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Introduction

The inequality sin z

z < cos z + 2 3 , 0 < z < π 2 , (1) 
is known in the literature as Cusa-Huygens inequality. Its hyperbolic counterpart, which is given as sinh z z < cosh z + 2 3 , x > 0, [START_REF] Bagul | Chesneau Some New Simple Inequalities Involving Exponential, Trigonometric and Hyperbolic Functions[END_REF] was established by Neuman and Sandor [START_REF] Neuman | On some inequalities involving trigonometric and hyperbolic functions with emphasis on the Cusa-Huygens, Wilker, and Huygens inequalities[END_REF]. The inequality

sin z z 2 + tan z z > 2, 0 < z < π 2 , (3) 
which is known as Wilker inequality was first proposed in the classic work [21, p.55] and subsequently attrated the attention of other researchrs. In [START_REF] Wu | A weighted and exponential generalization of Wilkers inequality and its applications[END_REF], Wu and Srivastava proved the Wilker-type inequality

z sin z 2 + z tan z > 2, 0 < z < π 2 . ( 4 
)
The hyperbolic counterpart of (3) was established by Zu [START_REF] Zhu | On Wilker-type Inequalities[END_REF] as

sinh z z 2 + tanh z z > 2, z ∈ R \ {0}. (5) 
Also, the hyperbolic counterpart of (4) was established by Wu and Debnath [START_REF] Wu | Debnath Wilker-type inequalities for hyperbolic functions[END_REF] as

z sinh z 2 + z tanh z > 2, z ∈ R \ {0}. (6) 
Another inequality of interest is the Huygens inequality which is given as [START_REF] Sandor | On Huygens trigonometric inequality[END_REF] 

2 sin z z + tan z z > 3, 0 < z < π 2 , (7) 
and its hyperbolic counterpart given as [START_REF] Neuman | On some inequalities involving trigonometric and hyperbolic functions with emphasis on the Cusa-Huygens, Wilker, and Huygens inequalities[END_REF] 2 sinh z z

+ tanh z z > 3, z ∈ R \ {0}. (8) 
Due to their usefulness, these elegant inequalities have been studied extensively and in diverse ways by several researchers. See for example [START_REF] Bagul | Chesneau Some New Simple Inequalities Involving Exponential, Trigonometric and Hyperbolic Functions[END_REF], [START_REF] Wilker | Huygens Type Inequalities for the Lemniscate Functions[END_REF], [START_REF] Chen | Sharp Cusa and Becker-Stark inequalities[END_REF], [START_REF] Chen | Inequality chains for Wilker, Huygens and Lazarevic type inequalities[END_REF], [START_REF] Huang | Some Wilker and Cusa type inequalities for generalized trigonometric and hyperbolic functions[END_REF], [START_REF] Malesevic | Mortici Extensions of the natural approach to refinements and generalizations of some trigonometric inequalities[END_REF], [START_REF]Mortitci The natural approach of Wilker-Cusa-Huygens inequalities[END_REF], [START_REF] Neuman | On Wilker and Huygens type inequalities[END_REF], [START_REF] Wilker | Huygens-type inequalities for the generalized trigonometric and for the generalized hyperbolic functions[END_REF], [START_REF] Sandor | On Huygens Inequalities and the Theory of Means[END_REF], [START_REF] Sandor | Sharp CusaHuygens and related inequalities[END_REF], [START_REF] Sandor | Gal On Cusa-Huygens type trigonometric and hyperbolic inequalities[END_REF], [START_REF] Sumner | Anglesio Inequalities involving trigonometric function[END_REF], [START_REF] Sun | On New Wilker-Type Inequalities[END_REF], [START_REF] Wu | Debnath Wilker-type inequalities for hyperbolic functions[END_REF], [START_REF] Zhu | On Wilker-type Inequalities[END_REF], [START_REF] Zhu | A source of inequalities for circular functions[END_REF], [START_REF] Zhu | New inequalities of Wilker's type for hyperbolic functions[END_REF] and the related references therein. Also, in a recent work, the Huygens-type inequality 2 cosh z

