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ASYMPTOTICS FOR 2D WHISPERING GALLERY MODES IN OPTICAL
MICRO-DISKS WITH RADIALLY VARYING INDEX

STEPHANE BALAC, MONIQUE DAUGE, AND ZOiS MOITIER

ABSTRACT. Whispering gallery modes [WGM] are resonant modes displaying special fea-
tures: They concentrate along the boundary of the optical cavity at high angular frequencies
and they are associated with (complex) scattering resonances very close to the real axis. As a
classical simplification of the full Maxwell system, we consider two-dimensional Helmholtz
equations governing transverse electric [TE] or magnetic [TM] modes. Even in this 2D
framework, very few results provide asymptotic expansion of WGM resonances at high an-
gular frequency. In this work, using multiscale expansions, we design a unified procedure to
construct asymptotic quasi-resonances and associate quasi-modes that have the WGM struc-
ture in disk cavities with a radially varying optical index. We show using the black-box
scattering approach that quasi-resonances are asymptotically close to true resonances. More
specifically, using a Schrodinger analogy we highlight three typical behaviors in such opti-
cal micro-disks, leading to three distinct asymptotic expansions for the quasi-resonances and
quasi-modes.
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1. INTRODUCTION

1.1. Helmholtz equations for optical micro-disks. The motivation of our work is the study
of light-wave propagation in optical micro-resonators. These optical devices, with micro-
metric size, came to be important components in the photonic toolbox. They are basically
composed of a dielectric cavity coupled to waveguides or fibers for light input and output
[10]. When resonance conditions are met, it is possible to confine light-waves in the cavity
and to access a wide range of optical phenomena. The study of such scattering resonances
is the subject of this paper. More specifically, we focus our study on “Whispering Gallery
Modes” that are modes essentially localized inside the cavity and concentrated in a boundary
layer, and that are associated with scattering resonances close to the real axis.

If a complete, 3-dimensional, modeling would require to solve the full Maxwell sys-
tem, in many situations, the solution of 2-dimensional scalar harmonic equations brings
insight in resonance phenomena and constitutes a reference configuration in the literature
in optics. Moreover, the 2-dimensional model can be obtained as an approximation of the
3-dimensional ones by using an approach referred in the optical literature as the effective
index method [26].

In the 2-dimensional model, the optical cavity is represented by a bounded plane domain,
that we denote by (). This cavity is associated with an optical index n > 1 which is a regular
function of the position in the closure {2 of 2. Outside 2, the index n is equal tol. There are
two relevant scalar Helmholtz equations associated with such a configuration, corresponding
to Transverse Electric (TE) modes or Transverse Magnetic (TM) modes: For such a bi-
dimensional optical cavity €2 with index n, the resonance pairs (k, u) are obtained by solving
the following problem where p = 1 for TM modes and p = —1 for TE modes:

Findk € C, u| € H%(Q), u‘RQ\Q e H2 (R?\ Q) s.t.

—div (n?~! Vu) — E*nPu =0 in Q and R?\ Q (1.1a)
[u] =0 across Of)

[P~ d,u] =0 across O

with a radiation condition at infinity. This radiation condition imposes that the solution u to
problem (1.1a), outside any disk D(0, Rq) which contains €2, has an expansion in terms of

Hankel functions of the first kind H%) in the following form in polar coordinates:

u(z,y) = Z Crn €™ HW (Err) Vo € [0,27], r > Rq. (1.1b)
mEZ
Owing to Rellich theorem (see [16] for instance) the radiation condition (1.1b) implies that
the imaginary part of £ is negative and the modes, exponentially increasing at infinity. Such
wave-numbers £ are the poles of the extension of the resolvent of underlying Helmholtz
operators when coming from the upper half complex plane.

We note that, in the case when n is constant inside €2, problem (1.1a)-(1.1b) appears
also as a modeling of scattering by a transparent obstacle (see MOIOLA and SPENCE [17,
Remark 2.1] for a discussion of the models in acoustics and electromagnetics). In contrast
with impenetrable obstacles (see SJOSTRAND and ZWORSKI [25]), transparent obstacles
or dielectric cavities may have resonances super-algebraically close to the real axis due to
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almost total internal reflection on a convex boundary (see POPOV and VODEV [23], and
also GALKOWSKI[8]). These resonances correspond to the whispering gallery modes we are
interested in.

This work is motivated by the following observation found in the literature in optics:
Whispering Gallery Mode (WGM) resonators are in most cases formed of dielectric materi-
als with constant optical index n but this constitutes a potential limit in their performance and
in the range of their applications. Resonators with spatially varying optical index, that fall
under the category of “graded index” structures [9], offer new opportunities to improve and
enlarge the field of applications of these devices and start to be investigated in optics. Among
the graded index structures investigated in the literature in optics, we can quote a modified
form of the “Maxwell’s fish eye”, that can be implemented using dielectric material, where
the optical index varies with the radial position in the micro-disk resonator as [4, 19]

n(r) = a (1 + %) B

where o > 2 and R is the disk radius. In [28] the authors consider a micro-cavity made of a
quadratic-index glass doped with dye molecules and the refractive index is written as n(r) =
o — %ﬁ?“2, where o, 5 > 0. In [31], an analysis of hollow cylindrical whispering gallery
mode resonator is carried out where the refractive index of the cladding varies according to
n(r) = p/r, 5> R.

Motivated by the above mentioned examples, we found interesting to investigate the case
when (2 is a disk (with radius denoted by R), and the optical index is a radial function
of the position: In polar coordinates (r,6) centered at the disk center, n = n(r). Taking
advantage of the invariance by rotation of equations (1.1), it is easily proved that any solution
u associated with a p € {£1} and a resonance k € C can be expanded as a Fourier sum

u(z,y) = Z Wy (1) €™
meEZ

and that each term u,,,(z,y) = w,,(r) ™ is a solution of problem (1.1) associated with the

same p and the same k. Hence it is sufficient to solve, for any m € Z, problem (1.1) with u

of the form w,, (1) €™¢. Here m € Z is referred as the polar mode index. The radial problem

satisfied by w : r — w(r) when u = w(r) ™ is plugged into problem (1.1) is the following

radial problem (1.2a)—(1.2b) = (1.2) depending on m:

(

Find k € C, w‘(O’R) € H2((0, R),rdr), w‘(Rm) € H2 ([R,00),rdr) s.t.
=10, (P~ tro,w) + nPt (T—; — k2 n2> w =10 in (0, R) and (R, +00)
w] =0 for r=R (1.2a)
[nP~ '] =0 for r =R
| w(0)=0 if m#0
with the following outgoing wave condition at infinity deduced from (1.1b):
w(r) = CHWY (kr) when 7 > R, with a constant C' # 0. (1.2b)

1.2. Circular cavity with constant optical index. As a fundamental illustrative example,
let us consider a circular cavity with constant optical index n = ng > 1 in €. Though
apparently simple, this case is indeed already very rich. The use of partly analytic formulas
provides a lot of information on the resonance set and the associated modes. Let us sketch
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this now. For both TM and TE modes, solutions w of (1.2) have the form
Jm(nokr) ifr<R
w(r) =< Jn(nokR)

Here J,,, refers to the order m Bessel function of the first kind and Hfﬁ) refers to the order m
Hankel function of the first kind. In both TE and TM cases, the resonance k is obtained as a
solution to the following non-linear equation, termed modal equation (recall that p = 1 for
TM modes and p = —1 for TE modes)

n? ) (noRk) HO(RE) — 1, (noRE) HY'(RE) = 0. (1.4)

For each value of the polar mode index m, the modal equation (1.4) has infinitely many solu-
tions k& € C. We denote by %, [ng, R](m) this set. Because J_,,(p) = (—1)"™J,,,(p) and the

same for H,(%), the two integers £m provide the same resonance values, which reflects a de-
generacy of resonances for disk-cavities. Thus, we can restrict the discussion to nonnegative
integer values of m.

In Figure 1, we show the complex roots of equation (1.4) whenng = 1.5, R=1,and 0 <
m < 60, the values of m being distinguished by a color scale. This figure displays clearly
the general features of the set of resonances. For each m the set of resonances %, [ng, R|(m)
can be split into two parts, see [3],

(1.3)
HO(kr) ifr > R.

e an infinite part &, inner[120, 1] () made of inner resonances for which the modes are
essentially supported inside the disk 2

e a finite part &, outer[20, R](m) made of outer resonances for which the modes are
essentially supported outside the disk €.

The sets of inner and outer resonances are given by

%p,inner[noa R] = U %p,inner[no, R] (m) and %p,outer[nOu R] = U %p,outer[nm R] (m)

meN meN
respectively. It appears that for TM modes (p = 1) there exists a negative threshold 7 such
that the outer resonances satisfy Im & < 7, and the inner ones, Im &k > 7. We can clearly
see on Fig 1 some organization in sub-families, not indexed by m (i.e., m varies along these
families). Observation of the associated modes shows that these families depend on another
parameter, j, which can be called a radial mode index: This is the number of sign changes (or
nodal points) of the real part of an associated mode. For inner resonances, the sign changes
occur inside the disk. For outer resonances, there is no such interpretation in term of sign
changes but they can be linked to the resonances of the exterior Dirichlet problem: One
can see in [2, Eq. (49)] that when m — +o00, outer resonances tend to zeros of the Hankel
function k — Hg,ll)(Rk).

Inner resonances will be denoted by k. ;(m), with p = 1 and p = —1 according to the TM
and TE cases respectively, and with m and 7 the polar and radial mode indices, respectively.
Then there exist two distinct asymptotics for k. ;(m) according to j — oo or m — oo.

On the one hand, direct calculations yield, [18, Section 3.3.1], when p = +1 and j — +o0

jgr (2m+2—p)w i ng — 1
k. ~ —1 .
pislm) Rnqg - 4Rnqg * 2ny " ng + 1
Thus, as j — oo, the imaginary part of k,.;(m) tends to the negative value ﬁ ln(zg—ﬁ).

For the example displayed in Figure 1, this value is —0.53648. This same value can also be
found in the physical literature, see [6, Eq. (13)] for example.
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FIGURE 1. Roots of (1.4) when p € {£1},n9 =15, R=1,and0 < m <
60. The first row gives a global view, whereas the second row provides a

ZOoom on inner resonances.

On the other hand, using asymptotic expansions of Bessel’s functions involved in the
modal equation (1.4), one obtains that resonances k. ;(m) for a given radial index j satisfy
the following asymptotic expansion when m — +o0:

m

a; [ 2 5
k.. - — |14+ 2 = —
p,J(m> Rng + 9 <m> 2(n

P
L

2 3a% (2
[EEE + — | —
2_1)z\m/ 40 \'m

2 _ 2 3
., ng(?)no 2n0p> (3) +0 (m—2> ) (15)

ol

wlon

12(n — 1)z \m

For details, we refer to [15] where computations were carried out for a sphere and therefore
spherical Bessel’s functions appears in this latter case in the modal equation instead of cylin-
drical Bessel’s functions. In the asymptotic expansion (1.5), 0 < ag < a; < ay < --- are the
successive roots of the flipped Airy function A : z € C — Ai(—z) where Ai denotes the Airy
function. It is important to note that the terms in the asymptotic expansions are real: Hence
the imaginary part of k,.;(m) is contained in the remainder. This part of the resonance set
correspond to typical whispering gallery modes.
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FIGURE 2. Plots of real parts of TM modes w in a circular cavity of radius
R = 1 and index n = 1.5 (computed by solving the modal equation (1.4)
using complex integration [22]). Below each plot, we give values of computed
resonances k& € C. Each row corresponds to a distinct value of j, from 0 to 2.

We observe the following whispering gallery mode features when j is chosen and m gets
large, see Fig. 2:

(1) The analytic resonances obtained by solving the modal equation (1.4) have a negative
imaginary part which tends to zero rapidly (exponentially) when m — oo.

(2) The analytic modes u = w,,(r) e™? with w,, given by (1.3) and k solution of the
modal equation (1.4) concentrate around the interface between the disk and the exte-
rior medium.

