
HAL Id: hal-02527738
https://hal.science/hal-02527738v1

Submitted on 1 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reliability-Aware and Graph-Based Approach for Rank
Aggregation of Biological Data

Pierre Andrieu, Bryan Brancotte, Laurent Bulteau, Sarah Cohen-Boulakia,
Alain Denise, Adeline Pierrot, Stéphane Vialette

To cite this version:
Pierre Andrieu, Bryan Brancotte, Laurent Bulteau, Sarah Cohen-Boulakia, Alain Denise, et al..
Reliability-Aware and Graph-Based Approach for Rank Aggregation of Biological Data. 2019
15th International Conference on eScience (eScience), Sep 2019, San Diego, France. pp.136-145,
�10.1109/eScience.2019.00022�. �hal-02527738�

https://hal.science/hal-02527738v1
https://hal.archives-ouvertes.fr


Reliability-aware and graph-based approach for
rank aggregation of biological data

Pierre Andrieu
LRI, CNRS, U. Paris-Sud
U. Paris-Saclay, France
pierre.andrieu@u-psud.fr

Bryan Brancotte
Institut Pasteur
Paris, France

bryan.brancotte@pasteur.fr

Laurent Bulteau
LIGM, CNRS, U. Paris-Est

Marne-la-vallée, France
laurent.bulteau@u-pem.fr

Sarah Cohen-Boulakia
LRI, CNRS, U. Paris-Sud
U. Paris-Saclay, France

sarah.cohen-boulakia@u-psud.fr

Alain Denise
LRI & I2BC, CNRS, U. Paris-Sud

U. Paris-Saclay, France
alain.denise@u-psud.fr

Adeline Pierrot
LRI, CNRS, U. Paris-Sud
U. Paris-Saclay, France
adeline.pierrot@u-psud.fr
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Abstract—Massive biological datasets are available in public
databases and can be queried using portals with keyword queries.
Ranked lists of answers are obtained by users. However, properly
querying such portals remains difficult since various formulations
of the same query can be considered (e.g., using synonyms).
Consequently, users have to manually combine several lists of
hundreds of answers into one list. Rank aggregation techniques
are particularly well-fitted to this context as they take in a set
of ranked elements (rankings) and provide a consensus, that is,
a single ranking which is the ”closest” to the input rankings.
However, the problem of rank aggregation is NP-hard in most
cases. Using an exact algorithm is currently not possible for more
than a few dozens of elements. A plethora of heuristics have
thus been proposed which behaviour are, by essence, difficult to
anticipate: given a set of input rankings, one cannot guarantee
how far from an exact solution the consensus ranking provided
by an heuristic will be. The two challenges we want to tackle in
this paper are the following: (i) providing an approach based on
a pre-process to decompose large data sets into smaller ones
where high-quality algorithms can be run and (ii) providing
information to users on the robustness of the positions of elements
in the consensus ranking produced. Our approach not only lies in
mathematical bases, offering guarantees on the result computed
but it has also been implemented in a real system available to
life science community and tested on various real use cases.

Index Terms—rank aggregation, graph approach, consensus
ranking, biological datasets

I. INTRODUCTION

Huge amounts of biological data are daily reported in a large
number of public databases. Such data can be queried using
portals as provided by NCBI1 [1], allowing users to submit a
keyword to the portal to then collect a set of answers. Answers
are usually provided as Web pages describing data items,
and they are ranked by relevance, that is, by the number of
occurrences of the keyword in each answer. However, properly
querying such portals remains a difficult task since various
formulations of the same query can be considered. Among
other strategies, life scientists make use of synonymous terms
(breast cancer versus carcinoma of the breast), alternative

1http://www.ncbi.nlm.nih.gov/Entrez

spellings (tumour versus tumor, ADHD versus Attention deficit
hyperactivity disorder), or describes the concepts involved
in their keywords at various levels of granularity (Lynch
syndrome versus colorectal cancer). As a consequence, life
scientists have to deal with several lists of hundreds of answers
that need to be combined into one list to prioritize further
investigations.

Rank aggregation techniques are particularly well-fitted to
this context as they take in a (multi)set of ranked elements
(rankings) and provide a consensus ranking, that is, a single
ranking that is the ”closest” to the input rankings. Rank
aggregation have been used in various contexts including
aggregating answers returned by several Web engines [2],
determining the winner in a sport competition [3], determining
the winner of an election [4] or gathering answers from several
biological queries [5].

However, the problem of rank aggregation is well-known
to be NP-hard in most cases. On the one hand, computing
an optimal consensus ranking is currently not possible for
more than a few dozens of elements. As a consequence, a
plethora of heuristics have been proposed whose behaviours
are, by essence, difficult to anticipate. On the other hand, many
different optimal consensus rankings may exist for a same set
of rankings. It turns out that the positions of some elements
can vary a lot from one optimal consensus to another while
the positions of other elements may be robust among the set
of optimal consensus.

We are thus facing two challenges. The first one is to
develop procedures able to quickly compute optimal consensus
rankings in real-life applications. The second one is to provide
a way to evaluate the robustness of positions of elements
in an optimal consensus. In this paper we tackle these two
challenges. Namely we (i) develop a process able to quickly
compute consensus rankings by decomposing large datasets
into much smaller ones where high quality (possibly exact)
algorithms can be run, and (ii) we provide an approach able
to draw frontiers between groups of elements such that their
relative order in the whole set of optimal consensus rankings



TABLE I
EXAMPLE OF INPUT RANKINGS.

r1 := [{D,E}, {A}, {B}, {C}, {F}, {G}, {H}]
r2 := [{D,E}, {A}, {B}, {C}, {F}, {G}, {H}]
r3 := [{E}, {D}, {B}, {C}, {A}, {F}, {G}, {H}]
r4 := [{D}, {E}, {B}, {C}, {A}, {H}, {F}, {G}]
r5 := [{D,E}, {C}, {A}, {B}, {H}, {G}, {F}]
r6 := [{D,E}, {C}, {A}, {B}, {H}, {G}, {F}]

are inviolable, thus giving information on the robustness of
the positions of elements in the produced consensus ranking.

