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WEIGHTED DISCRETE HARDY’S INEQUALITIES

PASCAL LEFÈVRE

Abstract. The purpose of this note is to give a short proof of a weighted version of the Hardy’s
inequality in the sequence case. This includes the known case of classical polynomial weights, with

optimal constant. The proof relies on the ideas of the short direct proof given recently in [6].

In the sequel, we work with p > 1 and p′ =
p

p− 1
denotes its conjugate exponent.

The notation N0 stands for the set of non negative integral numbers: 0, 1, 2, . . .
For y ∈ R+, we write [y] = max{k ∈ N0 | k ≤ y} its integral part.

As usual, given a sequence (wn)n≥0 of positive numbers, `p(w) is the space of sequences of complex

numbers a =
(
an
)
n≥0

such that
∑
n≥0

|an|pwn < ∞, equipped with the norm ‖a‖p =
( +∞∑
n=0

|an|pwn
) 1

p

.

When wn = 1 for every n ∈ N0, we simply write `p.

Given a sequence a =
(
ak
)
k≥0

of complex numbers, we associate the sequence

An =
1

n+ 1

n∑
k=0

ak

We recall the famous discrete Hardy’s inequality.

Let p > 1. For every a ∈ `p, the sequence A =
(
An
)
n≥0

belongs to `p and ‖A‖p ≤ p′‖a‖p i.e.

(HI)
( +∞∑
n=0

∣∣∣ 1

n+ 1

n∑
k=0

ak

∣∣∣p) 1
p ≤ p′

( +∞∑
n=0

|an|p
) 1

p

.

This inequality is equivalent to the boundedness of the Cesàro operator defined by Γ(a) =
(
An
)
n∈N,

with ‖Γ‖ ≤ p′, viewed as an operator on `p. Actually the constant p′ is optimal and ‖Γ‖ = p′. See [2]
for the original result, [5] for a very interesting historical survey on the subject, [4] for a very recent
nice extension, and [6] for a short proof.

The aim of this note is to give a short proof of the boundedness of Γ as an operator on weighted
`p(w) spaces, under an homogeneity type assumption, following the same ideas than [6]. In particular,
this includes the case of classical weights

(
nαp
)
n≥0

(with exact norm), so that we recover easily some

results of [1] and [3].

Main Theorem 1. Let w = (wn)n≥0 and w′ = (w′n)n≥0 be sequences of non-negative real numbers
and we assume that (wn)n≥0 is non-decreasing.

We assume that there exists a measurable positive function f on (0, 1) such that

• we have a sub-homogeneity property: for every n ∈
(
m/s, (m + 1)/s

)
∩ N, w′n−1 ≤ f(s)wm,

where s ∈ (0, 1) and m ∈ N0.

• K =

∫ 1

0

(f(s)

s

) 1
p

ds <∞.

Then Γ is bounded from `p(w) to `p(w′) with ‖Γ‖ ≤ K:

(WHI)
( +∞∑
n=0

w′n

∣∣∣ 1

n+ 1

n∑
k=0

xk

∣∣∣p) 1
p ≤ K

( +∞∑
n=0

|xn|pwn
) 1

p

.
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In particular, with f(s) = s−αp, we immediately get the classical weights version:

Theorem 2. Let α ∈ [0, 1/p′) and wn = (n+ 1)αp for n ∈ N0.

Then Γ is bounded on `p(w) with ‖Γ‖ =
( 1

p′
− α

)−1

, equivalently, for every a ∈ `p:

(CWHI)
( +∞∑
n=0

∣∣∣ 1

(n+ 1)1−α

n∑
k=0

ak
(k + 1)α

∣∣∣p) 1
p ≤

( 1

p′
− α

)−1 ( +∞∑
n=0

|an|p
) 1

p

.

It is well known and easy to check that this bound is sharp (see [6] for the case α = 0). For instance,

just test an = (n+ 1)−( 1
p +ε) when ε→ 0+.

Before giving the proof of the main theorem, let us mention a general remark about monotone
rearrangements of sequences.

We recall that we can define the monotone rearrangement of a vanishing sequence of non negative
numbers

(
bk
)
k≥0

as the following non-increasing sequence:

∀N ∈ N0 , b∗N = inf
|E|=N

sup
n/∈E

bn .

Remark. The following consequence of the Abel transform principle is well known:
Let

(
ck
)
k≥0

a non-increasing sequence of non negative numbers. Let
(
uk
)
k≥0

and
(
u′k
)
k≥0

be two

sequence such that for every n ≥ 0,

n∑
k=0

u′k ≥
n∑
k=0

uk.