1.3. Radially varying index: Main results. The proof of the formula (1.5) given in [15]
relies on the modal equation (1.4) and makes use of asymptotic formulas for Bessel functions
[20, 1]. Such an approach is specific to disks with constant optical index, and the number of
terms in the expansion is limited by the asymptotics as m — oo of Bessel functions available
in the literature.

In this paper we develop a more versatile approach, based on multiscale expansions and
semiclassical analysis. The idea is to consider h = % as small parameter and to take advan-
tage of the factor m? in front of 7% in the first equation of (1.2a) to transform this equation
into a semiclassical 1-dimensional Schrodinger operator with a singular potential V. Gener-
ically, V' will have a potential well at r = R. We perform an asymptotic construction of
quasi-resonances and quasi-modes in the vicinity of » = R, in such a way that we can rely
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on general arguments to deduce the existence of true resonances close to quasi-resonances

_ . . . . 1 . . .
modulo G (m =), i.e., more rapidly than any polynomial in --. Unless explicitly mentioned,
we suppose the following.

Assumption 1.1. The radial function n : r — n(r) satisfies the following properties
(D) n(r)=1ifr > R;
(2) The function 7 — n(r) belongs to “€°>°(]0, R]) and n(r) > 1 forall r < R.

This assumption motivates the following notations.

Notation 1.2. Let n(R), n’'(R), n”(R) denote the limit values of n(r) and its derivatives as
r /' R; We set

no =n(R), ni1=n'(R), ny=n"(R). (1.6)
Let & be the effective adimensional curvature defined by
1 sl
r=R({=4+—]. 1.7
K < 7 + no) (1.7)

In this paper we prove expansions of resonances as m — oo in three distinct cases dis-
criminated by the sign of . Such expansions are “modulo O (m~>°)” in a sense defined
below.

Notation 1.3. Let (a,,)en be a sequence of numbers:
am =0 (m™)  means that VN € N, 3Cy such that |a,,| < Oxm™, ¥m € N.
Theorem 1.A. Assume that the radial function n satisfies Assumption 1.1 and
Kk > 0. (1.8)

Choose p € {£1} and denote by & ,[n, R] the resonance set solution to problem (1.1). Then
for any j € N, there exists a smooth real function K,,.; € 6€>°([0,1]) : t — K,.;(t) defining
distinct sequences

k

=p;J

(m) =m Ky (m 1), vm>1 (1.9)
that are close modulo O (m~>°) to the resonance set R,[n, R), i.e. for each m, there exists
km € Rypn, R] such that k. ;(m) — kn, = 6 (m~>°). Let K. _; be the coefficients of the Taylor
expansion of K,.; att = 0. We have, with numbers a; being the successive roots of the
flipped Airy function,
1 1 a;
0 _ 1 _ 2 _ (o)
Kp;j - R_no7 Kp;j =0, Kp;j - R_no 5(2’1)‘ ) (1.10)

All coefficients Kf,; ; are calculable, being the solution of an explicit algorithm involving
matrix products and matrix inversions in finite dimensions.

Wi

We refer to Section 4.1 for more details. As a consequence of Theorem 1.A, for each
chosen p and j, there exists a sequence of true resonances m — k,.;(m) € %R,[n, R] such

that
V-1 1 3 1 3
> KL, (—) +0 (—) VN > 1. (1.11)
—0 m m

kp;j(m) =m

This clearly generalizes (1.5).

N

When & is zero, the powers of m™3 are replaced by powers of m™2.
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Theorem 1.B. Assume that the radial function n satisfies Assumption 1.1 and that

k=0, and :=2— > 0. (1.12)
Then for any j € N, there exists a smooth real function K,,.; € 6°°([0,1]) : t — K,.;(¢)
defining distinct sequences

k

p;j

(m) =mK,,; (m_%> , Vm>1 (1.13)

that are close modulo G (m~°) to the resonance set R,n, R|. The first coefficients of the
Taylor expansion of K,.; att = 0 are

1 1 (45 4+ 3/
Ko =— KL =0 K. = (47 + )\/ﬁ,
Pl Rno Pl 2%} Rno 2
We refer to Section 5.1 for more details. Note that, in contrast to the case & > 0, the

coefficients Kf,; ; are not calculable (except the first four of them) in the sense that their
determination needs the inversion of infinite dimensional matrices.

(1.14)

Unlike the two previous cases for which the quasi-modes are localized near the interface
r = R, in the third case the quasi-modes are localized near an internal circle » = R, with
some Ry < R.

Theorem 1.C. Assume that the radial function n satisfies Assumption 1.1 and that k < 0.
Let Ry € (0, R) such that 1 + 22280 — (0 and assume further that

n(Ro)

Rgn" (Ry)
n(Ro)
Then a similar statement as in Theorem 1.B holds. The first coefficients of the Taylor expan-
sion of K,,.; att = 0 are now, instead of (1.14),

1 1 (2 +3)0;&

K.=———— K. .=0 K = : 1.16
piJ Ron(Ro) ’ piJ ’ piJ Ron(Ro) 2 ( )

We refer to Section 6.1 for more details. Note that in this case the coefficients Kf;; ; are all
calculable in the sense introduced in Theorem 1.A.

fi=2 > 0. (1.15)

Remark 1.4. In all cases covered by Theorems 1.A—1.C, the quasi-resonances k,, ;(m) are
real. We will see in the proofs that the associated quasi-modes w,,.;(m) are localized in the
radial variable (close to the interface » = R in the fisrt two cases and close to the internal
circle 7 = Ry in the third one). The couples (k,.;(m), w,.;(m)) are in fact quasi-pairs for
a transmission problem in a larger bounded domain D containing ). Such a problem can
be viewed as self-adjoint. This explains why that the k,, ;(m) are real. They can be bridged
with the true complex resonances solution of problem (1.1) through general results by TANG
and ZWORSKI [29], and STEFANOV [27].

1.4. Organization of the paper. In section 2, we make precise the notion of quasi-pairs,
quasi-resonances, and quasi-modes. In section 3, by means of the Schrodinger analogy, we
classify the three main types of localized resonance modes that can be observed in circular
dielectric cavities. In sections 4—-6, we construct quasi-pairs associated with localized res-
onances in these three cases. Finally, in section 7, we show that the quasi-resonances just
constructed are asymptotically close to true resonances of the cavity, hence ending the proof
of Theorems 1.A—1.C.

The set of non-negative integers is denoted by N and the set of positive integer by N*. We
denote by [2(€2) the space of square-integrable functions on the open set €2, and by H*(()
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the Sobolev space of functions in 1?(2) such that their derivatives up to order ¢ belong to
L%(Q). Finally, & (I) denotes the space of Schwartz functions on the unbounded interval I.

2. FAMILIES OF RESONANCE QUASI-PAIRS

Inspired by quasi-pair constructions used to investigate ground states in semiclassical anal-
ysis of Schrodinger operators (see SIMON [24] for instance), we are going to construct fami-
lies of resonance quasi-pairs for problem (1.1). Here appears a fundamental difference: The
quasi-pair construction in semiclassical analysis consists in building approximate eigenpairs
(A, up) that solve Apup = Apuy with increasingly small error as b — 0 where Ay, is for
instance the operator —h?A + V. In our case, we do not have any given semiclassical param-
eter h. However, the term %2 in the first equation of (1.2a) may play the role of a confining
potential in a semiclassical framework if we set

1

Jml”
This means that an internal frequency parameter m can be viewed as a driving parameter for
an asymptotic study. This leads to the next definition for quasi-pairs, adapted to our problem.

Definition 2.1. Choose p € {£1}. A family of resonance quasi-pairs §, for problem (1.1)
is formed by a sequence 8, = (k(m)),,>1 of real numbers called quasi-resonances and a
sequence L, = (u(m)),,>1 of complex valued functions called quasi-modes, where for each
m > 1, the couple (k(m),u(m)) is a quasi-pair for problem (1.1) with an error in G (m~*°)
when m — oo. More precisely, we mean that

(1) For any m > 1, the functions u(m) belong to the domain of the operator and are

normalized,
u(m) € Hy(R*, Q) and  [[u(m)]|2ze) = 1

where

22 _ 22 2 22\ O

H)(R?, Q) = {u e L*(R?) | u| € H(9Q), u|R2\ﬁ € H*(R*\ Q),
[U]@Q = O, and [np_l 8,,u]ag = 0} (21)
(2) We have the following quasi-pair estimate as m — 00,
| = div (n?~! Vu(m)) — k(m)*nP*! g(m)HLQ(RQ) =0 (m™ ). (2.2)

(3) Uniform localization: There exists a function X € C68‘3(]1%2), 0 < X <1, such that
|Xu(m)|| @2y > 5 and  (2.2) holds with Xu(m) replacing u(m).

(4) Regularity with respect to m: There exist a positive real number 5 and a smooth
function K € €°°([0,1]) : ¢t — K(¢) such that
k
km) _ K(m™) vm > 1. (2.3)
m
If the cut-off function X in item (3) can be taken as any function that is = 1 in a neighborhood

of 0f) for m large enough, we say that the family §,, is a family of whispering gallery type.

Remark 2.2. By Taylor expansion of the function K at ¢ = 0, we obtain that a consequence
of (2.3) is the existence of coefficients K, ¢ € N, and constants C'y such that

k(m) N-1
VN > 1, - > Kem ™| < Cym™N. (2.4)
(=0

Note that the asymptotics (1.5) satisfies such an estimate with § = % and N = 6.
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Remark 2.3. The estimate (2.2) implies a bound from below for the resolvent of the un-
derlying operator, compare with [17, §6]: At quasi-resonances, we have a blow up of the
resolvent.

3. CLASSIFICATION OF THE THREE TYPICAL BEHAVIORS BY A SCHRODINGER
ANALOGY

In our way to prove Theorems 1.A—1.C, we transform the family of problems (1.2a) when
m spans N* into a family of 1-dimensional Schrodinger operators depending on the semi-
classical parameter h = %

Namely, choosing a polar mode index m € N* and coming back to the ODE contained in
problem (1.2a) divided by n”*!, we obtain the equation:

2

_ p—1 m 2
rnp+1ar(n row) + L Ew =0 3.1
As a start, we write a quasi-resonance as (compare with (1.5))

k(m)? = m?A
where the number A depends on h and has to be found. Multiplying (3.1) by 22 = 1/m?, we
find that (3.1) takes the form of a one dimensional semiclassical Schrodinger modal equation
—h* How + Ww = Aw, (3.2)

where F€ is the second order differential operator

P = ;8,«(7#’*17"8,1) (3.3)

rnptl

1 \2
Wr)=|——]| . 34
0= (7) o4
The operator —h? #€ + W is self-adjoint on L?(R, , n?™'r dr). We note that

1 2 1 2
}i}% W(r) = (Rn(]) and 7}1{{1}% W(r) = (E) . (3.5)
Since ny > 1, we have a potential barrier at » = R. The first and second derivatives of I/ on
(0, R] are given by

Wi = -2 <rn1<r>)2 ) (.60

r o n(r) rn(r) n(r)
The local minima (potential wells) of W cause the existence of resonances near these energy
levels and their asymptotic structure as h — 0 is determined by the Taylor expansion of 1/

at its local minima. Let us recall that & = R(% + Z((g)) ) The sign of & (if it is positive, zero,
or negative) discriminates three typical behaviors in which case we will be able to construct

families of resonance quasi-pairs (see Theorems 1.A, 1.B, 1.C):

and W is the potential

(A) £ > 0. Then W is decreasing on a left neighborhood of R and has a local minimum
at R. In a two-sided neighborhood of R, W is tangent to a half-triangular potential
well, see Fig. 3 (A).
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R R R, R
(A) >0 (B) =0 (©) £<0

FIGURE 3. The three typical local behaviors of the potential 1/: half-
triangular potential well (£ > 0), half-quadratic potential well (x = 0) and
quadratic potential well (k < 0).

(B) %k = 0. In this case, we assume that W/ (R) > 0, which is ensured by the condition

2 n'(R) , 1 n/(R)
— = >0 th —
R n(R) it R TR
Then W has a local minimum at R. In a two-sided neighborhood of R, W is tangent
to a half-quadratic potential well, see Fig. 3 (B).

