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Abstract

This work focuses on the nonparametric estimation of a drift function from N discrete repeated
independent observations of a diffusion process over a fixed time interval [0, T ]. We study a ridge
estimator obtained by the minimization of a constrained least squares contrast. The resulting
projection estimator is based on the B-spline basis. Under mild assumptions, this estimator is
universally consistent with respect to an integrate norm. We establish that, up to a logarithmic
factor and when the estimation is performed on a compact interval, our estimation procedure
reaches the best possible rate of convergence. Furthermore, we build an adaptive estimator that
achieves this rate. Finally, we illustrate our procedure through an intensive simulation study which
highlights the good performance of the proposed estimator in various models.
AMS Subject Classification: 62G05, 62M10, 62J07

1 Introduction
In this paper, we tackle the statistical problem of the estimation of the drift function of a one-
dimensional time homogeneous diffusion process X = (Xt)t∈[0,T ] where T > 0 is a fixed horizon
time. The diffusion process X is given as the solution of the following equation

dXt = b(Xt)dt+ σ(Xt)dWt, X0 = x0 (1.1)

where x0 ∈ R is known, and (Wt)t≥0 denotes a standard Brownian motion. From (Xt)t∈[0,T ] the
solution of (1.1), we may construct an observation which is the high frequency discretized sample
path X := (Xk∆)k=0,...,n with T = n∆, n ∈ N, 0 < ∆ < 1. We assume that N ∈ N∗ independent
discrete observations

(
X

(1)
, . . . , X

(N)
)

coming from independent solutions
(
X(1), . . . , X(N)

)
of

(1.1) are available. We refer to the vector of observations
(
X

(1)
, . . . , X

(N)
)
as the learning sample.

Based on this learning sample, the goal is to estimate the drift function b : R → R which can
be interpreted as the instantaneous mean of the process. In this paper, we aim at studying a
nonparametric ridge estimator of b.

1.1 State of the art
The estimation of the drift function of a diffusion process from a single path is a well known problem.
For a review of parametric and nonparametric methods for diffusion processes we refer to Kutoyants
(2004). More precisely, one can cite, for the case of continuous ergodic diffusions Yoshida (1992);
Gobet (2002), Bibby & Sørensen (1995); Kessler et al. (1999) for martingale estimation functions,
Gobet et al. (2004) in the low frequency context. In the nonparametric context, on can cite
Hoffmann (1999); Dalalyan et al. (2005); Comte et al. (2007); Schmisser (2013). In the Bayesian
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literature, the asymptotic properties of minimum contrast estimators are studied for example in
Van der Meulen et al. (2013); Gugushvili et al. (2014); Koskela et al. (2019). Recently, Abraham, K.
(2019) has studied a minimum contrast estimator over a class of functions on which a constraint on
the supremum norm is imposed. Nevertheless, most of these works focus on the framework where
the available data consists of only a single observation (continuous or discrete) of a diffusion path
in the long run. The consistency of the methods is proved when the horizon time T is not fixed
but tends to infinity. Within this context, it is often assumed that the process is ergodic.

On the contrary, in our setting we assume that the horizon time T is fixed and we do not require
the ergodicity of the diffusion process. The key ingredient is that the available data consists of N
discretized paths observations of the process. Hence, our natural asymptotic framework is given
by N → +∞. Consequently the problem treated in this paper falls within the scope of general
functional data analysis (see e.g. Ramsay & Silverman, 2007; Wang et al., 2015) which covers a
broad class of applications.

However, it seems that very few works investigate the estimation of the drift function from a
sample of i.i.d. observations (diffusion paths) when the horizon time T is assumed to be fixed. Up
to our knowledge, we only found the references Denis et al. (2019); Comte & Genon-Catalot (2019)
in the literature. The first work deals with the parametric case and the second one deals with
the nonparametric estimation from continuous observations. In Comte & Genon-Catalot (2019),
the authors focus on a procedure which relies on a cutoff of a projection estimator where the m
dimensional spaces of approximation are generated by Laguerre functions or Hermite functions. One
of the main contributions of this work is that it provides theoretical guarantees for the estimation
of b1A, where A is a non compact subset of R.

Yet, in order to ensure the existence and the stability of the resulting estimator b̂m, the authors
insert a cutoff function. This leads the estimator b̂m defined as as follows b̂m = b̃m1{f(m)≤log(NT )/NT}

where b̃m is the minimizer of a suitable contrast function and f is an increasing function of the
dimension m of the approximation space. We believe that one of the main drawbacks of this es-
timation procedure is that in regard to the size of the available learning sample, the dimension of
the linear subspaces for which the estimator is not the zero function might appear be too small : in
the case where the estimation of b necessitates to consider a space of approximation with a large
dimension m, the estimator b̂m may perform badly.

To avoid this issue, a natural alternative is to seek for regularized methods such as ridge type
procedures. These kinds of procedures, that include kernel methods, have been intensively studied
in the regression setting (see Hastie et al., 2001, and references therein), but, up to our knowledge,
there is no prior study of a regularized procedure for the estimation of the drift function in the
context of i.i.d. repeated observations.

1.2 Main contributions
In this paper, we present a new estimator based on the minimization of a least square contrast under
an `2 constraint. Namely, the considered estimator of the drift function relies on projections on some
finite dimensional subspaces and we impose an `2 constraint on the coefficients of the projection that
ensures the existence, uniqueness, and stability of the resulting estimator. Notably, the resulting
estimator is a ridge type estimator. We focus on the spaces of approximation generated by the
popular B-spline basis (De Boor et al., 1978; Györfi et al., 2006) which is often used in practice.

In a first part we show that our procedure is universally consistent for the estimation of b with
respect to the time average distribution L2 risk of the process. Importantly, we emphasize that
b is estimated over the whole real line and that this consistency result is obtained without any
assumption on the existence of a density transition of the diffusion model. Our results extend those
provided in Comte & Genon-Catalot (2019) to the context of discretely observed paths.

A second part of this paper is dedicated to the study of the rate of convergence for the estimation
of b1A, where A is a compact subset of R. To this end, we strengthen our assumptions and assume
the uniform ellipticity of the diffusion model in order to ensure the existence of a transition density.
We establish that, up to a logarithmic factor, the constructed estimator achieves the optimal rate of
convergence over the Hölder balls in the minimax sense. Note that the previous estimator depends
on the knowledge of the regularity of the drift b on the set A. As is customary, we deal with
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this issue by proposing an adaptive estimator which is shown to reach the minimax rate (up to a
logarithmic factor).

Finally, we show numerical experiments that support our study and give illustrations that our
estimation performs well on several diffusion models. In various cases our numerical experiments
highlight the benefit of considering a regularized estimator rather than using a cutoff procedure.

1.3 Outline of the paper
Section 2 provides the main notations and assumptions that are considered throughout the paper.
A presentation of the B-spline basis is also given in this section. The general estimation procedure
is described in Section 3 as well as our first consistency result. Section 4 focuses on the study of
the rate of convergence when the estimation is restricted to a compact set. We propose an adaptive
estimator that reaches the optimal rate of convergence up to a logarithmic factor. Finally the
numerical performance of our procedures is investigated in Section 5. Proofs are relegated to the
Appendix.

2 General framework
This section is devoted to the presentation of the general framework of our study. We detail the
assumptions on the model defined by Equation (1.1) in Section 2.1 while important notation are
provided in Section 2.2. The measure of performance from which we evaluate an estimator of
the drift function b is introduced in Section 2.3. Finally, in Section 2.4 we present the space of
approximation used to build our estimation procedures. This space is chosen to be that of B-spline
functions and we recall some of their important properties.

2.1 Assumptions
Our study focuses on the possible solutions of the Stochastic Differential Equation (1.1). Let us
introduce the following notations

Z (σ) := {x ∈ R : σ(x) = 0} , Z (b) = {x ∈ R : b(x) = 0}

and

I (σ) :=

{
x ∈ R :

∫ x+ε

x−ε

1

σ2(y)
dy = +∞, ∀ε > 0

}
.

Throughout the paper, we make the following assumptions.

Assumption 2.1. (Existence)

(i) The function b/σ2 is locally integrable on the complement of I(σ) (with the convention that
0×∞ = 0).

(ii) I(σ) ⊆ Z(σ) ∩ Z(b).

Assumption 2.2. (Uniqueness)

(i) x 7→ b(x) is globally Lipschitz: there exists Lb > 0 such that for all x, y, |b(x)−b(y)| ≤ Lb|x−y|.
(ii) x 7→ σ(x) is Hölder with exponent α ∈ [1/2, 1]: for all x, y, |σ(x)− σ(y)| ≤ Lσ|x− y|α.

Assumption 2.1 ensures that there exists a (weak)-solution of (1.1). Also, it ensures that strong
uniqueness holds for the solutions of (1.1), so that appealing to the celebrated result of Yamada
and Watanabe, we ensure that there exists a unique strong solution to (1.1) (see e.g. Revuz & Yor,
1999).

Assumption (2.2) ensures the linear growth of the coefficients b and σ. Thus there exists a
constant C > 0 such that

∀x ∈ R, |b(x)|+ |σ(x)| ≤ C(1 + |x|).

3



Using standard arguments (see for e.g. Graham & Talay, 2013), we can show that for any
integer q ≥ 1 there exists a constant C < +∞ depending only on q, x0, T (not α), such that for
any 0 ≤ s ≤ t ≤ T ,

E|Xt −Xs|2q ≤ C (t− s)q. (2.1)

Note that for now, we do not impose a uniform ellipticity condition and the existence of a
transition density function for the Markov process (Xt) is not ensured.

2.2 Notation for continuous and discrete norms
Let X = (Xk∆)k=0,...,n be a sample path independent of the discrete observations

(
X

(1)
, . . . , X

(N)
)

with T = n∆ a fixed time horizon (n ∈ N∗, 0 < ∆ < 1). In the following, N ∈ N∗ independent
discrete observations

(
X

(1)
, . . . , X

(N)
)

of the sample path, coming from
(
X(1), . . . , X(N)

)
, are

available. Our asymptotic framework is such that n and N go to infinity.
For a real valued function h defined on R, we denote ‖h‖n,b and ‖h‖b the integrated norms

defined as:

‖h‖2n,b := EX

[
1

n

n−1∑
k=0

h2(Xk∆)

]
, ‖h‖2b := EX

[
1

T

∫ T

0

h2(Xs)ds

]

on L2
(

1
n

∑n−1
k=0 P ◦X

−1
k∆

)
and L2

(
1
T

∫ T
0
P ◦X−1

s ds
)
respectively, where EX is the expectation with

respect to the law PX of the discrete path X defined by (1.1). Its standard L2-norm is denoted by
‖h‖. Let us also introduce the following empirical norms

‖h‖2n :=
1

n

n−1∑
k=0

h2(Xk∆), ‖h‖2N,n :=
1

Nn

N∑
j=1

n−1∑
k=0

h2
(
X

(j)
k∆

)
.

Finally, ‖.‖2 stands for the standard Euclidean norm and ‖.‖∞ for the supremum norm.

2.3 Measure of performance
We introduce the following risks

Rn (h, b) := ‖h− b‖2n,b , R (h, b) := ‖h− b‖2b . (2.2)

The performance of an estimator b̂ of b on a discrete path X is naturally assessed through the
measure of performance Rn. However, in view of considering the asymptotic ∆ → 0, the major
drawback of the risk Rn is that it depends on the discretization step ∆. Roughly speaking, the
convergence of E

[
Rn
(
b̂, b
)]

to 0 (when n,N goes to infinity) does not ensure, without further

investigations, that b̂ is “close” to b. In order to circumvent this issue, we consider more likely the
risk measure R which does not depend on the time step ∆. Nevertheless, the following result shows
that the norm ‖.‖n,b and ‖.‖b are equivalent up to a remainder term of order

√
∆.

Proposition 2.3. Let h be an Lh-Lipschitz real function. Under Assumption 2.1 and 2.2, the
following holds ∣∣‖h‖2b − ‖h‖2n,b∣∣ ≤ C(h(0) ∨ Lh)Lh

√
∆.

If h is bounded ∣∣‖h‖2b − ‖h‖2n,b∣∣ ≤ C‖h‖∞Lh√∆

where C > 0 is a constant which depends on x0, b.
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2.4 Spaces of approximation
Let KN ∈ N∗, AN , BN ∈ R, AN < BN , and M ∈ N∗. Let us introduce the sequence of knots
u = (u−M , . . . , uKN+M ) such that for i = 0, . . . ,KN

ui = AN + i
(BN −AN )

KN
,

u−M = . . . = u−1 = u0 = AN , and uKN = uKN+1 = . . . = uKN+M = BN . We consider the B-
splines functions (Bi,M,u)i=−M,...,KN−1 of degreeM associated to the knot vector u. The B-splines
functions are defined as follows (see for instance Györfi et al., 2006, and references therein).

