, the performance of
MUMPS deteriorates in practice when run on too many processes, because of the lower granu-
larity and memory-bound behaviour of the internal linear algebra kernels. Therefore, we use the
agglomeration technique introduced in Sect. 4.2 as a means to reduce the number of processes when
executing MUMPS. To �nd e�cient agglomeration factors, we �rst study MUMPS as a standalone
solver, with exact double precision accuracy, for the coarse grid matrices extracted from HHG. In
Tab. 2, we display the data for reverse strong scaling studies and for all problem sizes of Sect. 3.2.
The focus lies on the more challenging problem variant, i.e. the jump-410 scenario.

Reverse strong scaling di�ers from classical strong scaling in the sense that here, we start with
the same number of processes and nodes as they arise for the �nest grid, and then reduce the
number of processes by an increasing reduction factor r (see (4)). We consider that r is a divisor of
the original number of processes. The goal is to �nd a suitable choice for the number of processes
m that can be used for the coarse grid problem, in order to minimize the run-time. We are looking
for a trade-o� between a high number of active cores (r not too high) and a combination of large
granularity and low memory concurrency for the solver (r not too low), both cases leading to a
shorter run-time. Note, that the number of executing processes is limited by the number of processes
used for the �ne grid problem. Using all �ne grid processes for the coarse grid produces a huge run-
time due to the excessively high volume of communications. In this scenario, the set of unknowns
for each process is very small (less than 152 DOFs). This is clear for the smallest problem and
r = 1, for which the total timing is more than 10 times higher than after a reduction by r = 24,
which corresponds to removing concurrent memory access by accumulating the data of a whole
node to only one process. This explains why a reduction factor r � 24 is reasonable for all sizes.
Then, increasing r further will decrease the overhead in communication until a too high r gives low
parallelization compared to the granularity of the problem. We observe this e�ect for the biggest
case where having r = 192 decreases the total timing by around 40% compared to r = 24, and
having r = 576 then increases the total run-time again slightly.

When integrated into HHG, many processes will stay idle when executing the MUMPS solver and
when we run the problem only with the reduced number of processes. For instance, for the smallest
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test case and r = 48, only 40 processes execute MUMPS, each on a single node. Furthermore, to
obtain minimal run-times, while increasing the problem size, we must further increase the reduction
factor: for the problem with 1 920 processes the best choice is r = 48, with 15 360 processes, r = 92,
and with 43 200 processes, r = 192. For a more detailed analysis of the MUMPS solver, we report
the timings for analysis, factorization, and solve phase separately.

While all the timings increase when increasing the problem sizes, we observe only a very small
run-time for MUMPS solve phase, which is performed at each cycle. Thus, when the cost of analysis
and factorization, required only once in HHG, can be amortized over several multigrid iterations,
the overall compute times will compare favorably with the PMINRES coarse grid solver (see Table
1). In the case of a dynamic or non-linear problem, multiple MG solve would be needed and, for each
of these, new factorization and possibly analysis steps of MUMPS are required again. Additionally,
good start iterates can be derived from previous time step or Newton step, thus the number of
iterations is reduced. In such a case, the ratio between set-up costs and total costs shifts as the
timing of these early steps of MUMPS becomes prohibitive.

Table 2. Reverse strong scaling study of the MUMPS sparse direct solver, with exact double precision
accuracy: analysis, factorizaton and solve run-times in seconds.

r
1920 15 360 43 200

m analysis fac. solve m analysis fac. solve m analysis fac. solve

1 1 920 6.51 10.80 13.66 - - - - - - - -
24 80 1.62 1.08 0.03 640 15.56 31.09 0.86 1 800 66.56 248.23 1.87
48 40 1.55 0.88 0.03 320 14.62 20.74 0.28 900 44.98 199.51 0.67
96 20 1.61 1.19 0.03 160 13.74 19.58 0.20 450 53.61 173.04 0.73
192 10 1.72 1.66 0.07 80 14.36 24.05 0.22 225 41.02 134.61 0.56
576 - - - - - - - - 75 42.92 158.41 0.59

In a next step, we �x the optimal reduction factor as found in the previous study for MUMPS in
full-rank, assuming it is a good choice also with di�erent parameters. Then, we continue by compar-
ing the performance of the BLR method, in double and single precision, with the standard sparse
direct solver. In order to have the same setup for the coarse grid solver as in HHG after agglom-
eration, each process runs on a separate node. As it is commonly assumed and many experiments
have shown, the coarse level problem within a multigrid method does not require an exact solve.
Thus the BLR method can help to further improve the run-times. Here, the choice of the BLR �
parameter is important, since it controls the accuracy of the approximation and the performance
of the factorization. Furthermore, we are interested in the robustness of the BLR � threshold for
di�erent problem setups in terms of solution accuracy, when increasing the problem sizes.

