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Structured Flows on Manifolds as guiding concepts  

in brain science 

Viktor Jirsa 

 

Any discussion of brain repair, rehabilitation, and functional recovery im-

peratively requires a working definition of “function” (Jirsa et al. 2019). If 

such definition is not explicitly provided, which is more common than not, 

then the precedent statement still remains valid and is implied by the choice 

of methods applied in the investigation. An illustrative and recent example 

is the use of resting state paradigms in modern neuroscience, in which spa-

tiotemporal brain activity is recorded using neuroimaging techniques such 

as functional MRI or EEG and then cast into a measure, e.g., functional 

connectivity, which captures the Pearson correlation of brain activations. 

Measures assign a value on the relationship between two brain regions in 

a systematic way, which implicitly evokes an underlying model and under-

standing of brain function. Functional connectivity assumes that the co-

variation of brain activations in time is related in a meaningful way to brain 

function.  

What does meaningful refer to in this case? Here meaning can be assigned 

in two ways. Either it can be linked to a causal description of brain activity, 

as only the latter provides us with entry points for interventions in case of 

brain dysfunction, and ultimately brain repair. The juxtaposition of empir-

ical brain data and a causal description thereof is commonly performed 

through the building of a mechanistic brain model. Once one or multiple 

key mechanisms are identified, then the actual confrontation between em-

pirical data and model is made by the parameters in the model. In fact, this 

is what any scientific interrogation reduces to at this stage. The assignment 

of values (whether through explicit numbers, parameter ranges, or co- 

dependent subsets) to model parameters establishes the critical link  

between our understanding (aka the model) and the real-world (aka the 

data). It will generally not be unique, but degenerate in the sense that the 

brain exhibits the one-to-many and many-to-one behavior well-known 

from complex systems. Virtually indistinguishable network activity pat-

terns can for instance arise from many distinct biophysical mechanisms 
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(Changeux et al. 1973; Edelman and Gally 2001; Pillai and Jirsa 2017); 

and genetically identical organisms can show consistently different neu-

ronal activity associated with the same behavior (Prinz et al. 2004; Chiel 

et al. 1999; Beer et al. 1999). Nonlinearities in any complex system cause 

its capacity to exhibit different behaviors. Such is the rule rather than the 

exception and the prominent role of linear tools in natural sciences is more 

an expression of our history of science rooted in classical mechanics rather 

than in biology.  Another form of meaning and meaningfulness is linked to 

behavior. One can justifiably take the point of view, and many patients do, 

that a patient does not care about “abnormal activity” in the brain network 

if his/her behavior is not affected in any way. Examples are asymptomatic 

anatomical malformations in the brain or asymptomatic seizures. In the 

same spirit, Pillai and Jirsa (2017) argue that the brain cannot be under-

stood without a good definition of behavior, which turns out to be more 

difficult than one would expect.   

These preliminary thoughts lead me to a workflow, which is illustrated in 

Fig. 1. To speak meaningfully about brain health, we need to have a notion 

of behavior, which is captured mathematically by the set of rules underly-

ing a behavior, the Structured Flows on Manifolds (SFMs) (Fig. 1A). Be-

havior finds its representation in brain dynamics, which is another dynamic 

process described by SFMs, and tightly linked through the brain-behavior 

relation. SFMs emerge from the nonlinear neuro-electric and -chemical  

interactions in the brain network (Fig. 1B). The brain network and its dy-

namics are constrained mechanistically by the model parameters (Fig. 1C), 

which generally have a degenerate relationship, and where many parameter 

constellations may cause the same brain dynamics.  
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Fig. 1: Behavior and brain dynamics as Structured Flows on Manifolds.  

 

Let me now enter into details. Brain function needs to be anchored in an 

appropriate representation of behavior (Fig. 1A). Such a claim is not new 

to students that have followed a dynamical perspective (Huys et al. 2014). 

