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The timing of activity across brain regions can be
described by its phases for oscillatory processes, and
is of crucial importance for brain functioning. The
structure of the brain constrains its dynamics through
the delays due to propagation and the strengths
of the white matter tracts. We use self-sustained
delay-coupled, non-isochronous, nonlinearly damped
and chaotic oscillators to study how spatio-temporal
organization of the brain governs phase lags between
the coherent activity of its regions. In silico results
for the brain network model demonstrate a robust
switching from in- to anti-phase synchronization by
increasing the frequency, with a consistent lagging of
the stronger connected regions. Relative phases are
well predicted by an earlier analysis of Kuramoto
oscillators, confirming the spatial heterogeneity of
time delays as a crucial mechanism in shaping the
functional brain architecture. Increased frequency and
coupling are also shown to distort the oscillators by
decreasing their amplitude, and stronger regions have
lower, but more synchronized activity. These results
indicate specific features in the phase relationships
within the brain that need to hold for a wide range of
local oscillatory dynamics, given that the time delays
of the connectome are proportional to the lengths of
the structural pathways.

This article is part of the theme issue ‘Nonlinear
dynamics of delay systems’.

1. Introduction
Rhythms are ubiquitous among dynamical systems,
many of which are connected in complex structures,
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such as the brain. Functionally relevant brain oscillations span several orders of magnitude in
frequency [1], and coherent oscillations between distant regions that occur during cognitive tasks
[2–4] have been proposed as a mechanism for information transfer [5] and routing [6] in the brain.
As with other interacting oscillatory systems, coherent brain rhythms [7] are often a hallmark of
synchronization [8], and for large-scale brain dynamics they describe the functional connectivity
of the brain [9–11], which is confined by its structure [12–15], i.e. the so-called connectome [16].
Neural processing and communication are in this way fundamentally regulated by the couplings
between distant brain regions, which shape the spatio-temporal organization of the brain through
links’ strengths and time delays due to propagation [17–19]. Many groups have thus tried to link
the interpretation of neuroimaging signals to computational brain models for healthy [20–23]
or pathological [24,25] brain activity, often employing neuroinformatics platforms such as The
Virtual Brain (see http://www.thevirtualbrain.org) [26,27].

Phase relationships offer a good insight into functional interactions between oscillatory
processes across the brain [19,28], but are mainly overlooked when studying the synchronization
in complex networks [29], or more specifically in the brain [3,14,30]. For the latter, heterogeneous
delays have been shown to be of critical importance for the observed in- and anti-correlations
[31,32], or for the phase relationship between local node dynamics and their degree [28,33].

Dynamics of networks with spatially distributed delays have been recently analysed [18,19,
28], but only for reductions to phase oscillators with sine coupling [34]. Oscillatory processes
are particularly sensitive to delays, and for coupled multi-dimensional oscillators, time delays
are known to cause amplitude and oscillation death [35]. They also facilitate synchronization of
spike-burst networks [36], the control of chimeras [37], and lead to enhanced [38–40] and zero-lag
synchronization [41] in brain and behaviour [42].

The aim of this work is to describe the impact that the heterogeneous time delays of the
brain network have over its emergent activity, given that the mesoscopic governing dynamics are
oscillatory [1,3]. These are often described by the normal form of Andronov-Hopf (AF) bifurcation
[28,43,44], which also encompasses the working points of population rate models [21,31]. To
widen the scope, besides two realizations of the supercritical AH bifurcation: a Landau–Stuart
(LS) with amplitude dependent phase, and a van der Pol (VdP) limit cycle with a nonlinear
damping [45], we also analyse a chaotic neural dynamics represented by a Rössler oscillator [46].
Synchronization of the in silico BNM neural activity generally confirms the patterns of phases in
networks of Kuramoto oscillators with heterogeneous delays [18,19], where the analytical results
for bimodal structured delays were verified for the connectome [19]. Namely, brain hemispheres,
which can be approximated as delay-defined clusters [18], were shown to intermittently switch
from in- to anti-phase synchronization for higher frequencies and small couplings, with stronger
nodes generally lagging in phase [19]. The richer local oscillatory dynamics applied here makes
the anti-phase synchronization more robust, and also gives insight into the impact of the delays
on the amplitude of oscillations, which is shown to decrease for more synchronized brain regions
by increasing the frequency. Thus, we identify common network manifestations of the time delays
for a range of self-sustained oscillatory neural activity, beyond the already treated cases [18,19,28]
that allow reduction to the KM [34] due to the disentanglement of the amplitude and the phase.