(C) K < 0. Then W has no local minimum at R. But, since lim, .o+ W(r) = +oo,
it has at least one local interior minimum R, over (0, R). Now we assume that
W"(Ry) > 0, which is ensured by the condition

2 n"(Ry) . 1 n/(Ro)

— — >0 with — 4+

R% TZ(R()) Ro n(Ro)
Then W has a local non-degenerate minimum at [, where it is tangent to a quadratic
potential well, see Fig. 3 (C).

=0. (3.7)

=0. (3.8)

4. CASE (A) HALF-TRIANGULAR POTENTIAL WELL

The case £ > 0 is in a certain sense the most canonical one, since it includes constant
optical indices n = ny inside 2. In this section, after stating the result, we perform the
details of construction of families of resonance quasi-pairs.

4.1. Statements. Recall that Assumption 1.1 is supposed to hold and Notation 1.2 is in use.
We give now, in the case when k is positive, the complete description of the quasi-pairs that
we construct in the rest of this section. This statement has to be combined with Theorem 7.D
to imply Theorem 1.A.

Theorem 4.A. Choose p € {+1}. If k > 0, there exists for each natural integer j, a family

of resonance quasi-pairs §,.; = (R,.;,4,.;) of whispering gallery type (cf Definition 2.1)
for which the sequence of numbers &,,; = (k,.;(m))m>1 and the sequence of functions

Up.j = (U, ;(m))m>1 have the following properties:

(i) The regularity property (2.3)—(2.4) with respect to m holds with § = % There exist
coefficients K[f; jforany € € N, and constants C'y such that
ky;(m) e ~N/3
VN > 1, L N K mTs[ < Oym Y (4.1)
m —
The coefficients KS; ; (degree 0) are all equal to RLHO, the coefficients of degree 1 are zero,
and the coefficients of degree 2 are all distinct with j, see (4.5).
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(ii) The functions w,,. ;(m) forming the sequence . ; have the form
) ) wimf
Qp;j(m’ x7y) :wp;j(m7 T) elm (42)

where the radial functions w,, ;(m) have a boundary layer structure around r = R with
different scaled variables o as r < R and p asr > R:

a:m§<}%—1> if r<R and pzm(}%—l) if r>R. 4.3)
This means that there exist smooth functions ®,.; € 6€°°([0, 1], #(R_)) : (t,0) — D,.;(t,0)
and V,,.; € 6€°([0,1], ¥ (Ry)) : (t, p) = V,.;(t, p) such that

wp;j(m3 r) = X(r) <]IT<R(T) (I)p;j(miéa o)+ 1,~r(r) \ij;j(miap)) (4.4)
where X € 65°(Ry), X = 1 in a neighborhood of R.

The first terms of the expansions of the quasi-pairs (&, ;(m),w,.;(m)) in powers of ms
are given below.

4.1.1. Resonances. The asymptotics of k. ;(m) starts as

L2\ b (2
2\m 2y/n3 —1\m

9\ 4 9\ 3
_‘_ki;j (Eﬁ) +k;2;j (_K> +0 (mQ)] (4.5)

m

where, as before, the a; are the successive roots of the flipped Airy function and the coeffi-
cients kj. ; and kJ . are given by

2
k4:a_] 1_7_§+ui 2_R2n2 :
P15\ 8 kK2 ng
nb o (3n3 — 2ng? 6 2 R?
K = — i - 19242 (2222,
’ 192 n%—l ng—1 kK g

Remark 4.1. Note that the second term of (4.5) separates the families §,.;, while the third
term distinguishes the TM (p = 1) and TE (p = —1) modes.

4.1.2. Modes. The asymptotic expansions of the radial part of the quasi-modes w,,. j(m) in
(4.2) starts as

1
3

1
Wy (m; 1) = X(r) <W3;j(m? )+ (E) Wy (m; r)) +6 (m 1), @o
where, using the scaled variables o = m%(% —1)and p = m(% — 1)
A ( 2%)3 ) fr<Rg,
Wy (mir) = R ) it (4.7)
0 if r>R,
and 1
—nP(28)5 [ A(aj + (2R)30) if r <R,
W, i(m;r) = 02< ) / o ' (4.8)
ng—1 | Allaj)exp (= ¥2—p) if r>R.
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4.1.3. Special case of a constant optical index. In the constant index case n = ny > 1, we
have £ = 1 and we find the following 8-term expansion of the resonances for the circular
cavity. For an improved readability, we distinguish the TM and TE case and we denote k,,
by k;" if p = 1 and by £} if p = —1. We have

m a; (2)° no 2\ 3a/2)\?
EMm) = ——[1+2(2) - —2 (=) +2 (=
;" (m) Rnyg * 2 <m) Q(ng_l)% (m) * 40 (m)
o ayng | (2)§+10—a§? (E)Q_i_a?n%(n%—zl) (3)5
12(n2 — 1)z \m 2800 \'m 80(n2 — 1)z \m
8
a; (1 4719 208 2\ 3 »
L = 0 4.9
144 (175 00 Tme—g)\m) T (m™) 49)
and
ey — [y 2 (2 3 1 2\, 33 (2 3
=(m N | — - | — — | —

a;(3n2—2) (2 3+1 I 22
12n3(n2 — 1)z \m 8\35 350 ni(ng—1)2) \m

) a2 (308 + 1208 — 12n} — 8n2 + 8) (2)7
80n3(n2 —1)2

a; [ 1 N 479a%  18nf — 45n + 12nf + 4502 — 28\ [ 2
144 \ 175 " 7000 ng(ng — 1)

w

m

wloo

m
+6 (m™) ] (4.10)

4.2. Proof: General concepts. As explained in Sect. 3, the problem under consideration
has the form (3.2) of the semi-classical Schrodinger equation —h? #6w + Ww = Aw, where
J€ is a modified Laplacian, IV is a potential, discontinuous at the interface r = R, and h = %
is the semiclassical parameter. Recall that in both cases (A) and (B), the potential 1/ has a
local minimum at R, with the distinctive feature that for » < R, the shape of W is triangular
in case (A), and quadratic in case (B). The rationale of the quasi-resonance construction is to
localize equation around the well bottom » = R and to scale variables appropriately so that
equation (3.2) can be solved by a multiscale power expansion. In this section, we describe
the general concepts of the proof, common to the two cases (A) and (B).

4.2.1. Localization around the interface. The localization starts with the introduction of the
dimensionless variable { = & — 1 € (—1, +o00) for which the disk boundary is translated to
the origin. Accordingly, we denote by 7 the optical index function in this new variable, viz

n:ér n(R(1+§))

and, for all ¢ € N, we set n, = ﬁ(q)(O), the ¢-th derivative of n at 0. Referring to Notation
1.2, we have n, = RIn, and (cf (1.7) and (1.12))

F=1+2 and p=2- 2 @.11)
No no

Since ng = ng, we will most often use the notation n.
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The minimum of W at r = R is its left limit W, := lim, »g W (r) = (Rng) 2. Using the
change of variables r — &, we set
L(E,De) = R?n2H(r,d,), V(€)= R*n2(W(r) —W,), and A= R2n2(A — W),

so that equation (3.2) is transformed into

—h*Lv+ Vo = Av, (4.12a)
with the new unknown function v(§) = w(R(1 + &)). We have
P ;) = n_g 82 2 ; -1 ﬁl(f) o
0 =G % rgmee T Vi)

no

Vo= (m>2 b

Note that the potential V' has 0 as local minimum at £ = 0 (well bottom).
The unknown function v satisfies furthermore the following jump condition at & = 0
deduced from (1.2a)

W]y =0 and [""Oev], = 0. (4.12b)

and the decay conditions in Schwarz spaces when { — +oc:
vTi=| o € F(R_) and v = vl € I (Ry). (4.12¢)

R_ R,

Our concern now is to construct quasi-resonances and quasi-modes localized around the well
bottom & = 0, solutions to (4.12a)—(4.12c¢) in an asymptotic sense.

4.2.2. Principal part of the Schrodinger modal equation. The structure of quasi-pairs is
determined by the principal part of problem (4.12a)—(4.12c) defined as:
— WL+ Vv =Av (4.13a)
where
(1) The operator £¢ = (£, £Ly) = (9%, n30%) is the principal part of £ frozen at £ = 0
on the left and on the right,
(2) The associated jump conditions are

v (0)=v"(0) and  nd' 9w (0) = devt(0). (4.13b)
and the decay condition is the same as above
v" € S(R.) and v € F(R,). (4.13¢)

(3) The potential Vy = (V, V) is the first nonzero term in the left and right Taylor
expansions of V at ¢ = 0. In any of the cases (A) and (B), Vi = n% —1 > 0, whereas

_ —2k&  incase (A)
1% 0 (5) = { o9 -
(& incase (B).
In order to cover both cases (A) and (B) in a unified way, we will assume more
generally that
Vo) =7, £<0, with v>0,x>0 (4.13d)
The system (4.13a)—(4.13c) can be solved by a formal series expansion according to the
following procedure:
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(1) Scale the variable ¢ differently on the left and on the right of the origin, introducing
oc=¢E/h%foré <0 and p=¢E/hY foré >0 (4.14)
with o and o > 0 chosen in order to homogenize the operators —h*%£; + V and
—h*2L$ + VI, We find that —h2%; + V| becomes —h?2*92 + vh**|o|*, and

—h2L{ + V§ becomes —h*~2*'92 4 n? — 1, implying to choose

2
a=—— and o =1. (4.15)
24+
(i1) Expand the new functions

(o) =v() for <0 and Y(p) =v()for >0, (4.16)

and A in series of type ) ¢eN a,h? for some suitable 3 > 0. The jump condition
(4.12b) being transformed into the following matching condition at ¢ = p = 0

©(0) =(0) and nf ' h*9,0(0) = h™0,(0), (4.17)
we find that o, o, and o — « should be integer multiples of 3.

4.2.3. Back to the full Schrodinger modal equation. Now, we take advantage of the choices
made in (i)—(ii) to treat the system (4.12a)—(4.12c) in its general form. Hence we know
that o/ = 1 and leave « in equations for further determination. By the change of variables
(4.14)—(4.15) and the change of functions (4.16), the equation (4.12a) is transformed into the
following two equations set on each side of the interface 0 = p =0

W22 (—Lop+Vip) = Ag, o€ (—00,0)
~ (4.18a)
LI+ VY = Ay, p € (0,+00)
with the matching condition
p(0) = (0) and nf K T0,p(0) = 9,¥(0), (4.18b)
the decay condition
pedR) and e F(R,), (4.18¢)
and where the operators £, and £, are defined by
ng 1 n'(h*o)
P — 0 2 he 2 1 A
h ﬁ(ha0)2a" T ((1 + heo)n(heo)? i >ﬁ(ho‘a)3) 0 4.19)
L .
2 [ 52
L =m (a” 1y hp6p>
and the potentials V,~ and V," are given by
2
_ - L
Vh(a):h2a2<( - )—1),
1+ he he
(Lt heo)a(hto) (4.20)

2
T

Vh+(ﬂ) = m -
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4.2.4. Formal series of operators. The next step is to associate a formal series of operators
to the system (4.18a)—(4.18c), using a Taylor expansion at 0 = p = 0 of their coefficients:
For any smooth coefficient f, this association reads

1) (0
f(h%a) ~ Zh”‘g fg—'(O) o' and f(hp) ~ Zhé fg_'(()) .

This defines a formal series of operators in terms of powers of h”
—LE+VE~D WP AT (4.21)
qeN
inviting to look for ¢, ¥, and A in the form of the formal series
p(0) =Y ¢, (0), v(p) =D h¥uy(p), and A= hPA,.  (422)
qeN geN geN
Note that in the general framework (4.13d) we have
A; =-92+~|c)” and Al = —n%(’?;f +ng — 1. (4.23)
Finally, since we want to construct quasi-modes with a whispering gallery structure, we give

priority in (4.18a) to the equation in R_, which means that we look for an expansion of A
starting as h2~2%. This motivates the introduction of

A=h*"2A N RPN, (4.24)
qeN
so that Equations (4.18a) read

Lo+ Ve = Ao, o € (—0,0)
LI+ VY = BN, p e (0,400)
still coupled with the matching condition (4.18b) and the decay condition (4.18c).

