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a b s t r a c t 

The recent success of immunotherapies for the treatment of cancer has highlighted the importance of 

the interactions between tumor and immune cells. Mathematical models of tumor growth are needed to 

faithfully reproduce and predict the spatiotemporal dynamics of tumor growth. We introduce a mathe- 

matical model intended to describe by means of a system of partial differential equations the early stages 

of the interactions between effector immune cells and tumor cells. The model is structured in size and 

space, and it takes into account the migration of the tumor antigen-specific cytotoxic effector cells to- 

wards the tumor micro-environment by a chemotactic mechanism. We investigate on numerical grounds 

the role of the key parameters of the model such as the division and growth rates of the tumor cells, and 

the conversion and death rates of the immune cells. Our main findings are two-fold. Firstly, the model 

exhibits a possible control of the tumor growth by the immune response; nevertheless, the control is not 

complete in the sense that the asymptotic equilibrium states keep residual tumors and activated immune 

cells. Secondly, space heterogeneities of the source of immune cells can significantly reduce the efficiency 

of the control dynamics, making patterns of remission-recurrence appear. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Cancer development is the consequence of an accumulation of

utations that leads to the deregulation of a relatively restricted

umber of key pathways, enough for tumor formation and pro-

ression. Tumors grow not only because of the genetic and epi-

enetic changes that confer a growth advantage, but also under

he control of immune cells within the tumor microenvironment

 Dunn et al., 2002; Hanahan and Weinberg, 2000 ). Experimental

nd clinical evidences indicate that the immune system plays a

ritical role in the prevention and the eradication of tumors, see

.g. Dunn et al. (2002) , Farrar et al. (1999) , Müller et al. (1998) ,

myth et al. (2001) and Stewart (1996) . 

The genetic alterations in the tumor trigger the expression of

eoantigens and upregulation of ligands of activating natural killer

NK) cell receptors which provides the immune system a basis to
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ngage an immune response. In an efficient anti-tumor immune

esponse, neoantigens are captured by Antigen Presenting Cells

APCs) such as Dendritic Cells (DCs) which activate naive/resting

 -cells in secondary lymphoid organs draining the tumor site. As a

esult, activated and proliferating CD 8 + and CD 4 + effector T -cells

ill migrate towards the tumor micro-environment where they

an eliminate tumors. This loop is known as the cancer immu-

ity cycle, see Chen and Mellman (2013) . Nonetheless, this cycle

s subjected to many impediments. Succinctly, tumor antigens can

e treated as self-antigens and lead to the priming of regulatory T -

ells responses inhibiting effector responses ( Shimizu et al., 1999 );

umor cells can produce inhibitory cytokines such as IL-10 or IL-4

Interleukin 10 or Interleukin 4) which diminish the inflammation

nd lead to anergic and tolerant T -cells ( Itakura et al., 2011; Olver

t al., 2009 ); tumors also express proteins such as PD-L1 which can

ind to the PD-1 receptors on activated T -cells, inhibiting their cy-

otoxic activity ( Iwai et al., 2002 ). Effective immune responses are

hus counterbalanced by the activation of a myriad of immunosup-

ressive strategies ( Rabinovich et al., 2007 ). The interactions be-

ween tumor cells and the immune cells rely on highly complex

echanisms, that lead to divide the immune response to cancer
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into three different phases: elimination, equilibrium, and escape

( Dunn et al., 2002 ). In this context, the design of an efficient treat-

ment by enhancing the immune response, also called immunother-

apy, is challenging. 

Mathematical models might help to understand the interplay

between tumor growth and the immune response ( de Pillis et al.,

20 05; d’Onofrio, 20 05; Eftimie et al., 2011; Kirschner and Panetta,

1998; Robertson-Tessi et al., 2012 ). These models can even be

completed in order to also describe and optimize the action of

chemotherapy treatments and strategies to boost immune re-

sponses ( André et al., 2013; Traina et al., 2010 ). However, most of

these models are based on quite sophisticated ordinary differen-

tial equations (ODEs) systems, and do not take into account space

heterogeneities, and the displacement capabilities of the immune

cells. Many models also do not consider in details the uncontrolled

cellular division at the origin of the tumor growth. These are the

questions we address, by proposing a description based on size

and space structured interacting cell populations. In this model,

more specifically intended to describe the early stages of the tu-

mor growth, the displacement of the immune cells is governed

by chemotaxis, according to signals emitted by the tumor. The

construction of the coupled partial differential equations (PDEs)

system is based on a set of modeling assumptions, detailed in

Section 2.1 below. These simplifying assumptions can be question-

able, but they are intended to keep the most relevant mechanisms

with a system of equations as simple as possible. The modeling

discussion is particularly driven by the following concerns: (1) to

have at hand a model affordable for numerical simulation with-

out a too important computational cost, (2) to reduce the num-

ber of parameters: considering more intricate phenomena would

require to introduce further parameters, but their role can make

the discussion more obscure, due to a lack of knowledge of their

effective value, and difficulty in having access to measurements

( Eftimie et al., 2017 ). 

The paper is organized as follows. In Section 2.1 , we collect the

modeling assumptions and in Section 2.2 we set up the model,

which couples a convection-diffusion equation for the immune

cells to a growth-fragmentation equation for the tumor cells. An

overview of the main questions that are addressed with the model

can be find in Section 2.3 . Section 2.4 presents the mathematical

insights on the equations, bringing out the capability of controlling

the tumor growth, through an interpretation by means of iden-

tification of eigen-elements. The main result means that the tu-

mor stops expanding, but it does not disappear entirely: a cancer-

persistent equilibrium is reached between the tumor and the im-

mune system, a phenomenon which has been clinically observed

( Chen and Mellman, 2017; Dunn et al., 2002; Koebel et al., 2007 ).

The theoretical statement assumes certain technical conditions, say

on the smallness of the rate of tumor cell division, but we are not

able to decide whether or not this technical restriction is neces-

sary. Next, we investigate the features of the model on numeri-

cal grounds in Section 3 . We check numerically the ability of the

immune system to control tumor growth, in agreement with the

theoretical result. We pay a specific attention in identifying the

leading parameters that govern the immune response efficiency,

which could be important to guide therapeutic strategies. Our sim-

ulations also reveal the importance of space-structuration: space

heterogeneities of the sources of naive immune cells, that provide,

once activated, the tumor-specific cytotoxic effector cells eliminat-

ing the tumor, dramatically influences the immune response effi-

ciency. Replacing the homogeneous distribution of immune cells

by a few spots makes the immune response less efficient. Instead

of the control of the tumor, that would be kept at a fixed mass,

what we can observe is a periodic succession of rapid growth and

remission phases. 
. Mathematical model 

.1. Modeling assumptions 

We take into account two populations of interacting cells: 

• The tumor antigen-specific cytotoxic effector cells including

CD 8 + T -cells and natural killer (NK) cells, 
• The tumor cells. 

The specific biological assumptions we consider to construct the

odel are based on the behavior of the effector cells in the micro-

nvironment of a growing tumor and on the key phenomena gov-

rning tumor cell growth: 

A.1 Environmental constraints such as nutrient concentrations,

temperature, etc. are assumed to be constant; 

A.2 The states of the tumor cells are characterized by their size

(or, equivalently, their volume or their mass); 

A.3 The growth rate of a tumor cell is a deterministic process:

in absence of an immune response, each tumor cell grows

with a certain rate which might depend on its size; 

A.4 When a tumor cell reaches a certain size, the so-called “fis-

sion size”, it divides into daughter cells, usually two identical

cells, at a certain rate; 

A.5 Each tumor cell induces a signal, for instance of chemi-

cal nature, which is related to the tumor antigenicity: the

higher the mass of the tumor and the higher the antigenic-

ity, the higher the amplitude of the signal; 

A.6 The tumor antigen-specific CD 8 + T -cells are recruited and

activated by APCs and the NK cells are recruited and ac-

tivated by tumor cells from a bath of non-activated im-

mune cells; the recruitment is characterized by a certain

rate driven by the presence of tumor cells; 

A.7 The activated tumor antigen-specific CD 8 + T -cells and the

NK cells migrate towards the tumor micro-environment by

chemotaxis: they follow the gradient of a potential induced

by the overall tumor-derived signals; 

A.8 Activated tumor antigen-specific CD 8 + T -cells and NK cells

which reach the tumor induce the death of the targeted tu-

mor cells; 

A.9 The tumor microenvironment is not immunosuppressive. 

Let us discuss these assumptions, with possible hints for future

evelopments of the modeling: 

• Assumption A.1 makes sense as far as we model very early

stages of tumor development. For the same reason, hypoxia ef-

fects are neglected. 
• Assumption A.2 is quite restrictive. As it will be detailed be-

low, we completely neglect any geometrical effect. It is likely

that such a modeling only makes sense in the early stages of

the tumor growth, when the size of the tumor remains small.