To illustrate our approach, let us consider the example of
Table I above. It has six rankings (r1 to r6) of eight elements
(A to H). This example is inspired by real use cases we
encountered where each ranking is a list of genes obtained
from the NCBI Gene database using a given keyword (e.g.,
breast cancer). When two genes are returned with the same
score, they are tied (i.e. ex-aequo), that is, they are considered
as equally important and placed in the same bucket. This is
the case for genes D and E in the rankings r1, r2, r5, r6.

To compute a consensus ranking, rank aggregation ap-
proaches consider pairs of genes and inspect between rankings
whether each pair is in the same order (agreement) or not
(disagreement).

Let us inspect the set of rankings at a coarse grain level.
First, note that D and E are always before all the other genes.
A reasonable consensus ranking should then place these two
genes at the first two positions. Second A, B and C are always
placed before F , G and H . Again, a reasonable consensus
ranking should place A, B, C before F , G and H .

This very first analysis allows to highlight the presence of
three possible groups of genes. Let us name D,E group 1,
A,B,C group 2 and F,G,H group 3 in the following.

Determining which genes should be grouped together (that
is, identifying the groups of genes to be considered) and then
determining how genes within groups should be ranked are
the two open questions we want to consider.

Let us now inspect such three groups at a finer grain level
to consider the possible positions of genes within each group.

a) Group 1 (D and E): In four rankings (r1, r2, r5 and
r6), D is tied with E whereas E is before D in r3 and D
is before E in r4. Placing D before E or E before D in the
consensus would be in agreement with only one ranking while
placing D and E ex aequo in the same bucket is in agreement
with four rankings. Placing D and E in the same bucket in
the consensus ranking appears to be a very reliable choice.

b) Group 2 (A, B and C): Let us consider pairwise
relations between such genes. In a strict majority of rankings
(4 versus 2), A is before B. It thus may appear natural to
expect A before B in a consensus ranking. However, the
following problem occurs: B is before C in a strict majority of
rankings (4 versus 2) and C is before A in a strict majority of
rankings (4 versus 2) but it is impossible to satisfy the three
constraints A before B, B before C and C before A. The
question of how to rank these three genes is thus not trivial.

c) Group 3 (F , G and H): In a strict majority of
rankings, F is before G (4 versus 2). Once again, it may
appear natural to expect F before G in a consensus ranking.
Conversely, there is an ”indifference relationship” for the pair
{F,H}: in half of the rankings F is before H and in half of
the rankings H is before F . As a consequence in this case, the
relative order between F and H will somehow be arbitrary.
The situation is similar for G and H . Finally, placing F before
G appears to be a reliable choice, and placing H before F ,
between F and G or after G appear to be equivalent choices.

This example allows us to highlight two key points. First,
it may be the case that solid frontiers appear between several
groups of genes. Such frontiers give important information
about robustness: D and E should be in the very first positions
with no flexibility towards the remaining genes while H
can be placed before of after F in a totally arbitrarily way.
Second, each group of genes highlighted by the frontiers can
be analyzed further, aiming to break the groups into smaller
sub-groups (e.g. group 3) making easier the computation of a
consensus ranking, and maybe enabling the use of an exact
algorithm if the obtained sub-groups are small enough.

The purpose of this paper is to introduce a new graph-based
pre-process approach for rank aggregation that (i) divides the
set of elements into groups where consensus algorithms can
be executed independently and (ii) identifies solid frontiers to
separate elements. Our approach not only lies in mathematical
bases, providing guarantees on the results, but has also been
implemented in a real system available to the life science
community and tested on various real use cases.

The remainder of this paper is organized as follows. Section
II introduces the definitions of the major concepts underlying
rank aggregation. Section III proposes graph representations
of the input rankings while Section IV introduces an efficient
graph-based and reliable-aware consensus ranking procedure
able to give information on the robustness of the positions
of genes in the consensus ranking produced. Section V first
presents ConQuR-BioV2, the tool available to the community
where our approach has been fully implemented, and then
evaluates our approach on biological queries. Section VI draws
conclusions.

II. PRELIMINARIES

In this section we formally introduce the concept of rankings
and the problem of rank aggregation.

a) Rankings: Given a set of elements U (e.g., genes), a
ranking on U is an ordered list of pairwise disjoint subsets
of U called buckets. A ranking is complete if the union of its
buckets is equal to U . For example, if U = {A,B,C,D}, r1 =
[{A}, {C}, {B}, {D}], r2 = [{B,A}, {C}, {D}] and r3 =
[{B,A,C,D}] are complete rankings on U , but the ranking
[{B,A}, {D}] is not a complete ranking on U as C is missing.
Finally, [{B,A}, {C,A,D}] is not a ranking as A is present
twice.
Vocabulary. We set that x and y are tied in a ranking r if x
and y are in the same bucket in r. We also set that x is before



y in a ranking r if the bucket containing x is strictly before
the bucket containing y in r.

If b elements are before x in r, then the position of x in r
is b+ 1. Note that tied elements have the same position.

b) Unification process: Rankings in real datasets are
usually not all on the exact same set of elements. They are said
to be incomplete. To complete a set of rankings, the unification
process can be applied [6], [7] by appending at the end of
each incomplete ranking r a unification bucket, noted {...}u
containing all the missing elements of the ranking r. This
process is used when the missing elements in rankings are
considered as less important than the present elements (which
is a reasonable consideration in our use case).
Illustration. Consider the set of rankings R = {r, s, t}
with r = [{A}, {C,D}], s = [{B}, {C}] and t =
[{A}, {B,C}, {D}]. We observe that B is missing in r and
both A and D are missing in s. Then, the new set of
rankings after the unification process is Ru = [r

′
, s
′
, t
′
] with

r
′
= [{A}, {C,D}, {B}u], s

′
= [{B}, {C}, {A,D}u] and

t
′
= [{A}, {B,C}, {D} = t as t is already a complete

ranking.
c) Distance between two rankings: If r and s are two

complete rankings on U (possibly after a unification process),
the Kemeny pseudo-distance, denoted K, is defined as follows:
K(r, s) =

∑
{x,y|x,y∈U}K{x,y}(r, s) where K{x,y}(r, s) =

• 1 if x is before y in one ranking whereas y is before x
in the other one.

