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We consider a design problem where experimental conditions (design points X i ) are presented in the form of a sequence of i.i.d. random variables, generated with an unknown probability measure µ, and only a given proportion α ∈ (0, 1) can be selected. The objective is to select good candidates X i on the fly and maximize a concave function Φ of the corresponding information matrix. The optimal solution corresponds to the construction of an optimal bounded design measure ξ * α ≤ µ/α, with the difficulty that µ is unknown and ξ * α must be constructed online. The construction proposed relies on the definition of a threshold τ on the directional derivative of Φ at the current information matrix, the value of τ being fixed by a certain quantile of the distribution of this directional derivative. Combination with recursive quantile estimation yields a nonlinear two-time-scale stochastic approximation method. It can be applied to very long design sequences since only the current information matrix and estimated quantile need to be stored. Convergence to an optimum design is proved. Various illustrative examples are presented.

Introduction

Consider a rather general parameter estimation problem in a model with independent observations Y i = Y i (x i ) conditionally on the experimental variables x i , with x i in some set X . Suppose that for any x ∈ X there exists a measurable set Y x ∈ R and a σ-finite measure µ x on Y x such that Y (x) has the density ϕ x,θ with respect to µ x , with θ the true value of the model parameters θ to be estimated, θ ∈ R p .

In particular, this covers the case of regression models, with µ x the Lebesgue measure on Y x = R and Y (x) = η(θ, x) + ε(x), where the ε(x i ) are independently distributed with zero mean and known variance σ 2 i (or unknown but constant variance σ 2 ), and the case of generalized linear models, with ϕ x,θ in the exponential family and logistic regression as a special case. Denoting by θn the estimated value of θ from data (X i , Y i ), i = 1, . . . , n, under rather weak conditions on the x i and ϕ x,θ , see below, we have

10 √ n( θn -θ) d → N (0, M -1 (ξ, θ)) as n → ∞ , (1.1)
where M(ξ, θ) denotes the (normalized) Fisher information matrix for parameters θ and (asymptotic) design ξ (that is, a probability measure on X ),

M(ξ, θ) = lim n→∞ 1 n E x1,...,xn,θ    n i=1 ∂ log ϕ x,θ (Y i ) ∂θ n j=1 ∂ log ϕ x,θ (Y j ) ∂θ    = X Yx
∂ log ϕ x,θ (y) ∂θ ∂ log ϕ x,θ (y) ∂θ ϕ x,θ (y) µ x (dy) ξ(dx) .

This is true in particular for randomized designs such that the x i are independently sampled from ξ, and for asymptotically discrete designs, such that ξ is a discrete measure on X and the empirical design measure ξ n = n i=1 δ xi converges strongly to ξ; see [START_REF] Pronzato | Design of Experiments in Nonlinear Models. Asymptotic Normality, Optimality Criteria and Small-Sample Properties[END_REF]. The former case corresponds to the situation considered here. The choice of µ x is somewhat arbitrary, provided that Yx ϕ x,θ (y) µ x (dy) = 1 for all x, and we shall assume that µ x (dy) ≡ 1. We can then write M(ξ, θ) = Taking motivation from (1.1), optimal experimental design (approximate theory) aims at choosing a measure ξ that minimizes a scalar function of the asymptotic covariance matrix M -1 (ξ, θ) of θn , or equivalently, that maximizes a function Φ of M(ξ, θ). For a nonlinear model M (x, θ) and M(ξ, θ) depend on the model parameters θ. Since θ is unknown, the standard approach is local, and consists in constructing an optimal design for a nominal value θ 0 of θ. This is the point of view we shall adopt here -although sequential estimation of θ is possible, see Section 6. When θ is fixed at some θ 0 , there is fundamentally no difference with experimental design in a linear model for which M (x, θ) and M(ξ, θ) do not depend on θ.

For example, in the linear regression model

Y (X i ) = f (X i )θ + ε i ,
where the errors ε i are independent and identically distributed (i.i.d.), with a density ϕ ε with respect to the Lebesgue measure having finite Fisher information for location