Similar calls regarding the importance of incorporating behavior in neuro-

science have been made by Krakauer et al. (2017), but they did not offer a 

constructive way forward. The behavioral neurobiologists Levitis, Li-

dicker and Freund (2009) offer a definition of behavior based on a system-

atic analysis of survey responses, in which behavior constitutes the set of 

internally coordinated actions (or inactions) of an organism in the presence 

of internal and/or external stimuli. Pillai and Jirsa (2017) adopted and for-

malized this view in a dynamic framework that links complex brain dy-

namics with similarly complex emergent behavior. They state that behav-

ior constitutes the set of actions follwing from rules, that are task specific, 

expressed in terms of action variables, and are predictive in terms of time 
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evolution. Such is another way of expressing the fact that behavior is a 

dynamic stochastic process and can thus not be represented by only a few 

time series, because those would not capture its full dynamic repertoire 

(unless it is the complete set of all possible time series, which would be 

technically speaking infinite). Behavior is correctly represented by the set 

of its generative rules. It is possible to show mathematically the following 

identities. The set of generative rules underlying behavior is equivalent to 

1) the complete set of all possible time series; 2) the explicit analytical 

expression of the time course of all state variables; 3) the generative model 

expressed as a dynamic system (such as via ordinary differential equations 

or integral equations); 4) the flows spanned in the space of all state varia-

bles, aka Structured Flows on Manifolds (SFMs). The above discussion 

may seem technical or academic at first sight, but it is not, as it has a clear 

consequence for brain sciences. For a complete representation of behavior, 

the brain needs to represent one of the above entities, encoded in its or-

ganization of brain activity. Derived metrics of the above are commonly 

used in neuroscience to address questions of coding, including reaction 

times, movement direction, memory capacity, and discriminative capacity, 

but will always provide an incomplete understanding of the link of brain 

and behavior. Although the above representations are mathematically 

equivalent and thus techncially exchangable in isolation, they cannot be 

arbitrarily substituted once placed in the context of the brain, as the gener-

ative mechanism in the brain maybe specific to a particular choice. Here 

we follow again Pillai and Jirsa (2017), who have argued strongly in favor 

of Structured Flows on Manifolds (SFMs), as they emerge naturally 

through network interactions. This suggests the hypothesis that SFMs in 

behavior are isomorphically represented in the dynamics of the brain (see 

for discussions Fuchs et al. 2000a,b). 

Structured Flows on Manifolds (SFMs) are the mathematical objects that 

capture the dynamic properties that a system requires for it to be capable 

of the behavior we discussed above. The system under consideration is 

high dimensional with N degrees of freedom and highly nonlinear. In the 

space spanned by these degrees of freedom, each point is a state vector and 

represents a potential state of the system. As time evolves, the state of the 

system changes and thus traces out a trajectory in state space. The rules 

that the system follows can be understood as forces that cause the changes 
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of the state vector and define a flow. In order to allow this system to gen-

erate low-dimensional behavior, that is, M dimensions with M<<N, there 

must be a mechanism in place that is capable of directing the trajectories 

in the high-dimensional space towards the lower M-dimensional sub-space 

(see Fig. 1B). Mathematically, this translates into two flow components 

that are associated with different time scales: first, the low-dimensional 

attractor space contains a manifold f(.), which attracts all trajectories on a 

fast time scale; second, on the manifold a structured flow g(.) prescribes 

the dynamics on a slow time scale, where here slow is relative to the col-

lapse of the fast dynamics towards and onto the attracting manifold. For 

compactness and clarity, imagine that the state of the system is described 

by the N-dimensional state vector q(t) at any given moment in time t. Then 

we split the full set of state variables into the components ξ and s, where 

the state variables in ξ define the M task-specific variables linked to emer-

gent behavior in a low-dimensional subspace (the functional network) and 

the N-M variables in s define the remaining recruited degrees of freedom. 