Reasoning with the size of the cell is convenient to guide the

intuition, but we can similarly work by characterizing the cells

by the amount of cyclin complexes they contain; this leads

to the same kind of equations, see Basse et al. (2003) and

Bekkal Brikci et al. (2008) . Moreover, many other factors can

be relevant to characterize the state of a tumor cell: mutation

rate, weight, age and access to nutrients, etc. It would be pos-

sible to incorporate more degrees of freedom, but it would also

raise the issue of the access to the corresponding governing pa-

rameters. For this reason, it is unclear that incorporating further

details will make the model more accurate. 
• Assumption A.3 can be modified by introducing some stochas-

ticity in the growth process. 
• Similar considerations apply to assumption A.4, which can take

into account random effects, or depend on further variables. 
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• Assumptions A .5, A .6 and A .9 are restrictive too: the model is

set to be in the most favorable situation to eliminate tumors

but other immune cells are also involved. An important role

is played by activated CD 4 + T cells, mostly by the IFN- γ they

secrete. CD 4 + T -cells participate to the activation of NK cells

and CD 8 + T -cells. But, if on the one hand the activated CD 4 + T -
cells are stimulating the proliferation of CD 8 + effector T -cells,

on the other hand, they can be converted into regulatory T -

cells and thus limit antitumor immunity. Consequently, the im-

mune system not only act to suppress tumor growth, but it

has both stimulatory and inhibitory effects and it might fail

in controlling some growing tumors, due to immunosuppres-

sive mechanisms triggered by the tumor ( Chen and Mellman,

2017; Rabinovich et al., 2007; Wilkie and Hahnfeldt, 2017 ). The

modeling of such immunosuppressive mechanisms will be ad-

dressed in a forthcoming work. Moreover, as the tumor grow,

it itself becomes more heterogeneous under the mutation dy-

namics, which, in turn, activates various cytotoxic responses. 

.2. Construction of the model 

The model uses two distinct length scales: 

• The length scale of the displacement of the immune cells. Let

us denote [ L ] the corresponding unit (typically in mm ). Immune

cells thus occupy a certain position, denoted by x and measured

with [ L ]. 
• The length scale of the tumor cells. Let us denote [ l ] its unit

(typically in μm ). Tumor cells have a certain volume, hereafter

denoted by z , measured with the unit [ l ] 3 (typically μm 

3 ). 

This modeling assumes that the length scale associated to the

isplacement of the immune cells is “infinitely large” compared to

he length scale associated to the size of the tumor cells. It is con-

istent with the fact that we neglect any effects due to the ge-

metry of the tumor, which is not sensitive at the scale of the

isplacement of the immune cells. The interactions between the

umor and the immune system are described by the evolution of

he following unknowns: Tumor cell density The population of tu-

or cells is structured by the volume variable: ( t, z ) �→ n ( t, z ) stands

or the volumic density of tumor cells. Let [ cell n ] denote the unit

easuring the number of tumor cells. The density n is then mea-

ured in [ cell n ] · [ l] −3 . Given two volumes z 2 > z 1 > 0, the integral
 z 2 
z 1 

n (t, z) d z gives the number of tumor cells having a volume in

he interval [ z 1 , z 2 ] at time t . 

The cytotoxic effector cell concentration Let us denote ( t, x ) �→ c ( t,

 ) the concentration of immune cells that are actively fighting

gainst the tumor (it thus includes CD 8 + T -cells and NK cells) at

ime t and position x . Let [ cell c ] be the unit measuring the number

f immune cells. Then c is measured in [ cell c ] · [ L ] −3 . (We will per-

orm the simulations by restricting to the two dimensional frame-

ork, assuming homogeneity in the third direction; the necessary

daptation are left to the reader.) 

.2.1. The tumor growth and division 

At the macroscopic scale, the tumor is seen as a punctual mass,

ocated, say, at the center of the region of interest ( x = 0 ). The

odel can be easily extended to take into account multiple tumor

ites. Tumor cells proliferate in an uncontrolled manner due to a

oss of checkpoints of the cell cycle and they proliferate massively

y staying in the mitosis phase of the cell cycle. Neglecting for the

ime being the interaction with the cytotoxic cells, the evolution of

he tumor results from two phenomena: a natural growth and the

ivision of mature tumor cells into daughter cells. 

Let z �→ V ( z ) ≥ 0 be the natural, possibly size-dependent, growth

ate of the tumor cells. With the time variable t measured in [ t ]

typically in day ), V is measured in [ l] 3 · [ t] −1 . At the early stages
f tumor growth, see assumption A.1, V can be assumed constant.

ore intricate growth laws are presented in Appendix A . 

The cell division mechanism is embodied into an operator 

(n )(t, z) = −a (z) n (t, z) + 

∫ ∞ 

z 

a (z ′ ) k (z| z ′ ) n (t, z ′ ) d z ′ . (1)

here the gain term accounts for cells with size z produced by

he division of larger cells, and the loss term is related to the di-

ision of cells with size z . The division process is governed by two

uantities: the frequency a ( z ′ ) of division of cells having size z ′ ,
hus measured in [ t] −1 , and the distribution in size k ( z | z ′ ) of prod-

cts from the division of a tumor cell with size z ′ . It is likely that

he parameter of the division process depends on the size variable.

or instance, division frequency might vanish for the smallest cells,

hich means a (z) = 0 for 0 ≤ z ≤ z 0 , and then be a non decreasing

unction of the size. The kernel k satisfies the fundamental identity

 McGrady and Ziff, 1987 ) 
 z 

0 

z ′ k (z ′ | z) d z ′ = z. (2)

t implies the following mass conservation property 
 ∞ 

0 

zQ(n )(t, z) d z = −
∫ ∞ 

0 

za (z) n (t, z) d z 

+ 

∫ ∞ 

0 

a (z ′ ) 
(∫ z ′ 

0 

zk (z| z ′ ) d z 

)
n (t, z ′ ) d z ′ 

= 0 . 

or further purposes, let us introduce the expected number of cells

roduced from the division of a cell with size z , defined by 

¯
 (z) = 

∫ z 

0 

k (z ′ | z) d z ′ . (3)

t is supposed to be larger than 1. Then, cell division changes the

otal number of cells by an amount given by ∫ ∞ 

0 

Q(n )(t, z) d z = 

∫ ∞ 

0 

( N̄ (z) − 1) a (z) n (t, z) d z ≥ 0 . 

inally, the evolution of the population of tumor cells is driven by

he PDE 

∂ 

∂t 
n (t, z) + 

∂ 

∂z 
(V (z) n (t, z)) = Q(n )(t, z) . (4)

eferred to as a growth-fragmentation equation ( McGrady and

iff, 1987 ). This type of integro-differential equation is quite com-

on in material science and in biology ( Doumic, 2013; Doumic-

auffret and Gabriel, 2010; Gabriel, 2011; Perthame, 2007 ); see also

or specific applications to tumor growth, possibly taking into ac-

ount several compartments( Basse et al., 2003; Bekkal Brikci et al.,

008 ). Eq. (4) is completed by the initial distribution of tumor cells

 

∣∣
t=0 

= n 0 , (5) 

nd a boundary condition. Hereafter, we assume that the size vari-

ble ranges over the whole interval (0 , + ∞ ) , and the boundary

ondition excludes the creation of cells with volume 0: 

 (t, 0) = 0 . (6)

Division and growth can be seen as competing mechanisms: the

atter increases the size of the cells, while the break-up described

y the former creates new smaller cells from the large ones. This

an be understood by considering the evolution of the total num-

er of tumor cells in the tumor μ0 ( t ) and the total volume of the

umor μ1 ( t ), respectively given by 

0 (t) = 

∫ ∞ 

n (t, z) d z, μ1 (t) = 

∫ ∞ 

zn (t, z) d z. (7)
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Integrating (4) and using the boundary condition (6) yields 

d 

d t 
μ0 (t) = 

∫ ∞ 

0 

( N̄ (z) − 1) a (z) n (t, z) d z ≥ 0 , (8)

and 

d 

d t 
μ1 (t) = 

∫ ∞ 

0 

V (z) n (t, z) d z ≥ 0 . (9)

Eq. (8) tells us that the total number of cells in the tumor increases

due to cellular division processes. However, division does not influ-

ence the total volume of the tumor: we see with Eq. (9) that the

increase of the total volume of the tumor is only due to the growth

rate V > 0. We refer the reader to Appendix B ( Table 2 ) for details

about units and parameters for the tumor growth model. 

Binary division A relevant example is provided by the case of

binary division, where a cell with volume z splits into two cells,

with respective volumes αz and (1 − α) z, α ∈ (0, 1/2] being a divi-

sion parameter. The corresponding kernel reads 

k (z ′ | z) = 

1 

α
δz ′ = z α + 

1 

(1 − α) 
δz ′ = z 

1 −α

and the division operator becomes 

Q(n )(t, z) = −a (z) n (t , z) + 

1 

α
a 

(
z 

α

)
n 

(
t , 

z 

α

)
+ 

1 

1 − α
a 

(
z 

1 − α

)
n 

(
t, 

z 

1 − α

)
. (10)

Assuming the symmetry of the division process imposes α = 1 / 2

in (10) , and the division operator is given by 

Q(n )(t, z) = 4 a (2 z) n (t, 2 z) − a (z) n (t, z) . (11)

Further relevant examples of division kernels can be found in

Doumic-Jauffret and Gabriel (2010) . 

2.2.2. Evolution of the cytotoxic effector cell population 

The immune cells occupy the space domain � ⊂ R 

3 . The evolu-

tion of the tumor antigen-specific cytotoxic effector cell population

is driven by the mass balance principle, which leads to the local

balance law 

∂ t c + ∇ · J = S. 

Gains and losses of cytotoxic effector cells result from two phe-

nomena, which shape the expression of the flux J and the source S .