In Tab. 3, we consider three di�erent resolutions of the problem for the iso-viscous and for
the jump-410 scenarios. We compare three settings: the Full Rank setting does not exploit BLR
approximations and computes a sparse direct solve to machine precision accuracy, whereas the
other two setting use the BLR solver. The accuracy of the approximated solution for the di�erent
setups is given by the scaled residual. With � = 10�8, the scaled residual is about 10�10, while with
� = 10�3 it is about 10�4. This is the accuracy level that we typically need in order to keep the
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convergence of the MG scheme unchanged. As we will see in the next section, the largest problem
is the most critical one and a more detailed study is required such that we also include data for
BLR with � = 10�4; 10�5. The processor speci�cation remains unchanged compared to the previous
experiments. In all cases, the BLR � gives an upper bound for the scaled residual. In all cases here,
the true residual is found to be more than a factor of 3 smaller than the BLR � parameter. Hence,
as theoretically proven in [22], the accuracy can be controlled by the BLR � and stays robust for
di�erent problem sizes when including viscosity variations. Furthermore, as long as � stays safely
below 10�8, we can use single precision arithmetic without changing the quality of the solution [22].
This can help to further decrease the cost in memory and computation.

When applying the Full Rank solve in comparison to the BLR method for di�erent � parameters,
we observe a small increase in the timings for the analysis, around 15% for the biggest case. This
overhead comes from the identi�cation of blocks for the factorization, necessary to the BLR method.
The biggest e�ect of the BLR approximations on the performance of MUMPS can be found in
the factorization. The �rst evidence is the reduction of FLOPS for the factorization: when using
BLR � = 10�3 in comparison to the Full Rank factorization, the FLOPS are reduced up to a
factor 10 for the biggest test case. Then, the direct consequence is a reduction of the run-time
for the factorization when applying the BLR method, e.g. the factorization is 4 times faster with
BLR � = 10�3 on the biggest test case. Additionaly, the use of BLR approximations also reduces
the cost of the solve phase, by about a factor 2 for the biggest test case.

To further accelerate the computation, we also turn to single precision arithmetic. In this case,
the analysis and solve phases stay almost unchanged, while we get a reduction of 30% of the
factorization, whose run-time was originally dominating. Overall, using BLR combined with single
precision reduces the total run-time of a complete MUMPS computation by a factor up to 2.6 for
the largest problem.
Finally, for a �xed problem size, the run-times for all phases of the solver as well as the accuracy
of the solution appear robust with respect to the problem type iso-viscous or jump-410. Comparing
MUMPS results on these 2 problem types, the accuracy of the solution only varies by up to an order
of magnitude, while the run-times are in the same ranges. For this reason, and because it is the
worst case scenario for the PMINRES solver, we focus on the most challenging scenario jump-410
in the rest of the paper.

6.2 Performance of the multigrid solver with the approximate coarse level solver

In this section, we use the MUMPS sparse direct solver and its BLR variant to approximate the
coarsest level problem within the Uzawa multigrid solver in the HHG framework. We compare
the run-times of one Vvar{cycle for this strategy with the ones using the PMINRES solver on the
coarsest grid of Sect. 3.2 in a weak scaling test.