(4.25)

4.3. Proof: Specifics in case (A). In case (A), & is positive and the above general frame-

work applies with the quantities

=1 ~v=2k a=3 d=1 p=3
This case is very close to the “toy model” considered in [5, Sec. IlI]. From expressions
(4.19)—(4.21), we find that the first terms of the operator series Af]t are as follows

Ay =02 +2k|o|, A =0, A, = 22—;085 — <1 +(p— 1)2—;) Oy + ¢y 07,
A = —nidi+ng—1, Af =0, A7 =0, A7 =-n5(9,+2p),
where ¢, = 3+ 42—; + 3:—2 — Z—i For a comprehensive description of the general terms A;t
0
we need the introduction of polynomial spaces.

Notation 4.2. For ¢ € N, let P? denote the space of polynomials in one variable with degree
< ¢ and P? the subspace of P? formed by polynomials P such that P(0) = 0.

A Taylor expansion at 0 = p = 0 of the coefficients of £ ;Z—L and of VhjE allows to prove that
Lemma 4.B. For any integer q > 1, there holds

A, = A (0) 2+ B, (0)9, +C (o) with A, e Pl B e PEI-L ¢ ¢ PEIT

A =B} (p)d,+C}(p) with B} € P71 CF ¢ PlEL,
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By the identifications (4.21)—(4.22), the system (4.25) with jump conditions (4.18b) is
associated with the formal series system of equations

( (ZEEN hi A, ) <ZZGN héw) = (Zm the) (ZZEN héw) in R_
(Sren M) (Suanh50e) = 13 (Speuh5N) (Spe he) i B,
<Z€€N hs W) = <Z£6N héw) at {0}

| (S ki) = (Teenhivr) at {0}

This system is equivalent to an infinite collection of systems obtained by equating the series
coefficients: Namely, for ¢ spanning N,

Do AL Pyt = D igMpgr  in R

ZZLO AZ Vgt = 22’22 Ae—2Pg—p In Ry (4.29)
©q(0) = 14(0)
Ye(0) = g ' 41(0)

where we agree that the right hand side of the second line is 0 when ¢ = 0 or ¢ = 1, and,
likewise, the right hand side of the fourth line is 0 when ¢ = 0.

(4.28)

4.3.1. Initialization stage. For q¢ = 0, the system (4.29) reads

Ag oo = oo in R_
Afvy = 0  inRy
po(0) = vo(0)
Yp(0) = 0
for which we look for solutions ¢y € ¥ (R_) and ¢y € ¥ (R,).
Since the equation AJ 1)y = 0 with the Neumann condition at 0 has no non-zero solution

in #(R, ), it is natural to take 1)g = 0 in (4.30). Then we are left with the following Airy
eigen-problem on R_ for

(4.30)

—pp(0) = 2k ape(0) = Nowo(o) for o € (—o0,0), and ©o(0) =0

whose decaying solutions can be expressed in terms of the mirror Airy function A. Recall
that a; for j € N, denote the successive roots of A. We obtain immediately:

Lemma 4.C. Let j € N. The couple of functions (pq, 1) and the number \y defined by
vo(0) = Aa; + (2k)50), wolp) =0, and A= a;(2k)3
solve (4.30)in ¥ (R_) x L (R,).

Remark 4.3. The quasi-mode construction requires a cut-off at infinity at some stage. Such
a cut-off will be harmless to the satisfied equations if the functions (g, ), and more gen-
erally (¢, 1,), are exponentially decreasing when o — —oo and p — +ooc. It is easy to see
that any such solution of (4.30) is proportional to one of the solutions given in Lemma 4.C.
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4.3.2. Sequence of nested problems and recurrence. Reordering the terms in the system
(4.29) of rank ¢, we can write it in the following form

—pq(0) = (280 + Xo)ipq(0) = A po(0) + 57 (0) oceR_
) —nity (p) + (ng — 1) ¥q(p) = Sy (p) peER,
! ©q(0) = 1,4(0)
U4(0) = ng '@y, (0)

with right hand terms S¢ and S}’ defined as (recall that A" = 0)

q—1 q
Se=—A 0o+ > (M—A )¢ and S = (Ao — A) . (4.32)

=1 =2

Proposition 4.D. Choose j € N and define (g, 1o, \o) according to Lemma 4.C. Then there
exist, for any q > 1,

® aunique \; € R
e unique polynomials P7 € P1, Q¥ € P, and Pj’ € pat
such that setting

24(0) = P7(0)A(a; + (28)10) + Q5 (9)A' (3 + (26)
Ue(p) = Pl (p)exp (= p/1—n57) Vpe R,

the collection (o, ..., ¢q Yo, ..., Uq, Ao, .- ., A\g) Solves the sequence of problems (QZEA))
introduced in (4.31) for { =0, ... ,q.

W=

0) Vo e R_
(4.33)

Proof. We proceed by induction on gq. For ¢ = 0, lemma 4.C provides \g, g, and 1)
solutions to (gt((]A)) and we readily obtain the polynomials Py’ = 1, Qf = 0, and Pf = 0. Let
g > 1 and suppose that (A;)o<e<q—1, (¢r)o<e<q—1, and (1;)o<¢<4—1 are solutions to problems
(RM)for € =0,...,q— 1, and satisfy (4.33).

Using the expression (4.32) of S}f combined with Lemma 4.B, we deduce from the induc-
tion assumption that there exists a polynomial E}f € P92 such that

SY(p) = EY(p)exp (— pv/1—np" ).
From Lemma A.l in Appendix, there exists a unique polynomial ﬁ(}/’ € P47! such that the

function ¢ defined by zzq(p) = ]Bf(p) exp(—py/1 —ngy?) is solution to (4.31b). It follows
that the sought function v, is given by

ba(p) = (a0 + Py (p)) exp (= py/1 =157
where the constant ag is determined from Neumann condition (4.31d). This defines the
polynomial P as ag + P and hence P’ € P?"" as desired.
Let us now consider equation (4.31a). Using Lemma 4.B combined with the relation
A"(z) = —2A(z), we deduce from the expression (4.32) of S¢ and the induction assumption
that there exist polynomials R}f ePland TY € P9~! such that

S#(0) = R?(0)A(a; + (28)30) + T (0)A' (a; + (28)30).

From Lemma A.2 there exist unique polynomials Py € P! and @(f € P%! such that the
function given by
o)

Bq(0) = Py(0)A(a; + (27)

q

wl—=
Wl

) + Q¢ (o)A (a; + (2F)
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is a solution to the ODE (compare it with (4.31a))

—74(0) = (280 + Xo)@g(0) = 57 () .
If we define ¢, as follows:

A 1 _ (27%)3 _
o) = A" (a; + (2R)30) + @,(0) with )\, Yq(0) — &,(0)),
o) = A (3 (20)70) + 5,(0) = (o) (al0) = E(0)
then ¢, solves (4.31a) and the continuity condition (4.31c). (Note that we have A’(a;) # 0
forall j € N, see [21, Sect. 9.9(ii)].) Finally, we set Q7 = )\q(2/%)_% +Qf € Pt O

Calculating for ¢ = 1 in Proposition 4.D provides P¥ = 0 and explicit values for Q¥, P\
and )\, from which we deduce

—nPog
Lemma 4.E. We have \| = n+/€1 and, for (o,p) € R_ x Ry,
no_
n? (2#)s L n? (2i)s Al(a; -
o) =~ (e, + (e, o) = "B oxp (i1 s?).

Remark 4.4. From the proof of Proposition 4.D, we see that, for each chosen j and ¢ > 1,
the four operators

N0y Aget, Py PY Ly BY
{E¢7 q—1 q—l} — P(;p
{)\07...,)\q_17P080,..., q_17Q07... ¢_1}'—){R§7Tf}
{R2, T, Py — {P7,Q%, A}
act between finite dimensional spaces and can be identified to matrices. They result into an
algorithm that can be derived and implemented in a computer algebra system to obtain the
expression of \,, ¢4, 1, for ¢ > 2, see [18, Annexe D]. The coefficients of the polynomials
P?,Qf, Py are rational functions of the quantities (2/%)%, vné —1, a;, A'(a;), nf, and n,
forall ¢ € {0,...,q}.

4.3.3. Convergence. Choose p € {£1} and a natural integer j. In a last stage, we have to
prove that the formal series

> AR, D pehd,  and > b, (4.34)

qeN qeN geN
obtained from Proposition 4.D give rise to a family of resonance quasi-pairs in the sense
of Definition 2.1. Note that, by construction, the functions ¢, and 1), are exponentially
decreasing at infinity, thus belong to & (R_) and ¥ (R, ), respectively. Relying on Borel’s
theorem [14, Thm. 1.2.6] and its variant given in Lemma A.4 in Appendix, we obtain the
existence of smooth functions having (\,),, (¢,), and (¢,), as Taylor terms at 0. Combined
with Lemma A.5, this yields the following results for the remainders of truncated series
expansions of formal series (4.34).

Lemma 4.F. Let () en, (¢q)qen and (¢,)en given by Proposition 4.D. There exist smooth
functions A € €°°([0,1]), & € €>([0,1],#(R_)) and ¥ € €°>([0,1],#(R,)) such that
forall (h,o,p) € [0,1] x R_ x R, and for all integer N > 0, we have the following finite
expansions with remainders
N-1
A(hs) = 3" hE N + BT RY(hD), with R} € €>(]0,1]) (4.35a)

q=0
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Z
L

d(hizo) = hig,(0)+hs R (h3;0), with R% € 6=([0,1],#(R_)) (4.35b)

ol
gy

W(hisp) =Y hivy(p)+hT Ry(hisp)  with Ry € 6™([0,1],#(R;)) (4.35c)

q=

[e=]

Note that the remainders at rank /N = 0 simply coincide with the original function.

Definition 4.5. Choose a real number § € (0, %) and a smooth cut-off function y, 0 < y < 1,
such that x (&) = 1 for || < ¢ and x (&) = O for || > 26. We define for any integer m > 1
with the notation h = m ™!, the quantities:

k(m) = g \/1+ 53 A0,

&(hs;h3
Mmi%=ﬂ8{¢%gh4§’§_o €€ (—1,400)
u(m;r,0) =v (m; & —1) ™ (r,0) € (0,400) x R/27Z.

We now show that the sequence (k(m), u(m)),,>1 is a family of “almost™ quasi-pairs in
the sense of the following lemma. A further correction will have to be made to transform
this family into a true family of resonance quasi-pairs in the sense of Definition 2.1.

Lemma 4.G. The sequence (k(m),u(m))m>1 defined above has the following properties:

(i) For all m, the function u(m) is supported in an annulus around the interface r = R

supp(u(m)) € B(0, R(1 + 26)) \ B(0, R(1 — 25)).
(ii) For all m, the function u(m) is piece-wise smooth up to the interface r = R:
oo (O 00 2
g(m)|ﬁ €6*(Q) and g(m)’RQ\Q €6 (R*\ Q).
(111)) We have the following estimates for the jumps across the interface when m — 400
[u(m)lyg =0 (m=>) and [n’! 8,,g(m)}aﬂ =0 (m™ ™).
(iv) Defining the residuals
e(m) = div (n?'Vu(m)) + k*(m) n"*' u(m) (4.36)
we have the following estimates in Q) and R? \ Q when m — 400

glm 2 + |le(m 2(R2\ (Y
PP

[w(m) HL?(R?)
Proof. (i) and (ii) are obvious consequences of the definition of u(m).
(iii) From Definition 4.5, we have, for all § € R /277, and with h = %

[u(m)]aq (0) = [u(m; f)]{g:o} e = (‘I/(h%; 0) — cI>(h%; 0)) e
Let N > 1. From (4.35b)—(4.35¢), we deduce that

N—

U(h3:0) = @(hH;0) = 3 (64(0) = 2 (0)hF + b5 (RE(13:0) = RE(hH:0)) . 437)

q=0

—_
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Since by constructlon 1,(0) —
that U (h3;0)—®(h3;0) = 6 (h
O (m=).