Definition 2.4. the B-spline function of degree ` with knots vector u is recursively defined for all
x ∈ R by,

Bi,`,u(x) = 1[ui,ui+1)(x),

for ` = 0, and i = −M, . . . ,KN +M − 1, and

Bi,`+1,u(x) =
x− ui

ui+`+1 − ui
Bi,`,u(x) +

ui+`+2 − x
ui+`+2 − ui+1

Bi+1,`,u(x),

for ` = 0, . . . ,M − 1, and i = −M, . . . ,KN +M − l − 2. We use the convention 0/0 = 0.

According to the choice of the knot vector u, the B-spline functions are zero outside [AN , BN ].
Besides, these functions are linearly independent even though their supports are not disjoint. The
main advantage of these piecewise polynomial functions is that they satisfy some global smoothness
conditions. This kind of attractive property is particularly interesting when we want to build smooth
estimates. Finally, the B-spline space SKN ,M,u is defined as

SKN ,M,u = span{(Bi,M,u) : i = −M, . . . ,KN − 1}.

Hence, the linear space SKN ,M,u has dimension dim(SKN ,M,u) = KN +M . Let us recall some useful
properties of the B-splines functions (see for instance Györfi et al., 2006, Chapter 14).

Properties 2.5. For all i ∈ {−M, . . . ,KN − 1}, we have

(i) For all x ∈ R, Bi,M,u(x) ≥ 0.

(ii) For all x /∈ [ui, ui+M+1), Bi,M,u(x) = 0.

(iii) For all x ∈ [AN , BN ),
KN−1∑
i=−M

Bi,M,u(x) = 1.

(iv)
∫ BN
AN

Bi,M,u(x)dx = ui+M+1−ui
M+1 ≤ BN−AN

KN .

From the above properties, we can deduce that if h ∈ SKN ,M,u, then h is M − 1 continuously
differentiable on [AN , BN ) and zero outside of [AN , BN ). The following Lemma states a useful
property which highlights the connections between the norms ‖h‖ and ‖h‖∞ of an element h of the
linear space SKN ,M,u and the coefficients of its decomposition in the B-spline basis.

Lemma 2.6. Let h =
∑KN−1
i=−M aiBi,M,u ∈ SKN ,M,u, then there exists constants C1 > 0, C2 > 0

which depend only on M such that

C1K
−1
N ‖a‖

2
2 ≤ ‖h‖2 ≤ C2K

−1
N ‖a‖

2
2 and ‖h‖∞ ≤ ‖a‖2.

3 Constrained estimation based on the B-spline basis
In this section, we describe our estimation procedure which relies on a projection estimator based
on the B-spline basis. The estimation procedure is presented in Section 3.1 and the universal
consistency of the proposed estimator is established in Section 3.2.
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3.1 Estimation strategy
Let us consider the case where BN > 0, AN = −BN and M ≥ 1. Throughout the paper, M is a
fixed constant. For LN > 0, we define the constrained subspace

SKN ,LN ,M :=

{
h =

KN−1∑
i=−M

aiBi,M,u ∈ SKN ,M,u : ‖a‖22 ≤ (KN +M)LN

}
. (3.1)

The subspace SKN ,LN ,M is composed of functions h =
∑KN−1
i=−M aiBi,M,u for which we ensure uniform

boundedness on the coefficients ai. Then, in view of Lemma 2.6, functions of SKN ,LN ,M are bounded
w.r.t. ‖ · ‖∞ and ‖ · ‖. We consider the estimator b̂N,n defined as the minimizer of a least square
contrast

b̂N,n ∈ argmin
h∈SKN,LN,M

γN,n(h), (3.2)

where for h ∈ SKN ,LN ,M ,

γN,n(h) :=
1

N n

N∑
j=1

n−1∑
k=0

(
Z

(j)
k∆ − h(X

(j)
k∆)
)2

, Z
(j)
k∆ :=

X
(j)
(k+1)∆ −X

(j)
k∆

∆
. (3.3)

Note that the resulting estimator is then defined as b̂N,n(.) =
∑KN−1
i=−M âiBi,M,u(.) where the vector

â =t(â−M , . . . , âKN−1) ∈ RKN+M is the ridge estimator (see Hastie et al., 2001):

â = argmin
‖a‖22≤(KN+M)LN

‖Z−Ba‖22,

where the vector Z =t(Z
(j)
∆ , . . . , Z

(j)
n∆, j = 1, . . . n) belongs to RNn and the matrixB = (Bi,M,u(Xj))j,i ∈

R(Nn)×(KN+M), with Xj =t(X
(j)
∆ , . . . , X

(j)
n∆). Thus, as for the ridge regression procedure, we min-

imize γN,n given in Equation (3.3) over the constrained subspace SKN ,LN ,M or equivalently over
a ∈ RKN+M , under the constraint: ‖a‖22 ≤ (KN + M)LN . This problem has a unique solution
which ensures that the resulting estimator b̂N,n is always well defined. Moreover, this procedure
offers attractive numerical properties. The following result sums up this comment.

Proposition 3.1. The estimator b̂N,n is defined as

b̂N,n(x) =

KN−1∑
i=−M

âiBi,M,u(x),

where â =t(â−M , . . . , âKN−1) is defined either by

â =
(
tBB

)−1 tBZ

if the matrix (tBB) is invertible and ‖a‖22 ≤ (KN +M)LN , or by

âλ̂ =
(
tBB + λ̂IKN+M

)−1
tBZ,

where λ̂ is the unique solution of ‖âλ‖22 = (KN +M)LN , where

âλ = (tBB + λIKN+M )−1tBZ.

In the recent work of Comte & Genon-Catalot (2019), the authors focus on a least squares
contrast estimator (based on continuous observations). In order to ensure the stability of the
estimator, the authors propose to insert a cutoff function. More precisely, the estimator is set to
the zero function according to some threshold which depends on the dimension of the considered
space of approximation. This procedure may reduce the dimension of the spaces of approximation
on which the resulting estimator is non trivial and can lead to some limitations in practice (see
Section 5.2.3 for more details). The estimator proposed in Proposition 3.1 may be viewed as an
alternative.
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3.2 Consistency of the procedure

In this section, we show that the proposed estimator b̂N,n is universally consistent with respect to
the risk R given in Equation (2.2). The consistency of the estimator relies on the following result.

Proposition 3.2. Under Assumptions 2.1 and 2.2, the estimator b̂N,n of b given in Equation (3.2),
satisfies

E
[
‖b̂N,n − b‖2N,n

]
≤ C1 inf

h∈SKN,LN,M
Rn(h, b) + C2

(√
(KN +M)LN

N
+ ∆

)
, (3.4)

where C1 > 1 a numerical constant and C2 > 0 is a constant depending on σ and T .

This Proposition gives a bound for the error of estimator b̂N,n which is expressed in terms of
the empirical norm ‖.‖N,n. The first term in the r.h.s of Equation (3.4) is interpreted as the bias
term while the second one is a bound of the variance term which is of order ((KN +M)LN/N)1/2.

Note that this rate is slower than could be expected due to the relative weak assumptions on
the model and that there is no compactness assumption on the estimation interval for b. Indeed, we
improve this rate in Section 4 by assuming ellipticity and mild regularity on σ and by estimating
b over a compact interval. The last term in the r.h.s is of order ∆ and highlights the error due
to the discretization. Nevertheless, the result of Proposition 3.2 gives only an error bound on the
observations X

1
, . . . , X

N
. Hence, it is not sufficient to derive the consistency of b̂N,n w.r.t the

empirical norm. The aim of the next result is to derive a consistency result w.r.t. to the risk R. It
relies on Proposition 3.2 and concentration arguments.

Theorem 3.3. Under Assumptions 2.1 and 2.2, with AN = −BN , assume that LN → +∞ and

∆ = O

(
B2
N

K2
NN

2

)
. Furthermore, if KN , BN → +∞ such that

(KN +M)2LN log(N)

N
→ 0, and

BN
KN

→ 0, BN > LN ,

the following holds
E
[
R(̂bN,n, b)

]
→

N,n→∞
0.

This result provides the consistency, under mild conditions, of our estimation procedure provided
that the time step ∆ is small enough w.r.t. N and KN

BN
. Note that, the conditions required in

Theorem 3.3 are not too difficult to fulfill. Indeed, Theorem 3.3 can be applied with LN =
BN
2

=

log(N), and KN = N1/4. However, this result does not provide rates of convergence and this is the
goal of the next section.

4 Optimal rates of convergence
This section is dedicated to the study of the rate of convergence of our method. More specifically,
the aim of this section is to establish that our procedure is optimal in the minimax sense. To
this end, we investigate the case where the estimation is performed a over compact interval. In
Section 4.1, we introduce some additional assumptions on the model. The upper bound result is
provided in Section 4.2 while the lower bound is derived in Section 4.3. Finally, in Section 4.4, we
build an adaptive estimator which achieves the minimax rate (up to a logarithmic factor).

4.1 Assumptions
We consider the case where b is estimated on a compact set that for simplicity is assumed to be
[0, 1], thus we fix AN = 0, and BN = 1. We also assume that x0 ∈ (0, 1). Besides, the rate of
convergence of our estimation procedure is studied over the class of Hölder functions. We make the
following assumptions.
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Assumption 4.1. The diffusion coefficient σ belongs to C2
b (R) and there exists some constants,

0 < σ0 ≤ σ1 such that
∀x ∈ R, 0 < σ0 ≤ σ(x) ≤ σ1.

Assumption 4.2. For β ∈ [1,M + 1], and R > 0, the restriction b̃ := b|[0,1] of b to [0, 1] belongs
to the Hölder ball Σ(β,R): the function b̃ is l = bβc times differentiable on (0, 1) and its derivative
b̃(l) satisfies

∀x, y ∈ (0, 1),
∣∣∣b̃(l)(x)− b̃(l)(y)

∣∣∣ ≤ R |x− y|β−l .
Due to Assumption 4.1 the Markov process (Xt) admits a transition density (t, y) 7→ p(t, x0, y) (see
Fournier et al., 2010). Following Gobet (2002) Proposition 1.2, from uniform ellipticity, we get that
the transition densities of the diffusion process are bounded on a compact interval. In particular,
one can derive the following result which connects the norm ‖.‖n,b and the L2-norm ‖.‖ and then
the risk R to the usual L2 risk.

Lemma 4.3. Under assumptions 2.1, 2.2 and 4.1, there exists π1 > π0 > 0, such that for all
y ∈ [0, 1], we have

(i) π0 ≤ 1
n

∑n−1
k=1 p(k∆, x0, y) ≤ π1, (for any n ≥ 4)

(ii) π0 ≤ 1
T

∫ T
0
p(s, x0, y)ds ≤ π1.

In particular for a function h such that supp(h) ⊆ [0, 1], we have

‖h‖2 ≤ 1

π0
‖h‖2n,b.

4.2 Upper bound
One of the main ingredients to derive rates of convergence is the spline approximation result (see
Chapter 14 in Györfi et al. (2006)) which allows to control the bias term in Equation (3.4). In
order to derive optimal rate of convergence, we consider a slightly modified version of the estimator
defined in Equation (3.2). The truncated estimator is defined as follow

b̂LNN,n(x) :=

{
b̂N,n(x) if |̂bN,n(x)| ≤

√
LN ,

sgn(̂bN,n(x))
√
LN if |̂bN,n(x)| >

√
LN .

(4.1)

We remind the reader that LN is the multiplicative factor that controls the bound on the Euclidean
norms of the parameter coefficients a for all functions belonging to SKN ,LN ,M (see the definition
of SKN ,LN ,M (3.1)). First, for N large enough, since b̃ is bounded, ‖b̃‖∞ ≤

√
LN which implies

‖b̃ − b̂LNN,n‖b ≤ ‖b̃ − b̂N,n‖b. Therefore, the consistency of b̂N,n implies the consistency of b̂LNN,n.
Moreover, let us notice that ‖b̂N,n‖∞ <

√
(KN +M)LN while the truncated estimator b̂LNN,n satisfies

‖b̂LNN,n‖∞ <
√
LN . This property is particularly important in Theorem 3.3 to reduce the order of

the variance term with respect to KN . Before announcing the main result of this section, we first
establish a similar result to Proposition 3.2.

Proposition 4.4. Grant Assumptions 2.1, 2.2, 4.1, and 4.2. The estimator b̂N,n of b̃ given in
Equation (3.2), satisfies for N large enough,

E
[∥∥∥b̂LNN,n − b̃∥∥∥2

N,n

]
≤ C

((
M + 1

KN

)2β

+
KN + LN

N
+ ∆

)
,

where C > 0 is a constant depending only on σ1, T , M , and R.