• 1 if x and y are not tied in one ranking but x and y are
tied in a bucket which is not the unification bucket in the
other one.

• 0 otherwise.
Note that the unification bucket has a specific treatment:
no cost for untying elements which have been tied in the
unification bucket.
Illustration. K(s′, t′) = 1{A,B} + 1{A,C} + 0{A,D} +

1{B,C} + 0{B,D} + 0{C,D} = 3. Indeed, B is before A in s
′

whereas A is before B in t
′
, C is before A in s

′
whereas A

is before C in t
′

and B is before C in s
′

whereas B and C
are tied in t

′
. Note that even if A is before D in t

′
whereas

A and D are tied in s
′
, the cost is 0 for this pair as A and

D are both in the unification bucket of s
′
.

d) The Rank aggregation problem: Informally, the rank
aggregation problem aims at finding a complete ranking that
is the closest possible to the input rankings. Such a ranking is
called an optimal consensus (also known as a median). More
formally, given a set of complete rankings R and a complete
ranking c, the Generalized Kemeny score, denoted S(c,R), is
the sum of the Kemeny pseudo-distances between c and each
ranking in R.

An optimal consensus of R is a complete ranking min-
imizing the Generalized Kemeny score: if C is the set of
all the complete rankings on U , an optimal consensus of R,
denoted c∗, is a complete ranking on U such that ∀c ∈ C ,
S(c∗, R) ≤ S(c,R).

Note on the complexity of the rank aggregation problem.
The rank aggregation problem is known to be NP-hard in most
cases so several approximation algorithms and heuristics have
been designed [2], [8], [9], [10]. While much research has
focused on the case where rankings are permutations (that is,
total orders) of the same underlying set, real life applications
are facing rankings with ties (elements ranked at the same
position and thus placed in the same bucket). A few recent
works considered the problem of rankings with ties: [8], [10]
introduced approximation algorithms to the problem while
[11] compared of most of the major heuristics and algorithms
adapted to ranking with ties.

e) Optimal consensus and k-frontiers: It is worth notic-
ing that an optimal consensus is not necessarily unique. As a
consequence, we will introduce robustness properties on the
set of optimal consensus based on the concept of k-frontiers.
We define a k-frontier as an integer k such that the set of the
k first elements is the same in all the optimal consensus.
Illustration. [{D,E}, {B}, {C}, {A}, {F}, {G}, {H}] is an
optimal consensus of the set of rankings presented in Table
I. The associated score is 18 (2{D,E} + 4{A,B} + 2{A,C} +
2{B,C}+2{F,G}+3{F,H}+3{G,H}). Another possible optimal
consensus is [{D,E}, {B}, {C}, {A}, {H}, {G}, {F}], with
the same score of 18 (by definition). It can be shown that any
optimal consensus places D and E before all the remaining
elements. In other words, there is a 2-frontier.

f) A pairwise representation: According to the Kemeny
pseudo-distance, the cost (regarding a set of rankings R) of
placing x before y in the consensus ranking is equal to the
number of rankings r ∈ R such that x is not before y in
r (excluding the rankings in which x and y are both in the
unification bucket). In a similar way, the cost of tying x and y
is equal to the number of rankings r ∈ R such that x and y are
not tied in r. Such costs are respectively denoted before(x, y)
and tied(x, y) in this paper. Finally, the cost of placing x after
y is equal to the cost of placing y before x. We also define
min(x, y) = min(before(x, y), before(y, x), tied(x, y)).

For any two pairs of elements x and y, the pairwise cost
matrix indicates the cost of placing in the consensus ranking
x before, after or tied with y.
Illustration. Some different pairs (nonexhaustive) of Example
I with the associated costs are presented in Table II. For each
line, the minimal value is in bold.

For example, if we consider only the pair (D,E), we

TABLE II
PAIRWISE COST MATRIX OF EXAMPLE I.

x y before(x, y) before(y, x) tied(x, y) min(x, y)
D E 5 5 2 2
D F 0 6 6 0
A B 2 4 6 2
A C 4 2 6 2
B C 2 4 6 2
F G 2 4 6 2
F H 3 3 6 3
G H 3 3 6 3



have tied(D,E) = min(D,E) whereas before(D,E) >
min(D,E) and before(E,D) > min(D,E). We can
conclude that it is strictly more ”interesting” to tie D and
E in a consensus ranking, rather than having D before E
or E before D. If we consider only the pair (F,H), we
have before(F,H) = before(H,F ) = min(F,H) whereas
tied(F,H) > min(F,H). We can conclude that it is more
”interesting” to have F before H or H before F in a
consensus ranking, rather than having F tied with H .

Note that if P is the set of all the ordered pairs of
distinct elements of U , then the Generalized Kemeny score
between a consensus ranking c and a set of rankings R can
be computed using the cost matrix as follows

S(c,R) =
1

2

∑
(x,y)∈P

Sc(x, y) (1)

where Sc(x, y) =

• before(x, y) if x is before y in c.
• before(y, x) if y is before x in c.
• tied(x, y) if x and y are tied c.
By essence, rank aggregation approaches consider pairs of

elements (placed before, after or tied in the rankings). Repre-
senting rankings using graphs thus appears natural. The next
section introduces graph representations of the input rankings
while section IV describes the process we follow from these
structures to compute a reliability-aware consensus.

III. GRAPH REPRESENTATION FOR RANK AGGREGATION

In this section, we introduce two graph-based pairwise
representations of the elements to rank. Then, we show that
computing the strongly connected components of such graphs
allows to form coarse grain groups of elements that will be
used to divide the initial problem into smaller sub-problems
and to place frontiers between elements.