2. Model and methods

(a) Brain network model
The model is built over connectome-based architecture that dictates the strength and the delay of
the interactions between brain areas, whose inherent averaged neural activity is described with
three types of self-sustained amplitude oscillators.

A healthy human connectome is chosen from the Human Connectome project [47], where
a customized 3 T scanner was used for the magnetic resonance imaging (MRI). The structural
connectivity is reconstructed from the diffusion tensor imaging (DTI) using a pipeline [48–50] that
yields N = 68 cortical regions, delineated according to the Desikan–Kiliany atlas [51], figure 1a.

http://www.thevirtualbrain.org
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Figure 1. (a) Brain Network Model consisting of the neural mass dynamics superimposed over the connectome, which is
reconstructed using DTI tractography (top) and MRI topography (bottom). The width of the links (red lines) and the size of
the brain regions (blue circles) are proportional to their strengths. (b) (top) Matrices of the strengths and time delays of the
links between different regions, and (bottom) distribution of weighted inter- (left) and intra-hemispheric (right) delays.

For each link, its weight is the numbers of individual tracts between the pair of regions, and
their mean length divided by the propagation velocity that is set at 5 m s−1, which is within the
experimental range [52], gives the time delay associated with that link, figure 1b.

For all three types of oscillators, there is a variable resembling the natural frequency and it is
set to ω0 = 1 rad s−1 for all the nodes. The chaotic system has the form

ẋi = −ω0yi − zi + ηi(t) + 1
N

N∑
j=1

Kij[xj(t − τij) − xi]

ẏi = ω0xi + ayi

and żi = b + zi(xi − c), i = 1 . . . N,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.1)

where parameters are set to be: a = 0.2, b = 0.2 and c = 5.7, so that untrained oscillators are in
chaotic regime. The nonlineary damped oscillator has the form

ẋi = 2m(1 − βy2)x − ω2
0x + ηi(t) + 1

N

N∑
j=1

Kij[xj(t − τij) − xi]

and ẏi = xi, i = 1 . . . N,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.2)

where the nonlinearity is controlled with the term m that is set to 0.75, with m = 0 corresponding
to harmonic oscillator, and m � 1 being the quasi-linear case. The non-isochronous oscillator has
the form

Ẋi = Xi[(1 + jω0) − (1 + jq)|X|2] + ηi(t) + 1
N

N∑
j=1

Kij[Xj(t − τij) − Xi], i = 1 . . . N, (2.3)

where Xi = xi + jyi, with j representing an imaginary unit, the amplitude is set to 1, and the level
of non-isochronicity is set to q = 0.5, with q = 0 corresponding to the isochronous case when the
phases and the amplitudes are untangled. For each link, Kij and τij are coupling strengths and
time delays, whereas for the additive Gaussian noise 〈ηi(t)〉 = 0 and 〈ηi(t)ηj(t′)〉 = 2Dδ(t − t′)δi,j,
with 〈·〉 denoting time-average operator.