Naturally, N is much greater than M and the manifold in the subspace of 

the variables ξ has to satisfy certain constraints to be locally stable, in 

which case all the dynamics is attracted thereto. SFMs have been success-

fully linked to networks composed of neural masses (Fig. 1B), coupled via 

multiplicative coupling functions, which are fundamental for the emer-

gence of SFMs (Pillai and Jirsa 2017). Neural masses comprise populations 

of neurons, which are nonlinear dynamic units coupled via synapses. The 

multiplicative properties are at the heart of synaptic coupling, as well as 

conductance-based modeling, which is currently our understanding of neu-

ronal functioning via the Hodgkin-Huxley equations that describe the ini-

tiation and propagation of action potentials in neurons. Mathematically, the 

multiplicative coupling enables the manifold to be described globally ra-

ther than just locally, as is the case of previous formal theories of self-

organization. The formulation of SFMs is thus a general framework and 

the link to neuroscience is accomplished, for instance, when SFMs are de-

rived from neural network equations. In these situations, the state vector 

q(t) is the vector of all activation variables across all brain regions and the 

SFM is the mathematical representation of the dynamics of the brain net-

work.  
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What is the mechanism in the network that supports the emergence of  

manifolds from network dynamics, capable of supporting SFMs? Previ-

ously, answers have been provided at least in part by Hermann Haken and 

Synergetics (Haken 1983). Haken has demonstrated how spatiotemporal 

patterns may emerge in the neighborhood of phase transitions of a complex 

system, describing a qualitative change from one pattern to another. This 

is accomplished by computing the stationary solution of the system and 

perform a linear mode decomposition. The variables are grouped into a set 

of modes, whose stability is close to criticality (the so-called order param-

eters) and a set of stable modes far from criticality. The inverse of the sta-

bility coefficient is equivalent to the characteristic time constant and the 

modes can thus be also called slow order parameters and fast stable modes. 

Haken recognized that the dynamics of the fast modes can be fully ex-

pressed analytically by the order parameters using the local center mani-

fold theorem and called this phenomenon “enslaving”. This mechanism 

expresses the fact that the characteristic time of the fast modes is short, 

which means these modes always relax after a brief transient to the quasi-

stationary behavior of the much slower order parameters and can thus be 

eliminated adiabatically. Fig. 1B demonstrates this effect by showing a set 

of trajectories on the top left of the hemispherical manifold. These trajec-

tories are all attracted to a neighborhood around a point on the hemisphere. 

They relax fast to the local neighborhood on the spherical surface and then 

move slowly towards the stable fixed point. This synergetic mechanism of 

enslaving leading to self-organization has proven to be of powerful explan-

atory nature. It is not necessarily limited to fixed points but can be extended 

to limit cycles (see top right in Fig. 1B). However, where this approach 

suffers from, is its limitation to local stationary solutions to be able to apply 

the local center manifold theorem. In Fig. 1B, this limits its applicability 

either to the left stationary solution (stable fixed point) or the right station-

ary solution (stable limit cycle). Both solutions co-existing simultaneously 

on an attractive manifold (here, the hemispherical surface) cannot be de-

scribed. To address this, we need to go one step beyond the local center 

manifold theorem and evoke SFMs, in particular for large scale brain net-

works.  

SFMs can emerge from brain network dynamics. The first large-scale brain 

network equation has been written down by Ghosh et al. (2008). Almost 
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ten years earlier, Scott Kelso and I laid the mathematical basis for large-