I ε = R [ϕ ε (t)] 2 /ϕ ε (t) dt < ∞ (I ε = 1/σ 2 for normal errors N (0, σ 2 )), then M (x) = I ε f (x)f (x), M(ξ) = I ε X f (x)f (x) ξ(dx).
Polynomial regression provides typical examples of such a situation and will be used for illustration in Section 4. The construction of an optimal design measure ξ * maximizing Φ[M(ξ, θ 0 )] usually relies on the application of a specialized algorithm to a discretization of the design space X ; see, e.g., Pronzato and Pázman (2013, Chap. 9). With the rapid development of connected sensors and the pervasive usage of computers, there exist more and more situations where extraordinary amounts of massive data (X i , Y i ), i = 1, . . . , N , are available to construct models. When N is very large, using all the data to construct θN is then unfeasible, and selecting the most informative subset through the construction of an n-point optimal design, n N , over the discrete set X N = {X i , i = 1, . . . , N } is also not feasible. The objective of this paper is to present a method to explore X N sequentially and select a proportion n = αN of the N data points to be used to estimate θ. Each candidate X i is considered only once, which allows very large datasets to be processed: when the X i are i.i.d. and are received sequentially, they can be selected on the fly which makes the method applicable to data streaming; when N data points are available simultaneously, a random permutation allows X N to be processed as an i.i.d. sequence. When N is too large for the storage capacity and the i.i.d. assumption is not tenable, interleaving or scrambling techniques can be used. Since de-scrambling is not necessary here (the objective is only to randomize the sequence), a simple random selection in a fixed size buffer may be sufficient; an example is presented in Section 4.3.

The method is based on the construction of an optimal bounded design measure and draws on the paper [START_REF] Pronzato | On the sequential construction of optimum bounded designs[END_REF]. In that paper, the sequential selection of the X i relies on a threshold set on the directional derivative of the design criterion, given by the (1 -α)-quantile of the distribution of this derivative. At stage k, all previous X i , i = 1, . . . , k, are used for the estimation of the quantile C k that defines the threshold for the possible selection of the candidate X k+1 . In the present paper, we combine this approach with the recursive estimation of C k , following [START_REF] Tierney | A space-efficient recursive procedure for estimating a quantile of an unknown distribution[END_REF]: as a result, the construction is fully sequential and only requires to record the current value of the information matrix M k and of the estimated quantile C k of the distribution of the directional derivative. It relies on a reinterpretation of the approach in [START_REF] Pronzato | On the sequential construction of optimum bounded designs[END_REF] as a stochastic approximation method for the solution of the necessary and sufficient optimality conditions for a bounded design measure, which we combine with another stochastic approximation method for quantile estimation to obtain a two-time-scale stochastic approximation scheme.

The paper is organized as follows. Section 2 introduces the notation and assumptions and recalls main results on optimal bounded design measures. Section 3 presents our subsampling algorithm based on a twotime-scale stochastic approximation procedure and contains the main result of the paper. Several illustrative examples are presented in Section 4. We are not aware of any other method for thinning experimental designs that is applicable to data streaming; nevertheless, in Section 5 we compare our algorithm with an exchange method and with the IBOSS algorithm of [START_REF] Wang | Information-based optimal subdata selection for big data linear regression[END_REF] in the case where the N design points are available and can be processed simultaneously. Section 6 concludes and suggests a few directions for further developments. A series of technical results are provided in the Appendix.

Optimal bounded design measures

Notation and assumptions

Suppose that X is distributed with the probability measure µ on X ⊆ R d , a subset of R d with nonempty interior, with d ≥ 1. For any ξ ∈ P + (X ), the set of positive measure ξ on X (not necessarily of mass one), we denote M(ξ) = X M (x) ξ(dx) where, for all x in X , M (x) ∈ M ≥ , the set (cone) of symmetric non-negative definite p × p matrices. We assume that p > 1 in the rest of the paper (the optimal selection of information in the case p = 1 forms a variant of the secretary problem for which an asymptotically optimal solution can be derived, see [START_REF] Albright | Asymptotically optimal policies for the stochastic sequential assignment problem[END_REF][START_REF] Pronzato | Optimal and asymptotically optimal decision rules for sequential screening and resource allocation[END_REF]).

We denote by Φ : M ≥ → R ∪ {-∞} the design criterion we wish to maximize, and by λ min (M) and λ max (M) the minimum and maximum eigenvalues of M, respectively; we shall use the 2 norm for vectors and Frobenius norm for matrices, M = trace 1/2 [MM ]; all vectors are column vectors. For any t ∈ R, we denote [t] + = max{t, 0} and, for any t ∈ R + , t denotes the largest integer smaller than t. For 0 ≤ ≤ L we denote by M ≥ ,L the (convex) set defined by

M ≥ ,L = {M ∈ M ≥ : < λ min (M) and λ max (M) < L} ,
and by M > the open cone of symmetric positive definite p × p matrices. We make the following assumptions on Φ.