A. Graph-based pairwise representation of the elements

The objective of the graph-based pairwise representations
of the elements is to give condensed representations of the
pairwise cost matrix presented in Table II to compute a consen-
sus ranking. In these representations, nodes are elements (the
genes to rank) and for each pair of elements {x, y}, the edges
are related to which cost(s) in the pairwise cost matrix is (are)
minimal among before(x, y), before(y, x) and tied(x, y). As
the challenge is both to divide the initial problem into as small
sub-problems as possible and to put robust frontiers between
groups of elements, we respectively define two graphs: Ge

the graph of elements and Gr the robust graph of elements.
In both graphs, an absence of edge from x to y intuitively
means that it is reasonable to have y before x in a consensus
as before(y, x) is minimal. The difference between the two
graphs is that in Gr, the absence of edge from x to y means
that before(y, x) is the unique minimum for the pair {x, y}
whereas the uniqueness is not necessary for Ge.

Let us define formally Ge and Gr.

Definition of the graph of elements Ge. Let Ge = (Ve, Ee)
be the directed graph such that:
• Ve = U
• Ee = {(x, y) ∈ V 2

e : before(y, x) > min(x, y)}.
Edges in the graph of elements Ge. In Ge, there is no
edge from x to y if and only if before(y, x) is minimal (not
necessarily the unique minimum).
Definition of the robust graph of elements Gr. Let Gr =
(Vr, Er) be the directed graph such that:
• Vr = U
• Er = {(x, y) ∈ V 2

r : x 6= y ∧ (before(y, x) ≥
before(x, y) ∨ before(y, x) ≥ tied(x, y)}.

Edges in the robust graph of elements In Gr, there is no
edge from x to y if and only if before(y, x) is the unique
minimum for the pair {x, y} (compared to before(y, x) and
tied(x, y)). In other words, for a pair {x, y}, we can distin-
guish three cases:
• case 1: before(x, y) is the unique minimum. Then there

is an edge from x to y and no edge from y to x.
• case 2: before(y, x) is the unique minimum. Then there

is an edge from y to x and no edge from x to y.
• case 3: if case 1 and case 2 fail, then there are both edges

from x to y and from y to x.
Table III recaps for a given pair of elements {x, y} the link

between before(x, y), before(y, x), tied(x, y), min(x, y)
and the edges between x and y in Ge and Gr.

We can see that Ge is a spanning sub-graph of Gr i.e.
Ge and Gr have the same set of vertices (the elements to
be ranked) and each edge of Ge is necessarily also an edge
of Gr. The proof is straightforward using Table III. Another
information given by Table III is that Gr and Gs provide
the same edges for a pair {x, y} if and only if there is a
unique minimum value between before(x, y), before(y, x)
and tied(x, y).
Illustration. Fig. 1 represents both the Ge graph and the Gr

graph related to the input rankings presented in Table I.
Comparison of Ge and Gr in Figure 1. Let us focus on the
similarities and differences between Ge and Gr. We can see
that D, E, A, B, C have exactly the same edges. Interestingly,
they are the elements of groups 1 and 2, where no arbitrary
choice is possible for any pair of elements (D is tied with E in
a strict majority of rankings, A is before B in a strict majority
of rankings, ...). Let us now focus on F , G and H (group 3).
Element H can be arbitrary placed before or after F (same

TABLE III
RELATION BETWEEN POSITION OF MIN(X,Y) AND EDGES IN Ge AND Gr

before(x, y) before(y, x) tied(x, y) in Ge in Gr

= min(x,y) > min(x, y) > min(x, y) x→ y x→ y
> min(x, y) = min(x,y) > min(x, y) x← y x← y
> min(x, y) > min(x, y) = min(x,y) x � y x � y
= min(x,y) > min(x, y) = min(x,y) x→ y x � y
> min(x, y) = min(x,y) = min(x,y) x← y x � y
= min(x,y) = min(x,y) > min(x, y) x y x � y
= min(x,y) = min(x,y) = min(x,y) x y x � y
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H

Fig. 1. Graph of elements Ge (solid arcs) and robust graph of elements Gr

(solid and dashed arcs) for the example presented in Table I. Grey arcs indicate
that all edges from {D,E} to {A,B,C, F,G,H} and from {A,B,C} to
{F,G,H} are present in both graphs.

with G). This lack of robustness implies that there is an edge
from F to H and another from H to F in Gr whereas there
is neither an edge from F to H nor from H to F in Ge.

The challenge is now to make use of (i) Ge to divide the
initial problem into as many smaller problems as possible and
(ii) Gr to reveal the different groups of elements such that
there is a natural relative order between groups.

B. Graph of strongly connected components

This subsection recalls a few definitions from graph the-
ory, then explains why it is useful to compute the strongly
connected components of Ge and Gr.

a) Definitions: A strongly connected component (SCC)
of a directed graph G = (V,E) is a subset V

′
of V (possibly

V itself) such that (i) for any two vertices (x, y) of V
′
, there

exists a directed path from x to y and (ii) V
′

is maximal for
(i) i.e. there is no subset V

′′
of V such that V

′ ⊂ V ′′ and V
′′

respects (i).
Let now G = (V,E) be a graph and C = {c1, ..., cz} be the

set of the strongly connected components of G. The graph of
strongly connected components of G is the directed graph
G′ = (V ′, E′) such that (1) V ′ = C and (2) E′ = {(ci, cj) ∈
C 2 : i 6= j ∧ ∃x ∈ ci, y ∈ cj : (x, y) ∈ E}.

The vertices of G′ are the strongly connected components
of G. There is an edge from a vertex ci to another vertex cj in
G′ if and only if there is at least one element x of ci and one
element y of cj such that (x, y) is an edge of G. Computing
the strongly connected components of G can be done with
Tarjan’s strongly connected components algorithm [12].

By definition, G′ is a directed acyclic graph (DAG). As a
consequence, there is at least one topological sort of G′ i.e. a
list T = [T1, T2, . . . , Tk] of all the vertices of G′ such that
Ti is not reachable from Tj for each i < j.