The coupling takes the form of a linear difference, as the simplest approximation of the general
coupling function, and it affects the first variables for the Rössler and VdP systems, and both
variables for the LS oscillators, as is usually the case [8]. Choosing a linear additive coupling
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would allow obtaining the same form by rescaling the parameters of the general AF bifurcation
in its realizations as LS and VdP oscillators. For the Rössler case, the difference coupling is not
transformable to the additive one, and even though y and x are linearly interdependent, indicating
that a rescaling should be possible in order to obtain qualitatively similar dynamics, this is not as
simple as for the LS and VdP oscillators. It is worth noting that even biologically inspired neural
mass models where chemical synapses lead to much more complex interactions often operate
close to the AF bifurcation [21,31], allowing linearization of the coupling function. Nevertheless,
an analysis of different working points of these models might also be required to fully understand
the impact of the delays for the large-scale brain dynamics.

The principal component of the oscillations in each model is set to the chosen frequency
for the simulated neural activity by rescaling the time. This is possible because the models are
phenomenological and the parameters are chosen such that they would preserve the chaotic,
nonlinear and non-isochronous regimes respectively. We fix the velocity of propagation in the
connectome at 5 m s−1, which is within the experimental range [52], and following the earlier
work [19], we choose frequencies of 5 Hz and 20 Hz as values that are expected to show distinctive
dynamics due to the time delays. As the natural frequencies are set at ω0 = 1 rad s−1, the time is
accordingly rescaled with factors 5 × 2π and 20 × 2π , while the mean intra- and inter-hemispheric
time delays are τint = 6.5 ms and τext = 19.6 ms, respectively.

(b) Analysis of the phase dynamics
(i) Phases from time-series

The complexity of the model makes the analytical derivations of phases at each region a
cumbersome, and probably impossible task. Instead, in order to quantify the phase dynamics,
angle variables [8] are defined for each node as

ϕi = arcsin
yi

xi
. (2.4)

These represent protophases that are then used to obtain the phases [53], which by definition need
to grow linearly, although this step is often skipped [8]. Alternatively, in the time-series analysis
the protophase is often estimated from an oscillatory variable obtained by Hilbert or Wavelet
Transform [8,54]. The phases are calculated from protophases as [53]

θi = 〈ϕ̇i〉
∫ϕ

0

[
dϕi

dt

]−1
dϕi. (2.5)

Note that for all the analysis, a steady synchronization arises at frequency Ω = Ψ̇ = θ̇i|sync [18,
19], where the mean field phase Ψ [55] is obtained from the complex order parameter of each
hemisphere

reiΨ = 1
N

Nhem.∑
j=1

eiθj , (2.6)

where r defines the level of synchrony. Thus, the analysis of the phases is completed in the rotating
frame Ω where the relative phases are rewritten as θi → θi − Ωt.

(ii) In- and anti-phase coherent network dynamics: theoretical background

For validation of the numerical results, we use an expression that was derived for the phases
of synchronized oscillators relative to the hemispheric mean fields for a BNM with Kuramoto
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oscillators [19]. Assuming that the synchronization of each node depends on its strength Ki, which
is defined as the sum of weights of all links connecting the node i, it reads

〈θi〉 � arcsin
(

ω0 − Ω

Kir cos Ω�τ

)
− Ωτ̃ , (2.7)

where �τ = (τext − τint)/2 and τ̃ = (τext + τint)/2 for the means of the weighted inter- (external)
and intra-hemispheric (internal) delays. Anti-phase synchronization appears for Ωτext in the left
complex half-plane [19], and the condition for synchronization of each region reads

|ω0 − Ω| ≤ Kir cos Ω�τ . (2.8)

(iii) Statistical analysis of the phase locking

Phase relationships between brain regions are quantified using phase locking values (PLV)
[7], which are a statistical measure for similarity between phases of two signals, frequently
employed in the analysis of empirical data. Although synchronization can occur between different
frequencies [54,56], most commonly studied is the one-to-one entrainment, for which the complex
phase locking values (cPLV) are defined as

cPLVij ≡ PLVije
iφij = 1

M

M∑
p=1

ei�θij(p), (2.9)

where the phase difference �θij(p) = θi(p) − θj(p) is calculated at times p = 1 . . . M. Here, we
calculate cPLV at sliding windows of length equal to 5 periods of the calculated mean frequency
of the entrainment, Ω , [55] and with 25% overlap. To identify only the phase coherence due to
mutual interactions [7,19,57], we calculate a level of statistical significance for PLV as the 95th
percentile of maximum values in 100 surrogate signals that are obtained by shuffling one of the
phases, and which follow the same processing as the original signals.