We proceed in a similar way for the second jump condition. We have

[ Doas(m)] g, (0) = B [0 0o(am. )]y

©,(0) = 0 for any ¢ € N, cf (4.31), we deduce from (4.37)
h'3). This statement is true for any N > 1, hence [u(m)] a0 =

o0 {£=0}
and
[P Dev(m, €]y, = b (a U(h3;0) — n2 " h39,d(h 0))
N-1
= > (¥5(0) = nb gy 1 (0)) A5
q=1

03 (= ey (0) 4 O, RY (hF50) — nb 0, R (h5:0) ).
From the jump re%vation (4.31d) ¥, (0) — ng’_lgpg_l (0) for any ¢ > 1, we deduce that the above
quantity isa @ (h3 1) for any N > 1, hence a G (m ).

(iv) In order to prove the estimates on the residuals, it is enough to prove that the L? norm of
the residual £(m) on 2 and on R? \ © is G (m~"°) and that

() |2 oy = ym ™5 + 6 (m3) (4.38)

for some positive constant . Given a parameter ¢ > 0, we introduce the following weighted
L? (semi) norm on any interval I C R:

ol = [ (D)1 + 1) dr
11 (—25/t,00)
Let us first prove (4.38). We readily obtain from Definition 4.5, having set L := 27 R,

laa () 2 ey = (Hx LI!S NI | ) (4.39)
From (4.35b) and (4.35¢) considered with N = 1, we have
®(h3;0) = Ala; + (28)50) + h3 RY (h3;0)
W(h3; p) = hi Y (h3; p)
where R € €>(]0,1],#(R_)) and R! € Q6"0([0 1], #(R,)). We deduce that
’Hu iz — VI [ x(-h3)AG; + (28)5-)]| ‘ < CLhi(hE + hi) < Cihs

for some constants C'; and C}]. We now have to estimate the quantity

CA.\)—I

L2[h)(R+)

L2n3)(R

IX(hE)AG; + (25) —/R (o)A, + (28) 0| 1+ ohd)do

% ”L2 h3R.)

We split the integral according to I; — Is — I3 with the three positive integrals

=i [ (A + 20|
L= hi /]R (1 — x(oh?) ) ‘A a; + (2k)30)
I = b /R [x(ontaG + @0

do

2

do

oa\»a

2
)‘ o] do .
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Since a primitive function of A% is z — A'(z)? + xA(z)?, we find that

I = h (2i)75 Al(a)%.
Moreover, since A is exponentially decreasing over R_, we find that I3 < Cgh%. Finally,
Lemma A.6 in Appendix shows that I, = G (h™).

Let us now show that the L? norm on €2 and on R? \ Q of the residual £(m) defined in (4.36)
is G (m~°). Revisiting all variable changes and problem reformulations we find

letm) |30y = VI ] pE (=2 + Vi = M) (x(hhH@(hb:)) ey 4400
leml gy = VI || (=i + Vi = hiAB) (x(mw (i) e, (4A0D)

Introducing the commutators [.Ef b X(~h§)} and [£;F, x(-h)] of the differential operators
<L ;Z—L with scaled cut-off functions, we deduce from (4.40a)—(4.40b) the inequalities

le(m) || 20y < VI B3 (N, +A)) (4.41a)
()| 2 @aggy < VL (N +A) (4.41b)
where
Ny = [X(h3) (=5 + Vi = A) @(h3; ) g (4.42)
A IE DI KU o) (4.42b)
Ny = ||x() (—.se,j LV - h@) U (h3;") e (4.42¢)
N =L, v(h)] ¥ (h3;- . 4.42d
o= [ xR (4.42d)

Both operators X(h§ ) (=%, + V) and x(h-) (—=%;7 + V;) are differential operators in
the form a2 + afd + a with coefficients a(h3,-) belonging to 652, 4.q([0, 1] x Ry),
see(4.19)—(4.20). Hence, the formal series (4.21) gives rise to the following sequences of
finite expansions with remainders: For any N > 1,

N-1

~LELVE=Y R AL+ hERE (R ) (4.43)

q=0
where the remainders RY; are differential operators of order 2 such that x(h3") RJ_\,(h%; -) and
x(h-)RE (h3:-) have coefficients belonging to €22, ,.,([0,1] x R.). It follows that for any
given N, N' € N

(—Ly +Vi7 = A) ®(hs;)
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where the second equality is obtained from the relation Y ;_ (A, — A;)p,—¢ = 0 for all
q € N deduced from (4.29). In a similar way, we show that

q=0

w|z

(=& + Vi = hSA)W(hs;-) = h

+ (Ri(hd) = Ry (0h)) R:f@%-)) (4.45)

where A\_; = A_s = 0. We deduce from from (4.44) and (4.45) that
L2 [h](R+)>

N
Ko+ Ny BT ((
q=0
with £ € 6°°([0, 1], #(R_)) and F € 6°°([0, 1],/ (R)), and finally that
N, + Ny < Cyhs (4.46)

for some constant C'y independent of h.
Let us consider now the two commutators norms ‘Ns; and JVQL. We observe that the coef-

Fy(h3;) FY(h3;-)

q

d

L2h 3] (R)

ficients of the operators [£; x(h3 )] and [£;F, x(h-)] are zero in the regions defined by
_h3 <o <0and0 < p < 6h~!, respectively. This allows us to deduce that

wgxy < (ot

+|er ;)

L2[h](5h1,+oo))

with functions G¥ € €°>([0, 1], (R_)) and G¥ € 6>°([0, 1], ¥ (R, )). Lemma A.6 shows
that N + N, = G (h>). Combined with (4.46) true for all N € N, this complete the proof
of part (iv) of the Lemma. U

12[h3](~00,—5h~3)

4.3.4. Proof of Theorem 4.A. Choose p € {1} and j € N. In order to meet all the require-
ments listed in Definition 2.1, we modify the sequence of functions (u(m)),,>1 constructed
in Definition 4.5, so that each such function satisfies the jump conditions in (2.1). To lift the
jumps of u(m), we define the “radial” function

—[v(m)]e—y — ng PE [P dw(m o £<0
) = )] o™ T Al €2 (4.47)
[w(m)]e_o + & [P Du(m)]e_, £>0

where X can be taken as the same cut-off function used in Definition 4.5. We set

m;r,0) = (v(m; 5 —1) —v* (m; 5 —1)) e imf

u 'R

(
Up:j
and k, ;(m) = k(m). Using (4.38), we can normalize the function w,;(m) in the L? norm.
Relymg on Lemmas 4.F and 4.G it is easy to check that the family (ﬁw ., 4h,.;) where R, =
(Ep.;(m))m=1 and .5 = (w,;(m))m>1 satisfies the four conditions of Definition 2.1.

5. CASE (B) HALF-QUADRATIC POTENTIAL WELL

Our concern is now the case when £ = 0 and & > 0. According to the same plan as
before, we start with the complete description of the quasi-pairs that are constructed in the
rest of the section. The corresponding statement has to be combined with Theorem 7.D to
imply Theorem 1.B. As mentioned earlier, Case (A) and Case (B) share general concepts in
the way the asymptotic expansion of quasi-pairs is obtained. Hence, we do not provide a
comprehensive proof of Theorem 5.A but instead highlight the differences with the proof of
Theorem 4.A.
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5.1. Statements.

Theorem 5.A. Choose p € {+1}. Let Assumptions 1.1 be verified and according to (3.7)
and notations (4.11) assume that k = 0 and [1 > 0. Then there exists for each j € N, a
family of resonance quasi-pairs §,.; = (R, ;, U, ;) of whispering gallery type (cf Definition
2.1) with 8.5 = (kp.(m))mz1 and .5 = (. (1)) 1.

(i) The regularity properties (2.3)—(2.4) with respect to m holds with = % There exist
coefficients Klf; jforany € € N, and constants C'y so that

m

k,.; —
VN €N, Byysm) _ > KL m P < Cym N, (5.1)
£=0

The coefficients K. ; are all equal to (R n(R))™", the coefficients of degree 1 are zero, and
the coefficients of degree 2 are all distinct with j, see (5.3).

(ii) The functions w,, ;(m) still have the form (4.2) with radial functions w,. ;(m) that have
a boundary layer structure around r = R with the different scaled variables o as r < R and
pasr > R:

azm%(%—l) if r<R and p:m(%—l) if r>R.
There exist smooth functions ®,.; € €*([0,1],#(R_)) : (t,0) — D,.;(t,0) and V,,.; €
C600([07 1]79(]&4—)) : (tv p) = qu;j(ta p) such that

wy;(m;r) = X(r) <]lr<R(7") q)p;j(m_%a o)+ L>r(r) \I/p;j(m_%a P)) (5.2)
where X € 63°(R,.), X = 1 in a neighborhood of R.

The first terms of the expansions of the quasi-resonances k,,. ;(m) in powers of m~1/? as
m — oo are as follows:

3 7\
1+ K <%) —I—@(m_2)] (5.3)
=1

m
k. j(m) = Te

1
where kp;j =0,

45 +3 2 —nb 47+ 3 R3ng y
k2= , and K = ((¥5),,)(0)) < 2 + (6+ -6/ -

2 vni—1 9,&% no

Here, W3 denotes the Gauss-Hermite function of order /, see [1, 20].
The asymptotic expansions of the radial part of the quasi-modes w,,. ;(m) in (5.2) starts as

w,;(m;r) = X(r) (Wz?;j(m; )+ (l) ’ W;;j(m; r)) +06 (m™), (5.4)

m
where, using the scaled variables o = m%(% —1)and p =m(f — 1)
s (io) if r<R
wl (m;r) = 2+t ’ 55
pia(757) {0 if r >R, )
and
Pyl ogpen v ! \IJGH(UiJ)—FN(J) if r<R
—ng 11 (Wsh 0 GH 0o \H Y1 5
Wpl;j(m;r) _ 0t ( 2]+1)( ) v5h(0) (5.6)

—”ngflp) if r> R,

exp ( - 0
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where $; € H}(R_)NS(R_) is the unique solution to a Dirichlet problem posed on R _, see
(5.13) later on. In contrast with Case (A), the expression of Wpl; o though determined, is not
explicit. This is the reason why we gave only two terms in the asymptotic expansions (5.3).
Remark 5.1. The quasi-resonances are organized in an asymptotic lattice with constant step:
The gap between two resonances with consecutive polar mode index m and m + 1 and the

same radial mode index j is found to be

Nlw

kyj(m+1)—k

=p;J

(m) = Rino +6 <m* ) (5.7)

whereas when m 1s fixed and j is incremented by 1, the gap between two resonance is found

to be i
2V -
by gaa(m) = Epyy(m) = ==+ 0 (m ) :
This property is very interesting for various applications in optics, e.g. for the design of
frequency combs.

N[

5.2. Proof. The general outline of the proof of Theorem 5.A is similar to the one of Theorem
4.A in Case (A). In particular, the general framework of section 4.2 applies with

Lod=1, B=3

%:27 7:/\27 06257 2

We provide now the part of the proof of Theorem 5.A specific to Case (B).
From general expressions (4.19)—(4.21), we find that

Ay =02+ jo®, Al =202+ (p—2)0, —0o° (@ + 2 ) :
un 3710
Al = -n20?+ng—1, Af =0, AJ=-n2(0,+2p).

The analog of Lemma 4.B describing the coefficients of the formal series of operators
(4.21) in terms of powers of h? = h3 reads as follows.

Lemma 5.B. For any integer q > 1,
- A 2 - - . - - -1 - +1
A, =A(0)0,+B,(0)d, +C, (o) with A, €P? B eP?"", C €P*
A; =B} (p)8,+C; (p) with Bf e P71 Cr e Pl
We proceed as in Section 4.3, associating to the system (4.25) a formal series system of

equations like (4.28), in which the powers of h are modified according to the values of «, o,
B, and 5. As a matter of fact, equating the series coefficients, we obtain in Case (B) exactly
the same infinite collection of systems (4.29) as in Case (A), but with the new expressions of

operators Aj. The coefficients of the formal series expansions (4.22) are obtained by solving
(4.29) for g spanning N.