H Φ Φ is strictly concave on M > , linearly differentiable and increasing for Loewner ordering; its gradient ∇ Φ (M) is well defined in M ≥ for any M ∈ M > and satisfies ∇ Φ (M) < A( ) and λ min [∇ Φ (M)] > a(L) for any M ∈ M ≥ ,L , for some a(L) > 0 and A( ) < ∞; moreover, ∇ Φ satisfies the following Lipschitz condition: for all

M 1 and M 2 in M ≥ such that λ min (M i ) > > 0, i = 1, 2, there exists K < ∞ such that ∇ Φ (M 2 ) -∇ Φ (M 1 ) < K M 2 -M 1 .
The criterion Φ 0 (M) = log det(M) and criteria Φ q (M) = -trace(M -q ), q ∈ (-1, ∞), q = 0, with Φ q (M) = -∞ if M is singular, which are often used in optimal design (in particular with q a positive integer), satisfy H Φ ; see, e.g., Pukelsheim (1993, Chap. 6). Their gradients are ∇ Φ0 (M) = M -1 and ∇ Φq (M) = q M -(q+1) , q = 0; the constants a(L) and A( ) are respectively given by a

(L) = 1/L, A( ) = √ p/
for Φ 0 and a(L) = q/L q+1 , A( ) = q √ p/ q+1 for Φ q . The Lispchitz condition follows from the fact that the criteria are twice differentiable on M > . The positively homogeneous versions Φ + 0 (M) = det 1/p (M) and Φ + q (M) = [(1/p) trace(M -q )] -1/q , which satisfy Φ + (aM) = a Φ + (M) for any a > 0 and any M ∈ M ≥ , and Φ + (I p ) = 1, with I p the p × p identity matrix, could be considered too; see Pukelsheim (1993, Chaps. 5, 6). The strict concavity of Φ implies that, for any convex subset M of M > , there exists a unique matrix M * maximizing Φ(M) with respect to M ∈ M.

We denote by F Φ (M, M ) the directional derivative of Φ at M in the direction M ,

F Φ (M, M ) = lim γ→0 + Φ[(1 -γ)M + γM ] -Φ(M) γ = trace[∇ Φ (M)(M -M)] ,
and we make the following assumptions on µ and M .

H µ µ has a bounded positive density ϕ with respect to the Lebesgue measure on every open subset of X .

H M (i ) M is continuous on X and satisfies X M (x) 2 µ(dx) < B < ∞;

(ii ) for any X ⊂ X of measure µ(X ) = > 0, λ min X M (x) µ(dx) > for some > 0.

Since all the designs considered will be formed by points sampled from µ, we shall confound X with the support of µ: 

X = {x ∈ R d : µ(B d (x, )) > 0 ∀ > 0}, with B d (x,
-α)-quantile C 1-α (M) of the distribution F M (z) of the directional derivative Z M (X) = F Φ [M, M (X)] when X ∼ µ, and we shall assume that H µ,M below is satisfied. It implies in particular that C 1-α (M) is uniquely defined by F M (C M,1-α ) = 1 -α. H µ,M For all M ∈ M ≥ ,L
, F M has a uniformly bounded density ϕ M ; moreover, for any α ∈ (0, 1), there exists

,L > 0 such that ϕ M [C 1-α (M)] > ,L and ϕ M is continuous at C 1-α (M).
H µ,M is overrestricting (we only need the existence and boundedness of ϕ M , and its positiveness and continuity at C 1-α (M)), but is satisfied is many common situations; see Section 4 for examples. Let us emphasize that H µ and H M are not enough to guarantee the existence of a density ϕ M , since trace[∇ Φ (M)M (x)] may remain constant over subsets of X having positive measure. Assuming the existence of ϕ M and the continuity of ϕ on X is also insufficient, since ϕ M is generally not continuous when Z M (x) is not differentiable in x, and ϕ M is not necessarily bounded.

Optimal design

As mentioned in introduction, when the cardinality of X N is very large, one may wish to select only n candidates X i among the N available, a fraction n = αN say, with α ∈ (0, 1). For any n ≤ N , we denote by M * n,N a design matrix (non necessarily unique) obtained by selecting n points optimally within X N ; that is, M * n,N gives the maximum of Φ(M n ) with respect to

M n = (1/n) n j=1 M (X ij )
, where the X ij are n distinct points in X N . Note that this forms a difficult combinatorial problem, unfeasible for large n and N . If one assumes that the X i are i.i.d., with µ their probability measure on X , for large N the optimal selection of n = αN points amounts at constructing an optimal bounded design measure ξ * α , such that Φ[M(ξ * α )] is maximum and ξ α ≤ µ/α (in the sense ξ α (A) ≤ µ(A)/α for any µ-measurable set A, which makes ξ α absolutely continuous with respect to µ). Indeed, Lemma 1 in Appendix A indicates that

lim sup N →∞ Φ(M * αN ,N ) = Φ[M(ξ * α )]. Also, under H Φ , E{Φ(M * n,N )} ≤ Φ[M(ξ * n/N
)] for all N ≥ n > 0; see Pronzato (2006, Lemma 3).