In this article, we respectively denote Gc
e and Gc

r the graph
of the strongly connected components of Ge and Gr.

b) Interest of Gc
r: Vertices of Gc

r are groups of elements
such that there is a natural relative order between them: there
is a unique topological sort of Gc

r as for two vertices v1, v2
of Gc

r, there is necessarily an edge from v1 to v2 or an edge

c1 = {DE} c2 = {ABC} c3 = {F,G,H}

Fig. 2. Gc
r , the graph of strongly connected components of Gr .

c1 = {DE} c2 = {ABC}

c4 = {F}

c3 = {H}

c5 = {G}

Fig. 3. Gc
e, the graph of strongly connected components of Ge.

from v2 to v1 (in Gr, two elements are necessarily connected
by at least one edge, see Table III). Conversely, if we consider
elements belonging to the same vertex of Gc

r, the three
following situations are possible (nonexclusive). First, some
pairs {x, y} have tied(x, y) as unique minimal cost and should
not be separated. Second, there are incompatibilities (e.g.,
before(x, y), before(y, z) and before(z, x) are respectively
the unique minimum for {x, y}, {y, z} and {z, x}). Third,
there is a lack of robustness (two relative placements have the
same minimal cost for a pair {x, y}).
Illustration. Fig. 2 represents the Gc

r graph of Example I.
Gc

r has three edges (Gr has three SCCs) which correspond to
the groups 1, 2, 3. Computing the SCCs of Gr enables the
gathering of (i) {D,E} which should not be separated as they
are tied in a strict majority of rankings, (ii) {A,B,C} which
form an incompatibility difficult to solve, and (iii) {F,G,H}
which may not be split any further in this graph.

c) Interest of Gc
e: To compute efficiently a consensus, we

need groups to be as small as possible, and Gc
e can be very

useful to break some groups of elements built by Gc
r. Indeed,

as Ge is a spanning sub-graph of Gr, some edges of Gr may
have been removed. The consequence is that smaller groups
may appear, still under the condition that a missing edge is
synonym of a minimal cost for a ”before relation”.
Illustration. Fig. 3 represents graph Gc

e of Example I. We can
see that vertex c3 of Gc

r has been broken into three sub-groups.
This break was enabled by the possibility to place H before
or after F and G.

IV. RELIABILITY-AWARE RANK AGGREGATION

This section introduces fundamental properties on the graph
representation presented in the above section which form
the basis of a new rank aggregation procedure to efficiently
provide reliability-aware consensus rankings.

A. Fundamental properties

We present two properties in this section. The first one is
related to Gc

e and can be exploited to divide the initial problem



into several sub-problems, which is important to compute
a high-quality consensus ranking in a reasonable time. The
second one is related to Gc

r and can be exploited to set robust
frontiers between groups of elements.

Let us set two points of vocabulary. First, a consensus
ranking c respects a topological sort T = [T1, T2, ..., Tk] of
Gc

r or Gc
e if and only if for all pairs of elements {x, y} such

that x ∈ Ti, y ∈ Tj and i < j, x is before y in c. Last, we
denote R(Ti) the set of rankings built from the input set of
rankings R by removing all the elements which are not in Ti.
Illustration. Consider R the set of rankings presented in
Table I and consider c1 the SCC of Gs which contains
D and E. Then, we obtain that R(c1) = R({D,E}) =
[r
′

1, r
′

2, r
′

3, r
′

4, r
′

5, r
′

6] where r′1 := [{D,E}], r′2 := [{D,E}],
r′3 := [{E}, {D}], r′4 := [{D}, {E}], r′5 := [{D,E}],
r′6 := [{D,E}].
Concatenation property. Let T = [T1, T2, . . . , Tk] be a
topological sort of Gc

e and µi be an optimal consensus for
R(Ti) for 1 ≤ i ≤ k. Then the concatenation µ1.µ2 . . . µk is
an optimal consensus for R.
Proof. Let µ be the concatenation µ1.µ2 . . . µk and c be any
consensus ranking. We prove that µ is an optimal consensus
by showing that S(µ,R) ≤ S(c,R). The score S is defined
in (1) as a sum over (x, y) ∈ P . We cut this sum in k + 1
parts and show that each part is smaller or equal for µ than
for c: for each i from 1 to k, we consider the part of the
sum over (x, y) such that x and y both belong to Ti. Then
this part is smaller or equal for µ than for c since µi is an
optimal consensus for R(Ti). Now consider the remaining part
of the sum. It is over (x, y) such that x and y do not belong
to the same Ti. Assume that x ∈ Ti, y ∈ Tj , i < j (the
proof is similar if i > j). As Ti is before Tj in T , there is
no edge from y to x in Ge. By construction of Ge, we can
conclude that before(x, y) = min(x, y). In other words, the
cost induced by (x, y) in µ can not be higher than the cost
induced by (x, y) in c. Finally, S(µ,R) ≤ S(c,R) as claimed.
Corollary. There exists an optimal consensus ranking com-
patible with any topological sort T = [T1, ..., Tk] of Gc

e.
A direct consequence of the concatenation property is that

the different sub-problems R(T1), R(T2), . . ., R(Tk) can be
treated independently. This observation naturally leads to an
algorithm we present below.
Robust frontiers property. Any optimal consensus respects
the unique topological sort T = [T1, ..., Tk] of Gc

r.
Proof. Consider a consensus ranking c which does not respect
T . We will show that c is not optimal. From c, we build a
consensus c′ as follows: take first the elements of T1 in the
same order as they are in c, then append the elements of T2 in
the same order as they are in c, and repeat the operation for
the elements of T3, ..., until Tk. By construction, c′ respects
T, thus is different from c. Now, let us compare S(c,R) and
S(c′, R) using (1). Each pair of elements (x, y) such that x
and y are in the same relative order in c and c′ induce the same
cost for c and c′. Now consider pairs (x, y) such that x and y
are not in the same relative order in c and c′ (there is at least
one such pair). By construction of c′, x and y are in different

groups of T i.e in two different SCCs of Gr. Let set x ∈ Ti
and y ∈ Tj with i < j. As Ti is before Tj , there is no edge
from y to x in Gr. By construction of Gr, we can conclude that
before(x, y) = min(x, y), before(y, x) > min(x, y) and
tied(x, y) > min(x, y). As a consequence, S(c, r) > S(c′, R)
i.e. c can not be an optimal consensus.
Illustration. Consider R the set of rankings presented in Table
I and consider c1 the SCC of Gc

r which contains D and E.
We obtain that in any optimal consensus ranking, D and E
are before all the remaining elements and A, B and C are
before F , G and H . There is a 2-frontier and a 5-frontier.