Firstly, activated cytotoxic NK and T -cells, which can eliminate tu-

mor cells, are extracted from a bath of non-activated immune cells.

According to assumption A.6, the conversion of these immune cells

into tumor antigen-specific effector cells depends on the mass of

the tumor cells, the quantity we have already denoted μ1 ( t ). The

description of the recruitment process involves 

• ( t, x ) �→ S ( t, x ), the space distribution of the source of immune

cells (measured in [ cell c ] · [ L ] −3 ). We shall observe different be-

haviors of the system depending whether the source S is con-

stant or space-inhomogeneous. 
• p , the, possibly space-dependent, rate at which NK and T -cells

are activated (measured in [ t] −1 ). It takes into account the anti-

genicity of the tumor cells. 
• Dimensionless factor μ1 �→ g ( μ1 ) that describes how the pres-

ence of tumor cells stimulates the production of new effec-

tor cells and the conversion of immune cells into effector cells

or their recruitment. Hence, we naturally have g(0) = 0 . Since

we are treating early stages of tumor growth, we can use a

mere linear relation. However, it can be relevant for longer term

interaction to impose a threshold on the recruitment process

( Wilkie and Hahnfeldt, 2017 ). Such a saturation effect is usu-

ally taken into account with a Michaelis-Menten law ( de Pil-

lis et al., 2005; Kuznetsov et al., 1994; Kirschner and Panetta,
1998 ), which leads to 

g(μ1 ) = 

μ1 

β + μ1 

, (12)

where β is the steepness coefficient of the immune cell recruit-

ment, measured in [ cell n ] like μ1 . 

Secondly, the tumor antigen-specific cytotoxic effector cells die

t a certain rate, denoted by γ . This rate can be space-dependent,

r μ1 -dependent; it is measured in [ t] −1 . In what follows, we will

lways assume that γ > 0 is constant. 

Therefore, we get 

 = g(μ1 ) pS − γ c. 

We turn to the description of the tumor antigen-specific cyto-

oxic effector cells displacement. The motion of the cytotoxic effec-

or cells results from two distinct phenomena. On the one hand,

hey follow a random walk process, that can be considered as a

rownian motion, which makes the population of activated im-

une cells spread in the whole domain. It is characterized by the

oefficient x �→ D ( x ), measured in [ L ] 2 · [ t] −1 . It can be space de-

endent and matrix-valued, in order to describe for instance dif-

erent tissues or tissues where the displacement is easier in cer-

ain directions than in others. The details of the migration pro-

ess can play a critical role in the anti-tumor immune surveil-

ance. For instance in Salmon et al. (2012) , it is reported that the

bers of the extracellular matrix control the trajectories of the cy-

otoxic effector cells in human lung tumors and the geometrical

ffects can restrict the amount of these cells infiltrating the tu-

or. On the other hand, a displacement towards the tumor is gov-

rned by the tumor cells antigenicity: according to assumptions

.5 and A.7, the activated NK and T -cells follow the gradient of

 potential, that we denote φ( t, x ), induced by the tumor anti-

ens. The directed movement of the NK and T -cells in response

o the signal induced by the tumor is conditioned by the sensitiv-

ty of their membrane receptor, embodied into a factor denoted χ .

t might be possible to assume that χ depends on the attractive

otential φ, for instance to model the fact that cells do not detect

ignals that are too weak or too high. We can find more details

bout such chemotactic mechanisms in Hillen and Painter (2008) ,

orstmann (2003a,b) and Keller and Segel (1971) ; the role of such

ffects in the immune response to tumor growth is already pointed

ut in Matzavinos et al. (2004) . Gathering these information, we

ave 

 = cχ∇ x φ︸ ︷︷ ︸ 
convection by chemotaxis 

− D ∇ x c ︸ ︷︷ ︸ 
diffusion 

, (13)

here the chemotactic velocity χ∇ x φ is measured in [ L ] · [ t] −1 . 

Finally, the concentration of tumor antigen-specific cytotoxic ef-

ector cells obeys the PDE 

 t c + ∇ x · (cχ∇ x φ − D ∇ x c) = g(μ1 ) pS − γ c. (14)

t is endowed by the initial data 

 

∣∣
t=0 

= c 0 , (15)

nd the homogeneous Dirichlet condition 

 

∣∣
∂�

= 0 , (16)

hich means that the immune cells far from the tumor are non-

ctivated. 

.2.3. The tumor-induced attractive potential 

The attractive potential φ is induced by the presence of tu-

or cells. Every tumor cell with size z produces a certain chem-

cal signal, according to a form function σ ( x, z ). Having in mind

he chemical nature of the signal, the attractive potential can be
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rated and non-saturated models in Appendix D. 
easured in number of chemoattractant molecules, with a unit de-

oted by [ mol ]. Accordingly, the coefficient χ will be measured in

 L ] 2 · [ t] −1 · [ mol] and σ in [ mol] · [ cell n ] 
−1 · [ l] −3 [ t] −1 . The chemoat-

ractant molecules are subjected to a natural diffusion, depending

n a coefficient K (measured in [ L ] 2 · [ t] −1 ). We can simply assume

hat K > 0 is a scalar constant, but it could be a matrix-valued

unction of the space variable as well. The source of the attrac-

ive potential is given by the sum of all the chemical contributions

f the tumor cells, which leads to the equation 

∇ · (K∇φ)(x ) = 

∫ ∞ 

0 

zn (t, z) σ (x, z) d z, (17)

ith a given matrix-valued function x ∈ � �→ K(x ) (verifying 0 <

� ≤ K(x ) ξ · ξ ≤ κ� < ∞ for any x ∈ �, ξ ∈ S 
2 ). If the form function

does not depend on the size variable, this becomes 

∇ · (K∇φ)(x ) = σ (x ) μ1 (t) . (18) 

he equation is set on the domain � and needs to be completed

y boundary conditions. We can choose Dirichlet boundary condi-

ions φ
∣∣
∂�

= 0 . However, it is more relevant to consider instead

he homogeneous Neumann condition, which tells us that the flux

f chemoattractant vanishes on the boundaries of the domain 

∇ x φ · ν
∣∣
∂�

= 0 . (19) 

n this case, (17) , or (18) , is not consistent with the boundary con-

ition: the right hand side should be replaced by 

 ∞ 

0 

zn (t, z) σ (x, z) d z − 1 

| �| 
∫ 
�

∫ ∞ 

0 

zn (t, z) σ (x, z) d z d x 

he mean of which vanishes. In what follows we shall consider

onstant coefficients K and σ . Space inhomogeneities can be rel-

vant to describe different conductive or sensitivity properties de-

ending on the tissues. 

.2.4. Effect of the immune system on the tumor 

According to assumption A.8, when the tumor antigen-specific

ytotoxic effector cells reach the tumor micro-environment, they

elease cytotoxic substances which eventually leads to the death of

he tumor cells. This effect is described by adding a death term in

he tumor growth model (4) , which becomes 

 t n + ∂ z (V n ) = Q(n ) − m (c, n ) . (20)

t is natural to suppose that m ( c, n ) vanishes if either c or n van-

shes. The expression of the death term involves a non negative

pace-dependent weight x �→ δ( x ), measured in [ cell n ] · [ cell c ] 
−1 ·

 t] −1 · [ l] −3 , which incorporates both the strength of the immune

esponse and a radius of interaction. This weight might equally de-

end on the tumor volume t �→ μ1 ( t ). Inspired from Kirschner and

anetta (1998) the death term can be modeled by Michealis-

enten kinetics: 

 (c, n )(t, z) = 

∫ 
�

δ(y ) c(t, y ) d y × 1 

α
× n (t, z) 

1 + α′ n (t, z) 
, (21)

ith α, α′ > 0, but we shall also work with a linear expression

which amounts to set α′ = 0 ). Further details on the units of the

arameters of the equations can be found in Appendix B ( Table 3 ).
.3. Summary and workplan 

The general interaction model we are dealing with thus reads

for t ≥ 0, z ≥ 0, x ∈ �) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

∂ t n + ∂ z (V n ) = Q(n ) − m (c, n ) , 

∂ t c + ∇ x · (cχ∇ x φ − D ∇ x c) = pg(μ1 ) S − γ c, 

−∇ · (K∇φ) = 

∫ ∞ 

0 

zn (t, z) σ (x, z) d z 

− 1 

| �| 
∫ 
�

∫ ∞ 

0 

zn (t, z) σ (x, z) d z d x, 

n (t, 0) = 0 for t ≥ 0 , 

n (t = 0 , z) = n 0 (z) for z ≥ 0 , 

c(t, x ) = 0 for x ∈ ∂�, 

c(t = 0 , x ) = c 0 (x ) for x ∈ �, 

K∇φ · ν = 0 for x ∈ ∂�. 

(22) 

e remind the reader that the cell division operator Q ( n ) and the

mmune cell-tumor interaction term m ( c, n ) are defined in (1) and

21) respectively. We refer the reader to Tables 2 and 3 where the

iological meaning of the unknowns and of the parameters is re-

apitulated. 