A key result is that, when all subsets of X with constant Z M (x) have zero measure, [START_REF] Wynn | Optimum submeasures with applications to finite population sampling[END_REF]; [START_REF] Fedorov | Optimal design with bounded density: optimization algorithms of the exchange type[END_REF] and Fedorov and Hackl (1997, Chap. 4). (The condition mentioned in those references is that µ has no atoms, but the example in Section 4.4.2 will show that this is not sufficient; the extension to arbitrary measures is considered in [START_REF] Sahm | A note on optimal bounded designs[END_REF].)

Z M(ξ * α ) (x) = F Φ [M(ξ * α ), M (x)] separates two sets X * α and X \ X * α , with F Φ [M(ξ * α ), M (x)] ≥ C * 1-α and ξ * α = µ/α on X * α , and F Φ [M(ξ * α ), M (x)] ≤ C * 1-α and ξ * α = 0 on X \ X * α , for some constant C * 1-α ; moreover, X F Φ [M(ξ * α ), M (x)] ξ * α (dx) = X * α F Φ [M(ξ * α ), M (x)] µ(dx) = 0; see
For α ∈ (0, 1), denote

M(α) = M(ξ α ) = X M (x) ξ α (dx) : ξ α ∈ P + (X ), ξ α ≤ µ α , X ξ α (dx) = 1 .
In [START_REF] Pronzato | On the sequential construction of optimum bounded designs[END_REF], it is shown that, for any M ∈ M > ,

M + (M, α) = arg max M ∈M(α) F Φ (M, M ) = 1 α X I {FΦ[M,M (x)]≥C1-α} M (x) µ(dx) , (2.1)
where, for any proposition A, I {A} = 1 if A is true and is zero otherwise, and

C 1-α = C 1-α (M) is an (1 -α)-quantile of F Φ [M, M (X)] when X ∼ µ and satisfies X I {FΦ[M,M (x)]≥C1-α(M)} µ(dx) = α . (2.2) Therefore, M * α = M(ξ * α )
is the optimum information matrix in M(α) (unique since Φ is strictly concave) if and only if it satisfies max M ∈M(α) F Φ (M * α , M ) = 0, or equivalently M * α = M + (M * α , α), and the constant (Pronzato, 2006, Th. 5); see also [START_REF] Pronzato | A minimax equivalence theorem for optimum bounded design measures[END_REF]. Note that

C * 1-α equals C 1-α (M * α ); see
C * 1-α ≤ 0 since X F Φ [M(ξ * α ), M (x)] ξ * α (dx) = 0 and F Φ [M(ξ * α ), M (x)] ≥ C * 1-α on the support of ξ * α .
3. Sequential construction of an optimal bounded design measure

A stochastic approximation problem

Suppose that the X i are i.i.d. with µ. The solution of M = M + (M, α), α ∈ (0, 1), with respect to M by stochastic approximation yields the iterations [START_REF] Pronzato | On the sequential construction of optimum bounded designs[END_REF]) under rather weak assumptions on Φ, M and µ.

n k+1 = n k + I {FΦ[Mn k ,M (X k+1 )]≥C1-α(Mn k )} , M n k+1 = M n k + 1 n k +1 I {FΦ[Mn k ,M (X k+1 )]≥C1-α(Mn k )} [M (X k+1 ) -M n k ] . (3.1) Note that E I {FΦ[M,M (X)]≥C1-α(M)} [M (X) -M] = α [M + (M, α) -M]. The almost sure (a.s.) conver- gence of M n k in (3.1) to M(ξ * α ) that maximizes Φ(M) with respect M ∈ M(α) is proved in
The construction (3.1) requires the calculation of the (1

-α)-quantile C 1-α (M n k ) for all n k , see (2.2),
which is not feasible when µ is unknown and has a prohibitive computational cost when we know µ. For that reason, it is proposed in [START_REF] Pronzato | On the sequential construction of optimum bounded designs[END_REF] to replace C 1-α (M n k ) by the empirical quantile C α,k (M n k ) that uses the empirical measure µ k = (1/k) k i=1 δ Xi of the X i that have been observed up to stage k. This construction preserves the a.s. convergence of M n k to M(ξ * α ) in (3.1), but its computational cost and storage requirement increase with k, which makes it unadapted to situations with very large N . The next section considers the recursive estimation of C 1-α (M n k ) and contains the main result of the paper.