B. Reliability-aware rank aggregation

Thanks to the concatenation property, we know that having
an optimal consensus for each sub-problem obtained with Gc

e

guarantees an optimal consensus for the initial problem.
The question is now to determine how to treat the elements

within each SCC of Ge. Two cases can be considered. If (case
1), for any pair of elements {x, y} in the SCC, tied(x, y) =
min(x, y) then one optimal consensus for the sub-problem
is a single bucket containing all the elements of the SCC.
Otherwise (case 2), no trivial optimal consensus can be found:
an auxilliary ranking algorithm (depending on the size of SCC,
an exact algorithm or rather an heuristic) should be called to
provide a consensus ranking.
Illustration. Let us inspect again the example presented in
Table I. A possible topological sort for Gr is: [c1, c2, c4, c5, c3]
i.e. [{D,E}, {A,B,C}, {F}, {G}, {H}]. Given this ordering,
it is now possible to quickly construct several parts of the final
consensus ranking of R. Indeed, we know that: (i) [{D,E}],
(ii) [{F}], (iii) [{G}] and (iv) [{H}] are optimal consensus
rankings for the sub-problem induced respectively by (i) c1,
(ii) c4, (iii) c5 and (iv) c3 (case 1).

Although placing A, B and C is not trivial (case 2), we can
already claim that there exists an optimal consensus in which
(i) D and E share the 1st position ex-aequo ; (ii) A, B and
C share the 3rd, 4th and 5th position (still not ordered yet);
(iii) F is in 6th position; (iv) G is in 7th position; (v) H is
in 8th position.

Suppose now that the algorithm used to solve the sub-
problem induced by c2 placed A before both B and
C and placed B before C. Then, the obtained consen-
sus ranking for the example presented in section I is
[{D,E}, {A}, {B}, {C}, {G}, {F}, {H}].

Continuing with our example, let us provide an intuition of
the reasons why there is no trivial optimal consensus in case
2. Let us notice that there is at least a pair (x, y) of elements
in the SCC such that the transitivity is not respected regarding
the minimal costs of each pair of the triple. For example, in
c2 of Fig 3, we have a path from A to B and a path from B to
A. As a consequence, we would like to place A before B or
tied with B, and B before A or tied with A. The only way to
respect these constraints is to tie them. However, tied(A,B) >
min(A,B). As a consequence, we have no guarantee that A
and B are tied in an optimal consensus. Computing an optimal
consensus is here intrinsically difficult.



Algorithm 1: Graph-based procedure providing a consen-
sus ranking and positioning k-frontiers (with a pre-process
and an auxiliary algorithm).

Input: R : set of rankings
begin

M ← PairwiseCostMatrix(R)
Gr ← ComputeGraphGr(M )
Ge ← ComputeGraphGe(M )
Gcr ← SCC(Gr)
Gce ← SCC(Ge)
topolSortGr ← TopologicalSorting(Gcr)
topolSortGe ← TopologicalSorting(Gce)
nbSccGe ← numberSCCofGe
nbSccGr ← numberSCCofGr
consensus ← EmptyListOfSets()
placed ← 0
j ← 1
nextFrontier ← topolSortGr[j].length()
for i← 1 to nbSccGe do

if ∃v1 6= v2 in topolSortGe[i] with
tied(v1, v2) > min(v1, v2) then

inducedInput ← CopyInput(R)
Remove from inducedInput all the elements

not in topolSortGe[i]
subConsensus ← auxiliaryAlgo(inducedInput)
Append each bucket of subConsensus to

consensus
else

Append topolSortGe[i] to consensus

placed ← placed + topolSortGe[i].length()
if placed = nextFrontier andj < nbSccGr then

Add a k-frontier in the consensus
j ← j + 1
nextFrontier ← nextFrontier + topolSortGr[j]

Result: consensus with k-frontiers

Algorithm 1 describes the procedure providing a consensus
ranking with k-frontiers. Note that the result of the returned
consensus ranking may depend on the auxiliary algorithm
used to solve the sub-problems. Moreover, if we never call an
heuristic (either if case 1 always holds or if an exact algorithm
is used instead), then the consensus provided is optimal.

V. EVALUATION

This section introduces ConQuR-BioV2, a tool in which our
approach has been fully implemented and which is concretely
in-use for the life science community. Then, we present the
experimental setting we set-up followed by the results we
obtained on real large biological datasets.

A. ConQuR-BioV2: a new rank aggregation tool for bio data

ConQuR-Bio has been initially introduced in [5] to guide
users in the maze of biological data available in public
biological databases. ConQuR-Bio processes in three steps.

First, given a keyword, ConQuR-Bio queries a set of databases
able to provide synonyms of the user keyword listed in medical
thesaurus from the UMLS (e.g., MeSH, OMIM, SNOMED
CT, ICD9CM). Second, for each synonym (and the initial
keyword), ConQuR-Bio automatically generates a query – also
called a a reformulation – and send it to the NCBI Gene
database. For each reformulation, ConQuR-Bio collects a set
of answers, ranked by relevance (number of occurrences of
the keyword in the answer). Third, ConQuR-Bio uses rank
aggregation techniques to provide a final consensus ranking.

In the example provided in Figure 4 the user has considered
the keyword Long QT syndrome for which 48 synonyms have
been found (e.g., Timothy syndrome). The set of answers can
be visualized by the user.