scale brain networks (Jirsa and Kelso 2000), introducing the distinction of 

homogeneous and heterogeneous connectivity. The two are distinguished 

by translational symmetry, where the former is translationally invariant, 

the latter is not. We proposed the use of diffusion tensor imaging data as a 

connectivity constraint for heterogeneous connectivity, assuring the right 

symmetries for such networks (Jirsa et al. 2002). Nowadays, after grand 

efforts of many researchers (such as Rolf Kötter, Olaf Sporns, Michael 

Breakspear, Gustavo Deco, Randy McIntosh, Petra Ritter, just to mention 

a few amongst many), the field of brain connectivity has been consolidated, 

connection matrices are referred to as Connectomes and large-scale brain 

network models as Virtual Brains. An active community has been built 

around the neuroinformatics platform The Virtual Brain (TVB) (Sanz-

Leon et al. 2013) with applications in many domains including the resting 

state (Ghosh et al. 2008; Deco et al. 2010, 2011; Ritter et al. 2013; Hansen 

et al. 2014), epilepsy (Jirsa et al. 2017; Proix et al. 2015), stroke (Falcon et 

al. 2016a,b), and tumors (Aerts et al. 2019). The symmetry of the connec-

tome imposes constraints on the connectivity, which then shapes the dy-

namics of the network. This can be easily recognized for the case of the 

resting state dynamics, where increasing coupling strength systematically 

changes the evolution of trajectories in state space and thus the shape of 

data distributions (Hansen et al. 2014; McIntosh and Jirsa 2019). Symme-

tries are invariances of a given system under an operation, which is equiv-

alent to the preservation of a quantity. For instance, translational symmetry 

in time is linked to energy conservation, translational symmetry in space 

to momentum conservation, rotational symmetry to angular momentum 

conservation, etc. Similarly, an unconnected set of identical nodes is invar-

iant under exchanges of node indices and creates an invariant manifold in 

state space. If the manifold is attractive, then trajectories from points in 

state space evolve towards it as seen in Fig. 1B. As the symmetry is broken 

(see Fig. 1B (middle) for a representation of two networks, one with iden-

tical coupling strengths, one with non-identical), flows are generated on 

the manifold causing a slow dynamics to evolve on the manifold. These 

flows on the manifold are slow, where the characteristic time constant is 

inversely proportional to the degree of symmetry breaking. Furthermore, 
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these flows are confined to the manifold, but are not limited to single at-

tractors and can show a rich and structured attractor dynamics. The concept 

of breaking symmetry to generate time scale separation and a global de-

scription of attractor dynamics is at the heart of Structured Flows on Man-

ifolds (SFMs).  

Here I wish to pause and return to my previous discussion of degeneracy. 

There are effectively two types of manifolds to be distinguished. The first 

manifold is the SFM, which is defined in the space of the state variables 

and realizes the rules prescribing the time evolution of the system. The 

second arises from the degeneracy of the system and spans a manifold in 

parameter space (see Fig. 1C). The set of parameters {P1, P2, P3, …} com-

prises all system parameters and quantifies the mechanistic basis of the 

network. In the brain, these parameters comprise synaptic strength, chem-

ical concentration of neurotransmitters, local excitability, receptor types, 

and many more. They span a high-dimensional parameter space, in which 

many parameter combinations give rise to the same system behavior and 

create the degeneracy of the system. In signal analysis and model inver-

sion, the degeneracy is a big technical problem, as it imposes difficulties 

identifying the model parameters underlying a particular process as meas-

ured with empirical data (see for instance Schirner et al. 2018). The non-

uniqueness of parameters is captured by a manifold in parameter space, 

which holds all possible parameter combinations giving rise to the same 

behavior of the system in state space. It is here, where the two types of 

manifolds are conceptually connected: A particular SFM in state space is 

generated by the model with parameter settings contained in a manifold  

in parameter space (Fig. 1C). The system behavior is invariant under any 

change along the manifold . Here I wish to distinguish two forms of in-

variance, a strong and a weak form. For the strong version, the invariance 

of the system behavior demands that the SFM is identical for any changes 

along the manifold ; for the weak version, it is sufficient that the topology 

of the SFM does not change along . The latter weak criterion can be jus-

tified, because the system dynamics behavior remains qualitatively the 

same under these conditions.  
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The link between the manifolds in state space and parameter space is the 