Recursive quantile estimation

The idea is to plug a recursive estimator of the (1 -α)-quantile C 1-α (M n k ) in (3.1). Under mild assumptions, for random variables Z i that are i.i.d. with distribution function F such that the solution of the equation F (z) = 1 -α is unique, the recursion

C k+1 = C k + β k + 1 I {Z k+1 ≥ C k } -α (3.2) with β > 0 converges a.s. to the quantile C 1-α such that F (C 1-α ) = 1 -α.
Here, we shall use a construction based on [START_REF] Tierney | A space-efficient recursive procedure for estimating a quantile of an unknown distribution[END_REF]. In that paper, a clever dynamical choice of β = β k is shown to provide the optimal asymptotic rate of convergence of

C k towards C 1-α , with √ k( C k -C 1-α ) d → N (0, α(1 -α)/f 2 (C 1-α )) as k → ∞
, where f (z) = dF (z)/dz is the p.d.f. of the Z i -note that it coincides with the asymptotic behavior of the sample (empirical) quantile. The only conditions on F are that f (z) exists for all z and is uniformly bounded, and that f is continuous and positive at the unique root C 1-α of F (z) = 1 -α.

There is a noticeable difference, however, with the estimation of C 1-α (M n k ): in our case we need to estimate a quantile of Z k (X) = F Φ [M n k , M (X)] for X ∼ µ, with the distribution of Z k (X) evolving with k. For that reason, we shall impose a faster dynamic to the evolution of C k , and replace (3.2) by

C k+1 = C k + β k (k + 1) q I {Z k (X k+1 )≥ C k } -α (3.3)
for some q ∈ (0, 1). The combination of (3.3) with (3.1) yields a particular nonlinear two-time-scale stochastic approximation scheme. There exist advanced results on the convergence of linear two-time-scale stochastic approximation, see [START_REF] Konda | Convergence rate of linear two-time-scale stochastic approximation[END_REF]; [START_REF] Dalal | Finite sample analysis of two-timescale stochastic approximation with applications to reinforcement learning[END_REF]. To the best of our knowledge, however, there are few results on convergence for nonlinear schemes. Convergence is shown in [START_REF] Borkar | Stochastic approximation with two time scales[END_REF] under the assumption of boundedness of the iterates using the ODE method of [START_REF] Ljung | Analysis of recursive stochastic algorithms[END_REF]; sufficient conditions for stability are provided in [START_REF] Lakshminarayanan | A stability criterion for two timescale stochatic approximation[END_REF], also using the ODE approach. In the proof of Theorem 1 we provide justifications for our construction, based on the analyses and results in the references mentioned above.

The construction is summarized in Algorithm 1 below. The presence of the small number 1 is only due to technical reasons: setting z k+1 = +∞ when n k /k < 1 in (3.4) has the effect of always selecting X k+1 when less than 1 k points have been selected previously; it ensures that n k+1 /k > 1 for all k and thus that

M n k always belongs to M ≥ ,L for some > 0 and L < ∞; see Lemma 2 in Appendix B.
Algorithm 1: sequential selection (α given).