3. Results
Even though all three oscillatory systems making up the BNM have more complex dynamics than
the harmonic phase oscillators [19], they also synchronize such that brain hemispheres are in- and
anti-phase locked, depending on the frequency, as in figure 2. Here, scatter plots of phases and
nodes strengths are depicted, together with theirs probability density distributions (PDF) and the
time-evolution of the phases in the rotating frame Ω of the mean-field. Left panels of figure 2
are for a frequency f = 5 Hz, so that even the long inter-hemispheric time delays do not cause
phase shifts Ωτ larger than π/2, while in the right panels f = 20 Hz and the phase shift is in the
left complex half-plane. As with the KM, within the hemispheres the stronger nodes generally
lag in phase behind the weaker, while the π shift needs to be accounted for when comparing
contralateral regions during anti-phase regime. Moreover, the analytical result for the relative
phases, equation (2.7), holds quite well, with the only significant deviation appearing for the
chaotic oscillators.

For the isochronous case of LS oscillators, their phase dynamics is fully captured by the KM
[34]. However, even for the non-isochronous case chosen here, as with the nonlinear VdP, the
phase shifts during different regimes of synchronization are similar to the case of KM [19]: in
general, weaker nodes drift forward, and the stronger lag behind, while being locked to the
mean field for most of the time. Contrary to the KM, the anti-phase synchronization is not
necessarily intermittent for BNM using amplitude oscillators, and therefore the arrangement
of the phases within the hemispheres is not affected by the type of locking (in- or anti-phase).
The only anomalous behaviour is for small delays and chaotic oscillators, when some of the
stronger connected nodes lag behind the mean field [55], which is more aligned to the weaker
synchronized nodes. This slowing down is not reflected in the peak frequencies of the power
spectrum, which are identical for synchronized oscillators of different strength, figure 3, and they
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Figure 2. In- (5 Hz) and anti-phase (20 Hz) synchronization for simulated dynamics over a healthy human connectome. Top left
plots in each panel are the phases of the synchronized regions (colour-coded with their strength) and their PDF. Top right are
evolutions of phasesφi(t) for the synchronized (colour-codedwith their strength) and two strongest unsynchronized oscillators
(black), and±(Ω − ω)t (dashed). Bottom left are scatter plots of averaged phases and in-strengths, with nodes of left/right
hemisphere being up/downpointing triangles (red for synchronized, green otherwise), and blue andblack lines being analytical
predictions equation (2.7). Bottom right are the PDF of nodes strengths colour-coded with their relative phases (full circles for
synchronized, and hollow squares otherwise). Parameters: noise intensity (a,e,f ) D= 0.25, (b,d) D= 0.01 and (c) D= 0.5,
coupling strengths (a,c,d) K = 0.02, (b) K = 0.01, (e,f ) K = 0.006.

coincide with the frequency of the complex order parameter. The power spectrum also shows that
the entrainment for chaotic low-frequency activity is at a higher frequency than the natural, i.e. the
frequency of an uncoupled oscillator. Nevertheless, this does not seem to reverse the dependence
of the relative phases of the nodes strength, unlike for phase oscillators [19], suggesting that an
artefact in the recovery of phases might be the cause of this anomaly.

Phase portraits in figure 3 show that network interactions inevitably cause distortions of limit-
cycles, beyond the stochastic nature of the added noise. This gets more pronounced when delays
are comparable with the inherent time-scale of the oscillators, as is demonstrated in figure 4 for
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all three BNMs at frequency f = 20 Hz. The strongest nodes are mostly affected, and in general
the amplitude decreases with the strength of the nodes, so the oscillations become less nonlinear
and more stochastically driven. In the case of chaotic oscillators, they become more regular and
harmonic, the same as for the nonlinearly damped model.