principal insight I wish to share in this chapter. It has enormous conse-

quences for our understanding of personalized brain models of patients, 

inter-individual variability, and our capacity to perform interventions and 

therapy on the patient. Before I enter in a discussion of these consequences 

for any form of brain damage and repair, I need to emphasize one more 

thought. A single point on the parameter manifold  corresponds to a set 

of parameters, realized by, for instance, a single neuron within the same 

brain region. If all the neurons were identical in this region, then they 

would cluster in this one single point on . However, this will generally 

not be the case, because the Maximum Information Principle (MIP) de-

mands that entropy will become maximal (Jaynes 1957). If there is no clear 

distinguishing criterion amongst realizations, all of the possible states and 

configurations will be occupied equally. This statement is in fact equiva-

lent to an ergodic hypothesis, however, quite differently as we know it from 

physical systems. A consequence is neuronal diversity in the above exam-

ple, or more generally, diversity within the neural system and the brain. 

Entropic forces will disperse the neuronal configurations across the mani-

fold, enabling the upkeep of the same behavior (or behavioral repertoire to 

speak with the words of Randy McIntosh), but with a heterogeneous sys-

tem composed of different neurons, neural transmitters, receptors etc., all 

giving rise in conjunction to the same SFM under healthy conditions.  

Brain injury, disease and pathology express themselves unavoidably 

through parameter changes. As an example, the reader may think of poi-

soning, which will move the brain off the manifold  and act as perturba-

tion vector 𝑃⃗  on the realization on . If only certain parametric subsets are 

affected, for instance certain neuron types, then 𝑃⃗  will act only on one sec-

tion on  (see Fig. 1C). If all neurons are equally affected, then the entire 

manifold will be perturbed uniformly. For some sections, however, the per-

turbation 𝑃⃗   will be more tangential, for others more perpendicular, de-

pendent on the shape of  and the orientation of 𝑃⃗ . The consequences are 

profound and are visualized in Fig. 1C. The perturbation 𝑃⃗  can always be 

decomposed into a tangential component 𝑃⃗ ∥ and a perpendicular compo-

nent 𝑃⃗ ⊥. The latter perpendicular component will always have an impact 
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upon the system and causes impairment of the behavior by definition, re-

quiring healing and recovery; the former tangential component, however, 

will be absorbed within the manifold with no consequences to the behavior. 

This is illustrated in Fig. 1C by two vectors 𝑃⃗  acting at two locations on 

the manifold. The lower is dominated by the perpendicular component and 

will thus have a maximal impact. Here the system is incapable of absorbing 

the perturbation, and neurons (or system components) corresponding to 

this configuration will die. At the upper location, however, the tangential 

component is dominant, and the perturbation will change the neurons (or 

system components), but with no appreciable impact upon the behavior. 

The perturbation is essentially absorbed. For this effect of absorption to 

occur, it is absolutely obligatory that all the states on the manifold   are 

occupied. This realization links us back to the entropic forces and MIP of 

Jaynes and provides a competitive advantage to a large network that ena-

bles degeneracy across its parameters. Diversity of neuronal representa-

tions adds robustness against brain injuries and pathologies, because com-

pensation and absorption are possible via the tangential component 𝑃⃗ ∥. Fur-

thermore, plasticity enables recovery through movement along the mani-

fold , in case of injury, allowing the brain to recover its neuronal repre-

sentations.  

In the precedent pages, I provided an overview of my personal perspective 

of how behavior, brain dynamics, brain injury, and recovery interrelate. I 

abstained from providing mathematical details and used mostly geometric 

representations. Although the mathematical details are available in the ref-

erenced literature, the links between the various domains and applications 

are less evident and far less known. In particular, the last paragraphs on  

parameter manifolds, diversity, and brain robustness to injuries have a par-

ticular intuitive appeal and may seem familiar from experience, but their 

quantitative and algebraic implementation is not, as they are based on a 

deeper understanding of the links between SFMs, MIP, and degeneracy. It 

is not lost on me that various of these formalizations and its consequences 

are not limited to brain and behavior, but apply equally to other complex 

systems including physical, biological, and socio-political systems.   
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