0) Choose k 0 ≥ p, q ∈ (1/2, 1), γ ∈ (0, q -1/2), and 0 < 1 α. 1) Initialization: select X 1 , . . . , X k0 , compute M n k 0 = (1/k 0 ) k0 i=1 M (X i ). If M n k 0 is singular, increase k 0 and select the next points until M n k 0 has full rank. Set k = n k = k 0 , the number of points selected. Compute ζ i = Z k0 (X i ), for i = 1, . . . , k 0 and order the ζ i as ζ 1:k0 ≤ ζ 2:k0 ≤ • • • ≤ ζ k0:k0 ; denote k + 0 = (1 -α/2) k 0 and k - 0 = max{ (1 -3 α/2) k 0 , 1}. Initialize C k0 at ζ (1-α) k0 :k0 ; set β 0 = k 0 /(k + 0 -k - 0 ), h = (ζ k + 0 :k0 -ζ k - 0 :k0 ), h k0 = h/k γ 0 and f k0 = k0 i=1 I {|ζi-C k 0 |≤h k 0 } /(2 k 0 h k0 ). 2) Iteration k + 1: collect X k+1 and compute Z k (X k+1 ) = F Φ [M n k , M (X k+1 )]. If n k /k < 1 set z k+1 = +∞ ; otherwise set z k+1 = Z k (X k+1 ) . (3.4) If z k+1 ≥ C k , update n k into n k+1 = n k + 1 and M n k into M n k+1 = M n k + 1 n k + 1 [M (X k+1 ) -M n k ] ; (3.5) otherwise, set n k+1 = n k . 3) Compute β k = min{1/ f k , β 0 k γ }; update C k using (3.3). Set h k+1 = h/(k + 1) γ and update f k into f k+1 = f k + 1 (k + 1) q 1 2 h k+1 I {|Z k (X k+1 )-C k |≤h k+1 } -f k . 4) k ← k + 1, return to Step 2.
Note that C k is updated whatever the value of Z k (X k+1 ). Recursive quantile estimation by (3.3) follows [START_REF] Tierney | A space-efficient recursive procedure for estimating a quantile of an unknown distribution[END_REF]. To ensure a faster dynamic for the evolution of C k than for M n k , we take q < 1 instead of q = 1 in [START_REF] Tierney | A space-efficient recursive procedure for estimating a quantile of an unknown distribution[END_REF], and the construction of f k and the choices of β k and h k are modified accordingly. Following the same arguments as in the proof of Proposition 1 of [START_REF] Tierney | A space-efficient recursive procedure for estimating a quantile of an unknown distribution[END_REF], the a.s. convergence of

C k to C 1-α in the modified version of (3.2) is proved in Theorem 3 (Appendix C).
The next theorem establishes the convergence of the combined stochastic approximation schemes with two time-scales.

Theorem 1. Under H Φ , H µ , H M and H µ,M , the normalized information matrix M n k corresponding to the n k candidates selected after k iterations of Algorithm 1 converges a.s. to the optimal matrix M * α in M(α) as k → ∞.

Proof. Our analysis is based on [START_REF] Borkar | Stochastic approximation with two time scales[END_REF]. We denote by F n the increasing sequence of σ-fields generated by the X i . According to (3.3), we can write

C k+1 = C k + [β k /(k + 1) q ] V k+1 with V k+1 = I {Z k (X k+1 )≥ C k } -α. Therefore, E{V k+1 |F k } = X [I {Z k (x)≥ C k } -α] µ(dx) and var{V k+1 |F k } = F k ( C k )[1 - F k ( C k )], with F k the distribution function of Z k (X).
From Lemma 2 (Appendix B) and H µ,M , F k has a well defined density f k for all k, with f k (t) > 0 for all t and f k bounded. The first part of the proof of Theorem 3 applies (see Appendix C): f k is a.s. bounded and β k is bounded away from zero a.s. Therefore,

k β k /(k + 1) q → ∞ a.s. and (k + 1) q /[β k (k + 1)] → 0 a.s.; also, k [β k /(k + 1) q ] 2 < ∞ since q -γ > 1/2.
The o.d.e. associated with (3.3), for a fixed matrix M and thus a fixed

Z(•), such that Z(X) = F Φ [M, M (X)] has the distribution function F and density f , is dC(t) dt = 1 -F [C(t)] -α = F (C 1-α ) -F [C(t)] ,
where

C 1-α = C 1-α (M) satisfies F (C 1-α ) = 1 -α. Consider the Lyapunov function L(C) = [F (C) - F (C 1-α )] 2 . It satisfies dL[C(t)]/dt = -2 f [C(t)] L[C(t)] ≤ 0, with dL[C(t)]/dt = 0 if and only if C = C 1-α . Moreover, C 1-α is Lipschitz continuous in M; see Lemma 4 in Appendix D.
The conditions for Theorem 1.1 in [START_REF] Borkar | Stochastic approximation with two time scales[END_REF] are thus satisfied concerning the iterations for

C k . Denote M k = M n k and ρ k = n k /k, so that (3.4) implies k ρ k ≥ 1 (k -1) for all k; see Lemma 2 in Appendix B. They satisfy ρ k+1 = ρ k + R k+1 k + 1 and M k+1 = M k + Ω k+1 k + 1 , (3.6) 
where

R k+1 = I {Z k (X k+1 )≥ C k } -ρ k ,
and

Ω k+1 = (1/ρ k+1 ) I {Z k (X k+1 )≥ C k } M (X k+1 ) -M k . We have E{R k+1 |F k } = X I {Z k (x)≥ C k } µ(dx)-ρ k and var{R k+1 |F k } = F k ( C k )[1-F k ( C k )], with F k the distribution function of Z k (X)
, which, from H µ,M , has a well defined density f k for all k. Also,