As for Proposition 3.2, the obtained bound is composed of three terms. The first one, which relies
on the spline approximation properties, gives the order of the square bias under the assumption
that the function b̃ is Hölder. The last two terms are similar to the ones obtained in Proposition 3.2.
However, note that the variance term is of order (KN+LN )/N which is faster than the one obtained
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in Proposition 3.2, which is of order ((KN +LN )/N)1/2. Indeed in Proposition 4.4, we assume both
the ellipticity of the diffusion coefficient σ and that the drift function b is estimated over the
compact interval [0, 1]. The combination of these assumptions implies that the empirical norm and
the L2-norm are equivalent over [0, 1] (see Lemma 4.3), which is the key point to get a variance
rate of order of (KN +M)LN/N . Finally, the truncated version of the estimator given in Equation
(4.1) allows to improve the variance rate to (LN +KN )/N in the bound of Proposition 4.4.

Combining Proposition 4.4 with concentration arguments, we obtain the following result. Let

us introduce KN = {1, . . . ,K∗N} with K∗N =
√
N/ log2(N).

Theorem 4.5. Grant Assumptions 2.1, 2.2, 4.1, and 4.2. Let KN ∈ KN . Assume that LN =
log(N) and ∆ = O(K−1

N N−2), then for N large enough the following holds

E
[
R
(
b̂LNN,n, b̃

)]
≤ C

((
M + 1

KN

)2β

+
log2(N)KN

N

)
, (4.2)

where C > 0 is a constant depending only on σ1, T , M and R.

From this result, one can see that the rate of convergence is, up to a logarithmic factor, the
optimal nonparametric rate in the regression setting (Tsybakov, 2009). Indeed, since β ≥ 1, for
KN =

⌊(
N/log2(N)

)1/(2β+1)
⌋
∈ KN , we obtain

E
[
R
(
b̂LNN,n, b̃

)]
≤ O

( log2(N)

N

) 2β
2β+1

 .

Furthermore, as a consequence of the above inequality and using Lemma 4.3, we also deduce that

E
[
‖b̂LNN,n − b̃‖

2
]
≤ O

( log2(N)

N

) 2β
2β+1

 .

This inequality shows that, regarding to the L2 risk, the problem of estimating the drift function
on a compact set based on repeated observations is equivalent to the estimation of a function in the
regression setting (provided that the time step ∆ is small enough). Let us comment the logarithm
factors. The first log(N) is due to the fact that there is no prior knowledge on the bound of ‖b̃‖∞.
The second one is due to the control of the supremum of an empirical process over a subset of
SKN ,LN ,M .

Finally let us conclude this paragraph noticing that, in the case where b is bounded, it is possible
to derive the same result under a weaker condition on ∆. It relies on the following result which is
similar to Proposition 2.3.

Proposition 4.6. Let h a measurable function such that ‖h‖∞ < +∞. Under Assumptions 2.1,
2.2 and 4.1, the following holds∣∣‖h‖2b − ‖h‖2n,b∣∣ ≤ C‖h‖2∞∆ log

(
1

∆

)
,

where C ≥ 1 is a constant depending on ‖b‖∞.

This upper bound for the difference of the norms is slightly better than the one obtain in
Proposition 2.3. This is due to the compactness assumption and to the ellipticity assumption. In
Theorem 4.5, this allows to alleviate the assumptions on ∆: the result holds for ∆ = O(1/N).

4.3 Lower bound
As suggested by Equation (4.2), we then establish a lower bound on the risk R for the Hölder class
of functions Σ(β,R) with regularity parameter β, defined in Assumption 4.2. This lower bound
shows that our proposed estimator is optimal, up to a logarithmic factor, in the minimax sense.
More precisely, we obtain the following result
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Theorem 4.7. Grant Assumptions 2.1, 2.2, 4.1, and 4.2. There exists two constants c1, c0 > 0
such that for N large enough and b̂ constructed from (X1, . . . , XN ),

sup
b : b̃∈Σ(β,R)

E
[∥∥∥b̂− b̃∥∥∥2

]
≥ c1N−2β/(2β+1),

sup
b : b̃∈Σ(β,R)

E
[
R
(
b̂, b̃
)]
≥ c0N−2β/(2β+1).

The proof of the Theorem follows the same lines of Theorem 2.8 in Tsybakov (2009) except for
the control of the Kullback-Leibler divergence. In Theorem 4.7, this control relies on the Girsanov
formula. The result is then obtained for the risk R using Lemma 4.3.

Combining Theorem 4.7 and Inequality (4.2), we have shown, that for N large enough, there
exists C1, c1 > 0 such that

c1N
−2β/(2β+1) ≤ inf

b̂
sup

b : b̃∈Σ(β,R)

E
[∥∥∥b̂− b̃∥∥∥2

]
≤ C1

(
log2(N)

N

) 2β
2β+1

,

where the infimum is taken over all possible estimators b̂ and the supremum is taken over the
set off all possible drift functions b such that b̃ ∈ Σ(β,R) and for which Equation (1.1) satisfies
Assumptions 2.1, 2.2, and 4.1. Hence, this inequality shows that the optimal rate is of order
N−2β/(2β+1) (up to a logarithmic factor). From Inequality (4.2), we see that this rate is reached
by the estimator b̂LNN,n for KN =

⌊(
N/log2(N)

)1/(2β+1)
⌋
. However, this particular choice of KN

depends on the regularity β of the function b̃ which is unknown in practice. To avoid this issue, it
is usual to build an adaptive estimator to the regularity β.

4.4 Adaptive estimator
To alleviate the notations, the parametes KN is denoted by K in the following last section. Besides,
in order to highlight the dependency on K, the estimator b̂LNN,n is denoted b̂K (and we choose
LN = log(N)). Our adaptive procedure relies on the dyadic B-splines. That is to say, we assume

that K belongs to K = {2p, p = 0, . . . , pmax} with pmax ≤
√
N/ log2(N). Hence, this particular

choice ensures that the spaces SK,M,u are nested (for K < K ′, SK,M,u ⊂ SK′,M,u) which is an
important property in light of the proof of Theorem 4.8. We define the following estimator

K̂ = argmin
K∈K

{
γN,n(̂bK) + pen(K)

}
, (4.3)

and then consider the estimator b̂K̂ defined as the minimizer of a penalized contrast. To penalize
the complexity of SK,L,M , we choose a penalty term pen(K) ≥ 44 log2(N)(K+M)

N for N large enough.
Now, we state the following result

Theorem 4.8. Under Assumptions 2.1, 2.2 and 4.1 and assume that LN = log(N) and ∆ =

O(1/N2), then the estimator b̂K̂ of b̃ satisfies

E
[
R
(
b̂K̂ , b̃

)]
≤ 2 inf

K∈K

{
inf

h∈SK,L,M
R
(
h, b̃
)

+ pen(K)

}
+
C

N
, (4.4)

where C is a positive constant depending on σ1, T , M and R.

This result shows that the estimator b̂K̂ achieves the bias-variance compromise over the model
collection (SK,L,M )K∈K. In particular, whenever b̃ ∈ Σ(β,R), with β ≤ M + 1, the estimator b̂K̂
reaches the optimal rate up to a logarithmic factor. Note that the penalty term can be chosen
equal to 44 log2(N)(K+M)

N . Nevertheless, in practice it is better to consider pen(K) = c log(N)2(K+M)
N

where the constant c is calibrated through intensive numerical experiments (see Section 5.1).
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5 Numerical experiments
In this section, we investigate the performance of the adaptive estimator presented in Section 4.4.
Section 5.1 is dedicated to the calibration of the penalty term whereas in Section 5.2, we assess the
quality of the procedure in the case where the drift function is estimated either on a fixed compact
interval, or on an interval which relies on the random data range.

Let us briefly talk about the simulation of the diffusion paths. We use the package sde presented
in Iacus (2008) to implement an effective numerical method for the considered stochastic differential
equations. Different discretization scheme can be used. We choose for example the exact simulation
("EA") for the Ornstein-Uhlenbeck process, "Euler" or "Milstein" for the others.

Throughout this section, the time step ∆ between two subsequent observations is fixed but small,
and n is large in accordance with our asymptotic context. We choose: n∆ = T = 1 (∆ = 1/n)
n ∈ {100, 500}. The sample size N is chosen in {100, 1000}. Our estimators are based on the cubic
(M = 3)B-spline basis. For the implementation of theB-spline, we use the package fda. We restrict
our investigation to K = {2p, p = 0, 1, 2, 3, 4, 5} (thus dim(SK,M,u) = 2p + 3, p = 0, 1, 2, 3, 4, 5).
Finally, according to our theoretical results, the constant coefficient LN is chosen equal to log(N).

5.1 Calibration of the penalty

According to Theorem 4.8 the penalty function can be chosen, forK ∈ K, as penc(K) = c log(N)2(K+M)
N

with c ≥ 44. Nevertheless, it is well known in practice that this constant is too large and has to
be chosen through an intensive numerical study. To this purpose, we perform some preliminary
simulations in the case where b is estimated over [−1, 1].

We have investigated different models for the calibration step. More precisely, we fix σ = 1,
x0 = 0 and consider the three following drift functions

• model 1 b(x) = − 2x√
1+x2

,

• model 2 b(x) = 3√
0.8π

(exp(−(4x− 2)2/0.8) + exp(−(4x+ 2)2/0.8)),

• model 3 b(x) = 0.6(exp(−x2) + cos(10x) + sin(5x)).

Note that the three models satisfy the assumptions of Section 4. The first one is the simplest. On
the contrary, the two other models are designed by multimodal functions where larger dimensions
are required for the estimation.

We have considered these examples to ensure that the chosen constant for the dimension selection
is optimal.

Now, we consider a grid C = {0.01, 0.025, 0.05, 0.1, 0.5, 1, 2} of possible values for the constant
c. For each model and each c ∈ C, we repeat 1000 times the following steps:

(i) simulate two independent datasets DN and DN ′ with N ′ = 1000;

(ii) based on DN , compute the estimator b̂K̂ defined by Equation (4.3) with pen(K) = penc(K);

(iii) based on DN ′ , evaluate the empirical risk ‖b̂K̂ − b̃‖
2
n,b.

Finally, we compute the average Err
(
b̂K̂(c)

)
of the empirical risk by using the Monte-Carlo method

over the 1000 repetitions. For each of the three models, the functions c 7→ Err
(
b̂K̂(c)

)
are displayed

in Figure 1. In most cases the constant c0 = 0.1 is the best choice and we fix c with this value in
the following.

5.2 Estimation results
We consider the four following models to illustrate the accuracy of the estimator. To prevent from
over-fitting, they differ from models 1, 2, 3 presented in the above section.

• model 4 Ornstein-Uhlenbeck b(x) = 1− x, σ(x) = 1

• model 5 Cox-Ingersoll-Ross b(x) = 1− x, σ(x) =
√
x

11



• model 6 b(x) = (1− x2)(−2atanh(x)− x), σ(x) = 1− x2

• model 7 b(x) = 0.1(− sin(2πx) + cos(2πx) + 16 sin(3πx)− 5 cos(3πx)), σ(x) = 1

The two first models are widely used diffusion models. Note that model 5 and model 6 possess a
non constant diffusion coefficient and do not satisfy the ellipticity assumption 4.1. The model 7 has
a multimodal drift function. It requires to explore more possible values of K (larger dimension).

This collection of models has been chosen to evaluate the performance of our procedure, but also
to show its robustness to the assumptions. The benchmark of this study is the oracle-type estimator
defined as the estimator of the collection which minimizes the risk. Note that this estimator is only
available when the drift function is perfectly known.

5.2.1 Estimation on a fixed interval

In this section, we focus on the estimation of b̃ = b1[−1,1]. The theoretical guarantees of Section 4
are then in force. Note that for model 6 we have b̃ = b. As an illustration, Figure 2 displays ten
realizations of the estimators b̂K̂ on models 4,5,7. We can see that these estimates perform quite
well. Then, we perform 1000 Monte-Carlo simulations of the following steps:

(i) simulate two independent dataset DN and DN ′ with N ′ = 1000;

(ii) based on DN , compute the estimator b̂K with K = {2p, p = 0, 1, 2, 3, 4, 5}, and K̂;

(iii) based on DN ′ , evaluate the empirical risks ‖b̂K̂ − b̃‖
2
n,b and ‖b̂K∗ − b̃‖2n,b,

with K∗ = argmin
K∈K

‖b̂K − b̃‖2n,b. In the following b̂K∗ is referred as the oracle estimator.

