PASCAL LEF ÈVRE

Abstract. The purpose of this note is to give a short proof of a weighted version of the Hardy's inequality in the sequence case. This includes the known case of classical polynomial weights, with optimal constant. The proof relies on the ideas of the short direct proof given recently in [START_REF] Lefèvre | A short direct proof of the discrete Hardy inequality[END_REF].

In the sequel, we work with p > 1 and p = p p -1 denotes its conjugate exponent.

The notation N 0 stands for the set of non negative integral numbers: 0, 1, 2, . . . For y ∈ R + , we write [y] = max{k ∈ N 0 | k ≤ y} its integral part.

As usual, given a sequence (w n ) n≥0 of positive numbers, p (w) is the space of sequences of complex numbers a = a n n≥0 such that

n≥0 |a n | p w n < ∞, equipped with the norm a p = +∞ n=0 |a n | p w n 1 p .
When w n = 1 for every n ∈ N 0 , we simply write p .

Given a sequence a = a k k≥0 of complex numbers, we associate the sequence

A n = 1 n + 1 n k=0 a k
We recall the famous discrete Hardy's inequality.

Let p > 1. For every a ∈ p , the sequence A = A n n≥0 belongs to p and A p ≤ p a p i.e.

(HI)

+∞ n=0 1 n + 1 n k=0 a k p 1 p ≤ p +∞ n=0 |a n | p 1 p .
This inequality is equivalent to the boundedness of the Cesàro operator defined by Γ(a) = A n n∈N , with Γ ≤ p , viewed as an operator on p . Actually the constant p is optimal and Γ = p . See [START_REF] Hardy | Inequalities[END_REF] for the original result, [START_REF] Kufner | The Prehistory of the Hardy Inequality[END_REF] for a very interesting historical survey on the subject, [START_REF] Fischer | An improved discrete p-Hardy inequality[END_REF] for a very recent nice extension, and [START_REF] Lefèvre | A short direct proof of the discrete Hardy inequality[END_REF] for a short proof.

The aim of this note is to give a short proof of the boundedness of Γ as an operator on weighted p (w) spaces, under an homogeneity type assumption, following the same ideas than [START_REF] Lefèvre | A short direct proof of the discrete Hardy inequality[END_REF]. In particular, this includes the case of classical weights n αp n≥0 (with exact norm), so that we recover easily some results of [START_REF] Bennett | Some elementary inequalities[END_REF] and [START_REF] Jameson | Norms of certain operators on weighted p spaces and Lorentz sequence spaces[END_REF].

Main Theorem 1. Let w = (w n ) n≥0 and w = (w n ) n≥0 be sequences of non-negative real numbers and we assume that (w n ) n≥0 is non-decreasing.

We assume that there exists a measurable positive function f on (0, 1) such that • we have a sub-homogeneity property: for every n ∈ m/s, (m + 1)/s ∩ N, w n-1 ≤ f (s)w m , where s ∈ (0, 1) and m ∈ N 0 .

• K = 1 0 f (s) s 1 p ds < ∞.
Then Γ is bounded from p (w) to p (w ) with Γ ≤ K:

(WHI) +∞ n=0 w n 1 n + 1 n k=0 x k p 1 p ≤ K +∞ n=0 |x n | p w n 1 p .
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In particular, with f (s) = s -αp , we immediately get the classical weights version:

Theorem 2. Let α ∈ [0, 1/p ) and w n = (n + 1) αp for n ∈ N 0 . Then Γ is bounded on p (w) with Γ = 1 p -α -1
, equivalently, for every a ∈ p :

(CWHI) +∞ n=0 1 (n + 1) 1-α n k=0 a k (k + 1) α p 1 p ≤ 1 p -α -1 +∞ n=0 |a n | p 1 p .
It is well known and easy to check that this bound is sharp (see [START_REF] Lefèvre | A short direct proof of the discrete Hardy inequality[END_REF] for the case α = 0). For instance, just test a n = (n + 1) -( 1p +ε) when ε → 0 + .