5.2.1. Initialization stage. For ¢ = 0, the couple of functions (¢, ) and the number A,
are obtained by solving (4.30) with A, and A_ given in (5.8)—(5.9). Since the equation
A; 1 = 0 with the Neumann condition at 0 has no non-zero solution in & (R ), it is natural
to take ¥y = 0. Then, we are left with the following harmonic oscillator problem on R_

—h(0) — Lo*pe(a) = Mwo(o) for o € (—o0,0), and  ¢(0) =0
whose bounded solutions are generated by the odd Gauss-Hermite functions {\Ilgy . }jeN.
Lemma 5.C. Let j € N. The couple of functions (o, Vo) and the number )\ defined by

polo) =iy (iho) . wvolp) =0, and o= (4j +3)/i

solve (4.30) for Ay and A§ given in (5.8)—(5.9).
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5.2.2. Sequence of nested problems and recurrence. As in Case (A), reordering the terms
in the system (4.29) taking into account Lemma 5.B, we obtain that the couple of functions
(4, ¥,) and the number A, for ¢ > 1 are solutions to

_90:1/(0) + (,ucr - )‘0)9011( ) qSOO( )+S;p(0) oeR_
n2u(9) + (n = 1) (o) = S (p) JCR,
(B) q
) 24(0) = 4,4(0)

U (0) = ng ' ¢l_1(0)
with right hand side terms S¢ and S!' defined as (recall that A{ = 0)

q

S =—A_ o+ Z ) @g—r and  SY =) (Ao — Af) s (5.11)

(=2

Notation 5.2. For a real number ¢ let w; : o — exp (2¢|o]). We denote by I*(R_,w;) and
H*(R_, w,), the weighted Lebesgue and Sobolev spaces with measure w; (o) do.

Proposition 5.D. Choose j € N and take g, Vg, \g as given in Lemma 5.C. For any ¢ > 1,
there exist

e aunique \; € R
e a unique real number c;, a unique real sequence m € N — b} such that b), = 0, and
a unique polynomial PY € P4~
such that setting
1

0a(0) = ¥ (o) + @4(0)  with  §4(c sz ot (f iU Vo e R_
1eN (512)
Ue(p) = PY(p)exp (— py/1—ng”) Vp e R,

the collection (o, ..., ¢4 %0, - Ug, Ao, - - ., Aq) sSolves the sequence of problems (%éB))
for¢=0,...,q. Moreover g, € Hj(R_) NH*(R_,w_,)

Proof. The proof is quite similar to the one of Proposition 4.D and we will focus on the main
differences. We proceed by induction on ¢. For ¢ = 0, Lemma 5.C provides \g, ¢q, and
1o solutions to (") and we readily obtain ¢y = 0, §y = lIISJH(/ﬁ ) € H{(R_), and
Py = 0. Moreover, ¢, belongs to H*(R_, wy) because W5 is defined as the product of the

(2j + 1)-th order Hermite polynomial of degree 2j + 1 by = +— eXp(—g—Q).

Let ¢ > 1 and suppose that (A¢)o<e<g—1, (¥r)o<i<q—1, and (1¢)o<s<4—1 are solutions to
problems (QZEB)) for ¢ = 0,...,q — 1, and satisfy (5.12). Solving equation (5.10b) for v,
proceed in a way very similar to (4.31b) in the proof of Proposition 4.D to show that there
exists P¥ € P9~ such that

ba(p) = B (p)exp (= py/1—ng?).
Let us now consider equation (5.10b) for ¢,. First of all, we obtain by induction that
oo € H*(R_,w;_,) forall ¢ € {0,...,q— 1}. Then, using Lemma 5.B and (5.11), it follows

that S7 € L*(R_,wi/2—4). Note that the value of the constant ¢ — 1 in the exponential
weight is reduced by % to % — ¢ in order to absorb the polynomials behavior. To solve
equation (5.10a) with the non-homogeneous boundary condition (5.10c) we introduce as

new unknown @, = ¢, — ¢, V" (ji1-) where Cq = ﬁé,f?)) It belongs to H*(R_, w;_,) and the
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Dirichlet problem (5.10a), (5.10c) becomes
~ o1 i
{—90;’ + (10" = 2)Bq = A U8} (1) + 57 Vo € (=00,0)
@q(()) =0

where §;0 = 57 +2(2) + DV c g (ji3-). Problem (5.13) has a solution only when the

left hand side function A\, W5} +1(/‘ﬁ~) + §(‘f is orthogonal to W5 H(/ﬁ -). It follows that we
must have

0 ~
Ay = —2ji / W§t, (ji10) 5¢(0) do. (5.14)

Finally, from Lemma A.3, there exists a unique @, in Hy(R_)NH?*(R_,w_,) and orthogonal
to W51, solution to (5.13). The formula giving ¢, is

+00

Pu= D,
4 _

oy M=)

where ¢; = || U3 1+1||L2 O

<S‘pa Si 21+1>L2(R_) G Woi (5.15)

Remark 5.3. In contrast to Case (A), we cannot deduce from Proposition 5.D a finite algo-
rithm to compute the terms of the sequence (¢,)qen. The reason is that for ¢ > 1, the sum
of the series (5.15) cannot be computed explicitly. However, a few terms are explicit: We
know (g, ©o, Ag) SO we can compute, first Pw, then c;, and, after this, S‘f . With these latter
quantities, we can deduce an explicit expression of §f as a finite sum of polynomials times
Gauss-Hermite functions. Now, from the definition of the Gauss-Hermite functions [11, Eq.
1.3.8] and recurrence relations on Hermite polynomials [21, Sect. 18.9(i)], we deduce the
following recurrence relations forz > 0 and z € R,

0T (2) = (3)% U, (=) — (151)* W, (=), (5.162)
AU (2) = (3)2 W (=) + (E1)2 W (2). (5.16b)

Hence we can rewrite g‘f as a finite sum of Gauss-Hermite functions and with this we can
compute explicitly \; given by (5.14). Nevertheless ¢; will be an infinite sum of Gauss-
Hermite functions so, for ¢ > 2, A, does not have a closed form.

Lemma 5.E. Forall ¢ € N, we have o, € ¥ (R_) and 1, € ¥ (R..).

Proof. From the expression (5.12) of 1), it is obvious that it belongs to & (R_.).
From Proposition 5.D we know that ¢, and its derivatives of order < 2 are exponentially

decaying as ¢ — oo. Concerning higher order derivatives @éi), from the identity ¢ =

(102 — Xo)pq — Aoo — S¥¢ deduced from (5 10a), from (5.11) and Lemma 5.B, we find that

there exists families of polynomials wa i such that
q
P = (Pripe+Q5i00) - (5.17)
=0
Hence go( s exponentially decaying too, and we have proved that ¢, belongs to #(R_). O
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5.2.3. Convergence. The proof that the formal series

D A2, > pght, and ) gh?, (5.18)
qeN geN qeN
obtained from Proposition 5.D give rise to a family of resonance quasi-pairs in the sense of
Definition 2.1 can be achieved exactly as in Section 4.3.3 for Case (A). Namely, Lemma 4.F
and Definition 4.5 are respectively replaced by the following Lemma 5.F and Definition 5.4.

Lemma 5.F. Let () en, (¢q)qen and (1) qen given by Proposition 5.D. There exist smooth
functions A € €>°([0,1]), ® € 6€°°([0,1],#(R_)) and ¥ € €>°([0,1], ¥ (R)) such that
forall (h,o,p) € [0,1] x R_ x R, and for all integer N > 0, we have the following finite
expansions with remainders

N-1

A(hz) =" hEX, + W= Ry (h?), with R € 6>([0,1]) (5.192)

d(hzi0) =Y hig,(0)+h*RE(h2;0), with R% € 6([0,1],#(R_)) (5.19b)

U(hz;p) =S hio,(p)+h2RE(h2p)  with RY € 6%([0,1,%(Ry)) (5.19)
q=0
Definition 5.4. Choose a real number § € (0, %) and a smooth cut-off function y, 0 < x < 1,

such that x (&) = 1 for || < ¢ and x(§) = 0 for || > 26. We define for any integer m > 1
with the notation h = m ™!, the quantities:

k(m) =5 —y/1+h A(hz),
0
e ®(hz;h7E), €< -
y(m,ﬁ)—x(f){ Bk hE), €0 ¢ € (—1,400)
u(m;r,0) =v (m; L —1) ™ (r,0) € (0,+00) x R/27Z.

One can show that the sequence (k(m),u(m))m>1 is a family of “almost” quasi-pairs in
the sense of Lemma 4.G. The main difference with Case (A) in proving Lemma 4.G for the
sequence (k(m),u(m)),>1 introduced in Definition 5.4 is that we do not have anymore an
explicit expression for ¢, but this does not prevent to obtain the same estimates as in Case
(A). We refer to [18] for details.

5.2.4. Proof of Theorem 5.A. A further correction will have to be made to transform the se-
quence of functions (u(m)),,>1 constructed in Definition 5.4 into a true family of resonance
quasi-modes in the sense of Definition 2.1. We set
s (mim,60) = (v (m; 5 — 1) — o™ (m; 5 — 1)) ™
where v* is defined as in (4.47) and k, ;(m) = k(m). Relying on Lemmas 5.F and the
analogous of 4.G for Case (B), one can check that the family (8&,,;,4l,;) where 8,;, =
(Ep.;(m))m>1 and 8h,,; = (w,;(m))m>1 satisfies the four conditions of Definition 2.1.
6. CASE (C) QUADRATIC POTENTIAL WELL

We are now under Assumption (3.8). We recall that Case (C) corresponds to a situation
where £ < 0 and the potential ¥ has no local minimum at R but has at least one local inner
minimum Ry over (0, R). This case falls into to the framework investigated by HELFFER and
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SJIOSTRAND [12]. Namely, the asymptotic expansions of quasi-resonances and quasi-modes
are given in respectively Theorem 10.7 and Theorem 10.8 in [12]. Note however that the
construction is not made explicit in [12]. Here, in contrast, we construct explicit families of
resonance quasi-pairs §.; localized around the circle = Ry inside the cavity (). Note that
strictly speaking, these families of resonance quasi-pairs are not of whispering gallery type.

6.1. Statements.

Theorem 6.A. Choose p € {£1}. Let Assumptions 1.1 be verified and assume i < 0. Let

Ry € (0, R) such that 1 + % =0and i = 2 — % > 0, ¢f (1.15). Then,

for each j € N, there exists a family of resonance quasi-pairs §p.; = (Rp.;,U,.;) with
ﬁ’ﬂ;j = (Ep;j<m))m21 andilp;j = (gp;j(m))mzl'
(i) The regularity property (2.3)—(2.4) with respect to m holds with § = %, see (5.1). The

coefficients K. ; are all equal to (R n(Ry)) ™", the coefficients of degree 1 are zero, and the
coefficients of degree 2 are all distinct with j, see (6.2).

(ii) The functions w,. ;(m) still have the form (4.2) with radial functions w, ;(m) that
are smooth in the scaled variables o = m%(r/ Ry — 1). There exists a smooth function
P, € €°([0,1],#(R)) : (t,0) — ®,.;(t, o) such that

w,;(m;r) = X(r) (I)p;j<m7%a o) (6.1)
where X € 65°(R), X = 1 in a neighborhood of R,.