We shall see that the model (22) is able to reproduce equilib-

ium states, where the tumor and the effector cells are in a dy-

amic balance, and we will provide a mathematical justification

f this fact (see Theorem 2 below). In the equilibrium phase, as

ointed out in Dunn et al. (2002) , tumor cell proliferation appears

o be controlled by the immune system and we address on numer-

cal grounds the effects that influence this control. In particular,

he mass of the residual tumor and the speed of convergence to

he equilibrium state can vary significantly with the parameters of

he model. Accordingly, we particularly challenge the following ef-

ects: 

• Dealing with a space-structured model gives access to new

phenomena: we will compare the homogeneous distribution of

the source of naive immune cells to the case where the cells are

heterogeneously distributed at a certain distance of the micro-

environment of the tumor. 
• It is important to determine how the parameters influence the

dynamics, not only through their strength, but also depending

whether or not they depend on the size or space variables: On

the one hand, the aggressiveness of the tumor can be tested by

acting on the growth rate V and on the division rate a of the tu-

mor cells. On the other hand, the efficiency of the host immune

system depends on the activation rate p , the death rate γ , the

immune strength δ and the migration of NK and T -cells towards

the tumor microenvironment. Note also that immunotherapy

can modify these parameters, for instance by improving tu-

mor elimination through increasing cytotoxic strength (that can

be achieved by acting on anti-immune checkpoint like PD-1)

( Wilkie and Hahnfeldt, 2017 ), by fostering T -cells enrichment,

as a consequence of the depletion of Gr1+ cells, or by block-

ing myeloid suppressor cell recruitment to the tumor site ( Faget

et al., 2017; Glodde et al., 2017; Kather et al., 2017 ). 
• As said above, saturation effects can be taken into account

in both the conversion process of immune cells into tumor

antigen-specific cytotoxic effector cells and the death of tu-

mor cells by these cytotoxic cells. We will discuss the role of

these saturation effects on the dynamics, comparing the satu-
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Fig. 1. Typical behavior of the solutions of (25) . The data are: V = 0 . 616 , δ = 0 . 5 , p = 4 . 66 , S = 6 . 38 (x-axis: time, y-axis: μ1 , mass of the tumor, and μc , the total number 

of active immune cells). 

Fig. 2. Typical phase portraits ( μ1 , μc ) of (25) for different initial tumor mass. The data are: V = 0 . 616 , δ = 0 . 5 , p = 4 . 66 , S = 6 . 38 . 
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2.4. A few mathematical comments 

This Section aims at providing an intuition on the behavior of

the solutions of (22) , based on mathematical arguments. First, with

some simplifying assumptions, the equations can be reduced to a

mere ODEs system, which admits stationary solutions. The stabil-

ity analysis helps in understanding the role of the parameters of

the model. Second, by means of eigen-elements of the cell division

equation, we identify a scenario which reproduces the equilibrium

phase of the tumor-immune interaction ( Dunn et al., 2002 ). 

2.4.1. A simplified model: damping and oscillations 

Under some restrictive assumptions, we can obtain a closed set

of ODEs by integrating (22) over the size and space variables. This
oversimplified) situation shed some light on the role of the pa-

ameters. Let us consider the very specific case where 

• The source S of immune cell is constant, 
• All parameters V, δ, p , K are constant, 
• σ does not depend on the size variable, 
• The interactions are non saturated: m (c, n ) = δn 

∫ 
� c d y, and

g(μ1 ) = μ1 , 

• We consider the binary division model, as described in (11) ,

with a constant frequency a . 

Moreover, we replace the homogeneous Dirichlet boundary con-

ition (16) for the NK and T -cells by the Neumann boundary con-



K. Atsou, F. Anjuère and V.M. Braud et al. / Journal of Theoretical Biology 490 (2020) 110163 7 

0 0.5 1 1.5 2 2.5

z

0

0.5

1

1.5

2

2.5

3

3.5

4
Equilibrium solution

a/V = 1
a/V = 1.2
a/V = 1.5
a/V = 2
a/V = 3
a/V = 3.5
a/V = 4

Fig. 3. Shape of the leading eigen-function of the growth-division equation for sev- 

eral values of a 
V 

( x -axis: z , size of the tumor cells, y -axis: number of tumor cells at 

the final time). 
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Fig. 5. Non saturated interactions, homogeneous source of immune cells: the gra- 

dient of the chemotactic potential at t = 50 . 0 (the axis correspond to the space co- 

ordinates). 
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F

a

ition 

c · ν
∣∣
∂�

= 0 . (23) 

hese assumptions clearly lack of biological relevance. For instance,

ssuming that a and δ are constant means that any tumor cell has

he same division rate a , irrespective of its size, and any effector

ell acts the same way on the tumor, irrespective of its position in

he domain �. The resulting model reads 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(
∂ t n + ∂ z (V n ) 

)
(t, z) 

= −an (t, z) + 4 an (t, 2 z) − δn (t, z) 

∫ 
�

c(t, y ) d y, 

∂ t c + ∇ x · (cχ∇ x φ − D ∇ x c) = pμ1 S − γ c, 

−K�x φ = μ1 〈 σ 〉 , 
n (t = 0 , z) = n 0 (z) , c(t = 0 , x ) = c 0 (x ) , 

n (t, 0) = 0 , ∇ x c · ν(t, ·) 
∣∣
∂�

= 0 , ∇ x φ · ν(t, ·) 
∣∣
∂�

= 0 , 

(24) 
ig. 4. Convergence to the asymptotic profile. Left: Time evolution of the tumor profil

symptotic state ( x -axis: z , size of the tumor cells, y-axis: number of tumor cells at the fi
here we use the shorthand notation 〈 σ 〉 = σ − 1 
| �| 

∫ 
� σ d x . As

imple as it appears, this model can provide useful hints on the

ualitative features of the original PDEs system. In this simple

ramework, the dynamics can be understood by considering a re-

uced system of ODEs. Indeed, we obtain a closed system of equa-

ions for μ0 , μ1 , given by (7) , and the total number of active im-

une cells 

c (t) = 

∫ 
�

c(t, x ) d x. 

e get 
 

 

 

 

 

 

 

 

 

 

 

d 

d t 
μ0 = μ0 ( a − δμc ) , 

d 

d t 
μ1 = V μ0 − δμ1 μc , 

d 

d t 
μc = π pSμ1 − γμc . 

(25) 

The states 

 

μH 
0 

μH 
1 

μH 
c 

) 

= 

( 

0 

0 

0 

) 

, 

( 

μUH 
0 

μUH 
1 

μUH 
c 

) 

= 

⎛ 

⎜ ⎜ ⎜ ⎝ 

γ a 2 

πδV pS 
γ a 

πδpS 
a 

δ

⎞ 

⎟ ⎟ ⎟ ⎠ 

re equilibrium solutions of (25) . The former corresponds to an

ealthy state, the latter to a stationary state with residual tumors
e. Right: Comparison of the tumor size-distribution at T = 99 . 90 with the exact 

nal time). 
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Fig. 6. Non saturated interactions, homogeneous source of immune cells: time evolution of the cytotoxic effector cells concentration c (the axis correspond to the space 

coordinates). 
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and immune cells. For the unhealthy state, the more important the

bath of immune cells or the recruitment probability, the lesser the

tumor mass; the more agressive the tumor (with a higher division

rate a ) or the weaker the immune system, the higher the tumor

mass. 

The Jacobian matrix evaluated at the equilibrium points reads 

J H = 

( 

a 0 0 

V 0 0 

0 π pS −γ

) 

, J UH = 

⎛ 

⎜ ⎜ ⎝ 

0 0 − γ a 2 

πV pS 

V −a − γ a 

π pS 
0 π pS −γ

⎞ 

⎟ ⎟ ⎠ 

, 

respectively. Therefore, as far as the cell division is active ( a > 0),

J H has a positive eigenvalue and the healthy state is unstable. For

the unhealthy state, the characteristic polynomial is p(λ) = −λ3 −
(a + γ ) λ2 − 2 aγ λ − γ a 2 . We distinguish two cases, driven by the

ratio 
γ
a ( = 

death rate of immune cells 
tumor cells division rate 

) 

• if γ > 4 a , the eigenvalues are real; they are given by 

λ1 = −a, λ2 = 

1 

2 

(
−
√ 

γ (γ − 4 a ) − γ
)
, 

and λ3 = 

1 

2 

(√ 

γ (γ − 4 a ) − γ
)
, 

and they are all negative. 
• if γ < 4 a , the eigenvalues have an imaginary part: 

λ1 = −a, λ2 = 

1 

2 

(
−i 

√ 

γ (4 a − γ ) − γ
)
, 

and λ3 = 

1 

2 

(
i 
√ 

γ (4 a − γ ) − γ
)
, 

but all the real parts are negative: λ1 < 0, Re (λ2 ) = Re (λ3 ) =
− γ

2 < 0 . 

Therefore, the unhealthy state is always stable. The asymptotic

behavior of the solution depends only the ratio γ / a : γ = 4 a is a

threshold between a purely damped behavior, see Figs. 1 and 2 (a),

(b), (c), and an oscillatory behavior (the greater the cell division,
he faster the oscillations), see Figs. 1 and 2 (d), (e), (f). These oscil-

ations thus appear when the tumor is more aggressive, while the

amping rate is driven by the immune efficiency. 