Finally, we compute the mean and standard deviation of the empirical risk over the 1000 Monte-
Carlo repetitions. The results are presented in Table 1. Let us make a few comments about these
results. First, in terms of risk, the estimation procedure exhibits good performances. In particular,
one can note that our estimator performs as well as the oracle estimator. Second, regarding the
chosen dimension, for models 4,5,6 the value K̂ = 1 is mostly chosen while K̂ = 8 is mostly selected
for model 7. This is not surprising since the drift functions of model 4,5,6 are quite simple whereas
the multimodal aspect of the drift function of model 7 requires to select larger K̂. Hence, for
model 7 the estimation of b̃ is more challenging. Finally, the influence of the parameter N is clearly
illustrated : when N increases from 100 to 1000 the estimated values of risk are divided by 10.
On the contrary, the performance of the procedure is not affected by the value of n for the chosen
sample sizes. For this reason, in the sequel we set n = 100.

5.2.2 Estimation based on the random data range

Now, we investigate the estimation of b without restriction on the estimation interval. In this case, it
is natural to build our procedure on the random interval defined as

[
min

(
(X̄1, . . . , X̄N

)
,max

(
(X̄1, . . . , X̄N

)]
.

We evaluate the performance of our procedure according to the procedure described in Section 5.2.1.
The results are provided in Table 2. Similar comments to those given in Section 5.2.1 apply here.
Nevertheless, let us notice that the estimated risks are a bit larger than the ones given in Table 1.
This seems reasonable and in line with the theoretical results. Furthermore, due to the estimation
on a larger interval, for model 7 the value K̂ = 32 is the one that is mainly chosen. This last point
shows that the dimension of the space of approximation should be large enough to ensure a good
performance of the estimator.

5.2.3 Discussion and comparison

In this section we discuss two more points concerning the numerical study of model 7, the model
for which we believe that the estimation of b is the most difficult. We focus on the case where the
estimation procedure is based on the random data range.
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N,n N = 100 n = 100 N = 100 n = 500 N = 1000 n = 100 N = 1000 n = 500

Estimator b̂
K̂

b̂K∗ b̂
K̂

b̂K∗ b̂
K̂

b̂K∗ b̂
K̂

b̂K∗

Model 4 0.04 (0.04) 0.03 (0.03) 0.04 (0.03) 0.03 (0.02) .004 (.003) .004 (.003) .004 (.003) .004 (.003)
Model 5 0.01 (0.01) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01) .002 (.001) .002 (.001) .002 ( .001) .002 (.001)
Model 6 0.03 (0.02) 0.02 (0.02) 0.03 (0.02) 0.02 (0.02) .002 (.002) .002 (.002) .002 (.002) .002 (.002)
Model 7 0.15 (0.05) 0.12 (0.04) 0.15 (0.05) 0.12 (0.04) 0.03 (.005) 0.02 (.006) .026 (.005) .020 (.006)

Table 1: Estimation on [−1, 1]. Average and standard deviation of the estimated risks ‖b̂
K̂
− b̃‖2n,b and

‖b̂K∗ − b̃‖2n,b computed over 1000 repetitions.

N,n N = 100 n = 100 N = 1000 n = 100

Estimator b̂K̂ b̂K∗ b̂K̂ b̂K∗

Model 4 0.04(0.03) 0.04 (0.02) .005 (.003) .005 (.003)
Model 5 0.03 (0.02) 0.02 (0.02) .004 (.003) .003 (.003)
Model 6 0.02 (0.02) 0.02 (0.02) .002 (.002) .002 (.002)
Model 7 0.22 (0.07) 0.21 (0.06) .031 (.008) .031 (.008)

Table 2: Estimation on the random data range. Average and standard deviation of the estimated risks
‖b̂

K̂
− b̃‖2n,b and ‖b̂K∗ − b̃‖2n,b computed over 1000 repetitions.

About the choice of the parameter LN . This tuning parameter is defined in Section 3 and
is used to calibrate the `2-constraint in our procedure. The aim of this discussion is to highlight the
influence of this parameter on the quality of the estimation. In the previous results, as suggested
by our theoretical study (see Theorem 4.5), we have chosen LN = log(N). Since the bound on the
empirical error of the estimator (see Proposition 3.2) increases w.r.t. LN , it can not be chosen too
large. On the contrary, in view of the proof of Theorem 4.5,

√
LN should be larger than ‖b‖∞. In

our numerical study, this condition is satisfied for LN = log(N). Nevertheless, if ‖b‖∞ >
√

log(N),
we have to consider another choice for the value of parameter LN .

Hereafter, we explore the cases where LN ∈ {30, 300} (thus LN > log(N), for N ∈ {100, 1000}).
According to the scheme described in Section 5.2.1, for N = 100, n = 100, we obtain an estimated
risk of 0.35 (0.12) for LN = 30, and 0.50 (0.23) for LN = 300. For N = 1000, we obtain 0.04 (0.02)
for LN = 30 or 300. Hence, for moderate values of N (N = 100), choosing a too large value of LN
deteriorates the performance of the procedure. On the contrary, for large values of N (N = 1000),
the performance of the procedure seems stable w.r.t the choice of LN .

Comparison with the estimator proposed in Comte & Genon-Catalot (2019).
We first recall the definition of the estimator studied in Comte & Genon-Catalot (2019). Let
(SK)K=1,...,K0

a family of linear subspace . For K ∈ {1, . . . ,K0}, the authors consider an estimator,
denoted by b̂K , defined as a truncated version of the minimizer of the continuous contrast

γN (h) =
1

NT

N∑
i=1

(∫ T

0

h2(X(i)
u )du− 2

∫ T

0

h(X(i)
u )dX(i)

u

)
, (5.1)

over h ∈ SK . In order to evaluate this procedure on the B-spline basis, we choose SK = SK,M,u for
K ∈ K. Note that for practical implementation we have to consider the discretized version of the
contrast γN given in Equation (5.1) which yields the contrast defined in Equation (3.3). In order to
ensure the stability of the estimation procedure, we implement the cutoff proposed by the authors
in the Simulation section. According to the scheme described in Section 5.2.1, we compute once
again the estimated risk of the oracle estimator b̂K∗ over the collection (̂bK)K∈K. For N = 100,
n = 100, we obtain 0.52 (0.32) and 0.12 (0.27) for N = 1000, n = 100. These results are not as
good as the one obtained by our procedure in Table 1. The main reason is that the truncation
(called cutoff in the paper) proposed by Comte & Genon-Catalot (2019) has the effect of reducing
the dimension of the selected models. Our simulations give an illustration of the computational
limitations of the cutoff procedures.
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Figure 1: For models 1, 2, 3 estimates of the empirical risk ‖b̂
K̂
− b̃‖2n,b for the chosen estimator

b̂
K̂

(c) = b̂
K̂

as a function of c ∈ C = {0.01, 0.025, 0.05, 0.1, 0.5, 1, 2}

6 Conclusion
In this paper we study a new nonparametric procedure for the drift function of general homoge-
neous stochastic differential equations in the framework where the data consist of N i.i.d. discrete
observations of the sample path of the solution on a fixed time interval. The estimator is the
minimizer of a least square contrast subject to a ridge constraint over the linear subspace spanned
by the B-spline basis. We establish the consistency of our procedure. Furthermore, under mild
assumptions and when the estimation is performed over a compact interval, we build an adaptive
estimator which achieves, up to a logarithmic factor, the minimax rate of convergence.

As a possible guideline for further research, it is interesting to question the link between the
framework investigated in this paper and the usual setting considered for the estimation of the drift
b over [0, T ] (e.g. under assumptions ensuring ergodic properties), where only a single trajectory is
observed but T → +∞.

Starting from our i.i.d. framework with fixed time horizon, a natural idea would be to try to
build out of the N i.i.d. sample an original single sample path coming from a different S.D.E. with
characteristics σ and some new drift function b̃. The drift b̃ would have to coincide with b on our
estimation set (say [0, 1]) ensuring that the resulting diffusion satisfies nice ergodic properties. Our
objective would be then fulfilled by using classical results for the estimation of b̃ in the setting of
drift estimation for ergodic diffusions. However, although intuitive and elegant, this idea seems to
raise some rather strong technical difficulties. One of the main issues is to paste the several pieces
of i.i.d trajectories into a single one to obtain a sample path of the ergodic S.D.E with drift b̃.
Furthermore, since we would paste only the observations which belong to [0, 1], we may need to
enlarge the probability space to determine how the ergodic diffusion might be driven outside the
estimation set and links the different pieces.

On the other hand, let us assume that we start from only one observation consisting of a single
trajectory of some (ergodic) diffusion process over a time interval [0, T ] with a time horizon T that
is now allowed to tend to infinity. In this case, we may be tempted to construct N i.i.d. realizations
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in green (light grey), on the compact interval [−1, 1]
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of sample paths with common fixed and finite time horizon by cutting the trajectory into several
pieces. The idea would then be to apply similar results as those presented in this paper to estimate
the drift coefficient b over a compact interval and finite time horizon. Here again, we believe that
some technical issues have to be considered. For example, in our setting the sample paths start
from a common starting point x0, so we would have to make sure that our slicing permits to recover
an N i.i.d. sample of observation paths that all start from x0. The number N of trajectories would
then become a random number and the methodology of proofs developed in the present paper could
not be applied directly.

In future works, we also plan to extend our results to more general models such as inhomogeneous
diffusion processes or stochastic differential equations driven by Levy processes.
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Appendix
This section gathers the proofs of our results.

A Technical results
Throughout the paper, we will use the following results

Lemma A.1. Let X1, . . . , XN be independent copies of a random variable X such that 0 ≤ X1 ≤ L
for L > 0. Then for all t > 0,

P

(
E [X]− 2

N

N∑
i=1

Xi > t

)
≤ exp

(
− Nt

11L

)
.

Proof. The proof is a direct application of the Bernstein inequality. Indeed, we have for t > 0

P

(
E [X]− 2

N

N∑
i=1

Xi > t

)
≤ P

(
E [X]− 1

N

N∑
i=1

Xi > (t+ E [X])/2

)
.

Hence, from the Bernstein inequality, we deduce

P

(
E [X]− 2

N

N∑
i=1

Xi > t

)
≤ exp

(
− N(t+ E [X])2

8Var(X1) + 8
3Lt

)
. (A.1)

Since 0 ≤ E [X] and Var(X1) ≤ E
[
X2

1

]
≤ LE [X1], we have 8Var(X1) + 8

3Lt ≤ 8L(t + E [X]) +
8

3
L(E [X]) ≤ 11L(t+ E [X]). Therefore, from Equation (A.1), we deduce

P

(
E [X]− 2

N

N∑
i=1

Xi > t

)
≤ exp

(
−N(t+ E [X])

11L

)
≤ exp

(
− Nt

11L

)
.

Lemma A.2. Let X1, . . . , XN be independent copies of a random variable X ∈ X . Let G a class
of real-valued functions on X . For each g ∈ G, and x ∈ X , we assume that 0 ≤ g(x) ≤ L, with
L > 0. We consider Gε an ε-net of G w.r.t ‖.‖∞ and we denote by N∞(ε,G) its cardinality. Then,
the following holds

E

[
sup
g∈G

(
E [g(X)]− 2

N

N∑
i=1

g(Xi)

)]
≤ 3ε+

11L log(N∞(ε,G))

N
.

Proof. Let g ∈ G. We consider gε such that ‖g − gε‖∞ ≤ ε. We obtain,

E [g(X)]− 2

N

N∑
i=1

g(Xi) ≤ E [g(X)− gε(X)]− 2

N

N∑
i=1

(g(Xi)− gε(Xi))

+ E [gε(X)]− 2

N

N∑
i=1

gε(Xi).

Therefore, we deduce from the above inequality that

sup
g∈G

E [g(X)]− 2

N

N∑
i=1

g(Xi) ≤ 3ε+ sup
g∈Gε

{
E [g(X)]− 2

N

N∑
i=1

g(Xi)

}
. (A.2)
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Now, we bound the last term in the r.h.s. We have that for u ≥ 0,

E

[
sup
g∈Gε

{
E [g(X)]− 2

N

N∑
i=1

g(Xi)

}]
≤

u+

∫
t≥u

P

(
sup
g∈Gε

{
E [g(X)]− 2

N

N∑
i=1

g(Xi)

}
≥ t

)
dt.

Then, Lemma A.1 lead, for t > 0, to

E

[
sup
g∈Gε
{E [g(X)]− 2

N

N∑
i=1

g(Xi)}

]
≤ u+N∞(ε,G)

∫
t≥u

exp

(
− Nt

11L

)
dt.