These families of resonance quasi-pairs are not of whispering gallery type: The quasi-
modes are strictly localized inside the cavity. The first terms of the asymptotic expansion of

Ep;j are:
m L (VR
b = L3 (V) 6 (1) 62
by (M) = +; pJ(m) +0 (m (6.2)
27+ 1
withk) =0,k = ‘7;— k3. =0, and
1 2 —16p — 2n3 — 2
o1 13_16p+8p u6p 5 2n u3774_ 7733
P3J 64 i 3N2 9N3
: 35 10ms+m 513
2 +1)° (5 —— - :
+@i+l) < I E R T
where
R3n®)(Ry) Rin™(Ry)
— G4 0" V0 d —9q 07 VU
73 + n(RO) an M4 n(Ro)
The asymptotic expansion of the quasi-modes starts with
UERI R im _1
w,.(Fm; z,y) = X(r)¥s" (,u4m2 <R—0 — 1)) el 1 @ <m 2> . (6.3)

Remark 6.1. As in Case (B), the quasi-resonances are organized in an asymptotic lattice with

constant step: The gap between two resonances with consecutive polar mode index m and

m + 1 and the same radial mode index j is found to be
1

by 1) by ) = s

+0 (m™),
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whereas when m is fixed and j is incremented by 1, the gap between two resonance is found
to be v
Vit >

ysjia () = by (m) = s 0 (™
6.2. Proof. The proof of Theorem 6.A can be seen as a simpler version of the proof of
Theorem 5.A since the driving operator A; = —0? + jio? of the asymptotic expansion
is the same quadratic oscillator on both side of the potential well location Ry, i.e. Al =
A, . Therefore, we will not detail the entire proof of Theorem 6.A but we will focus on an
interesting byproduct of our approach compared to the results of [12], viz a finite algorithm
for computing the terms of the asymptotic expansion of the resonance quasi-pairs.
In the framework of the Schrodinger analogy introduced in Section 3, we start this time
by introducing the dimensionless variable { = #- — 1 (instead of { = £ — 1 as in the two
previous cases) and the unknown v such that v(£) = w(Ry(1 + £)). This leads to the same

equation (4.12a) where A = R2 7(0)2 (A — W) with 72(€) = n(Ro(1+&)). Compared to the
general framework introduced in Section 4.2 for Cases (A) and (B), the potential V' is smooth
at its local minimum at ¢ = (. As a consequence, it is not anymore necessary to introduce
a different scaling on both side of ¢ = 0. Moreover, it is still possible to take advantage of
the framework of Section 4.2, but taking into account the fact the variable o = h™“ £ must
be considered over R and not only over R_. This framework applies with the same relevant
quantities as in Case (B) (the ones affecting &£ on R_). Denoting by ¢ the new unknown
such that ¢(0) = v(§), equation (4.12a) become —%,¢ + Vo = Ap, 0 € R, where the
operator £}, and the potentials 1}, have the same expressions than £, in (4.19) and V,~ of
(4.20) with (&) = n(Ry(1 + &)). The decay condition is ¢ € & (R).

We define a formal series of operators in terms of powers of hz, similarly to (4.21), as
L+ Vi~ > 4N h3 A, and we look for a function ¢ and a scalar A in the form of the

formal series ¢ = > h%p,and A = 3 4eN h% )\,. One can show that the coefficients

A,. q € N, satisfy Lemma 5.B (the statement on A_'). Then, by the same arguments as in
Cases (A) and (B) that can equally apply here, we obtain that (¢, o) is solutions to the full
harmonic oscillator equation (in opposition to the half harmonic oscillator of Case (B))

N

—@o(0) + io*po(0) = dopo,  TER,  ¢o € F(R), (6.4)
and that for ¢ > 1, (p,, A,) are solutions to the sequence of problems
ey | )+ (07 = 20)en(0) = daolo) + 57 (0) s €R
! vq € S (R)

with the right hand side term Sy defined as 57 = —A, o + ST (e — Ag) @gr.
Solutions to the full harmonic oscillator equation (6.4) are

pol0) = T (,1%) and A= (2j+1)\Vii (jEN). 6.6)

For ¢ > 1, the features of the solution (g, \,) to problem (%) are detailed in the
following proposition. Its proof below also provides an algorithm to compute ¢, and A,.

Proposition 6.B. Ler j € N and let (g, \o) given by (6.6). Then there exist, for any q > 1,
a unique Ny € R and a unique (b))icqo,...j+3q € RIT3 with b = 0 such that by setting

Jj+3q

o) = > b o (,1%) , Yo eR, 6.7)
=0

the collection (¢y, . .., Pg, Mo, - - -, \g) Solves the sequence of problems (R\”) ... 4.

77777
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Proof. The relations (5.16) combined with Lemma 5.B show that there exists a (j + 3¢ + 1)-

j+3q

Spo) = > dywet (pio) VoeR. (6.8)
=0

Namely, on one hand, the relations (5.16) indicate that the /-th derivative of W$" or the
function obtained by multiplying W$" by z‘ can be expressed as a linear combination of
Gauss-Hermite function up to order ¢ + ¢. On the other hand, Lemma 5.B indicates that
A, o and (A — A, )p, 4, for 1 < £ < g — 1 can respectively be expressed as a linear
combination of Gauss-Hermite function up to order j + ¢ + 2 and j + 3¢ — 2¢ + 2, these two
numbers being bounded by j + 3q.

Equation (6.5a) has a solution in L*(R) if, and only if, A, o + S is orthogonal to

WeH( ji3-); This implies that A, = —dJ. Moreover since the operator —02 +ji 0> — (2] +1) Vi

is diagonalizable and inversible on span(W§"(ji-) [ i > 0, i # j), we get b}, = % for

i€{0,...,7+3¢} \ {j}and b} = 0. O
Remark 6.2. From the proof of Proposition 6.B we can deduce a finite algorithm for the com-
putation of the terms in the asymptotic expansion of the resonance quasi-pairs because the
expression of 57 in (6.8) involves a finite sum and because the computation of the solution
(Ag> ¢q) is explicit form the coefficients of S

The proof that the formal series ) 4N /\qh% and > 4N cpqh% obtained from Proposition
6.B give rise to a family of resonance quasi-pairs in the sense of Definition 2.1 can be
achieved exactly as in Section 5.2.3 for Case (B). Note that in order to use Borel’s The-
orem and to obtain the required estimates, we have to show that ¢, € ¥ (R) NH?(R, el do).
This properties can be deduced directly from Equation (6.7).

Finally, we can conclude with the proof of Theorem 6.A in a way very similar to the one
of Theorem 5.A as detailed in Section 5.2.4.

7. PROXIMITY BETWEEN QUASI-RESONANCES AND TRUE RESONANCES

7.1. Separation of quasi-resonances, quasi-orthogonality of quasi-modes. For the three
cases (A), (B), and (C), cf Theorems 4.A, 5.A, and 6.A, we have exhibited families of res-
onance quasi-pairs in the sense of Definition 2.1. Namely, for each ;7 > 0 and m > 1, we
have constructed a quasi-pair (k,.;(m), w,.;(m)) where k, ;(m) € R, is a quasi-resonance
and w, ;(m) € Hg(Rz, 2) is a compactly supported quasi-mode. Actually, to each quasi-
resonance k,, ;(m), we can associate two quasi-modes: u, ;(m) and its conjugate. These
quasi-modes are quasi-orthogonal with respect to 7 and m, as stated in the next lemma.
We consider the Hilbert space L?(R? n(z)?™! dz) and denote its scalar product by

(£.9) = [ T@ofa)nfapde  for fg € LR 0™ da).

Lemma 7.A. For all the three cases (A), (B), and (C), and for all i,j7 > 0 and m,m' > 1,
we have (u,,.;(m), u,;(m’)) = 0 and
1 ifm=m'andi = j,
<Qp;i(m)>ﬂp;j(m,)> =40 ifm#m',
6 (m™) ifm=m'andi# j.
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Forany m > 1 and i,j > 0, we have the separation property
(m)? {C;;)mg +G(m) inCase (A),
m)2 =

k., (m)?—k, = 0 L
Ci;'m+0(m?2) in Cases (B),(C) ,

Ep (7.1)
with C{X # 0 if i # j.

Proof. The relation (u,, ;(m),u, ;(m')) = 1, for all j > 0 and m > 1, comes from the

1 =p;d
normalization of the quasi-mode in Definition 2.1. The relations (u,.;(m),w, ;(m')) = 0,
forall 4,5 > 0 and m,m’ > 1, and (u, ,(m), u,.;(m’)) = 0, for all 4,7 > 0 and m # m/,

m,m’ > 1, are deduced from the identity f027r ¢'?% df = 0 for all integer ¢ # 0.
For the last estimate, we consider ¢ # j, ¢, j > 0, and m > 1. By construction, there exists
R, € L*(R?), for ¢ € {i,j}, such that | Ry||12r2) = O (m ™) and
k. (m)> Pt w,. (m) = —div (n"~' Vu,.,(m)) — R,. (7.2)
Using this identity, conjugated, for ¢ = 7, we deduce:

Ep;i(m>2 /RQ gp;z(m) gp,](m) np+1 d.T =

—/ div (npflv%;i(m)) gp;j(m)dx—/ R, ;(m)dz.
R2 R2

Integrating by parts and using again (7.2), we get

() = By ) ity 1)) sy = | (20 s = ()
Taking the modulus and using Cauchy-Schwarz inequality, we obtain
< [ Rillezee) + 1Rz @)
=0 (m’oo) .
Then we use the separation property (7.1) (which is an obvious consequence of asymp-

totic formulas for k,, ;(m) in each case) and finally get the estimate (u,;(m),u,. ;(m')) =

O (m=). O

[y ()? = By ()2 |ty (m), 25 m)) e

7.2. Spectral-like theorems for resonances. We have constructed well separated quasi-
pairs for the operator
P = —nPldiv(n’~' V.

with domain H?(R?,€2) on the Hilbert space L*(R? n(z)?™" dz). The operator P is self-
adjoint and its spectrum X (P) reduces to its essential spectrum, equal to [0, +00). If we
apply the spectral theorem [13, Theorem 5.9] to our quasi-resonances for the operator P, we
get that for each quasi-resonance k, ;(m) there exists an interval I of length 6 (m ™) such
that the intersection ¥(P) N I is non empty, which is useless, since we know already that
Y(P) =10, +00).

If the operator P has been defined as the Dirichlet realization of —n 7~ div(n?~! V")
on a bounded open set containing ), then its spectrum would have been discrete. In such
case, the application of the spectral theorem would be more significant. Nevertheless, this
procedure of cut-off would not inform us about resonances.

That is why we need to use a spectral-like theorem for resonances. Two statements are
available in the literature: one from TANG and ZWORSKI [29], and another from STEFANOV
[27]. Those theorems lie in the black box scattering framework. We are going to present main
assumptions and results of these papers in a simplified way, convenient for our application.
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In dimension 2, the main ingredients are
e A complex Hilbert space #€ with orthogonal decomposition (with positive gp)
S = #,, & L*(R*\ B(0, 09))
e A family of unbounded selfadjoint operators h — P(h) on #€ with domain indepen-
dent of h, whose projection onto L?(IR?\ B(0, go)) coincides with H?(R?\ B(0, go)).
We introduce the following assumptions

15(0,00)(P(h) —1)™"  compact #6 — H€ (H1)

and

1R2\B(0,Q0)P(h)u =—h (H2)

QAu‘ :
R2\B(0,00)
Then we choose ¢ >> gy and periodize P(h) outside B(0, gy), obtaining an operator P*(h)
on the Hilbert space
H* = 6,  ®IP(M \ B(0,00)) with M = (R/oZ)*
Denoting by N (P#(h), I) the number of eigenvalues in I, we write the third assumption as
N(PHR),[-)\\]) = 6 ((A/iﬁ)““/?) A o0, forsome nf>2.  (H3)

Let us denote by % (P(h)) the set of poles of the resolvent z — (P(h) — z)~!. In dimension
2, this set is a subset of the Riemann logarithmic surface, its elements satisfy arg z < 0 with
our convention for the definition of resonances.

Now we can state a simplified version of the main result of [29]:

Theorem 7.B ([29]). Let P(h) satisfy hypotheses (H1), (H2), and (H3). Assume that there
exists for any h € (0, ho| a quasi-pair (E(h),u(h)) with E(h) C [Ey — h, Ey + h] for some
real Ey, and with u(h) normalized in #€ and compactly supported independently of h. The
quasi-pairs are supposed to satisfy the residue estimate
| (P(h) = E(h)) u(h)]l = G (h).
Then for any h € (0, hy] with a positive hy, small enough, there exists a resonance pole
z(h) € %(P(h)) such that
[E(h) = 2(h)] = 6 (h™).

The result in [27] is more precise but requires one more hypothesis, according to which

the number of resonance poles is not too large: For some positive integers N and N’

Card {z € Z(P(h)), ao < |z| <by, —Imz<h™} < Coooh™". (H4)

Our simplified version of the main result of [27] follows:
Theorem 7.C ([27]). Let $) be a infinite subset of (0, 1] with accumulation point at 0. Let
P(h) satisfy hypotheses (H1), (H2), (H3), and (H4). Assume that, for any h € (0, hy] N 9,
there exists d quasi-pair (Ey(h),us(h)) with Ey(h) = ... = E4(h) € [ag, bo), and with u,(h)

compactly supported independently of h, and almost orthonormal: |(u;(h), ue(h))ye — 8i| =
O (h®°). The quasi-pairs are supposed to satisfy the residue estimate

| (P(h) = Ee(h)) ue(h)]l2e = O (h%), £=1,....d.