.4.2. Existence of equilibrium phases 

Let us go back to the growth-fragmentation Eq. (4) , with a

eneral division process described by (1) , with possibly size-

ependent division frequency z �→ a ( z ) and growth rate z �→ V ( z ), re-

pectively, neglecting for a while the immune response. The large

ime behavior of the cell division equation is described by means

f eigen-elements of the transport-division operator. Namely, we

eek a positive function z ≥ 0 �→ N ( z ) ≥ 0 and a positive number

> 0 such that 
 

∂ z (V N) − Q(N) + λN = 0 for z ≥ 0 , 

N(0) = 0 , N(z) > 0 for z > 0 , 

∫ + ∞ 

0 

N(z) d z = 1 . 
(26)

he analysis of this eigen-problem requires some technical as-

umptions. For instance, when the growth rate V is constant, we

uppose: 

(H1) a ∈ L ∞ ((0, ∞ )) and there exists z � ≥ 0, α� ≥α� > 0 such that

0 ≤ a ( z ) ≤α� for any z ≥ 0, 0 < α� ≤ a ( z ) for any z ≥ z � , 

(H2) k ( z | z ′ ) ≥ 0, k (z| z ′ ) = 0 when z ′ < z and ∫ ∞ 

0 

zk (z| z ′ ) d z = z ′ . 

These assumptions ensure the existence-uniqueness of the

igenpair ( λ, N ), satisfying (26) , see Michel (2006) and the

extbook (Perthame, 2007 , Theorem 4.6) which indicates fur-

her connections with the renewal equation. The case where the

rowth rate V is non-constant is addressed in Doumic-Jauffret and

abriel (2010) ; the assumptions necessary for the analysis are col-

ected in Appendix A . Then, it can be shown that n ( t, z ) behaves

s time becomes large like e λt ρN ( z ), where ρ > 0 is entirely deter-

ined by the initial condition n 0 : see Michel et al. (2005) where

his result is established by using relative entropy techniques (and
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Fig. 7. Non saturated interactions, homogeneous source of immune cells. Evolution of the tumor mass μ1 (red curves, left axis), and of μ̄c (blue curve, right axis) for several 

values of the division rate a . 
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evys et al., 2009 for a very similar problem arising in tumor

rowth modeling too). 

The precise expression of the eigen-function N is not explicitly

nown in general. Nevertheless, for the specific kernel of symmet-

ic binary division, see (11) , with a constant division rate we have

etailed information, as shown in Baccelli et al. (2002) , see also

erthame and Ryzhik (2005) and Perthame (2007 , Lemma 4.1). 

emma 1. Let Q be defined by (11) with a constant division rate

 > 0 . Let V be a positive constant. Let 
(
αn 

)
n ∈ N be the sequence de-

ned by the recursion 

0 = 1 , αn = 

2 

2 

n − 1 

αn −1 . 

hen the function 

(z) = N̄ 

∞ ∑ 

n =0 

(−1) n αn exp 

(
−2 

n +1 a 

V 

z 

)
, 
ith N̄ > 0 an appropriate normalizing constant, belongs to the

chwartz class S (R 

+ ) and is the unique solution of (26) , where

= a . 

The shape of the profile is governed by the ratio a 
V ( =

division rate 
growth rate 

), as illustrated by Fig. 3 : the smaller the division rate

resp. the higher the growth rate), the more spread the profile. Ac-

ording to the intuition a large growth rate promotes the forma-

ion of large tumor, a large division rate favors the proliferation of

mall cells. 

This (semi-)explicit formula will be used to check numerically

he behavior of the coupled problem when it tends to a stationary

tate. For general fragmentation kernels, we can obtain the follow-

ng relation: integrating (26) over z ∈ (0, ∞ ) yields 

= 

∫ ∞ 

Q(N) d z = 

∫ ∞ 

( N̄ (z) − 1) a (z) N(z) d z 
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Fig. 8. Non saturated interactions, homogeneous source of immune cells. Evolution of the tumor mass μ1 (red curves, left axis), and of μ̄c (blue curve, right axis) for several 

values of the immune cells death rate γ . 
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with N̄ defined in (3) (which tells us that λ = a for (11) with a

constant division rate). Similarly, considering the first order mo-

ment of the equation, we get 

λ = 

∫ ∞ 

0 

V N(z) d z ∫ ∞ 

0 

zN(z) d z 

. (27)

Now, we turn back to the coupled system (22) : these consid-

erations will be crucial to discuss the large time behavior of the

system. Precisely, we consider the version where 

• There is no saturation in the death rate induced by the interac-

tion, 
•
 σ depends only on the space variable x . u  
Namely, we have 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

∂ t n + ∂ z (V n ) = Q(n ) − n 

∫ 
�

δ(x ) c(t, x ) d x 

∂ t c + ∇ x · (χc∇ x φ − D ∇ x c) = pg(μ1 ) S − γ c, 

−∇ x · (K∇ x φ) = μ1 〈 σ 〉 
n (t = 0 , z) = n 0 (z) , c(t = 0 , x ) = c 0 (x ) 

n (t, 0) = 0 , c(t, ·) 
∣∣
∂�

= 0 , K∇ x φ(t, ·) 
∣∣
∂�

= 0 . 

ere, we assume 

• K, D are bounded matrix-valued functions defined on �, that

verify a uniformly elliptic condition, 
• V, a and k are such that (26) admits a unique solution, 
• g : [0, ∞ ) �→ [0, ∞ ) is a C 1 increasing function such that g(0) = 0 ,
• x �→ pS ( x ) and x �→ σ ( x ) are non negative functions that belong to

L 2 ( �). 

We observe in the numerical experiments that in many sit-

ations, a non proliferation state can be reached and the inte-
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Fig. 9. Non saturated interactions, homogeneous source of immune cells. Evolution of the tumor mass μ1 (red curves, left axis), and of μ̄c (blue curve, right axis) for several 

values of A . 
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∫ 
� δ(y ) c(t, y ) d y tends to a constant. We wish to provide a

athematical explanation of this phenomenon, which corresponds

o the equilibrium phase clinically observed ( Chen and Mellman,

017; Dunn et al., 2002; Koebel et al., 2007 ), with residual tumors

nd active immune cells. A natural candidate for the tumor size-

istribution is an equilibrium μ̄0 N(z) , with N the eigen-function

efined by (26) . Thus, we wish to identify a stationary solution of

22) under the form ( μ̄0 N(z) , C̄ ) . This leads to the relation 

∂ z (V μ̄0 N) − Q( μ̄0 N) 
)
(z) 

 ︷︷ ︸ 
= −λμ̄0 N(z) 

= −μ̄0 N(z) 

∫ 
�

δ(x ) ̄C (x ) d x. 

ence, the concentration of cytotoxic effector cells should satisfy 
 

�
δ(x ) ̄C (x ) d x = λ, 

he leading eigenvalue of the (free-)fragmentation equation. This

an be checked on the numerical simulations, for the simplified

ivision model (11) with a constant division rate a > 0, and work-

ng with a constant growth rate V : we find that 
∫ 
� δ(y ) c(t, y ) d y

ends to a , and n ( t, z ) becomes proportional to the profile given in
emma 1 . Therefore, we expect that the immune system organizes

o that the death rate induced by the action of the cytotoxic ef-

ector cells counterbalances the natural Malthusian behavior of the

ell division equation. That the death rate can, in certain circum-

tances, reaches the leading eigenvalue of the cell division equation

s justified by the following statement. 

heorem 2. Let � be the solution of 

∇ x · (K∇ x �) = σ − 1 

| �| 
∫ 
�

σ (y ) d y, 

ndowed with the homogeneous Neumann boundary condition. If

 > 0 is small enough, there exists a unique μ̄1 (� ) > 0 such that

 μ̄1 (� ) 
, solution of the stationary equation 

γC − ∇ x · (D ∇ x C) − μ̄1 ∇ x · (C∇ x �) = g( ̄μ1 ) pS, 

C 
∣∣
∂�=0 

= 0 , 
(28) 

atisfies 
∫ 

δC d x = � . 
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Fig. 10. Non saturated interactions, homogeneous source of immune cells. Evolution of the tumor mass μ1 (red curves, left axis), and of μ̄c (blue curve, right axis) for 

several values of A σ . 
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Proof. We introduce the mapping 

F : (�, μ1 ) ∈ [0 , ∞ ) × [0 , ∞ ) � −→ 

∫ 
�

δC μ1 
d x − � 

where C μ1 
is the solution of (28) associated to μ1 . We are search-

ing for the zeroes of F . Of course F (0 , 0) = 0 , with C 0 = 0 . Next,

we have ∂ μ1 
F (�, μ1 ) = 

∫ 
� δC ′ μ1 

d x, with C ′ μ1 
the solution of { 

γC ′ − ∇ x · (D ∇ x C 
′ ) − μ1 ∇ x · (C ′ ∇ x �) 

= g ′ (μ1 ) pS + ∇ x · (C μ1 
∇ x �) , 

C ′ 
∣∣
∂�=0 

= 0 . 