Finally, setting u =
11L log (N∞(ε,G))

N
we obtain

E

[
sup
g∈Gε

(
E [g(X)]− 2

N

N∑
i=1

g(Xi)

)]
≤ 11L log (N∞(ε,G))

N
.

The last inequality and Equation (A.2) yield the expected result.

B Proof of Section 2
Proof of Proposition 2.3. Let h denote some measurable function. We have,

∣∣‖h‖2b − ‖h‖2n,b∣∣ =

∣∣∣∣∣E 1

T

∫ T

0

(
h2 (Xs)− h2(Xη(s))

)
ds

∣∣∣∣∣
=

∣∣∣∣∣E 1

T

∫ T

0

(
h (Xs)− h(Xη(s))

) (
h (Xs) + h(Xη(s))

)
ds

∣∣∣∣∣
with η(s) = k∆, k∆ ≤ s < (k + 1)∆. Then, since h is Lh-Lipschitz, there exists C such that for
each s ∈ [0, T ] ∣∣h (Xs) + h(Xη(s))

∣∣ ≤ |h (Xs)− h(0)|+
∣∣h(Xη(s))− h(0)

∣∣+ 2|h(0)|
≤ 2Lh sup

u∈[0,T ]

|Xu|+ 2|h(0)|

≤ 2 (Lh ∨ |h(0)|)

(
1 + sup

u∈[0,T ]

|Xu|

)
.

Since E
[
1 + supu∈[0,T ] |Xu|

]
<∞, using Cauchy-Schwarz inequality and Equation (2.1) we obtain

∣∣‖h‖2b − ‖h‖2n,b∣∣ ≤
2Lh (Lh ∨ |h(0)|)

T

∫ T

0

E
[
(Xs −Xη(s))

2
]1/2

ds E

(1 + sup
u∈[0,T ]

|Xu|

)2
1/2

,

which yields ∣∣‖h‖2b − ‖h‖2n,b∣∣ ≤ CLh (Lh ∨ |h(0)|) ∆1/2.

Then, besides if h is bounded, we naturally obtain∣∣‖h‖2b − ‖h‖2n,b∣∣ ≤ CLh‖h‖∞∆1/2.
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Proof of Lemma 2.6. Let us denote h =
∑KN−1
i=−M aiBi,M,u. Then,

KN−1∑
i=−M

|aiBi,M,u| ≤

(
KN−1∑
i=−M

a2
iBi,M,u

)1/2(KN−1∑
i=−M

Bi,M,u

)1/2

thus as for all x ∈ [AN , BN ),
∑KN−1
i=−M Bi,M,u(x) = 1,(

KN−1∑
i=−M

|aiBi,M,u(x)|

)2

≤
KN−1∑
i=−M

a2
iBi,M,u(x)

and

‖h‖2 ≤
KN−1∑
i=−M

a2
i

∫ BN

AN

Bi,M,u(x)dx.

But we have that
∫ BN
AN

Bi,M,u(x)dx = ui+M+1−ui
M+1 ≤ BN−AN

KN
from point (iv) of Proposition 2.5 (see

e.g. De Boor et al., 1978). Thus

‖h‖2[AN ,BN ] ≤
BN −AN

KN
‖a‖22.

For the second inequality, we first observe that for a polynomial P of degree M or less,

sup
x∈[0,1]

|P (x)| ≤ C
∫ 1

0

|P (u)|du

where C > 0 does only depend onM (this result is the consequence of the norm equivalence in finite
dimensional vector space). Therefore with a change of variable the result holds for an arbitrary
interval [a, b]:

sup
x∈[a,b]

|P (x)| ≤ C

b− a

∫ b

a

|P (u)|du.

Since h is a polynomial of degree M or less on each interval [ui, ui+1) for all i,

max
ui≤x≤ui+1

|h(x)| ≤ CKN

BN −AN

∫ ui+1

ui

|h(y)|dy. (B.1)

Then, as in De Boor et al. (1978) Equation (5) Chapter XI, we have

|ai| ≤ C max
ui≤x≤ui+M+1

|h(x)| ≤
M+1∑
j=1

max
ui+j−1≤x≤ui+j

|h(x)|.

From the above Equation applying Chasles relation and with Equation (B.1), we obtain

|ai| ≤
CKN

BN −AN

∫ ui+M+1

ui

|h(y)|dy.

Then,
Kn−1∑
i=−M

a2
i ≤

CKN

BN −AN

(
Kn−1∑
i=−M

∫ ui+M+1

ui

h2(y)dy

)

Kn−1∑
i=−M

∫ ui+M+1

ui

h2(y)dy =

Kn−1∑
i=−M

M−2∑
j=i

∫ uj+1

uj

h2(y)dy

=

M−2∑
j=−M

j∑
i=−M

∫ uj+1

uj

h2(y)dy

≤
M−2∑
j=−M

‖h‖2.
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Finally, applying Cauchy-Schwarz inequality and summing over i = −M, . . . ,KN − 1 we get

‖a‖22 ≤ C‖h‖2
KN

(BN −AN )
.

Let us now prove the second equation of the Lemma. For all x ∈ [AN , BN ], from Cauchy-Schwarz
inequality,

|h(x)| =

∣∣∣∣∣
KN−1∑
i=−M

aiBi,M,u

∣∣∣∣∣ ≤ ‖a‖2
(
KN−1∑
i=−M

B2
i,M,u

)1/2

.

Since for all x ∈ [AN , BN ), 0 ≤ Bi,M−1,u(x) ≤ 1 and
∑KN−1
i=−M Bi,M,u(x) = 1, the above inequality

yields the result.

C Proof of Section 3
Proof of Proposition 3.2. Let us denote:

Z
(j)
k∆ :=

X
(j)
(k+1)∆ −X

(j)
k∆

∆

= b(X
(j)
k∆) +

1

∆

∫ (k+1)∆

k∆

σ(X(j)
s )dW (j)

s +
1

∆

∫ (k+1)∆

k∆

(b(X(j)
s )− b(X(j)

k∆))ds

:= b(X
(j)
k∆) + Σk,j +Rk,j .

Let h =
∑KN−1
i=−M hiBi,M,u ∈ SK,L,M , we first introduce the following notation

νN,n(h) :=
1

Nn

N∑
j=1

n−1∑
k=0

h(X
(j)
k∆)Σk,j . (C.1)

From Equation (3.3), we get

γN,n(h)− γN,n(b) =
1

Nn

N∑
j=1

n−1∑
k=0

(h− b)2(X
(j)
k∆) + 2νN,n(b− h) +

2

N

N∑
j=1

1

n

n−1∑
k=0

(b− h)(X
(j)
k∆)Rk,j

Besides, γN,n(̂bN,n)− γN,n(b) ≤ γN,n(h)− γN,n(b), therefore we get

‖b̂N,n − b‖2N,n ≤ ‖h− b‖2N,n + 2νN,n(̂bN,n − h) +
2

N

N∑
j=1

1

n

n−1∑
k=0

(̂bN,n − h)(X
(j)
k∆)Rk,j .

Using for a > 0 the relation 2xy ≤ 1
ax

2 + ay2, we have

2

N

N∑
j=1

1

n

n−1∑
k=0

(̂bN,n − h)(X
(j)
k∆)Rk,j ≤ 1

a
‖b̂N,n − h‖2N,n +

a

N

1

n

N∑
j=1

n−1∑
k=0

R2
k,j

≤ 2

a

(
‖h− b‖2N,n + ‖b̂N,n − b‖2N,n

)
+

a

N

1

n

N∑
j=1

n−1∑
k=0

R2
k,j .

Hence, as E
[
R2
k,j

]
≤ C∆ (see Lemma 7.3 Denis et al., 2019), we obtain(

1− 2

a

)
E
[
‖b̂N,n − b‖2N,n

]
≤
(

1 +
2

a

)
‖h− b‖n,b + 2E

[
νN,n(̂bN,n − h)

]
+ aC∆. (C.2)
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Since the functions h and b̂N,n are in SKN ,LN ,M , we observe that thanks to the Cauchy-Schwarz
inequality

νN,n(̂bN,n − h) =

KN−1∑
i=−M

(âi − hi)νN,n(Bi,M,u)

≤ 2
√

(KN +M)LN

√√√√KN−1∑
i=−M

ν2
N,n(Bi,M,u).

Therefore, applying again the Cauchy-Schwarz inequality, we get

E
[
νN,n(̂bN,n − h)

]
≤

√
E
[
ν2
N,n(̂bN,n − h)

]
≤ 2

√
(KN +M)LN

√√√√E

[
KN−1∑
i=−M

ν2
N,n(Bi,M,u)

]
.

Since
∑KN−1
i=−M B2

i,M,u(x) ≤ 1, we have

E

[
KN−1∑
i=−M

ν2
N,n(Bi,M,u)

]
=

1

n2∆2N2

N∑
j=1

n−1∑
k=0

E

[∫ (k+1)∆

k∆

σ2(X(j)
s )ds

KN−1∑
i=−M

B2
i,M,u(X

(j)
k∆)

]

≤ 1

n2∆2N2

N∑
j=1

n−1∑
k=0

E

[∫ (k+1)∆

k∆

σ2(X(j)
s )ds

]

=
1

T 2N2

N∑
j=1

E

[∫ T

0

σ2(X(j)
s )ds

]
≤ C 1

NT
(C.3)

as (1/T )E

[∫ T

0

σ2(X(j)
s )ds

]
<∞ which concludes the proof (for example with a = 3).

Proof of Theorem 3.3. Let us define

b̃(x) :=

{
b(x) if |b(x)| ≤

√
LN ,

sgn(b(x))
√
LN if |b(x)| >

√
LN .

Let us start with the following lemma. We remind the reader that Lb is the notation for the
Lipschitz constant of b.

Lemma C.1. Under assumption of Theorem 3.3, the following holds : for any α > 1,

inf
h∈SKN,LN,M

‖h− b‖2n,b ≤
(

2Lb(M + 1)BN
KN

)2

+
Cα

Lα−1
N

+ Cb
√

∆ + 2‖b− b̃‖2b .

Proof. For each h ∈ SKN ,LN ,M since b and b̃ are Lipschitz with the same constant, from Proposi-
tion 2.3, we deduce

‖h− b‖2n,b ≤ 2‖h− b̃‖2n,b + 2‖b− b̃‖2n,b
≤ 2‖h− b̃‖2n,b + 2‖b− b̃‖2b + Cb

√
∆. (C.4)

Now, we study the first term in the r.h.s. We define

h̃ =

KN−1∑
i=−M

b̃(ui)Bi,M,u.
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Since by definition we have
∑KN−1
i=−M b̃2(ui) ≤ (KN + M)LN , we have that h̃ ∈ SKN ,LN ,M . Let

x ∈ [ui0 , ui0+1), for 0 ≤ i0 ≤ KN − 1. Then, as the Bi,M,u are nonnegative functions we get

|h̃(x)− b̃(x)| =

∣∣∣∣∣
KN−1∑
i=−M

(
b̃(x)− b̃(ui)

)
Bi,M,u(x)

∣∣∣∣∣
=

∣∣∣∣∣
i0∑

i=i0−M

(
b̃(x)− b̃(ui)

)
Bi,M,u(x)

∣∣∣∣∣
≤ max

i=i0−M,...,i0

∣∣∣̃b(x)− b̃(ui)
∣∣∣ i0∑
i=i0−M

Bi,M,u(x)

≤ Lb|ui0+1 − ui0−M |

≤ Lb
2(M + 1)BN

KN
.

Hence, the last inequality implies that for all x ∈ (−BN , BN ) (remember AN = −BN ),

|h̃(x)− b̃(x)| ≤ 2Lb(M + 1)BN
KN

.

Now, since
inf

h∈SKN,LN,M
‖h− b̃‖2n,b ≤ ‖h̃− b̃‖2n,b

and BN > LN by assumption, we have

‖h̃− b̃‖2n,b≤E

[
1

n

n−1∑
k=0

(
h̃(Xk∆)− b̃(Xk∆)

)2 (
1Xk∆ /∈[−LN ,LN ] + 1Xk∆∈[−LN ,LN ]

)]

≤E

[
1

n

n−1∑
k=0

(
h̃(Xk∆)− b̃(Xk∆)

)2

1Xk∆ /∈[−LN ,LN ]

]
+

2L2
b(M + 1)2B2

N

K2
N

. (C.5)

Let us deal with the first term in the r.h.s. Since ‖h̃‖∞ ≤ ‖b̃‖∞, we have for α > 1

E

[
1

n

n−1∑
k=0

(
h̃(Xk∆)− b̃(Xk∆)

)2

1Xk∆ /∈[−LN ,LN ]

]
≤ 4‖b̃‖2∞ sup

s∈[0,T ]

P (|Xs| > LN )

= 4LN sup
s∈[0,T ]

P (|Xs|α > LαN ) .