Then

N∑
n=0

cnu
′
n ≥

N∑
n=0

cnun for every N ≥ 0.

Indeed write U ′n =

n∑
k=0

u′k and Un =

n∑
k=0

uk and defines for convenience U ′−1 = U−1 = 0. A simple

Abel transform gives, for every N ≥ 0,

N∑
n=0

cnu
′
n =

N∑
n=0

cn
(
U ′n − U ′n−1

)
= cN+1U

′
N +

N∑
n=0

(cn − cn+1)U ′n ≥ cN+1UN +

N∑
n=0

(cn − cn+1)Un

and another Abel tranform gives the result.

In particular, we have the two following simple facts.
Fact 1. Let

(
ck
)
k≥0

a non-increasing sequence of non negative real numbers. Let
(
uk
)
k≥0

be a

vanishing sequence of non negative numbers and
(
u∗k
)
k≥0

its monotone rearrangement.

Then

(RI)

+∞∑
n=0

cnun ≤
+∞∑
n=0

cnu
∗
n .

Indeed we just point out that, by definition, for every n ≥ 0, we have

n∑
k=0

u∗k ≥
n∑
k=0

uk.

Fact 2. Let (αm)m≥0 be a non-increasing summable sequence of non-negative real numbers and

λ > 0. Then
∑
m≥0

αm
(
[(m+ 1)λ]− [mλ]

)
≤ λ

∑
m≥0

αm .

Indeed, we only have to point out that [Nλ] ≤ Nλ for every N ≥ 0.

Proof of the main Theorem. Let a ∈ `p(w). We assume first that (|ak|pwk)k is non-increasing.
Let us fix an arbitrary N ∈ N0. For every n ∈ N0, we write

An =

n∑
k=0

∫ k+1
n+1

k
n+1

ak ds =

∫ 1

0

a[(n+1)s] ds .
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Thanks to the triangular inequality for integrals, we have( N∑
n=0

|An|pw′n
) 1

p ≤
∫ 1

0

( N∑
n=0

∣∣a[(n+1)s]

∣∣pw′n) 1
p

ds ≤
∫ 1

0

(∑
n≥1

∣∣a[ns]

∣∣pw′n−1

) 1
p

ds .

For every s ∈ (0, 1) and for m ∈ N0, in order to gather terms, we introduce

Im(s) =
{
n ≥ 1 | [ns] = m

}
=
[m
s
,
m+ 1

s

)
∩ N .

Clearly, (Im)m∈N0
is a partition of N, so we have

(1)
∑
n≥1

∣∣a[ns]

∣∣pw′n−1 =
∑
m≥0

∣∣am∣∣p ∑
n∈Im(s)

w′n−1 ≤ f(s)
∑
m≥0

∣∣am∣∣pwm(card Im(s))

by hypothesis.
We point out that card

(
(0, A) ∩ N

)
= [A] when A /∈ N. Therefore, for every s ∈ [0, 1] \Q, we have

for every m ≥ 0,

(2) card Im(s) =
[m+ 1

s

]
−
[m
s

]
·

From (1), (2) and Fact 2, we obtain
(∑
n≥1

∣∣a[ns]

∣∣pw′n) 1
p ≤ f(s)

1
p s−

1
p

∥∥a∥∥
p

almost everywhere.

Integrating with respect to s, we get
( N∑
n=0

|An|pw′n
) 1

p ≤ K
∥∥a∥∥

p
.

Since N ∈ N0 is arbitrary, the result is proved in the particular case when (|ak|pwk)k is non-
increasing.

Now, in the general case, take a ∈ `p(w). The sequence (uk)k≥0 =
(
|ak|w

1
p

k

)
k

is vanishing so we can

consider its monotone rearrangement
(
u∗k
)
k≥0

. We define also ck = w
− 1

p

k for k ≥ 0.

We point out that for every N ≥ 0, thanks to Fact 1, we have∣∣∣ N∑
n=0

an

∣∣∣ ≤ N∑
n=0

|an| =
N∑
n=0

cnun ≤
N∑
n=0

cnu
∗
n

Applying the first step to the sequence
(
cku
∗
k

)
k≥0

, we get

‖Γ(a)‖`p(w′) ≤ K
( +∞∑
n=0

wn|cnu∗n|p
) 1

p

but ( +∞∑
n=0

wn|cnu∗n|p
) 1

p

=
( +∞∑
n=0

|u∗n|p
) 1

p

=
( +∞∑
n=0

|un|p
) 1

p

= ‖a‖`p(w) .

�
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