In particular, since g ′ (0) pS � = 0 is non negative and C 0 = 0 , the max-

imum principle for elliptic equations tells us that C ′ 
0 

> 0 . It fol-

lows that ∂ μ1 
F (0 , 0) = 

∫ 
� aC ′ 

0 
d x > 0 . We can thus apply the im-

plicit function theorem: there exists � � > 0 and a mapping μ̄1 : � ∈
[0 , � � ) �→ μ̄1 (� ) such that for any F (�, μ̄1 (� )) = 0 holds for any

� ∈ [0, � � ). We have 

∂ � F (�, μ̄1 (� )) + μ̄′ 
1 (� ) ∂ μ1 

F (�, μ̄1 (� )) 
= −1 + μ̄′ (� ) ∂ μ1 

F (�, μ̄1 (� )) = 0 
1 m  
ith ∂ μ1 
F (0 , 0) > 0 . Hence, � �→ μ̄1 (� ) is increasing on the neigh-

orood of � = 0 , and it thus takes positive values. �

We remind the reader that the asymptotic behavior for the

umor population is expected to be described by an eigen-

unction associated to the leading eigenvalue λ, thus proportional

o z �→ N ( z ). Theorem 2 defines implicitly the corresponding value

¯ 1 of the total mass, and we can find μ̄0 accordingly (for in-

tance, when V is constant, by going back to (27) we get λ = V 
μ̄0 
μ̄1 

).

heorem 2 applies when the leading eigenvalue is small enough.

or the simple binary division model (11) with a constant division

ate a , according to Lemma 1 , this is a smallness assumption on a .

herefore this statement raises the following questions that will be

nvestigated numerically: (1) Is this condition only a technical re-

uirement ? How small should be a to observe a control and what

appens as a becomes large ? (2) How μ1 , the total mass of the

ersistent tumor, behaves with respect to the parameters ? These

ssues can be interpreted as indicators of the efficiency of the im-

une response. In a forthcoming work, we shall investigate how
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Fig. 11. Non saturated interactions, homogeneous source of immune cells. Evolution of the tumor mass μ1 (red curves, left axis), and of μ̄c (blue curve, right axis) for several 

values of the diffusion coefficient D . 

Fig. 12. Heterogeneous source of immune cells S (the axis correspond to the space 

coordinates). 
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his approach permits us to compute a priori the equilibrium state

nd the mass of the residual tumor that can be predicted for a

iven set of parameters ( Atsou et al., 2020 ). 
. Results of the numerical experiments 

In what follows, the tumor is always located at the origin of

he computational domain �, which is the ball � = { x = (x 1 , x 2 ) ∈
 

2 , | x | = 

√ 

x 2 
1 

+ x 2 
2 

< R } . (Of course, simulations can be performed

n 3D as well, up to an increase of the computational cost.) The

implification discussed in Section 2.4.1 is very specific: it does not

old when changing the boundary condition for c and taking into

ccount the fact that the action of the cytotoxic cells is localized.

o this end, we use a weight δ, which is a Gaussian centred at

 = 0 with a fixed variance θ and an amplitude A : 

(x ) = 

A 

θ
√ 

2 π
exp 

(
−| x | 2 

2 θ2 

)
. (29) 

or defining the source term of the chemoattractant potential, we

lso use a Gaussian profile 

(x ) = 

A σ

θσ

√ 

2 π
exp 

(
− | x | 2 

2 θ2 
σ

)
. (30) 
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Fig. 13. Time evolution of the cytotoxic effector cells concentration c ( t, x ) (the axis correspond to the space coordinates). 

Table 1 

Data for the simulations. 

R A θ2 A σ θ2 
σ a V p χ S γ

1 1 0.02 0.002 0.05 0.8 0.616 0.25 0.864 20 0.18 
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Throughout this Section, we assume that the interaction term has

the form: 

m (c, n )(t, z) = n (t, z) 

∫ 
�

δ(y ) c(t, y ) d y 

and g(μ1 ) = μ1 . In order to ease comparison, we make use of the

binary division operator, so that we will compare the asymptotic

size-distributions of tumors with the profile given by Lemma 1 .

Appendix C provides details about the numerical method used to

perform the simulations. For the simulations, we shall use the fol-

lowing data, otherwise explicitly stated: the initial data are E 0 (x ) =
0 and n 0 (z) = 1 0 ≤z≤750 and the parameters are given in Table 1 . 

3.1. Homogeneous distribution of the source of immune cells: an 

equilibrium state with persistent tumors establishes 

We start by considering the case where the source of immune

cells is homogeneously distributed which means that S is constant

over the domain �. This assumption is relevant for the NK cells. 

The fundamental observation is that the size-distribution of tu-

mors tends to the profile given in Lemma 1 , see Fig. 4 . The chemo-

tactic potential, and the concentration of activated cytotoxic cells

also tend to stationary states: the former points towards the cen-

ter of the domain where the tumor is located, see Fig. 5 , the lat-

ter is more concentrated at the center of the domain, see Fig. 6 .

In Figs. 7–11 , we show the evolution of the mass μ1 of the tu-

mor compared to the immune strength μ̄c (t) = 

∫ 
� δ(x ) c(t, x ) d x,

for different values of the parameters. Depending on the values of

the parameters, we observe some damped oscillations in the tu-

mor mass and in the concentration of immune cells. We observe
hat, when the tumor mass decreases, the tumor antigen-specific

ytotoxic effector cells take more time to leave the tumor micro-

nvironment. This latter phenomenon is converted into a slight de-

ay in the time evolution of the cytotoxic effector cells concentra-

ion in the tumor micro-environment with respect to the evolution

f the tumor mass when both of them are decreasing. According

o what is expected from Theorem 2 , μ̄c (t) tends to a , the lead-

ng eigenvalue of the free-growth/division equation; this is a robust

bservation of the numerical investigation. 

Next, we make the parameters vary in order to discuss the in-

uence of their value on the behavior of the system. We only mod-

fy one quantity at a time, the others being kept as in Table 1 . 

• Tumor aggressiveness. By increasing the rate division a we make

the tumor more aggressive, see Fig. 7 . We recover a qualitative

behavior observed in Section 2.4.1 : for small a ’s the mass of the

tumor is rapidly damped, and oscillation-free. An oscillatory be-

havior can be observed as a increases: the higher a , the higher

the frequency. For the tested parameters, the damping always

occurs, with a convergence towards the expected asymptotic

profile. The asymptotic mass of tumor is significantly positive

for large a . We observe that the tumor mass reaches higher

values when a is larger, both during the transient states and

for the equilibrium value. Note also that the profile of the time

evolution becomes sharper, especially for the reaction of the

immune system, see (d): μ̄c increases rapidly in response to a

growth of the tumor mass, and, once the tumor controlled, it

relaxes gently. 

Consistently with Section 2.4.1 , as the immune cell death rate

γ decreases, oscillations appear. Note also that the value of γ
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Fig. 14. Non saturated interactions, heterogeneous source of immune cells. Evolution of the tumor mass μ1 (red curves, left axis), and of μ̄c (blue curve, right axis) for 

several values of the division rate a . 
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1 The comparison makes sense since the source has in the two cases the same 
impacts significantly the asymptotic value of the mass of the

tumor: the higher γ , the higher the tumor mass, see Fig. 8 . 
• Efficiency of the immune response. The immune response is en-

hanced by increasing either A , the amplitude of the death term

in the tumor growth equation (it measures the strength of the

immune cells against the tumor cells), see (29) , or the conver-

sion rate p : this sensitively reduces the final amount of tumors,

and slightly accelerates the damping, see Fig. 9 . 

The immune response is also influenced by playing on the

strength of the chemoattractive effect (by increasing χ or A σ ).

The amplitude A σ represents the amplitude of the tumor anti-

genicity, see (30) . It is well known that the more antigenic a

tumor, the more effective the immune response. Quite surpris-

ingly, the effect is not that sensitive: by increasing A σ oscil-

lations are slightly smoothed out and the convergence to the

asymptotic profile is a bit faster, see Fig. 10 . What is much more

important is the diffusion coefficient D : increasing D dramati-

cally reduces the efficiency of the immune system: an asymp-

totic profile is still reached, but the equilibrium tumor mass can

be significantly higher, see Fig. 11 (note it it is not monotone

with respect to D ). This observation raises the issue of con-

t

sidering space dependent diffusion coefficients, possibly matrix

valued, describing more or less favorable spreading conditions

depending on the tissues surrounding the tumor. 

.2. Influence of space-heterogeneities: equilibrium states vs. periodic 

ehavior 

In this Section, we keep the same model and data as in Table 1 ,

ut we deal with a non homogenous source of immune cells,

ee Fig. 12 . This situation is biologically related to the action of

he T -cells. It describes the fact that non-activated T -cells are re-

ained in the draining lymph nodes where they are activated by

he dendritic cells presenting the tumor antigens and they prolif-

rate. Once activated they migrate from the lymph nodes towards

he tumor site. However, space-inhomogeneities of the source S

ramatically impacts the dynamics: in many situations, with the

ame data as in homogeneous case but the source, 1 we observe

n oscillatory behavior and there is no sensitive damping at all,
otal mass ∫ S d x . 
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Fig. 15. Non saturated interactions, heterogeneous source of immune cells. Evolution of the tumor mass μ1 (red curves, left axis), and of μ̄c (blue curve, right axis) for 

several values of the immune cells death rate γ . 
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at least on the time scale of observation. This observation should

be considered with caution (it is not excluded that the control oc-

curs on a very long time scale and that the damping is so weak

that it cannot be observed on the time scale of the simulation),

bearing in mind both its mathematical signification and its prac-

tical relevance. In particular, there are cases where the asymptotic

profile does not establish. In fact, what we observe is a control of

a different nature: the tumor mass does not blow up, nor stabi-

lize; instead it seems to oscillate, alternating spikes and remissions.