Time-series of the neural activity from nodes with a different strength, figure 4, depict the in-
and anti-phase synchronization within and between the hemispheres, respectively. Three of the
strongest, the weakest and medium strength nodes within the same hemisphere are shown for
each of the models, as well as the activity of strongest contralateral nodes. In all the cases, the
weakest nodes are unsynchronized with the rest, and the strongest and the medium nodes are
rather coherent between each other, while being anti-correlated with the opposite hemisphere.
This is visible even though the oscillations are quite distorted, as is also reflected in their power
spectra. These show that the strongest nodes, despite losing their harmonics, still have the most
complex dynamics during anti-phase arrangement, with the largest peak at the synchronization
frequency that is always lower than the natural. On the contrary, the weakest, unsynchronized
nodes are speeding up compared to the isolated nodes for the LS and the Rössler models and are
in general faster than the rest of the network, as is also visible in the time-series. It is also worth
noting that the frequency depression is highest in the LS system, while chaotic oscillators are the
least influenced by this.

(iv) Pair-wise phase lags statistics

The most typical pair-wise correlation and phase coherence are illustrated in figure 5, and
besides the in- and anti-phase synchronization, they include the varying case, when both are
intermittently appearing. The left panel shows an intra-hemispheric link between in-phase
synchronized brain regions, and the middle and the right panels depict inter-hemispheric links.
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Figure 6. Statistics of PLV and phase lags for 68 brain regions orderedwithin hemispheres by the nodes strength. (left to right)
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(blue) and external (red) links. Parameters are the same as in figure 2.

In the first case, both nodes are weakly connected to the rest of the network, and hence epochs
of in- and anti-phase locking exist, leading to multi-modal distribution of the phase lags. Unlike
phase oscillators, when even the strongest nodes slip from anti- to in-phase arrangement, this
only occurs between weak nodes for amplitude oscillators. As predicted by equation (2.7) [19],
since K24 < K44 and the link is inter-hemispheric, the phase difference �φ24,44 ∈ (π/2, π ). On the
other hand K22 < K34 and both nodes are in the left hemisphere, so �φ22,34 ∈ (−π/2, 0). Finally,
K5 < K65, so the inter-hemispheric phase difference should be �φ5,65 ∈ (π/2, π ) during the anti-
phase epochs, as it is during the beginning of the highlighted interval, before slipping in (−π/2, 0)
for the rest of the interval when both regions are in-phase.
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(v) Whole-brain phase-lags statistics

The whole brain statistics for the distinctive phase regimes observed during oscillatory brain
dynamics are shown in figure 6. It depicts the mean PLV for each pair of brain regions, and the
correspondent mean and the standard deviation of the phase-lags calculated from cPLV. To keep
the colours/coherence consistency across the images 1−standard deviation is shown. All links
in the plots have statistically significant coherence detected during at least five time windows,
because the chosen method yields a low level of significance for PLV [19] (see also figure 5). The
latter two metrics generally mirror the strength of the structural links and can be used to describe
the functional connectivity, but are still differently affected by the underlying dynamics. For
example, underrepresentation of the inter-hemispheric connections by the tracking techniques
is clearly reflected in the PLV values for in-phase regimes, although lower levels of PLV do not
necessarily invoke high variability of the phases. This is especially the case for the anti-phase
dynamics of the chaotic BNM, but also the absence of intermittent in- and anti-phase dynamics
for all the models, contrary to the Kuramoto oscillators [19], induces small spread of the phases
due to their uni-modality, which is mainly affected by the strengths of the nodes. Thus, the high
variance in figure 5 for the two weakest VdP oscillators is due to their very low overall phase
coherence, despite their quite high average PLV.