Then for any h € (0, hy| N $ with a positive hy small enough, there exists d resonance poles
zo(h) € % (P(h)) with repetition according to multiplicity, such that

\Ey(h) — z(h)| = 6(h®), (=1,....d.
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The distinction between the two latter theorems is the consideration of multiplicity in
Theorem 7.C. The multiplicity of a resonance pole zj is understood as the rank of the operator

1

— (P(h) — 2)"'dz
2im |z—z0|=¢

for £ > 0 small enough to isolate the pole zo and (P(h) — z)~! is the meromophic extension

of the resolvent [7, Definition 4.6].

7.3. Application of the spectral-like theorems to disks with radially varying index. We
apply the above theorems to our situation. We set
P(h) =h*’P with P=-n"""1div(n?'V.) on # =I1*R* n(z)’tdz).

The subset §) is {h = %, m € N*}. Hypotheses (H1) and (H2) are easy to check. Concern-
ing (H3), by using the max—min principle for eigenvalues [11, Theorem 11.12] and com-
paring the eigenvalues of P#(h) with (—h2A)* on a large torus M = (R/0Z)? for o > R,
we get that the counting function N(P*(h),[—\, \]) = 6 ()\/h?) for A — oo, which yields
nt = 2.

Concerning (H4), we simply have to use the main theorem in [30] (with ¢(¢) = ¢ and
a=1+4¢).

Then to bridge our families of resonance quasi-pairs with the formalism of [27], we set,
for any chosen p € {£1} and any chosen j € N:

Eo(h) = h’k,;(+)?, he®H, (=172
with

ur(h) = u,;(3) and uy(h) =w, (3), heh.
Then, as & tends to 0, the energy E,(h) converges to 1/(Rn(R))?* in Cases (A) and (B), and
to 1/(Ron(Ry))? in Case (C). Applying Theorem 7.C and coming back to resonances by the

formula
km =my/z1(%) and kK, =my/2(L), m>1

Theorem 7.D. For p € {£1}, j € N, and m large enough, there exist two resonances k,,
and k!, (counted with multiplicity) such that, as m — +00o, we have

max (|Ep;j(m) - km| ; |Ep;j(m) - k;nD =0 (m_oo) :

we have proved:

Remark 7.1. (i) It is plausible that modes associated with the true resonances k,, and &,
have m as polar mode index. The proof of this would require to apply a spectral theorem to
the family of one dimensional resonance problems (1.2a)-(1.2b), which seemingly does not
enter the general framework of [29] or [27]. Nevertheless, finite computations performed
with perfectly matched layers displayed numerical modes complying with the structure of
quasi-modes (see [18, Chapter 7] and a forthcoming paper of the authors).

(ii) Throughout the paper we have assumed that p € {£1}, because of the physical moti-
vation, but without any change, everything is true for p € R.

APPENDIX A. TECHNICAL LEMMAS
A.1. Explicit solutions to some differential equations.

Lemma A.1. For all { € N, let denote by -y, the mapping z € R s z'e™* and for d > 1
by &, the set {~p;{ = 0,...,d}. The operator —9° + 1 is a bijection from the vector-space
span(64 \ {70}) to the vector-space span(64_1).
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Proof. Forall £ > 0, we readily obtain (—9%+1)v, = £({—1) y,_o—2{ ~y,_;. Considering the
vector basis (71, ...,7q4) and (7o, . . ., Ya—1) of span(64\ {0}) and span(6,_1) respectively,
the matrix of —9? + 1 from span(64\ {7o}) to span(&,4_1) is an upper triangular matrix with
a determinant equal to (—2)%d! # 0. O

Lemma A.2. For all { € N, let denote by oy the mapping z € R + z*A(z) and by By the
mapping z € R — z!A'(2) where A is the mirror Airy’s function. For all d € N, let 94
be the set {cy, ;¢ = 0,...,d}. The operator —0* — z is a bijection from the vector-space
span(dy \ {ao}) to the vector-space span(dy \ {Sa}).

Proof. From the definition of Airy’s function, we have A” = —zA and therefore, for ¢ > 0,
(=02 = 2)ag = —({ = 1) apg — 2 By,
(=02 = 2)Be=—L(l = 1) Bra + (20 + 1) .
Considering the vector basis (5o, a1, f1, - - ., &, Ba) of span(ey \ {ap}) and the vector ba-
sis (v, Bo, 1, B, - - -, q) of span(ey \ {Ba}), the matrix of —9? — z considered from

span (g \ {ap}) tospan (4, \ {54}) is an upper triangular matrix with a determinant equal
to (—1)4(2d + 1)! # 0. 0

A.2. Half harmonic oscillator. We recall that we denote by [*(R_,w,) and HY(R_,w,)
the weighted Sobolev spaces with measure w,(c) do where w, : o +— exp (2%|o|) for x real
and that W5, refers to the Gauss-Hermite function of order 2j + 1, see [1, 20].

Lemma A.3. Let f € R, 0 > 0, and j € N. Forany S € L>(R_,wg) Nspan(Ps?, )" there
exists a unique solution to the problem: Find w € H*(R_) N span(Ws} . 1)* such that

{—w”(x) + (22 — 4j — 3)w(x) = S(z) Va € (—o0,0)

w(0) = 0 . (A.1)

Moreover, this solution belongs to H{(R_,ws) N H*(R_, ws_y).

Proof. Existence and unicity rely on the fact that the family (W$], )sen is a Hilbert basis of
L*(R_) and that the half harmonic oscillator operator is diagonalizable on span(¥s), | | £ €
N). The solution to problem (A.1) can be written as
+o00 1
Z ~ (5, §e‘1’g?+1)L2(R—) Se g?ﬂ (A.2)
AC=17)
=0, (]

where ¢ = U5}, [| 72 _, and we clearly have w € H*(R-) N span(¥5], )"

We set J := \/4(j + 1) + 220-2 so that, for all z < —J, we have V(z) = 2% — 4j — 3 —
22=2 > 1. Let ¢ € €>°(R) such that 0 < ¢ < 1, ¢(x) = 0 for all z < 0, and ¢(x) = 1
forall z > 1,let b = (1 + 2°) maxg |¢'| and let @ > J + 2b. We define a cut-off function
Xa € %gc?mp(R*) by

Xa(2) = o(07 (z +a)) - ¢(=b (z + ), VreR_.
We also define x(x) = ¢(—b~!(x + J)) for x € R_. Note that, for all a > J + 2b, we have
Ix,] < C where C' = (1 + 2°)71. Letalso @ = wws_; and S := Swg_;. Multiplying both

sides of equation (A.1) by x, w ws and integrating over R_, yields
0

0 -~
/ (w’(xawwﬁ)’wa (x2—4j—3)@2)dx:/ Xo S @ da.

—00 —0o0
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Since w' wg_y = @' + 2071w and W' (x)(w(z) wy)' = @' (z)* — 2220 (z), we deduce that

0 0 0
/ Xo @ 4 xa V @2 dz + / X, 0 (@' +2°7'0) de = / Xa S dz. (A.3)
For the first term on the left hand side of (A.3), since x, V' > x4, we have

0 0
/ Xa @+ xa V @ dz > / Xa (@'2 + 132> dz. (A4)

Then, for the second term on the left hand side of (A.3), since x/, > —C, 1 > x4, and b is
such that C(1 + 2%) = 1, we have

0 0
/ X, 0 (W +2°7') dz > —C’/ oW +2°7 @ dw

_ s
> - 0" + (1+2°)0% da
1 6 9
> > / Xa (@ +@2) da. (A5)

For the last term on the right hand side of (A.3), since x? < x,, we have

0 0 3 R
[ Bt s Blue ([ witar) < ISlow Sul@ 4o

—00 —0o0

where N, (a) = \/fi)oo Xa (@’2 + @2) dx. Combining the estimates (A.4), (A.5), and (A.6)
yields
Now(a)? < 2]z y N (a).
The function a € (J + 2, +00) — N, (a) is not negative and not decreasing, so the function
is either always zero or positive for a large enough but in any cases we have
No(a) < 2[|5]@.)-

By letting @ tends towards 400, we obtain that

0
—~2 ~ =
| (@74 8) de < alS)ae

which implies that w belongs to Hj(R_). It follows that w belongs to L*(R_, wg). From the
relation w'wp_; = —2°710 — @', we deduce that w € H}(R_, wp).
Finally, using the relation w” = (2% — 45 — 3)w — S, we get

0 0
/ w"” wy_gdx < C/ (w?+ %) wsda

—00 —0o0

where C' = max,ep (2% — 45 — S)Qwﬁjg(m) < +oo with § = In(1 — 27%)/1n(2). This

shows that w € H*(R_,wg_y). Note that the constant 3 is replaced by 5 — 6 by the need to
take into account the coefficient 22 — 45 — 3. U
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A.3. Borel’s Theorem. Our construction of quasi-modes requires to find a smooth function
given its Taylor expansion. This can be achieved using a Borel’s like theorem on the spaces
of Schwartz functions & (R.). We denote by pa,s(f) = sup,ep, |07 f(x)|, a, f € N, the
usual family of semi-norms over & (R.).

Lemma A 4. Let (f,),en be a sequence of functions where f, € & (Ry) for all ¢ € N. There
exists f € 6€°°([0, 1], % (R4.)) such that

o7 f(0,x) = fy(x), VaeRL.
Proof. This proof is inspired by the proof of [14, theorem 1.2.6] where smooth functions

with compact support are replaced by Schwartz functions.
Let g € 62°. (R) be a smooth cut-off function such that g(¢) = 1 for all t € [—1, 1]. For

comp

each ¢ € N we introduce the function
Ggg: (t,x) eERXRyr— g (Eglt) Z—q!fq(x)
for some positive number ¢, that will be specified later on. For all d, o, 8 € N, we have
2*0%0% g, (t, x) = sg_d Gfld) (eq_l t) xo‘fq(ﬁ) (x), VY(t,z) € R xRy, (A7)
where G (s) = g(s) 2. It follows that 220802 g,(t, )| < C’:’dﬁ £d~% where

Coid =5 |GE7(3)] pas(fy) < +oo.

By choosing ¢, = mingq45<4(29 C’;’dﬁ)fq%d, g > 1 and ¢y = 2¢; we obtain that
|xa8fﬁfgq(t, x)’ <2 %forall d,a, € N and for all ¢ > d + a + . Therefore, the sum

f = Z 9q
920
is well defined because the series converge absolutely. Its successive derivatives are equal to
the sum of the derivatives of g,; As a consequence, f € 6>°(]0, 1] x Ry). Moreover, from
the estimate
d+a+p
Pagp (01 f(E) < D O et 274, vt e [0,1], Vd,a, €N

q=0

we obtain f € 6°°([0, 1], ¥ (RL)). From (A.7), we deduce that for all d € N

+oo
07 1(0,2) =) et GL(0) fy(), Vz € Ry.
q=0
Since g is constant equal to 1 around ¢ = 0, we have Géd)(()) = 044 Where 9§, 4 is the
Kronecker symbol. This implies that 92 f(0, z) = fq(z). O

By Taylor’s formula with integral remainder we deduce immediately the following result.

Lemma A.5. Let f be a function belonging to €°°([0,1], ¥ (Rx+)). For all integer N > 1
there exists Ry € 6°°([0, 1], % (R4)) such that

N-1 g
flt,z) = Z Mtq +tNRy(t,z), Y(t,x) €[0,1] x Ry.

q=0 ¢
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A.4. Additional result.
Lemma A.6. Let F' : (t,0) — F(t,0) a function in “€>([0,1],#(R_)). Then

.y
/ |F(t,7)]? dT =06 (t*) as t— 0.

o

The same result holds with R _ replaced by R and (—oo0, —0/t) replaced by (6 /t, o0).
Proof. 1t suffices to notice that for any N > 1, there exists C'y such that

TNV F(t,7)| < Cy, forall (t,7) € [0,1] x R_.
Hence f:oi/t |F(t,7)]* dr < (%)ZN_l, which proves the lemma. O
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