Using Markov’s inequality, we obtain

E

[
1

n

n−1∑
k=0

(
h̃(Xk∆)− b̃(Xk∆)

)2

1Xk∆ /∈[−LN ,LN ]

]
≤ C

Lα−1
N

. (C.6)

Combining Equations (C.4), (C.5), and (C.6) we get the desired result.

Now, we go back to the proof of the theorem. We have that:

‖b̂N,n − b‖2b ≤ 2‖b̂N,n − b̃‖2b + 2‖b̃− b‖2b . (C.7)

Let us show that b̂N,n is Lipschitz with a Lipschitz constant bounded by C
√

(KN +M)LN
KN
BN

.
Indeed from Györfi et al. (2006) Lemma 14.6 we get that for x ∈ [AN , BN )∣∣∣∣∣

KN−1∑
i=−M

âiB
′
i,M,u(x)

∣∣∣∣∣ ≤
KN−1∑

i=−(M−1)

M

ui+M − ui
|âi − âi−1||Bi,M−1,u(x)|
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thus

KN−1∑
i=−M

âiB
′
i,M,u(x) ≤

 KN−1∑
i=−(M−1)

(
M

ui+M − ui
Bi,M−1,u(x)

)2
1/2 KN−1∑

i=−(M−1)

(âi − âi−1)2

1/2

then,  KN−1∑
i=−(M−1)

(âi − âi−1)2

1/2

≤
√

2‖â‖2 ≤
√

2
√

(KN +M)LN

and  KN−1∑
i=−(M−1)

(
M

ui+M − ui
Bi,M−1,u(x)

)2
1/2

≤ KN

BN −AN

 KN−1∑
i=−(M−1)

B2
i,M−1,u(x)

1/2

.

Since, for all x ∈ [AN , BN ),
∑KN−1
i=−(M−1)B

2
i,M−1,u(x) ≤ 1, we deduce from the above inequality

with AN = −BN that  KN−1∑
i=−(M−1)

(
M

ui+M − ui
Bi,M−1,u(x)

)2
1/2

≤ KN

2BN
.

Besides, we have that b̃ is Lipschitz and ‖b̃‖∞ ≤
√
LN . Furthermore, according to Lemma 2.6 we

have ‖b̂N,n‖∞ ≤ ‖a‖2 ≤
√

(KN +M)LN . Hence, applying Proposition 2.3 with h = (̂bN,n − b̃),
we obtain for N large enough (Lh < 2

√
(KN +M)LNKN/BN ),

‖b̂N,n − b̃‖2b ≤ ‖b̂N,n − b̃‖2n,b + C((KN +M)LN )
KN

BN
∆1/2

(C.8)

Now, adding and subtracting an artificial term, we have

‖b̂N,n − b̃‖2n,b = ‖b̂N,n − b̃‖2n,b − 2‖b̂N,n − b̃‖2N,n + 2‖b̂N,n − b̃‖2N,n.

Since by definition of b̃ we have ‖b̂N,n − b̃‖2N,n ≤ ‖b̂N,n − b‖2N,n, we deduce with Proposition 3.2,
Equation (C.7), and Equation (C.8)

E
[∥∥∥b̂N,n − b∥∥∥2

b

]
≤ 2E

[
‖b̂N,n − b̃‖2n,b − 2‖b̂N,n − b̃‖2N,n

]
+2 inf

h∈SKN,LN,M
‖h− b‖2n,b + C

(√
(KN +M)LN

N
+ ∆

)

+C((KN +M)LN )
KN

BN
∆1/2 + 2‖b̃− b‖2b . (C.9)

Now, we deal with the first term in the right hand side. We observe that

E

‖b̂N,n − b̃‖2n,b − 2

N

N∑
j=1

‖b̂N,n − b̃‖2,(j)n

 ≤ E

[
sup

h∈SKN,LN,M

(
‖h− b̃‖2n,b − 2‖h− b̃‖2N,n

)]
.

For h ∈ SKN ,LN ,M , we define the function gh as

gh(x1, . . . , xn) =
1

n

n∑
k=1

(h(xk)− b̃(xk))2, ∀x = (x1, . . . , xn) ∈ Rn, (C.10)
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and set G = {gh, h ∈ SKN ,LN ,M}. Then, as by definition ‖h‖2N,n = 1
N

∑N
j=1

1
n

∑n−1
k=0 h

2(X
(j)
k∆)), we

have

E
[
‖b̂N,n − b̃‖2n,b − 2‖b̂N,n − b̃‖2N,n

]
≤ E

 sup
gh∈G

E
[
gh(X)

]
− 2

N

N∑
j=1

h
(
X
j
) .

Since, for each h ∈ SKN ,LN ,M , ‖h‖∞ ≤
√

(KN +M)LN , and ‖b̃‖∞ ≤
√
LN , we deduce that for

each gh ∈ G
0 ≤ gh(x) ≤ 2

(
‖h‖2∞ + ‖b̃‖2∞

)
≤ 4(KN +M)LN .

Therefore, for ε > 0 a direct application of Lemma A.2 yields

E
[
‖b̂N,n − b̃‖2n,b − 2‖b̂N,n − b‖2N,n

]
≤ 3ε+

44(KN +M)LN log(N∞(ε,G))

N
. (C.11)

Hence it remains to control N∞(ε,G). It is known that for an euclidean ball of radius R denoted
B2(0, R) ⊂ RKN+M the covering numbers are controlled as

N
(
ε,B2(0, R), ‖.‖2

)
≤
(

3R

ε

)KN+M

see for example Lorentz et al. (1996) Chapter 15 Prop 1.3. Then, since for a function h =∑KN−1
i=−M aiBi,M,u we have that ‖h‖∞ ≤ ‖a‖2, we deduce

N∞ (ε,SKN ,LN ,M ) ≤

(
3
√

(KN +M)LN
ε

)KN+M

. (C.12)

Finally, considering an ε-net of SKN ,LN ,M w.r.t ‖.‖∞, we observe that for gh ∈ G and ghε such that
‖h− hε‖∞ ≤ ε,

|gh(x)− ghε(x)| =

∣∣∣∣∣ 1n
n−1∑
k=0

(h(xk)− b̃(xk))2 − (hε(xk)− b̃(xk))2

∣∣∣∣∣
=

∣∣∣∣∣ 1n
n−1∑
k=0

(h(xk)− (hε(xk))(h(xk) + hε(xk)− 2b̃(xk))

∣∣∣∣∣
≤ ε

n

n−1∑
k=0

∣∣∣h(xk) + hε(xk)− 2b̃(xk)
∣∣∣

≤ 4ε
√

(KN +M)LN .

Hence, from the last inequality, we deduce

N∞ (ε,G) ≤ N∞

(
ε

4
√

(KN +M)LN
,SKN ,LN ,M

)
≤
(

12(KN +M)LN
ε

)KN+M

. (C.13)

Therefore, setting ε = 12(KN+M)LN
N in Equation (C.11) yields

E
[
‖b̂N,n − b̃‖2n,b − 2‖b̂N,n − b‖2N,n

]
≤ 36(KN +M)LN

N
+

44(KN +M)2LN log(N)

N
.

Since ‖b̃ − b‖2b → 0 from Lebesgue’s dominated convergence theorem and ∆ = O

((
BN
KNN

)2
)
, we

deduce from Equation (C.9) and Lemma C.1 the desired result provided that

(KN +M)2LN log(N)

N
→ 0 and

BN
KN

→ 0.
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D Proof of Section 4
We start this section with an important result which provide a control of the set where the empirical
norm ‖.‖N,n and the norm ‖.‖n,b are equivalent. We also consider KN = {1, . . . ,K∗N}, where
K∗N ≤ N .

Lemma D.1. Let us define the set for KN ∈ KN ,

ΩN,n,KN =
⋂

h∈SKN,M;u\{0}

{
ω ∈ Ω,

∣∣∣∣∣‖h‖2N,n‖h‖2n,b
− 1

∣∣∣∣∣ ≤ 1

2

}
. (D.1)

Then if K∗N = o
(√

N/ log(N)
)
, for each KN ∈ KN and N large enough

P
(
ΩcN,n,KN

)
≤ Cπ0

N
.

Proof. First, observe that, for h ∈ SK,LN ,M ,

E‖h‖2N,n
‖h‖2n,b

= 1 and ΩcN,n,K =

{
ω ∈ Ω, ∃h0 ∈ SK,M,u\{0},

∣∣∣∣∣‖h0‖2N,n
‖h0‖2n,b

− 1

∣∣∣∣∣ > 1/2

}
.

Therefore

sup
h∈SKN,M,u\{0}

∣∣∣∣∣‖h‖2N,n‖h‖2n,b
− 1

∣∣∣∣∣ = sup
h∈SKN,M,u,‖h‖

2
n,b=1

∣∣‖h‖2N,n − E[‖h‖2N,n]
∣∣

We denote by H = {h ∈ SKN ,M,u, ‖h‖2n,b = 1} and consider Hε an ε-net of H w.r.t ‖.‖∞. Thus,
for all h ∈ H there exists an element h ∈ Hε such that ‖h− h‖∞ ≤ ε. Then,∣∣‖h‖2N,n − 1

∣∣ ≤ ∣∣‖h‖2N,n − ‖h‖2N,n∣∣+
∣∣‖h‖2N,n − 1

∣∣ .
We have for all x ∈ [0, 1] and h =

∑KN−1
i=−M aiBi,M,u ∈ H

h(x) ≤

(
KN−1∑
i=−M

a2
i

)1/2(KN−1∑
i=−M

B2
i,M,u(x)

)1/2

.

Since for all x ∈ [0, 1), 0 ≤ Bi,M,u(x) ≤ 1, from the above inequality we get ‖h‖∞ ≤ ‖a‖2. Besides,
Proposition 4.3, ‖h‖n,b = 1 implies ‖h‖ ≤ 1

π0
, then from Lemma 2.6, we deduce that for each

h =
∑K−1
i=−M aiBi,M,u ∈ H, with κ = C−1

1 ,

‖h‖∞ ≤ ‖a‖2 ≤

√
κKN

π2
0

. (D.2)

Hence, we get ∣∣‖h‖2N,n − ‖h‖2N,n∣∣ ≤ 2

√
κKN

π2
0

ε,

Therefore

P
(

sup
h∈H

∣∣‖h‖2N,n − 1
∣∣ ≥ δ) ≤ P

(
sup
h̄∈Hε

∣∣‖h̄‖2N,n − 1
∣∣ ≥ δ/2)+ 1

4

√
κKN
π2

0
ε≥δ

.

Besides, Hoeffding inequality leads to

P

(
sup
h̄∈Hε

∣∣‖h̄‖2N,n − 1
∣∣ ≥ δ/2) ≤ 2N∞(ε,H) exp

(
−Nπ

2
0δ

2

2κKN

)
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thus, for KN ∈ KN , if 4
√

κK∗N )

π2
0
ε < δ we obtain:

P
(
ΩcN,n,KN

)
≤ 2N∞(ε,H) exp

(
− Nδ2

2κK∗N

)
.

Now, it remains to control N∞(ε,H). For K ∈ K, from Equation (D.2),

N∞ (H, ε) ≤
(

3
√
κKN

π0ε

)KN+M

≤

(
3
√
κK∗N
π0ε

)KN+M

.

We choose ε =
3
√
κK∗N
π0N

which implies with K∗N ≤ N

P
(
ΩcN,n,KN

)
≤ 2N (K∗N+M) exp

(
−Nπ

2
0δ

2

2κK∗N

)
,

provided that 4
√

κK∗N
π2

0
ε < δ. Finally, we can choose δ such that

δ2 ≥ 2κK∗N
π2

0N
log
(
N (K∗N+M)

)
.

Since K∗N = o
(√

N/ log(N)
)
, we can take δ = 1/2 which gives the result.

Proof of Lemma 4.3. The upper bounds may be derived easily by using the Gaussian bounds for
the transition density (see Gobet (2002)).

Let us now give the proof of the lower bound for the integral of the transition density. In order
to simplify the proof and without loss of generality, we restrict ourselves to the particular case
where T = 1. From Gobet (2002), we know that there exist constants c > 1 and K > 1 such that
for all (x, y) ∈ R and for all t ∈ (0, 1] the following lower bound holds :

p(t, x0, y) ≥ 1

Kt1/2
exp

(
−c|x0 − y|2

t

)
exp

(
−c|x0|2t

)
.