+ cosh z > sinh z z + 2 tanh z z > 1 cosh z + 2, z ∈ R \ {0}, (9) 
was established among other things by Bagul and Chesneau [START_REF] Bagul | Two double sided inequalities involving sinc and hyperbolic sinc functions[END_REF]. Motivated by the results (2), ( 5), ( 6), ( 8) and ( 9), the objective of this paper is to establish analogous inequalities concerning certain generalizations of the hyperbolic functions. The established results serve as generalizations of the previous results.

Preliminary Definitions

In a bid to generalized a previous work [START_REF] Nantomah | On Some Properties of the Sigmoid Function[END_REF], the authors of [START_REF] Nantomah | On a Generalized Sigmoid Function and its Properties[END_REF] gave the following generalizations of the hyperbolic functions.

Definition 2.1. The generalized hyperbolic cosine, hyperbolic sine and hyperbolic tangent functions are respectively defined as [START_REF] Nantomah | On a Generalized Sigmoid Function and its Properties[END_REF] cosh

a (z) = a z + a -z 2 , ( 10 
) sinh a (z) = a z -a -z 2 , ( 11 
) tanh a (z) = sinh a (z) cosh a (z) = a z -a -z a z + a -z = 1 - 2 1 + a 2z , (12) 
where a > 1 and z ∈ R.

These generalized functions satisfy the following identities.

cosh a (z) + sinh a (z) = a z , ( 13 
) cosh a (z) -sinh a (z) = a -z , ( 14 
) (cosh a (z)) = (ln a) sinh a (z), ( 15 
) (sinh a (z)) = (ln a) cosh a (z), (16) 
(tanh a (z)) = ln a cosh 2 a (z) , (17) 
(cosh a (z)) + (sinh a (z)) = (ln a) 2 a z , ( 18 
) (cosh a (z)) -(sinh a (z)) = (ln a) 2 a -z , ( 19 
) cosh 2 a (z) + sinh 2 a (z) = cosh a (2z), (20) cosh 2 a (z) -sinh 2 a (z) = 1, (21) 2 sinh a (z) cosh a (z) = sinh a (2z), (22) 
cosh 2 a (z) = cosh a (2z) + 1 2 , ( 23 
)
sinh 2 a (z) = cosh a (2z) -1 2 . ( 24 
)
The generalized hyperbolic secant, hyperbolic cosecant and hyperbolic cotangent functions are respectively defined as

sech a (z) = 1 cosh a (z) , cosech a (z) = 1 sinh a (z) , coth a (z) = 1 tanh a (z) . ( 25 
)
As pointed out in [START_REF] Nantomah | On a Generalized Sigmoid Function and its Properties[END_REF], several other identities can be derived from ( 10), ( 11) and [START_REF] Neuman | On Wilker and Huygens type inequalities[END_REF]. When a = e, where e = 2.71828... is the Euler's number, then the above definitions and indentities reduce to their ordinary counterparts.

Results and Discussion

Lemma 3.1. The inequality

cosh a (z) < sinh a (z) z 3 , (26) 
holds for z ∈ R \ {0}.

Proof. Inequality [START_REF] Zhu | New inequalities of Wilker's type for hyperbolic functions[END_REF] has been proved in [START_REF] Nantomah | Prempeh Some Inequalities for Generalized Hyperbolic Functions[END_REF] for z > 0. Now let z < 0 so that -z > 0. Then

cosh a (z) = cosh a (-z) < sinh a (-z) -z 3 = sinh a (z) z 3 ,
which completes the proof.

Since the function sinha(z) z is increasing for z > 0 and decreasing for z < 0, then Lemma 3.1 implies the following generalized result. Lemma 3.2. The inequality

cosh a (z) < sinh a (z) z v , (27) 
holds for z ∈ R \ {0} and v ≥ 3. 