E{Ω k+1 |F k } = I k ρ k + 1-ρ k k+1 = 1 + 1/k ρ k + 1/k I k ,
where

I k = X I {Z k (x)≥ C k } M (x) -M k µ(dx). Denote ∆ k+1 = Ω k+1 -I k /ρ k , so that M k+1 = M k + 1 k + 1 I k ρ k + ∆ k+1 k + 1 . (3.7) We get E{∆ k+1 |F k } = (ρ k -1)/[ρ k (k ρ k + 1)] I k and var{{∆ k+1 } i,j |F k } = var{{Ω k+1 } i,j |F k } = (k + 1) 2 (k ρ k + 1) 2 X I {Z k (x)≥ C k } {M (x) -M k } 2 i,j µ(dx) -{I k } 2 i,j ,
where (3.4) implies that ρ k > 1 /2, and therefore (k+1 

) (1-ρ k )/[ρ k (k ρ k +1)] < 4/ 2 1 , and var{{∆ k+1 } i,j |F k } is a.s. bounded from H M -(i ). This implies that k ∆ k+1 /(k + 1) < ∞ a.
(t) dt = X I {FΦ[ M(t),M (x)]≥C1-α[ M(t)]} µ(dx) -ρ(t) = α -ρ(t) , d M(t) dt = 1 ρ(t) X I {FΦ[ M(t),M (x)]≥C1-α[ M(t)]} M (x) -M(t) µ(dx) = α ρ(t) M + [ M(t), α] -M(t) ,
where M + [ M(t), α] is defined by (2.1). The first equation implies that ρ(t) converges exponentially fast to α, with ρ

(t) = α + [ρ(0) -α] exp(-t); the second equation gives dΦ[ M(t)] dt = trace ∇ Φ [ M(t)] d M(t) dt = α ρ(t) max M ∈M(α) F Φ [ M(t), M ] ≥ 0 ,
with a strict inequality if M(t) = M * α , the optimal matrix in M(α). The conditions of Theorem 1.1 in [START_REF] Borkar | Stochastic approximation with two time scales[END_REF] are thus satisfied, and M k converges to M * α a.s.

Remark 1.

(i ) Algorithm 1 does not require the knowledge of µ and has minimum storage requirements: apart for the current matrix M n k , we only need to update the scalar variables

C k and f k . Its complexity is O(d 3 N ) in general, considering that the complexity of the calculation of F Φ [M, M (X)] is O(d 3 ). It can be reduced to O(d 2 N ) when M (X) has rank one and M -1 n k is updated instead of M n k (see remark (iii ) below)
, for D-optimality and Φ q -optimality with q integer; see Section 2.1. Very long sequences (X i ) can thus be processed.

(ii ) Numerical simulations indicate that we do not need to take q < 1 in Algorithm 1: (3.3) with q = 1 yields satisfactory performance, provided the step-size obeys Kersten's rule and does not decrease at each iteration.

(iii ) The substitution of trace[∇ Φ (M)M (X)] for F Φ [M, M (X)] = trace{∇ Φ (M)[M (X) -M]} everywhere
does not change the behavior of the algorithm. When ∇ Φ (M) only depends on M -1 (which is often the case for classical design criteria, see the discussion following the presentation of H Φ ), and if M (X) is a low rank matrix, it may be preferable to update M -1 n k instead of M n k , thereby avoiding matrix inversions. For example, if M (X k+1 ) = I ε f (X k+1 )f (X k+1 ), then, instead of updating (3.5), it is preferable to update the following

M -1 n k+1 = 1 + 1 n k M -1 n k - I ε M -1 n k f (X k+1 )f (X k+1 )M -1 n k n k + I ε f (X k+1 )M -1 n k f (X k+1 )
.

Low-rank updates of the Cholesky decomposition of the matrix can be considered too.

(iv ) Algorithm 1 can be adapted to the case where the number of iterations is fixed (equal to the size N of the candidate set X N ) and the number of candidates n to be selected is imposed. A straightforward modification is to introduce truncation and forced selection: we run the algorithm with α = n/N and, at Step 2, we set

z k+1 = -∞ (reject X k+1 ) if n k ≥ n and set z k+1 = +∞ (select X k+1 ) if n -n k ≥ N -k.
However, this may induce the selection of points X i carrying little information when k approaches N in case n k is excessively small. For that reason, adaptation of α to n k , obtained by

substituting α k = (n -n k )/(N -k)
for the constant α everywhere, seems preferable. This is illustrated by an example in Section 4.2.