Before giving the proof of the main theorem, let us mention a general remark about monotone rearrangements of sequences.

We recall that we can define the monotone rearrangement of a vanishing sequence of non negative numbers b k k≥0 as the following non-increasing sequence:

∀N ∈ N 0 , b * N = inf |E|=N sup n / ∈E b n .
Remark. The following consequence of the Abel transform principle is well known: Let c k k≥0 a non-increasing sequence of non negative numbers. Let u k k≥0 and u k k≥0 be two sequence such that for every n ≥ 0,

n k=0 u k ≥ n k=0 u k .
Then 

c n u n = N n=0 c n U n -U n-1 = c N +1 U N + N n=0 (c n -c n+1 )U n ≥ c N +1 U N + N n=0 (c n -c n+1 )U n
and another Abel tranform gives the result.

In particular, we have the two following simple facts. Fact 1. Let c k k≥0 a non-increasing sequence of non negative real numbers. Let u k k≥0 be a vanishing sequence of non negative numbers and u * k k≥0 its monotone rearrangement. Then

(RI) +∞ n=0 c n u n ≤ +∞ n=0 c n u * n .
Indeed we just point out that, by definition, for every n ≥ 0, we have

n k=0 u * k ≥ n k=0 u k .
Fact 2. Let (α m ) m≥0 be a non-increasing summable sequence of non-negative real numbers and λ > 0. Then

m≥0 α m [(m + 1)λ] -[mλ] ≤ λ m≥0 α m .
Indeed, we only have to point out that [N λ] ≤ N λ for every N ≥ 0.

Proof of the main Theorem. Let a ∈ p (w). We assume first that (|a k | p w k ) k is non-increasing.

Let us fix an arbitrary N ∈ N 0 . For every n ∈ N 0 , we write

A n = n k=0 k+1 n+1 k n+1 a k ds = 1 0 a [(n+1)s] ds .
Thanks to the triangular inequality for integrals, we have

N n=0 |A n | p w n 1 p ≤ 1 0 N n=0 a [(n+1)s] p w n 1 p ds ≤ 1 0 n≥1 a [ns] p w n-1 1 p ds .
For every s ∈ (0, 1) and for m ∈ N 0 , in order to gather terms, we introduce

I m (s) = n ≥ 1 | [ns] = m = m s , m + 1 s ∩ N .
Clearly, (I m ) m∈N0 is a partition of N, so we have Integrating with respect to s, we get

N n=0 |A n | p w n 1 p ≤ K a p .
Since N ∈ N 0 is arbitrary, the result is proved in the particular case when (|a k | p w k ) k is nonincreasing. Now, in the general case, take a ∈ p (w). The sequence (u k ) k≥0 = |a k |w 1 p k k is vanishing so we can consider its monotone rearrangement u * k k≥0 . We define also c k = w

-1 p k
for k ≥ 0. We point out that for every N ≥ 0, thanks to Fact 1, we have Final remark and acknowledgment. This work is partially supported by the grant ANR-17-CE40-0021 of the French National Research Agency ANR (project Front).
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  n u n for every N ≥ 0. Indeed write U n = n k=0 u k and U n = n k=0 u k and defines for convenience U -1 = U -1 = 0. A simple Abel transform gives, for every N ≥ 0, N n=0

From ( 1 )w n 1 p

 11 w m (card I m (s)) by hypothesis.We point out that card (0, A) ∩ N = [A] when A / ∈ N. Therefore, for every s ∈ [0, 1] \ Q, we have for every m ≥ 0, , (2) and Fact 2, we obtain n≥1 a [ns]p ≤ f (s) 1 p s -1 p a p almost everywhere.

n|u n | p 1 p

 1 Applying the first step to the sequence c k u * k k≥0 , we getΓ(a) p (w ) ≤ K +∞ n=0 w n |c n u * n | p = a p (w) .