Fig. 13 shows the space-repartition of the cytotoxic effector cells:

we clearly observe the reproduction of patterns, where the concen-

tration of active immune cells is always higher in the source sites,

but can be significantly weak at the center of the domain, where

the tumor stands. Meanwhile, see Fig. 14 -(c) and (d), we observe a

rapid growth of the tumor mass, which next shrinks significantly

under the action of the immune system and then remains in a

dormant state for a while, as time evolves, see Agur et al. (2016) ,

Chen and Mellman (2017) and Koebel et al. (2007) for comments

on such oscillations. It is remarkable that these oscillations re-

sult only from space heterogeneities, while the model does not
ake into account anti-immune reactions or inflammatory mecha-

isms. The relevance of such oscillatory behavior has been pointed

ut in several modeling works, see for instance ( Kirschner and

anetta, 1998 ), where they are reproduced by introducing delays

n ODEs ( Bi et al., 2014; d’Onofrio et al., 2010 ), or stochastic effects

 Caravagna et al., 2010 ); here they naturally emerge in the dynamic

f the PDEs system. 

• Tumor aggressiveness. There is no indication, on the time of sim-

ulation of trend to an equilibrium when the division rate is

large. Reducing the division rate a restores the damping, see

Fig. 14 , which agrees with the guess from Section 2.4.1 . For

larger a we observe peaks of tumor mass and immune cells,

which appear regularly. The period (about 27 time units) of the

oscillations does not change substantially with a . The tumor

mass reaches also higher values as a increases. 

We make the immune cell death rate γ vary, for a relatively

small value of a (given in Table 1 ). As γ increases, the equilib-

rium is reached faster, with less oscillations but it leads to an

asymptotic state with a larger tumor mass, see Fig. 15 . 
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Fig. 16. Non saturated interactions, heterogeneous source of immune cells. Evolution of the tumor mass μ1 (red curves, left axis), and of μ̄c (blue curve, right axis) for 

several values of A . 
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• Efficiency of the immune response. Strengthening the immune re-

sponse A or the conversion rate p damps the tumor growth,

and reduces the oscillations, see Fig. 16 . On the figure, we ob-

serve the delay of the immune system compared to the tumor

growth. Influence of the chemoattractant effect is stronger than

in the homogeneous case: increasing A σ improves significantly

the damping, see Fig. 17 . 

What is remarkable is the fact that the equilibrium phase can

be recovered by strengthening the chemoattractant effect: this

is illustrated in Fig. 18 , where the data are the same as in

Fig. 14 (c), but the chemotactic strength χ has been increased. 

. Conclusive discussion 

We have set up a new model intended to describe the interac-

ion between the immune system and tumors. Based on size and

pace structured densities, the system of PDEs is able to take into

ccount the displacement of tumor antigen-specific cytotoxic im-

une cells and the size variation of the tumor cells. Despite its
implicity the model allows us to bring out some relevant obser-

ations. 

In particular, it is able to reproduce the formation of equi-

ibrium phases, characterizing the ability of the immune system

o restrain cancer growth for extended time periods. This effect,

hich leads to persistent tumors at a controlled level, was inferred

rom clinical observations and demonstrations using mouse mod-

ls ( Dunn et al., 2002; Koebel et al., 2007 ). Here, it is predicted

athematically and it has been checked numerically. This observa-

ion has important practical consequences. For instance, it is pos-

ible that this dormant state is constituted of tumors with size be-

ow the measurement capacities of the current imaging methods.

owever, a change in the tumor environment such as a modifica-

ion of the immune system efficiency can break the control over

he tumor. This is in agreement with reports on transplantation of

ndetected cancer from organ donor into immunosuppressed re-

ipients ( Koebel et al., 2007 ). Maintaining cancer in a viable equi-

ibrium state represents a relevant goal of cancer immunotherapy.

t is therefore important to understand the parameters that gov-
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Fig. 17. Non saturated interactions, heterogeneous source of immune cells. Evolution of the tumor mass μ1 (red curves, left axis), and of μ̄c (blue curve, right axis) for 

several values of A σ . 

Fig. 18. Non saturated interactions, heterogeneous source of immune cells. Evolu- 

tion of the tumor mass μ1 (red curves, left axis), and of μ̄c (blue curve, right axis) 

with a = 4 and χ = 100 . 
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rn the efficiency of the immune response and the parameters to

arget to improve tumor control. 

Moreover, the numerical experiments also show the crucial role

f space organization and reveal phenomena that cannot be cap-

ured by non spatially structured models. In particular controlling

he tumor with a low total mass is much more difficult when the

ource of immune cells is non homogeneously distributed. In such

 situation, periodic patterns can be observed with the chronic

ormation of tumors having a significantly high mass, alternating

ith remission periods. Having a homogeneous source of immune

ells in the peripheral environment of the tumor makes the im-

une response much more efficient, since it promotes an imme-

iate contact between the tumor and the cytotoxic effector cells.

therwise, the capacity in draining the activated immune cells to-

ards the tumor, expressed through the strength of the chemo-

axis potential, is a critical parameter of the immune response. Bi-

logically, the role of the spatial distribution of the source of im-

une cells can be related to the types of cytotoxic cells considered

n the modeling. The source of NK cells could be assumed to be ho-
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Fig. 19. Shape of several growth laws z �→ V ( z ) ( x -axis: z , size of the tumor cells, 

y -axis: growth rate of the cells). 
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ogenously distributed at the early stage of tumor growth. In con-

rast, T -cells need an efficient priming which occurs in the draining

ymph nodes, and their sources is therefore non-homogeneously

istributed. Hence, as shown in Faget et al. (2017) , both NK and

D 8 + T -cells cooperate to the anti-tumor immune response and

ur results can illustrate the complimentary role of NK and CD 8 + 

 -cells. Moreover, our study shows that enhancing the chemoat-

ractant effects is crucial in the immune response. Promoting the

igration of T -cells towards the tumor microenvironment has in-

eed been identified as a possible strategy for immunotherapy

 Slaney et al., 2014 ), for instance by increasing the level of T H 1

hemokines like CXCL9 and CXCL10, which increases the level of

umor-infiltrating CD 8 + T cells ( Nagarsteth et al., 2017 ). Our find-

ngs are equally consistent with current experimental and clinical

ata which show the role of immune check-point in immunosup-

ressing T -cell responses. Indeed, T -cells express PD-1 after being

ctivated as a mechanism of retro-control; using anti-PD-1 anti-

odies restores the activation of these cells (cytotoxicity and se-

retion of IFN- γ ). A greater clearance of tumors has been observed

hen anti-PD-1 therapy is combined with anti-CTLA4 therapy, pos-

ibly because of the removal of a checkpoint for T -cell proliferation

nd priming ( Chen and Mellman, 2017 ). These effects appear in the

odel by playing with the parameters p or A so that the immune

ells are more activated or more efficient at killing tumors. 

The current version of the model however misses several phe-

omena, which require further modeling effort s. In particular, it

oes not address numerous immunosuppressive mechanisms that

stablish as the tumor grows. For instance, in well-developed tu-

ors, stromal activity can develop signaling modalities which in-

ibit T -cell activity and favor the recruitment of myeloid-derived

uppressors cells, which have T -cell suppressive capacity. These ef-

ects contribute to the chronic development of tumors; they will

e investigated in a forthcoming work. 
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ppendix A. Tumor growth 

The growth rate z �→ V ( z ) can incorporate some mechanisms de-

cribing that the growth becomes more difficult for larger tumors.

elevant examples, depicted in Fig. 19 , are: 

• Exponential law: V (z) = V 0 exp (−τ z) where τ is a relaxation

parameter, 

• Logistic law: V (z) = V 0 

(
exp (−(z−s )) 

1+ exp (−(z−s )) 

)
, 

• Gompertz’ law: V (z) = V 0 exp (−b( exp (cz))) . 
Further examples and details on the modeling of the growth

ate can be found in the review ( Talkington and Durrett, 2015 ). 

In order to establish the existence of a leading eigen-element,

s discussed in Section 2.4.2 , the following assumptions should be

ulfilled ( Doumic-Jauffret and Gabriel, 2010 ): 

• ∫ | z ′ | 2 k ( z ′ | z ) d z ′ < z 2 ; 
• a ∈ L 1 

loc 
((0 , ∞ )) ∩ F , where F is the set of non negative func-

tions f such that we can find p, q ≥ 0 verifying lim sup 

z→∞ 

z −p f (z) <

∞ and lim inf 
z→∞ 

z q f (z) > 0 ; 

• there exists r ≥ 0 such that supp( a ) ⊂ [ r , ∞ ); 
• there exists α1 ≥ 0 such that z α1 V (z) ∈ L ∞ 

loc 
and for any compact

K ⊂ (0, ∞ ) we can find c K > 0 such that V ( z ) ≥ c K a.e. on K ; 
• for a certain γ ≥ 0, z �→ 

z γ

V (z) 
lies in the set L 1 

0 
of functions f for

which there exists d > 0 such that f ∈ L 1 ((0, d )); 
• there exists M ≥ 0, γ ≥ 0 such that 

∫ s 
0 k (z ′ | z) d z ′ ≤

min (1 , M(s/z) γ ) ; 
• a 

V also lies in L 1 
0 

and it verifies lim z→∞ 

za (z) 
V (z) 

= ∞ . 