The consistency of the regimes of synchronization, despite the weak level of statistical
significance that renders all the links to be significantly coherent, still induces clearly pronounced
peaks at 0 and ±π radians. The inter-hemispheric (external) links during the anti-phase regime
are around ±π rad, contrary to the intra-hemispheric (internal) links that have always 0 centred
phase lags, the same as the external links at low frequencies. Hence, the spatial distribution of
phase-lags in figure 6 is in agreement with the theoretical predictions for Kuramoto oscillators,
[19]. Moreover, strong regions lag behind the weaker, hence the green and blue shades for links
in the phase lags matrices during in phase regimes. These get inverted for the anti-phase inter-
hemispheric links, with darker shades corresponding to ±π/4 for internal links, and lighter for
external with the values around π ± π/4.

4. Conclusion
In this paper, we computationally analyse the architecture of phases and amplitudes of large-scale
neural oscillations, as they are shaped by the connectome. We identify exact features in the activity
of the brain regions, given that the inherent neural dynamics is oscillatory and that the time
delays due to the propagation in the connectome are proportional to the lengths of the structural
pathways. In this way, we offer a framework for experimentally verifying the BNMs that utilize
self-sustained oscillatory systems, which becomes more important in light of recent efforts
towards building a probabilistic atlas of human cortical connections [52], specifically their time
delays, which will eventually allow improving the utilized BNMs. In particular, the results can
be used to test whether the inter-hemispheric time delays are significantly longer than the intra-
hemispheric ones, which in the case of detectable coherence and large enough frequency should
inevitably lead to anti-phase arrangement between some of the stronger-connected contralateral
regions. In addition, we demonstrate that the delays necessarily reduce the activity at stronger
regions for increasing frequency in linearly coupled oscillatory brain nodes.

We have extended previous studies of phases of brain regions that were derived from
Kuramoto oscillators [19,28], and we have shown that the lagging of the stronger regions is
universal for oscillatory BNMs, as has been experimentally observed [28,33]. The other consistent
characteristic across the models is the decrease of the amplitude with an increase in the frequency
and the coupling strength, especially pronounced for stronger nodes. This is in contrast to the
findings about LS oscillators with time delays reduced to phase shifts [28], suggesting that
besides the anti-phase locking, reduction of delays to phases also disregards other important
aspects in the emerging dynamics. Furthermore, the amplitude reduction, as observed here, for
the systems near the AF bifurcation is associated with a shift of the working point towards the
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bifurcation. This is the same mechanism responsible for the amplitude death [35,58], which for
identical oscillators can be due to delayed interactions [59]. The amplitude death is amplified for
distributed delays [60], such as those due to the connectome, but it is also increasing with the
coupling strength, which for heterogeneous networks is stronger for stronger connected nodes.

With this study, we also confirm that phase reductions of time-delayed couplings, specifically
the Kuramoto model, are sufficient for capturing the synchronization related aspects of the
dynamics in networks of oscillators, especially those near AF bifurcation. Nevertheless, besides
allowing for the study of the impact of the heterogeneous delays on the amplitude of the brain
activity, increasing the dimensionality of the models as expected brings new peculiarities in the
oscillatory dynamics. For instance, the phase-amplitude entanglement stabilizes the anti-phase
ordering, which is otherwise sporadic for the delays of the connectome [19], while the frequency
spectra become more complex due to nonlinearities. In addition, although delays can cause period
doubling even for the mean-field of the KM [61], amplitude oscillators allow for coexistence
of different types of local oscillations, such as chaotic, quasi-periodic and harmonic, within the
same network. However, the current model assumes identical parameters for each region, and
a more realistic approach would require this to be specified based on the data [23] or on some
clinical hypothesis [25,62–64]. In this way, the specific characteristics of each region that translate
in various spectral, isochronous or chaotic properties would also impact the overall dynamics,
thus increasing the model’s authenticity.
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