ConQuR-Bio is used by several members of the life science
community demonstrating the need for this kind of tools.
However, it suffered from two main weaknesses. First, the
number of elements obtained as answer to a query is constantly
augmenting, there is thus a crucial need for an approach able to
scale. Second, ConQuR-Bio is used to provide new research
hints that may be then confirmed by wet experiments. Life
scientist users have expressed their need to be aware of the
robustness associated with the positions of elements.

ConQuR-BioV2 addresses these two key points by intro-
ducing two new key features: (i) the rank aggregation module
has been rebuilt to use the graph-based pre-process introduced
in Section IV and (ii) the user interface has been adapted to
exploit the information on the k-frontiers produced.

B. Evaluation: Experimental setting

a) Datasets: Based on the expertise of our life science
collaborators (from Institut Curie, Institut Pasteur, Orphanet
and the Childrens’ Hospital of Philadelphia), we selected a
set of 30 diseases for which there exist relationships between
diseases and genes. This list provided in Table IV includes
cancers (e.g., breast cancer), rare diseases (e.g., Beckwith-
Wiedemann syndrome) and childhood diseases (e.g., Long QT
syndrome).

For each disease, we used ConQuR-Bio to find different
synonyms and thus generate reformulations. Each reformula-
tion of a query provides a ranking (of answers). As shown in
Table IV, each disease (denoted by a initial keyword which
is always a MeSH term) is associated with 14 synonyms in
average (from 3 to 48 synonyms). For each disease, 322 genes
by rankings are provided in average (in all the reformulations).

b) Algorithms: Several studies of rank aggregation al-
gorithms have been performed in the past ten years. One
of the most recent is [11] which introduced an exact algo-
rithm (reused in this paper) and concludes on the fact that
three heuristics are considered as the currently most effective
namely, KwikSort [9], Copeland method [13] and BioConsert
[7]. We thus considered the exact algorithm and the three
heuristics above that we all slightly adapted to handle the
pseudo-distance described in Section II (to manage rankings
that have been completed by unification).



Fig. 4. Interface of ConQuR-BioV2

TABLE IV
DATASETS TABLE.

ID disease # rankings # genes
1 ADHD 28 350
2 Alagille syndrome 24 382
3 Angelman syndrom 9 239
4 Beckwith-Wiedemann syndrome 19 272
5 Bladder cancer 15 556
6 Breast cancer 14 648
7 Cervix cancer 13 437
8 Colorectal cancer 5 379
9 Crouzon syndrome 23 423

10 Darier disease 20 167
11 DiGeorge syndrom 29 258
12 Ehlers-Danlos syndrome 15 121
13 Familial ataxia 22 212
14 Fanconi anemia 18 355
15 Leber congenital amaurosis 17 309
16 Long QT syndrome 48 236
17 Morquio syndrome 35 423
18 Mucoviscidiosis 10 352
19 Myotonic dystrophy 16 207
20 Neuroblastomas 3 279
21 Noonan syndrome 23 387
22 Omenn syndrome 9 367
23 Paget disease of bone 12 270
24 Polycystic kidney disease 9 262
25 Retinoblastoma 17 437
26 Sandhoff disease 22 206
27 Sideroblastic anemia 11 249
28 Tangier disease 22 295
29 Usher syndrome 24 258
30 Wilms tumor 21 315

c) Running time and quality of the results: Experiments
were conducted on a four dual-core processor Intel Core
2.9GHz with 32GB memory desktop using Java 1.8.0. Each
running-time measure was preceded by a warm-up time to
ensure that all classes were already loaded in the JVM

memory. Implementations were single-threaded.
As for the quality of the results obtained, we classically

considered the gap [14], [6] which consists in normalizing the
distance to show the additional disagreement one solution has
(c) compared to an optimal solution (c∗).

Given a set of rankings R and an optimal consensus c∗,
the gap is defined as follows: gap(c,R) = S(c,R)

S(c∗,R) − 1. The
value of the gap is 0 if and only if the provided consensus
is an optimal consensus. Biological datasets usually contain
too many elements to compute an optimal consensus with
an exact algorithm. In these cases we use as a reference the
consensus ranking with the lowest score that we denote c+(the
best provided by a nonexact algorithm) and use the m-gap
[11]: m-gap(c,R) = S(c,R)

S(c+,R) − 1. Note that if an optimal
solution is found m-gap(c,R) = gap(c,R).

C. Evaluation on biological datasets

We now consider five experiments performed on the 30
biological datasets described above. The first three are related
to the evaluation of the pre-process approach while the last
two focus on the robustness of the consensus ranking obtained
(k-frontiers).

a) Experiment 1 (Interest of the pre-process): The first
experiment aims at evaluating the role of the pre-process in
the final ranking provided. Figure 5 shows that a large amount
of genes can be ranked by the pre-process without any need of
any algorithms or heuristics. More precisely (i) for 10 datasets,
an optimal solution was found (100% of the genes have been
placed by the pre-process), (ii) in the remaining datasets, 43%
to 97% of genes are positioned this way. This represents for
each query a range of 101 to 423 elements (in average 249)
positioned by the pre-process on its own.

To rank the remaining set of the elements, there are two
possibilities. The first (and obviously preferred when possible)



Fig. 5. Proportion of genes placed in the consensus ranking by the pre-process
only for each biological dataset.

is to use an exact algorithm which provides best quality results
but may be impossible if the set of elements to rank is too
large. The second one (default) is to use a heuristic. The next
experiment investigates the ability to use the exact algorithm.

b) Experiment 2 (use of the exact algorithm): The cur-
rent implementation of Algorithm 1 uses the exact algorithm to
compute a consensus ranking for a sub-problem if the number
of genes to rank in the sub-problem is lower than 80 (i.e. the
strongly connected component of Ge contains less than 80
genes). This ensures that the final consensus ranking can be
returned to the user in a reasonable time (several seconds).
This second experiment provides the number of genes that are
placed (i) by the pre-process (cf experiment 1), (ii) then by
an exact algorithm and (iii) then by a heuristic. The result
is shown in Figure 6. Thanks to the exact algorithm, optimal
solutions have been found for 14 more datasets (a total of 24
when adding the optimal solutions found by the pre-process).
A heuristic has to be used for only 6 remaining datasets.
Determing the best heuristic to choose is a key point that we
consider in the next experiment.

c) Experiment 3 (Benching various heuristics with/out
pre-processing): In this third experiment we compare the m-

Fig. 6. Number of genes placed in the consensus ranking by (i) the pre-
process, (ii) an exact algorithm, (iii) a heuristic.