Lemma 3.3 ([11]). For z ∈ R \ {0}, the inequality ln a cosh a (z) < sinh a (z) z < (ln a) cosh a (z), (28) holds. 
sinh a (z) z < 2 ln a + (ln a) cosh a (z) 3 , (30) 
holds for z ∈ R \ {0}.

Proof. Since the functions in each term of the inequality are even, it suffices to prove the case for z > 0. Let z > 0 and h be defined as

h(z) = 2z + z cosh a (z) sinh a (z) .
Then

h (z) = 1 sinh 2 a (z) [2 sinh a (z) + cosh a (z) sinh a (z) -2z(ln a) cosh a (z) -(ln a)z] = 1 sinh 2 a (z) φ(z)
and then

φ (z) = (ln a) [cosh a (2z) -2(ln a)z sinh a (z) -1] = 2(ln a) sinh a (z) [sinh a (z) -(ln a)z] > 0, since sinha(z) z > ln a for z ∈ (0, ∞). Hence φ(z) is increasing and consequently, φ(z) > φ(0) = 0. Thus h(z) is increasing. Hence h(z) > lim z→0 h(z) = 3 ln a ,
which gives (30).

Remark 3.6. When a = e, then inequality (30) reduces to the hyperbolic Cusa-Huygens inequality (2).

Theorem 3.7. The inequalities

sinh a (z) z 2 + tanh a (z) z > 2, (31) 
z sinh a (z) 2 + z tanh a (z) > 1 + ln a (ln a) 2 , 1 < a ≤ e, (32) 
hold for z ∈ R \ {0}.

Proof. Let z ∈ R \ {0}. Then by the AM-GM inequality and Lemma 3.1, we obtain sinh a (z)

z 2 + tanh a (z) z ≥ 2 sinh a (z) z 2 tanh a (z) z = 2 sinh a (z) z 3 1 cosh a (z) > 2,
which gives (31). To prove (32), it suffices to prove the case for z > 0. Let z > 0 and define ψ(z) by

ψ(z) = z sinh a (z) 2 + z tanh a (z)
,

where 1 < a ≤ e. Then by differentiating, applying the AM-GM inequality and Lemma 3.1, we obtain

ψ (z) = 1 sinh 3 a (z) sinh 2 a (z) cosh a (z) + (2 -ln a)z sinh a (z) -2(ln a)z 2 cosh a (z) ≥ 1 sinh 3 a (z) 2 sinh 2 a (z) cosh a (z).(2 -ln a)z sinh a (z) -2(ln a)z 2 cosh a (z) = 2z 2 sinh 3 a (z)
. cosh a (z)

  √ 2 -ln a sinh a (z) z 3 -(ln a) cosh a (z)   > 0.
Thus ψ(z) is increasing. Hence 2 , which gives (32). Remark 3.8. When a = e, then inequalities (31) and (31) reduce to the hyperbolic Wilker-type inequalities ( 5) and ( 6) respectively. Theorem 3.9. The inequality

ψ(z) > lim z→0 ψ(z) = 1 + ln a (ln a)
sinh a (z) z 2 + tanh a (z) z > z sinh a (z) 2 + z tanh a (z) , ( 33 
)
holds for z ∈ R \ {0}. Proof. Observe that A 2 +B 1 A 2 + 1 B = A 2 B.
Then by Lemma 3.1, we obtain

sinha(z) z 2 + tanha(z) z z sinha(z) 2 + z tanha(z) = sinh a (z) z 2 tanh a (z) z = sinh a (z) z 3 1 cosh a (z) > 1,
which concludes the proof. Theorem 3.10. Let α, β ∈ (0, 1) such that α + β = 1. Then the inequality

α sinh a (z) z 2 + β tanh a (z) z > (ln a) 2(α-β) , ( 34 
)
holds for z ∈ R \ {0} Proof. Let z ∈ R \ {0}.
Then Youngs inequality (29) and Lemma 3.1 imply that

α sinh a (z) z 2 + β tanh a (z) z ≥ sinh a (z) z 2α tanh a (z) z β = sinh a (z) z 2α+β 1 cosh a (z) β > sinh a (z) z 2α+β sinh a (z) z -3β = sinh a (z) z 2(α-β) > (ln a) 2(α-β) ,
which completes the proof.