Hence we have

Kec|x0|2p(t, x0, y) ≥ 1

t1/2
exp

(
−c|x0 − y|2

t

)
. (D.3)

Let us fix y ∈ [0, 1]. An easy computation (change of variable and integration by parts) shows
that ∫ 1

0

1√
s

exp

(
−c|x0 − y|2

s

)
ds = 2e−c|x0−y|2 − 2

√
c|x0 − y|

√
π erfc

(√
c|x0 − y|

)
where erfc(z) = 2√

π

∫∞
z
e−u

2

du stands for the complementary error function. Set ` : d 7→
2e−d

2 − 2d
√
π erfc (d) defined on R+∗. The function ` is positive and strictly decreasing with

limd↘0 `(d) = 2. Since |x0 − y| ≤ 1, this shows that `(
√
c|x0 − y|) ≥ `(

√
c) > 0. Thus, we

get ∫ 1

0

1√
s

exp

(
−c|x0 − y|2

s

)
ds ≥ `(

√
c) > 0. (D.4)

Setting π̃0 = e−c|x0|
2

K ` (
√
c), we deduce from (D.3) that∫ 1

0

p(t, x0, y)dt ≥ π̃0.
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Now, we prove the first point of the lemma. From (D.3) it is enough to bound
1

n

n−1∑
k=1

1√
k∆

exp(−c|x0−

y|2/k∆) from below. First for y = x0, we observe that

1

n

n−1∑
k=1

1√
k∆
≥ 1.

Now, let us fix y ∈ [0, 1] \ {x0}. Set a =
√
c|x0− y|. Since a > 0, we are allowed to make use of the

convention e−a
2/0 = 0.

An elementary study of the function p : s 7→
exp

(
−a2/s

)
√
s

on (0, 1] gives us insurance that p

is strictly increasing on (0, 2a2) and strictly decreasing on (2a2, 1].

A lower bound for a ≥ 1

2
. We start with the following decomposition.

1

n

n−1∑
k=1

1√
k∆

e−
a2

k∆ =
1

n

n−1∑
k=1

1√
k∆

∫ k∆

(k−1)∆

(
e−a

2/s +
(

e−
a2

k∆ − e−
a2

s

))
ds.

Hence, since k−1
k ≥

1
2 for k ≥ 2, a change of variable gives

1

n

n−1∑
k=1

1√
k∆

e−
a2

k∆ ≥ 1

n∆

n−1∑
k=1

1√
k∆

∫ a2/(k−1)∆

a2/k∆

a2

u2
e−udu

≥ 1

2n∆

n−1∑
k=1

√
k∆

(
e−

a2

k∆ − e−
a2

(k−1)∆

)
Remember that we have set n∆ = 1, so

1

2n∆

n−1∑
k=1

√
k∆

(
e−

a2

k∆ − e−
a2

(k−1)∆

)
≥ 1

2n∆

n−1∑
k=1

√
k∆

∫ a2/(k−1)∆

a2/k∆

e−θdθ

=
1

2n∆

n−1∑
k=1

√
k∆

∫ k∆

(k−1)∆

a2

u2
e−a

2/udu

≥ 1

2n∆

n−1∑
k=1

∫ k∆

(k−1)∆

a2

u3/2
e−a

2/udu,

then, since
√
k∆ ≥

√
u if u ∈ [(k − 1)∆, k∆] finishing the computation of the integral leads to

1

2n∆

n−1∑
k=1

√
k∆

(
e−

a2

k∆ − e−
a2

(k−1)∆

)
=

√
π

2
aerfc(a).

Finally as we assume that 1
2 ≤ a and |x0−y| ≤ 1 , then 1

2 ≤ a ≤
√
c and

√
π

2 aerfc(a) ≥
√
π

4 erfc(
√
c) >

0 which ends this part of the proof.

A lower bound for 0 < a ≤ 1

2
.

Notice that
1

n

n−1∑
k=1

1√
k∆

exp(−a2/k∆) ≥ 1

n

n−1∑
k=dn/2e

1√
k∆

exp(−a2/k∆).

Since a ≤ 1
2 we have 2a2 ≤ 1

2 and k∆ ∈ (2a2, 1] for all k ∈ {dn/2e, . . . , n− 1}. Besides, p is strictly
decreasing on (2a2, 1], using the fact that n ≥ 4, and n∆ = 1, we get

1

n

n−1∑
k=1

1√
k∆

exp(−a2/k∆) ≥ n− 1− dn/2e
n
√

(n− 1)∆
exp

(
−a2/(n− 1)∆

)
≥

exp(
(
−2a2

)
)

4
≥ e−1/2

2
.
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To conclude, we have obtained that for all n ≥ 4

1

n

n−1∑
k=1

p(k∆, x0, y) ≥ Ke−c|x0|2 1

n

n−1∑
k=1

1√
k∆

exp(−c|x0 − y|2/k∆)

≥ Ke−c|x0|2
(√

π

4
erfc(
√
c) ∧ e−1/2

2
∧ 1

)
which is non negative.

Set ˜̃π0 := Ke−c|x0|2
(√

π
4 erfc(

√
c) ∧ e−1/2

2 ∧ 1
)
, the common lower bound follows by setting π0 :=

˜̃π0 ∧ π̃0 > 0. Moreover, for a square integrable h such that supp(h) ⊆ [0, 1], we get

π0‖h‖2 ≤
∫ 1

0

h2(y)

(
1

n

n−1∑
k=1

p (k∆, x0, y)

)
dy ≤ 1

n

n−1∑
k=1

Eh2(Xk∆) ≤ ‖h‖2n,b

which proves our lemma.

Proof of Proposition 4.4. The following lemma is a result on spline approximation.

Lemma D.2. For b̃ ∈ Σ(β,R), for N large enough, it comes

inf
h∈SKN,LN,M

‖h− b̃‖2n,b ≤ C
(
M + 1

KN

)2β

,

where C is a constant which depends only on M and R.

Proof. Let l = bβc denote the greatest integer strictly less than β. A direct application of Theorem
14.3 and 14.4 and Problem 14.3 in Györfi et al. (2006) shows that there exists h̃ =

∑KN−1
i=−M aiBi,M,u

such that

|ai| ≤ C‖b̃‖∞ and |h̃(x)− b̃(x)| ≤ CLb
l!

(
M + 1

KN

)β
,

where C > 0 depends only on M . Since for N large enough we have ‖b̃‖∞ ≤
√
LN
C

, we note that

h̃ ∈ SKN ,LN ,M . Let us denote the density fn

fn(y) :=
1

n− 1

n−1∑
k=1

p(k∆, x0, y).

Therefore, we deduce that

inf
h∈SKN,LN,M

‖h− b̃‖2n,b ≤ 1

n

(
h̃(x0)− b̃(x0)

)2

+
n− 1

n

∫ 1

0

(
h̃(x)− b̃(x)

)2

fn(x)dx

≤
(
C
L

l!

)2(
M + 1

KN

)2β

.

Now, we go back to the proof of Proposition 4.4. From Equation (C.2), we have that for each
h ∈ SKN ,LN ,M(

1− 2

a

)
E
[
‖b̂N,n − b̃‖2N,n

]
≤
(

1 +
2

a

)
‖h− b̃‖n,b + 2E

[
νN,n(̂bN,n − h)

]
+ aC∆,

for a > 0 and where for any g ∈ SKN ,LN ,M , we used the notation

νN,n(g) =
1

Nn

N∑
j=1

n−1∑
k=0

g(X
(j)
k∆)Σk,j
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(see (C.1)). Moreover, by linearity it comes for d > 0,

2νN,n(̂bN,n − h) = 2‖b̂N,n − h‖n,bνN,n

(
b̂N,n − h

‖b̂N,n − h‖n,b

)

≤ 1

d
‖b̂N,n − h‖2n,b + d sup

{g∈SKN,M,u; ‖g‖n,b=1}
ν2
N,n(g).

We have ‖b̂N,n−h‖2N,n ≤ 2
(
‖b̂N,n − b‖2N,n + ‖h− b‖2N,n

)
and on ΩN,n, we have ‖b̂N,n−h‖2n,b ≤

2‖b̂N,n − h‖2N,n.
Therefore, we get(

1− 2

a
− 4

d

)
‖b̂N,n − b̃‖2N,n ≤

(
1 +

2

a
+

4

d

)
‖h− b̃‖2N,n

+d sup
{g∈SK,M,u; ‖g‖n,b=1}

ν2
N,n(g) + aC∆. (D.5)

Using the fact that ‖g‖n,b = 1 implies ‖g‖ ≤ 1√
π0

according to Lemma 4.3, we obtain

E

[
sup

{g∈SK,M,u; ‖g‖n,b=1}
ν2
N,n(h)

]
≤ 1

π0
E

[
sup

{g∈SK,M,u; ‖g‖=1}
ν2
N,n(g)

]
Applying Lemma 2.6, we have that ‖a‖22 ≤ C−1

1 KN‖h‖2 (where a denotes the coefficient corre-
sponding to h ∈ SK,M,u).

Hence, we deduce from the Cauchy-Schwarz Inequality that, for h ∈ SK,M,u such that ‖h‖ = 1,

ν2
N,n(h) ≤ CKN

KN−1∑
i=−M

ν2
N,n(Bi,M,u).

Finally, following Equation (C.3), it comes

E

[
sup

{h∈SK,M,u; ‖h‖=1}
ν2
N,n(h)

]
≤ CKN

N
.

Therefore, Equation (D.5) with a = d = 8 yields

E
[
‖b̂N,n − b̃‖2N,n1ΩN,n

]
≤ 7 inf

h∈SKN,LN,M
‖h− b̃‖2n,b + C

(
KN

N
+ ∆

)
. (D.6)

Then, since ‖b̂LNN,n‖∞ ≤
√
LN and for N large enough ‖b̃‖∞ ≤

√
LN , we have (for N large enough)

‖b̂LNN,n − b̃‖
2
N,n ≤ ‖b̂N,n − b̃‖2N,n and ‖b̂LNN,n − b̃‖

2
N,n ≤ 4LN .

Therefore Equation (D.6) yields

E
[
‖b̂LNN,n − b̃‖

2
N,n

]
≤ E

[
‖b̂N,n − b̃‖2N,n1ΩN,n

]
+ E

[
‖b̂LNN,n − b̃‖

2
N,n1ΩcN,n

]
≤ 7 inf

h∈SKN,LN,M
‖h− b‖2n,b + C

(
KN

N
+ ∆

)
+ 4LNP

(
ΩcN,n,K

)
.

The proof is then completed by applying Lemma D.2 and Lemma D.1.

Proof of Proposition 4.6. Let h denote some measurable function s.t. ‖h‖∞ <∞. We have

‖h‖2b − ‖h‖2n,b = E

[
1

T

∫ T

0

(
h2 (Xs)− h2(Xη(s))

)
ds

]

= E

[
1

T

∫ T

∆

(
h2 (Xs)− h2(Xη(s))

)
ds

]
+ E

[
1

T

∫ ∆

0

h2(Xs)− h2(x0)ds

]
.
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From the above equality, we get

‖h‖2b − ‖h‖2n,b =
1

T

∫ T

∆

ds

∫
R
h2(y) (p(s, x0, y)− p (η(s), x0, y)) dy

+
1

T

∫ ∆

0

ds

∫
R

(
h2(y)− h2(x0)

)
p(s, x0, y)dy.

Using the estimates of the transition probability density stated in Konakov & Menozzi (2017)
(Proposition 3.1 p.16), we find that there exists a constant C ≥ 1 and c ∈ (0, 1] such that the
second term in the RHS of the previous equality bounds as∫ ∆

0

ds

∫
R

(
h2(y)− h2(x0)

)
p(s, x0, y)dy

≤
∫ ∆

0

ds

∫
R

(
h2(y)− h2(x0)

) C

(2π cs)1/2
e−|x0−y|2/2csdy ≤ C‖h‖2∞∆.

Let us now turn to the first term in the RHS. We have

I :=

∣∣∣∣∣
∫ T

∆

ds

∫
R
h2(y) (p(s, x0, y)− p (η(s), x0, y)) dy

∣∣∣∣∣ ≤∫ T

∆

ds

∫
R
dy h2(y)

∫ s

η(s)

du

∣∣∣∣ ∂∂up (u, x0, y)

∣∣∣∣ .
Using the Fubini-Tonelli theorem, the Kolmogorov-Backward equation and the Gaussian estimates
given in Konakov & Menozzi (2017) (Proposition 3.1 p.16), we find that there exists a constant
C ≥ 1 and c ∈ (0, 1] with gc the Gaussian density function (gc(u, x0, y) := e−c(x0−y)2/(2u)/

√
2πu/c),

such that

I ≤ C‖h‖2∞
∫ T

∆

ds

∫ s

η(s)

du

u

(∫
R
gc(u, x0, y) dy

)
≤ C‖h‖2∞

∫ T

∆

log(s/η(s))ds

≤ C‖h‖2∞
n−1∑
k=1

∫ (k+1)∆

k∆

log(s/k∆) ds.