TABLE V
BENCHMARK

heuristics mean m-gap mean time max time

CopelandMethod 1.49 * 10−1 11.54 ms 40.23 ms
pre-process
+CopelandMethod

1.02 * 10−2 29.22 ms 142.73 ms

KwikSort 1.03 * 10−2 0.36 ms 0.93 ms
pre-process
+KwikSort

3.86 * 10−3 27.46 ms 78.44 ms

BioConsert 2.81 * 10−5 141.37 ms 584.02 ms
pre-process
+BioConsert

6.32 * 10−5 71.3 ms 306.32 ms

pre-process
+exact(SCC < 80) 3.64 * 10−6 2.53 s 18s (1 dataset)
+BioConsert ≤ 7s otherwise

gap and the computation time of the three heuristics mentioned
in subsection V-B, used with and without pre-processing.

Table V provides the results of the bench we conducted.
Two points can be noticed. First, using the pre-process allows
to increase the quality of fast algorithms while not impacting
their computation time in a significant way for the user.
More precisely, the m-gap (best value = 0) of KwikSort has
been decreased by 63.0% and the m-gap of CopelandMethod
has been decreased by 93%. Computation time remains very
reasonable (less than 150 milliseconds).

Second, using pre-processing allows to increase the speed
of high-quality algorithms still improving their quality. More
precisely, the computation time of BioConsert has been re-
duced by 50% while its m-gap has been reduced by 87%.

Based on these experiments, the implementation of
ConQuR-BioV2 runs systematically the exact algorithm and
BioConsert in parallel. If the exact algorithm gives the result in
less than 2 seconds, this result is used. Otherwise, the result of
BioConsert is used. More generally, our pre-process allows us
to run in parallel auxiliary algorithms on different connected
components.

d) Experiment 4: Robust graph of elements on biological
datasets: In this last but not least series of experiments, we
provide information on the k-frontiers between elements in
real datasets. Figure 7 indicates the number of datasets for
which the elements in the first k positions are robust, that
is, these elements are positioned in the first k positions by
any optimal consensus. Out of the 30 datasets, 25 have a 1-
frontier, that is, one single gene is (unambiguously) known
to be the most associated with the disease (all the possible
optimal consensus placed it first). Twelve datasets have a 4-
frontier, that is, four genes are strongly known to be the more
associated with the disease. Unsurprisingly, only a few datasets
have a 10-frontier.

Finally, five datasets do not have any element which position
is always the same in the set of all the possible solutions. In
these diseases, several genes may be currently candidates to
be associated with the disease but still under consideration or
not associated with all the forms of the disease.

As a conclusion of this experiment, our approach here helps
users distinguishing a possible ranking (possibly provided



Fig. 7. Number of datasets with a k-frontier

somehow arbitrarily) from a robust highly-reliable ranking.
e) Experiment 5 (qualitative): Using k-frontiers: On Fig-

ure 4, we can see that for the Long QT syndrome, the user
has access to precise information on the robustness with eight
frontiers indicated. More precisely, such frontiers allow the
user to know that the order between the six first elements is
robust (e.g., CALM1 is strictly less important than KCNE1 wrt
Long QT syndrome). As for the elements ranked 7th to 11th,
there may exist other optimal consensus where their relative
positions differ. Thus, if an experiment should be conducted
on CAV3 (positioned 7th) then the experiment should consider
also genes at positions 8 to 11 as their relative order is not
robust. The interface thus provides a guide to the user on
further research to be conducted.

VI. CONCLUSION

We have considered a problem encountered by most life
scientists when querying biological databases: dealing with
several rankings of answers to be combined into one single
ranking. Our solution lies on rank aggregation techniques.
Our first contribution consists in introducing an algorithm
able to partition the very large set of elements to be ranked
into smaller sets. This contribution is based on a property we
demonstrated, ensuring that the concatenation of the solutions
obtained on subsets of elements is a solution of the complete
set. Results obtained on real datasets demonstrate how useful
this contribution can be, allowing rank aggregation approaches
to scale and provide high quality results on a reasonable time
(less than a second) for several hundreds of elements. Our
second contribution defines the concept of k-frontier to guide
users in their understanding of the consensus by highlighting
robust positions of elements.

The originality of our approach is twofold. First, it is
based on graph representations allowing to better capture the
intrinsic relationships between elements of the rankings. It can
be combined with all the heuristics currently available and
discussed in [11]. Second, our approach is reliability-aware,
that is, it provides high-quality results possibly using an exact
algorithm while providing users with a clear information on
the robust elements in the consensus ranking produced.

As seen from the introduction, a plethora of heuristics have
been proposed to the rank aggregation problem [2], [7], [9],
[10], [13], compared in various studies [6], [11], [14]. New
divide-and-conquer kind of heuristics have been introduced
even recently (see for example [15], [16]). However, our
approach differs from such approaches in that we provide
strong guarantees on the result: our decomposition in sub-
problems necessarily complies with an optimal solution. As
for the reliability-aware aspect of our contribution, we are not
aware on any work considering the problem of several optimal
solutions in a context with real datasets and users and studying
the robustness of the results.

In the future, we will work with the ConQuR-BioV2 users to
collect their feedback. Ongoing work includes extending our
approach to other kinds of datasets: (i) considering various
kinds of datasets from NCBI (including proteins and SNPs),
(ii) considering gene rankings obtained by various omics
experiments (proteomics, micro-arrays). Such new contexts of
study may reveal new requirements in particular concerning
the distance to consider or the heuristics to favor.
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