We refer the reader to Doumic-Jauffret and Gabriel (2010) for

urther comments and interpretations on the these assumptions,

hich guaranty existence-uniqueness for (26) . 

ppendix B. Model parameters 

Table 2 collects the information about variables, parameters and

nits for the tumor growth model, and Table 3 details the units of

he parameters of the equations for the immune system. 

emark 3. The model can take into account two distinct satura-

ion effects: the former in the expression of the recruitment term

f the cytotoxic effector cells, through the function g , the latter in

he expression of the death term describing the action of the acti-

ated immune cells on the tumor. We also work with saturation-

ess models, which means 

(μ1 ) = μ1 , m (c, n ) = n 

∫ 
�

δ(y ) c(t, y ) d y. 

e leave the reader adapt the definition of the units to such cases.
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Table 2 

Recap of the main definitions and notations for the tumor growth model. 

Variables Descriptions Units Example of units Estimated values examples Source 

z Volume of tumor cells [ l ] 3 μm 

3 ∼ 10 3 μm 

3 (in average) 

t Time variable [ t ] day 

n Density of tumor cells with a 

volume z 

[ cell n ] · [ l ] 3 cell n · μm 

−3 A tumor reaching the size of 

1 cm 

3 (approximately 1 g 

wet weight) is commonly 

assumed to contain 

1 × 10 9 cells 

( 10 −3 cell n · μm 

−3 ) 

Del Monte (2009) 

V Tumor cells growth rate [ l ] 3 · [ t ] μm 

3 · day −1 0.985 ·10 3 μm 

3 · day −1 (Breast 

tumor) 

a Rate at which a cell of size z 

divides 

[ l] −1 day −1 

k Distribution of cells from a 

cell of size z dividing 

[ l] −3 μm 

−1 

μ0 Total number of tumor cells in 

the tumor 

[ cell n ] cell n 

μ1 Total volume of the tumor [ cell n ] · [ l ] 3 cell n ·μm 

3 

Table 3 

Recap of the main definitions and notations for the immune system model. 

Variables Descriptions Units Example of units Estimated values examples Source 

x Space variable [ L ] mm 

c Concentration of activated 

cytotoxic effector cells 

[ cell c ] · [ L ] −3 cell c · mm 

−3 

χ Chemotactic coefficient [ L ] 2 · [ t] −1 · [ mol] −1 mm 

2 · mmol −1 · day −1 10 −2 − 10 3 cm 

2 s −1 mol −1 or 

8 . 64 × 10 1 − 8 . 64 × 10 6 mm 

2 ·
mmol −1 · day −1 

(Macrophages) 

Farrell et al. (1990) 

φ Attractive potential [ mol ] mmol 

D Natural space diffusion coef. of 

the cytotoxic effector cells 

population 

[ L ] 2 · [ t] −1 mm 

2 · day −1 8 . 64 × 10 −7 cm 

2 · s −1 or 

8 . 64 × 10 −5 mm 

2 · day −1 

(cytotoxic effector cells) (or 

0 . 025 mm 

2 · day −1 for effector 

T -cells) 

Friedman and Hao (2018) , 

( Cooper and Kim, 2014 ) 

p Conversion rate of immune 

cell into tumor 

antigen-specific cytotoxic 

effector cells 

[ t] −1 day −1 0 . 25 day −1 (IL-2 induced 

activation) 

Friedman and Hao (2018) 

S Density of the source of 

immune cells 

[ cell c ] · [ L ] −3 cell c · mm 

−3 

β Steepness coefficient of the 

immune cell recruitment 

[ cell n ] cell n 

γ Natural death rate of the 

tumor antigen-specific 

cytotoxic effector cells 

[ t] −1 day −1 0 . 18 day −1 Friedman and Hao (2018) 

K Natural space diffusion of the 

attractive potential φ

[ L ] 2 · [ t] −1 mm 

2 · day −1 2.16 mm 

2 · day −1 

σ Chemical signal induced by 

each tumor cell 

[ mol] · n −1 ·
[ l] −3 [ t] −1 

mmol · cel l −1 
n · μm 

−3 ·
day −1 

200 · 10 −3 mmol · −−1 
A 

· day −1 

δ Strength of the immune 

response 

[ cell n ] 

[ cell c ] · [ t] · [ l] 3 
cell n · cell −1 

c · μm 

−3 ·
day −1 

1 day −1 , average rate at 

which effector T -cells kill 

tumor cells 

Cooper and Kim (2014) 

α Steepness coefficient of the 

tumor cell death term 

[ cell n ] · [ l ] 3 cell n · μm 

−3 
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Appendix C. Numerical method 

For the numerical simulation of the model, we use the so-

called finite volume approach, for which we refer the reader to

Eymard et al. (20 0 0) . 

C1. The growth-division equation 

The computational domain for the size variable is the inter-

val [0, z � ] where z � is chosen large enough: due to the division

processes, we expect the the solution remains essentially on a

bounded interval, and the cut-off should not perturb too much the

solution. For the simplified binary division model, a guess is pro-

vided by using the profile given by Lemma 1 . This domain is split

into cells M i = (z i −1 / 2 , z i +1 / 2 ) , centered on z i = 

z i −1 / 2 + z i +1 / 2 where
2 
 0 = z 1 / 2 = 0 < ... < z i −1 / 2 < z i < z i +1 / 2 < ... < z N+1 / 2 = z N+1 = z � . In

hat follows, the step �z = z i +1 / 2 − z i −1 / 2 is assumed to be con-

tant. We denote by �t the time step and t κ = κ�t . The discrete

nknowns n κ
i 
, with i ∈ {1, ..., I } and κ ∈ {1, ..., N t } are intended to

e approximation of the mean value 1 
�z 

∫ 
M i 

n (t κ , z) d z. The integral

hat defines the gain term of the division operator is approximated

y a simple quadrature rule. For the operator (11) the kernel in-

olves Dirac masses which are approached by peaked Gaussian.

he scheme reads 

z 
n 

κ+1 
i 

− n 

κ
i 

�t 
+ F κ

i +1 / 2 
− F κ

i −1 / 2 

= −a i �zn 

κ
i 

+ �z 2 
I ∑ 

j=1 

a (z j ) k (z i | z j ) n 

κ
j − m 

κ
i , 

(31)
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here F κ
i +1 / 2 

= V i +1 / 2 n 
κ
i 

represents the convective numerical flux on

he interfaces of z i +1 / 2 , which is defined according to the upwind-

ng principle and m 

κ
i 

is the approximation of the interaction term

see below). Note that the step �z should be small enough to cap-

ure the division of small cells, if any. 

We can use formula (1) to check that the numerical procedure

reserves the eigen-function of the growth division equation when

 is replaced by 0 and using the eigen-function as initial data. 

2. The effector cytotoxic cells displacement equation 

We work with a tessellation of � made of triangles, that form

n admissible mesh of �, see (Eymard et al., 20 0 0, Definition 3.1,

p. (iv)) . Let K be a control volume of the mesh τ�. The set of the

dges of the mesh is noted ξ . We distinguish the edges on ∂�

nd the internal edges: ξ = ξ ext ∪ ξ int . We also denote ξK = { ς ∈
∩ ∂K} , d K ς the distance from the point x K to the edge ς and | K |

tands for the two dimensional measure of the control volume K ,

 ς | for the length of an edge ς ∈ ξ . If ς ∈ ξ int , then ς = K| L and the

istance d KL between x K and x L is equal to d Kς + d Lς . 

The chemotactic convection can be very strong and impact

everely the stability condition of a scheme that would be explicit

n the transport part of the equation. For this reason, we use an

mplicit approach defined by 

 K| c 
κ+1 
K 

− c k K 

�t 
= 

( 

−
∑ 

ς∈ ξK 

F Kς (c κ+1 
τ�

, φκ
τ�

) −
∑ 

ς∈ ξK 

G Kς (D, c κ+1 
τ�

) 

) 

+ | K | pμκ
1 S K − | K | γ c κ+1 

K , (32) 

nd then we update the chemotactic potential by ∑ 

ς∈ ξK 

G Kς (K, φκ+1 
τ�

) = | K| μ1 〈 σ 〉 K . (33)

n (32) - (33) , we have used the following notations: 

• for the diffusive flux of a quantity w , with the diffusion matrix

A , we set 

G Kς (A, w τ�
) = A ς 

| ς | 
d KL 

(w K − w L ) if ς ∈ ξ int 

with the necessary adaptation on the boundary, according to

the boundary condition (Dirichlet or Neumann), 
• for the convective flux, we set 

F Kς (c τ�
, φτ�

) 

= 

| ς | 
d KL 

(
χc K (φL − φK ) 

+ − χc L (φL − φK ) 
−)

for ς ∈ ξ int , 

and F Kς (c τ�
, φτ�

) = 0 if ς ∈ ξ ext . 

The expression of the interaction term in (31) depends on the

etails on the death term; for instance when it depends linearly

n c and n , it reads 

 

κ
i = n 

κ
i 

∑ 

K∈ τ�

| K| δK c 
κ
K . 

he time step �t is determined in order to preserve the positiv-

ty of the solution, namely we assume the following CFL stability

ondition: 

t ≤ min 

(
�z 

max 0 ≤z≤z � V (z) 
, 

1 

max 0 ≤z≤z � a (z) 
, 

1 ∑ 

K∈ τ�
| K| δK c 

κ
K 

)
. 

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.jtbi.2020.110163 . 
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