In Tab. 4, we present the total run-times with up to 43 200 processes. We present again the
total run-time over the Vvar-cycle iterations. To study the run-times in detail, we display the �ne
grid run-time, the run-time for MUMPS analysis and factorization cumulated and the coarse grid
run-time (i.e. MUMPS solve phase) separately. Additionally, we include the total time for data
transfer, that is, the time for agglomeration as well as converting HHG to MUMPS data and vice
versa. For the performance of the coarse level solver, it is essential to choose e�cient agglomeration
factors. According to our study in Tab. 2, we use the factors r = 48; 96 and 192 respectively for
agglomeration.
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Table 3. Study of the inuence of the viscosity scenario and BLR � parameter, with double and single
precision, on the accuracy and the run-time of the direct solver. Run-times are separated in analysis,
factorization and solve steps. Each process runs on a separate node.

proc.
DOFs

type BLR �
analysis factorization solve

scaled res.
coarse time (s) Flops red. time (s) time (s)

40 9:22 � 104

iso-viscous
Full Rank 1.51 100.0 0.86 0.03 1:2 � 10�18

10�3 1.73 26.2 0.86 0.02 6:6 � 10�5

10�3 + single 1.74 26.2 0.70 0.01 6:7 � 10�5

jump-410
Full Rank 1.55 100.0 0.88 0.03 6:0 � 10�18

10�3 1.81 28.5 0.91 0.02 3:7 � 10�4

10�3 + single 1.74 26.0 0.67 0.01 2:5 � 10�4

160 6:96 � 105

iso-viscous
Full Rank 13.73 100.0 20.65 0.21 1:1 � 10�18

10�3 15.82 10.8 9.61 0.10 2:2 � 10�4

10�3 + single 15.91 10.8 6.81 0.09 2:3 � 10�4

jump-410
Full Rank 13.74 100.0 19.58 0.20 4:8 � 10�18

10�3 16.03 10.7 9.95 0.10 2:1 � 10�4

10�3 + single 15.86 10.5 6.62 0.09 7:5 � 10�5

225 1:94 � 106

iso-viscous

Full Rank 41.10 100.0 139.17 0.55 7:9 � 10�19

10�5 47.24 12.9 35.51 0.28 4:4 � 10�7

10�5 + single 47.31 12.9 25.17 0.26 4:8 � 10�7

10�3 47.27 7.7 30.97 0.26 2:1 � 10�4

10�3 + single 47.40 7.7 21.07 0.20 2:1 � 10�4

jump-410

Full Rank 41.02 100.0 134.61 0.56 1:5 � 10�18

10�5 47.56 13.0 36.98 0.30 2:4 � 10�6

10�5 + single 47.65 13.2 25.63 0.27 1:4 � 10�6

10�3 47.55 7.5 31.11 0.24 5:0 � 10�5

10�3 + single 47.62 7.6 21.16 0.19 4:7 � 10�5

First, as expected, we observe that the average run-time for the processing of the �ne grids is
very similar to those we observe when using PMINRES. There are still small variations, with a
maximum of 3%, even between runs with di�erent BLR " parameters. These variations are quite
usual at this extreme scale as some unstabilities can appear which are partly due to di�erences
from the placement of the processes at runtime as well as asynchrone MPI communication, and
di�erences in the use of the cache between two runs [34].

The coarse grid solve stays below 1s that is less than 0:1% of the total run-time over the
iterations. Only the portion of the analysis and factorization step should be seen critical. As stated
above, these steps may become problematic in a problem for dynamic or non-linear settings, but in
our speci�c case these are in the range of the acceptable. The compute times decrease from 176:2 s
for the sparse direct solve to 79:3 s with the BLR method in single precision on the biggest case. The
run-time of the single precision BLR method is accelerated by a factor of 2.3 from the complexity
reduction in comparison to the direct solve, while the number of iterations stays unchanged. For
the largest test case, we had to reduce " from 10�3 to 10�5 in the BLR method to obtain the same
iteration number as in the Full Rank case. The value of the scaled residual is still comparable with
the other problem sizes when using " = 10�3. This justi�es that an accuracy around 10�5 for the
coarsest grid problem is the bare minimum needed for the considered class of problems. Comparing
the coarse grid timings with MUMPS, including the analysis, factorization and data transfer, to
the ones of the PMINRES solver solver of Sect. 3.2, we observe a reduction of the total run-time
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of 50% from 162.5s to 83.6s, and a 6% points improvement of the overall parallel e�ciency of the
multigrid scheme with 43 200 processes.