Therefore, we deduce

I ≤ C‖h‖2∞∆

n−1∑
k=1

log

(
1 +

1

k

)

≤ C‖h‖2∞
T

n

n−1∑
k=1

1

k
≤ C T ‖h‖2∞

(
log(n) + 1

n

)
.

Consequently, there exists a constant C ≥ 1 such that for any h ∈ L∞(R) :∣∣‖h‖2b − ‖h‖2n,b∣∣ ≤ C‖h‖2∞(−∆ log ∆).

Proof of Theorem 4.5. For N large enough ‖b̃‖∞ ≤
√
LN , and by definition ‖b̂LNN,n‖∞ ≤

√
LN (see

Equation (4.1)). Besides, b̂LNN,n is Lipschitz with a lipschitz constant bounded by
√

(KN +M)LNKN

(see Equation C.8), then according to Proposition 2.3 we have :

E
[
‖b̂LNN,n − b̃‖

2
b

]
≤ E

[
‖b̂LNN,n − b̃‖

2
n,b

]
+ CK

3/2
N LN

√
∆
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Therefore, it remains to control the first term in the r.h.s. We start with the following decomposition

‖b̂LNN,n − b̃‖
2
n,b = ‖b̂LNN,n − b̃‖

2
n,b − 2‖b̂LNN,n − b‖

2
N,n + 2‖b̂LNN,n − b‖

2
N,n,

which yields, with Proposition 4.4, for N large enough

E
[
‖b̂LNN,n − b̃‖

2
n,b

]
≤ E

[
‖b̂LNN,n − b̃‖

2
n,b

]
− E

[
2‖b̂LNN,n − b̃‖

2
N,n

]
+C

((
M + 1

KN

)2β

+
(KN + LN )

N
+ ∆

)
. (D.7)

The end of the proof follows the same lines as the proof of Theorem 3.3. We observe that

E
[
‖b̂LNN,n − b̃‖

2
n,b − 2‖b̂LNN,n − b̃‖

2
N,n

]
≤ E

[
sup
h∈H

(
‖h− b̃‖2n,b − 2‖h− b̃‖2N,n

)]
,

where H =
{
hLN , h ∈ SKN ,LN ,M

}
. For h ∈ H, we define the function gh as in Equation (C.10),

and consider G = {gh, h ∈ H}. Then, we have

E
[
‖b̂LNN,n − b̃‖

2
n,b − 2‖b̂LNN,n − b̃‖

2
N,n

]
≤ E

sup
g∈G

E
[
g(X)

]
− 2

N

N∑
j=1

g
(
X
j
) .

Since, for each h ∈ H, ‖h‖∞ ≤
√
LN , and ‖b̃‖∞ ≤

√
LN for N large enough, we deduce that for

each g ∈ G and N large enough
0 ≤ g(x) ≤ 4LN .

Therefore, for ε > 0 a direct application of Lemma A.2 yields

E
[
‖b̂LNN,n − b̃‖

2
n,b − 2‖b̂LNN,n − b‖

2
N,n

]
≤ 3ε+

44LN log(N∞(ε,G))

N
. (D.8)

Since an ε-net of SKN ,LN ,M w.r.t ‖.‖∞ is also an ε-net ofH w.r.t ‖.‖∞, we have from Equation (C.13)

N∞(ε,G) ≤
(

12(KN +M)LN
ε

)KN+M

.

Finally, setting ε = 12(KN+M)LN
N in Equation (D.8) yields

E
[
‖b̂LNN,n − b̃‖

2
n,b − 2‖b̂LNN,n − b‖

2
N,n

]
≤ 36(KN +M)LN

N
+

44LN log(N)(KN +M)

N
. (D.9)

The above inequality with Equation (D.7) lead to the result.

Proof of Theorem 4.7. The proof follows the scheme of the proof of Theorem 2.8 of Tsybakov (2009)
Chapter 2. The main point is to apply Theorem 2.5 which is based on three condition. For sake of
clarity we recall the main lines of the proof. For c0 > and m ≥ 1,

m = dc0N
1

2β+1 e, hN = 1/m, xk =
k − 1/2

m

ϕk(x) = LhβNK

(
x− xk
hN

)
, k = 1, . . . ,m,

where K : R→ [0,+∞[ satisfies K ∈ Σ(β, 1/2)
⋂
C∞(R) and K(u) > 0⇔ u ∈ (−1/2, 1/2).

The hypotheses bN,j are taken in the following space:

E =

{
bN,i(x) =

m∑
k=1

ω
(i)
k ϕk(x), ω ∈ {ω(0), . . . , ω(D)}

}
,
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where {ω(0), . . . , ω(D)} is a subset of {0, 1}m, such that ω(0) = (0, . . . , 0) and the Hamming distance
ρ satisfies the Varshamov-Gilbert bound:

ρ(ω(i), ω(k)) ≥ m/8, ∀0 ≤ i < k ≤ D, D ≥ 2m/8.

To apply Theorem 2.5, we have to check the following points for a fixed α ∈ (0, 1/2):

1. bN,i ∈ Σ(β,R), j = 0, . . . ,M,

2. ‖bN,i − bN,k‖ ≥ 2s > 0, 0 ≤ i < k ≤ D, with s = sN � N−β/(2β+1),

3.
1

D

D∑
i=1

K(P⊗Ni , P⊗N0 ) ≤ α log(D), i = 1, . . . , D.

The first two conditions are satisfied by construction. Let us deal with the third point: the control
of the Kullback divergence between two hypothesis. We denote Pi the probability measure under
which (Xt)t≥0 is solution of dXt = bN,i(Xt)dt + σ(Xt)dW̃t where W̃ is a Brownian motion under
Pj . Finally we define Pi := Pi|FXT . Since b satisfies Assumptions 2.1 and 4.1, the Novikov condition
is satisfied

E

[
exp

(
1

2

∫ T

0

b2

σ2
(Xs)ds

)]
< +∞

Then Girsanov’s Theorem (see Revuz & Yor (1999)) ensures that the probability measure P0 is
absolutely continuous w.r.t. Pi and that

dPi
dP0

= exp

(∫ T

0

bN,i
σ2

(Xs)dXs −
1

2

∫ T

0

b2N,i
σ2

(Xs)ds

)
.

Hence,

K (Pi, P0) =

∫
log

(
dPi
dP0

)
dPi = E

[∫ T

0

bN,i
σ

(Xs)dWs +
1

2

∫ T

0

b2N,i
σ2

(Xs)ds

]

=
1

2
E

[∫ T

0

b2N,i
σ2

(Xs)ds

]
.

Therefore,

K(P⊗Ni , P⊗N0 ) =
1

2

N∑
j=1

E

[∫ T

0

(
∑m
k=1 ω

(i)
k ϕk)2

σ2
(X(j)

s )ds

]

≤ 1

2σ2
0

N∑
i=1

E

[∫ T

0

m∑
k=1

ω
(i)
k ϕ2

k(X(j)
s )1{X(j)

s ∈]
(k−1)
m , km ]}ds

]

≤
L2h2β

N ‖K‖2∞
2σ2

0

E

[∫ T

0

N∑
i=1

m∑
k=1

1{X(j)
s ∈]

(k−1)
m , km ]}ds

]

=
L2h2β

N ‖K‖2∞TN
2σ2

0

≤ L2‖K‖2∞Tc
−(2β+1)
0 m

2σ2
0

.

Then, with m ≤ 8 log(D)/ log(2) choosing,

c0 =

(
8TL2‖K‖2∞
α log(2)

) 1
2β+1

it comes that K(P⊗Nj ;P⊗N0 ) < α log(D), which concludes the proof.
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Proof of Theorem 4.8. Let us remind the reader that in this section, we assume that K = {2p, p =
0, . . . , pmax} and LN = log(N).

Lemma D.3. For any positive numbers ε, v, we have

P

 N∑
j=1

n−1∑
k=0

t(X
(j)
k∆)Σ

(j)
k∆ ≥ Nnε, ‖t‖

2
N,n ≤ v2

 ≤ exp

(
−Nn∆ε2

2v2σ2
1

)
.

Proof of Lemma D.3. The proof is based on the martingaleMs =
∫ s

0

∑N
j=1H

(j)
u dW

(j)
u , with H(j)

u =∑n−1
k=0 1[k∆,(k+1)∆[(u)t(X

(j)
k∆)σ(X

(j)
u ) and can be easily adapted from Lemma 2 in Comte et al.

(2007).

We go back to the proof of Theorem 4.8. Since, for each K ∈ KN,n, we have

γN,n(̂bK̂) + pen(K̂) ≤ γN,n(̂bK) + pen(K),

and as in inequality (D.5) with a = d = 8, we get for each h ∈ SKN ,LN ,M on ΩN,n,Kmax∥∥∥b̂K̂ − b̃∥∥∥2

N,n
≤ 7

∥∥∥h− b̃∥∥∥2

N,n
+ 8 sup

{h∈SK,M,u+S
K̂,M,u

, ‖h‖n,b=1}
ν2
N,n(h)

+C∆ + 4
(

pen(K)− pen(K̂)
)
.

Let us denote:
GK(K ′) := sup

{h∈SK,M,u+SK′,M,u, ‖h‖n,b=1}
|νN,n(h)|.

Therefore, as for N we obtain,∥∥∥b̂K̂ − b̃∥∥∥2

N,n
≤

{
7
∥∥∥h− b̃∥∥∥2

N,n
+ 8G2

K(K̂) + C∆ + 4
(

pen(K)− pen(K̂)
)}

1ΩN,n,Kmax

+2LN1ΩcN,n,Kmax
.

Now, for all h ∈ SK,LN ,M , let us define,

EN,n(h) := 2
∥∥∥h− b̃∥∥∥2

N,n
−
∥∥∥h− b̃∥∥∥2

n,b
.

For H =
{
hLN , h ∈ SK,LN ,M

}
, it comes,

E
[
−EN,n(̂bLN

K̂
)− pen(K̂)

]
≤

∑
K∈K

E
[
−EN,n(̂bLNK )− pen(K)

]
≤

∑
K∈K

E
[
sup
H

(−EN,n(h))

]
− pen(K)

≤ 0,

where, in the last inequality we use that pen(K) ≥ 44(K + M) log(N)/N . Indeed, as in proof of
Theorem 4.5, Equation (D.9),

E
[
sup
H

(−EN,n(h))

]
≤ 44(K +M)

log(N)

N
.

Finally,
‖b̂LN
K̂
− b̃‖2n,b ≤ pen(K̂) + 2

∥∥∥b̂K̂ − b̃∥∥∥
N,n

.
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Therefore, since for N large enough ‖b̃‖∞ ≤
√
LN
C

and |̂bK | ≤
√
LN by definition, we obtain

E
[∥∥∥b̂K̂ − b̃∥∥∥2

n,b

]
≤
(

14
∥∥∥h− b̃∥∥∥2

n,b
+ pen(K)

)
+ 16E

[
G2
K(K̂)1ΩN,n,Kmax

]
+ 7E

[
pen(K)− pen(K̂)

]
+
CLN
N

.

Finally, choosing 16p(K,K ′) ≤ 7(pen(K) + pen(K ′)) and since

G2
K(K̂)1ΩN,n,Kmax

≤
∑
K′∈K

(
G2
K(K ′)− p(K,K ′)

)
+
1ΩN,n,Kmax

+ p(K,K ′),

it comes

E
[∥∥∥b̂K̂ − b̃∥∥∥2

n,b

]
≤ 15

(∥∥∥h− b̃∥∥∥2

n,b
+ pen(K)

)
+

16E

[ ∑
K′∈K

(
G2
K(K ′)− p(K,K ′)

)
+
1ΩN,n,Kmax

]
+
CLN
N

.

Therefore, Lemma D.3 used together with a chaining argument detailed in Baraud et al. (2001),
gives

E
[(
G2
K(K ′)− p(K,K ′)

)
+
1ΩN,n,Kmax

]
≤ cσ2

1 exp (−(K ′ +M)) /N

with p(K,K ′) = κ1σ
2
1
K+K′+2M

N , κ1 > 0 a constant. This implies that,

∑
K′∈K

(
G2
K(K ′)− p(K,K ′)

)
+
1ΩN,n,Kmax

≤ cσ2
1

N

∑
K′∈K

exp((−(K ′ +M))

≤ C

N

∑
k≥1

exp (−k) ≤ C

N
.

Finally, we must have:

pen(K) ≥ max

(
44

log(N)(K +M)

N
;κ1σ

2
1

(K +M)

N

)
and for N large enough, the first term pen(K) ≥ 44 log(N)(K+M)

N .
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