Remark 3.11. If α = β = 1 2 , then (34) reduces to (31). Theorem 3.12. The inequality

2 sinh a (z) z + tanh a (z) z > 3 ln a, (35) 
holds for z ∈ R \ {0}.

Proof. It suffices to prove the case for z > 0. Let z > 0 and let h be defined as

h(z) = 2 sinh a (z) z + tanh a (z) z .
Then

z 2 h (z) = 2(ln a)z cosh a (z) -2 sinh a (z) + (ln a)zsech 2 a (z) -tanh a (z) = θ(z), and 
θ (z) = 2(ln a) 2 z sinh a (z) -2(ln a) 2 z tanh a (z)sech 2 a (z) = 2(ln a) 2 z sinh a (z) 1 - 1 cosh 3 a (z) > 0,
which shows that θ(z) is increasing. Hence θ(z) > θ(0) = 0. Thus, h(z) is increasing and consequently, h(z) > lim Theorem 3.14. The inequality

2 z sinh a (z) + z tanh a (z) > 3 ln a , (36) 
holds for z ∈ R \ {0}.

Proof. It suffices to prove the case for z > 0. Let z > 0 and δ be defined as

δ(z) = 2 z sinh a (z) + z tanh a (z)
.

Then 

δ (z) = 1 sinh 2 a (z)
(m + 1) sinh a (z) z + m tanh a (z) z > m sinh a (z) z + (m + 1) tanh a (z) z , (37) 
holds for z ∈ R \ {0} and m ∈ N ∪ {0}.

Proof. z ∈ R \ {0} . Then sinh a (z) z - tanh a (z) z = sinh a (z) z 1 - 1 cosh a (z) > 0, since cosh a (z) > 1 for z ∈ R. That is sinh a (z) z > tanh a (z) z . (38) 
Adding m sinha(z) z + tanha(z) z to both sides of (38) completes the proof.

Theorem 3.16. The inequality

2 ln a cosh a (z) + (ln a) cosh a (z) > sinh a (z) z + 2 tanh a (z) z > ln a cosh a (z) + 2 ln a, (39) 
holds for z ∈ R \ {0}.

Proof. It suffices to prove the case for z > 0. Let z > 0 and f be defined as

f (z) = 2(ln a)z + (ln a)z cosh 2 a (z) -sinh a (z) cosh a (z) -2 sinh a (z). Then f (z) = 2(ln a) + 2(ln a) 2 z cosh a (z) sinh a (z) -(ln a) sinh 2
a (z) -2(ln a) cosh a (z), and then f (z) = 2(ln a) 3 z sinh 2 a (z) + 2(ln a) 2 (ln a)z cosh 2 a (z) -sinh a (z) > 0, since sinh a (z) < (ln a)z cosh a (z) (see Lemma 3.3) and cosh a (z) < cosh 2 a (z). Hence f (z) is increasing and so, f (z) > f (0) = 0. Thus, f (z) is increasing and so f (z) > f (0) = 0. This yields the left-hand side of (39). Next, for z > 0, let g be defined as g(z) = sinh a (z) cosh a (z) + 2 sinh a (z) -(ln a)z -2(ln a)z cosh a (z). > 0, since sinh a (z) > (ln a)z and cosh a (z) > 1 . Hence g (z) is increasing and so, g (z) > g (0) = 0. Thus, g(z) is increasing and so g(z) > g(0) = 0. This yields the right-hand side of (39) and that completes the proof.

Remark 3.17. When a = e, then inequality (39) reduces to [START_REF] Nantomah | On Some Properties of the Sigmoid Function[END_REF]. This is however weaker than inequality (35).
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