This improvement is summarized in Fig. 3, where for each problem size and coarse grid solver,
we plot the run-time ratios for �ne, coarse, analysis+factorization, and data transfer. The white
portion of the inner ring, corresponding to HHG with MUMPS on the coarse grid, reprensents the
gain in run-time compared to using PMINRES, i.e. the outer ring. As expected, we observe that
this gain increases with the size of the problem because the scalability of the proposed solution is
better. Also, the run-times for coarse, i.e. MUMPS solve phase, and data transfer between HHG
and MUMPS appear completely negligeable.

Table 4. Weak scaling of the Vvar{cycle with a sparse direct and a block low-rank coarse level solver.
The parallel e�ciency compares the average total run-time of each run to the average total run-time of the
smallest case with no BLR.

proc.
DOFs

BLR � it
time (s)

par. e�. scaled res.
�ne coarse total �ne ana. & fac. coarse trans.

1 920 5:37 � 109 9:22 � 104
Full Rank 15 1169.0 1166.1 2.4 0.4 0.1 1.00 1:9 � 10�17

10�3 15 1179.0 1175.9 2.7 0.3 0.1 0.99 3:4 � 10�04

10�3 + single 15 1139.0 1136.2 2.5 0.3 0.1 1.03 1:5 � 10�03

15 360 4:29 � 1010 6:96 � 105
Full Rank 13 1120.0 1080.7 36.3 2.8 0.3 0.90 3:1 � 10�18

10�3 13 1117.9 1091.6 24.8 1.3 0.2 0.90 1:4 � 10�04

10�3 + single 13 1091.0 1066.9 22.3 1.1 0.7 0.93 2:4 � 10�04

43 200 1:21 � 1011 1:94 � 106

Full Rank 14 1382.0 1197.3 176.2 8.2 0.3 0.79 1:0 � 10�18

10�5 14 1297.0 1205.7 87.1 4.0 0.3 0.84 3:5 � 10�07

10�5 + single 14 1282.0 1193.6 79.3 3.3 1.0 0.85 3:6 � 10�07

10�3 19 1755.0 1671.8 78.4 4.4 0.3 0.84 1:4 � 10�04

1 920 proc.

MUMPS

PMINRES

DOFs: 5:37 � 109

15 360 proc.

MUMPS

PMINRES

4:29 � 1010

43 200 proc.

MUMPS

PMINRES

1:21 � 1011

�ne

coarse

ana. & fac.

transfer

Fig. 3. Di�erence between an HHG run with PMINRES and MUMPS, using BLR (� = 10�3) and single
precision, as solvers on the coarse grid for the three di�erent sizes of problem. from using MUMPs.
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7 Conclusion

In this article, we studied the impact of advanced solution techniques on the coarsest level of a
multigrid scheme. To increase the granularity of computations on the coarse grid, we discuss the
use of an agglomeration technique such that the coarse level solver is executed on only a fraction
of the processors of the �ne grid. By doing so, we signi�cantly reduce the time for communication
and memory access, thus reducing the overall run-time of the coarse level solver. To increase the
speed-up, we employ single precision arithmetic and the block low-rank approximation feature of
the MUMPS parallel sparse direct solver that can lead to improved compute times at the cost of
a reliably controlled loss of accuracy in the solution of the coarsest mesh. The e�ciency of the
solver is tested on the petascale supercomputer Hazel Hen on up to 43 200 processes and compared
to Krylov space solvers for the coarsest grid level. For a 3D Stokes problem, the new solver can
achieve a 6% points overall parallel e�ciency improvement compared to a simple Krylov solver
by reducing the run-time of the coarsest level solver. This scalability is achieved thanks to the
fact that the factorization of the coarsest grid matrix need only be computed once and that the
factorization can then be re-used in all later V-cycle iterations. This would no longer be the case
in the context of dynamic or non-linear problems. A �ne tuning of the MUMPS parameters, the
use of hybrid shared/distributed memory parallelism in the sparse direct solver or more advanced
agglomeration schemes might lead to a further acceleration of the setup phase. The study has shown
that the new coarse grid solver is robust with respect to the viscosity variations for PDE problem,
i.e. contrary to Krylov-type iterative methods it does not require longer compute times for larger
viscosity jumps. To the best of our knowledge, these are the �rst results showcasing the potential
of modern, approximate sparse direct solvers to accelerate the coarse grid solution of extreme scale
MG solvers. This is an essential improvement e.g. for Earth Mantle simulation scenarios.
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