(v ) The case when µ has discrete components (atoms), or more precisely when there exist subsets of X of positive measure where Z M (x) is constant (see Section 4.4.2), requires additional technical developments which we do not detail here.

A first difficulty is that H M -(ii ) may not be satisfied when the matrices M (x) do not have full rank, unless we only consider large enough . Unless 1 in (3.4) is large enough, Lemma 2 is not valid, and other arguments are required in the proof of Theorem 1. Possible remedies may consist (a) in adding a regularization matrix γI p with a small γ to all matrices M (x) (which amounts at considering optimal design for Bayesian estimation with a vague prior; see, e.g., [START_REF] Pilz | Bayesian Estimation and Experimental Design in Linear Regression Models[END_REF]), or (b) in replacing

the condition in (3.4) by [If λ min (M n k ) < 1 , set z k+1 = +∞]. A second difficulty is that C 1-α (M * α ) may correspond to a point of discontinuity of the distribution function of F Φ [M * α , M (X)]. The estimated value f k of the density of F Φ [M n k , M (X)] at C k (
Step 3 of Algorithm 1) may then increase to infinity and β k tend to zero in (3.3). This can be avoided by setting

β k = max{ 2 , min(1/ f k , β 0 k γ )} for some 2 > 0.
In [START_REF] Pronzato | On the sequential construction of optimum bounded designs[END_REF], where empirical quantiles are used, measures needed to be taken to avoid the acceptance of too many points, for instance based on the adaptation of α through α k = (n-n k )/(N -k), see remark (iv ) above, or via the addition of the extra condition [if n k /k > α, set z k+1 = -∞] to (3.4) in case n is not specified. Such measures do not appear to be necessary when quantiles are estimated by (3.3); see the examples in Section 4.4.

Examples

We always take k 0 = 5 p, q = 5/8, γ = 1/10 in Algorithm 1 (our simulations indicate that these choices are not critical); we also set 1 = 0.

Example 1: quadratic regression with normal independent variables

Take M (x) = f (x)f (x), with f (x) = (1, x, x 2 ) and Φ(M) = log det(M), and let the X i be i.i.d.

standard normal variables N (0, 1). The D-optimal design for x in an interval [t, t ] corresponds to ξ * = (1/3) δ t + δ (t+t )/2 + δ t . In the data thinning problem, the optimal solution corresponds to the selection of X i in the union of three intervals; that is, with the notation of Section 2, 

X * α = (-∞, -a] ∪ [-b, b] ∪ [a, ∞).
ϕ(x) dx + ∞ a ϕ(x) dx = α/2 and trace[M -1 (ξ)M (a)] = trace[M -1 (ξ)M (b)], with ϕ the standard normal density and M(ξ) = [ -a -∞ M (x) ϕ(x) dx + b -b M (x) ϕ(x) dx + ∞ a M (x) ϕ(x) dx]/α.
We set the horizon N at 100 000 and consider the two cases α = 1/2 and α = 1/10. In each case we keep α constant but apply the rule of Remark 1-(iv ) (truncation/forced selection) to select exactly n = 50 000 and n = 10 000 design points, respectively. For α = 1/2, we have a 1.0280, b 0.2482, and -0.8513. The figures below present results obtained for one simulation (i.e., one random set X N ), but they are rather typical in the sense that different X N yield similar behaviors.

Φ * α = Φ(M * α ) = max M∈M(α) Φ(M) 1.6354, C 1-α (M * α ) -
Figure 1 shows smoothed histograms (Epanechnikov kernel, bandwidth equal to 1/1000 of the range of the X i in X N ) of the design points selected by Algorithm 1, for α = 1/2 (left) and α = 1/10 (right). There is good adequation with the theoretical optimal density, which corresponds to a truncation of the normal density at values indicated by the vertical dotted lines.

Figure 2 presents the evolution of Φ(M n k ) as a function of k, together with the optimal value Φ * α (horizontal line), for the two choices of α considered (the figures show some similarity on the two panels since the same set X N is used for both). Convergence of Φ(M n k ) to Φ * α is fast in both cases; the presence of steps on the evolution of Φ(M n k ), more visible on the right panel, is due to long subsequences of samples consecutively rejected.

Figure 3 shows the behavior of the final directional derivative 

F Φ [M n N , M (x)], after observation of all X i in X N ,
F Φ [M n N , M (x)] differs significantly from F Φ [M * α , M (x)]
, they are close enough to allow selection of the most informative X i , as illustrated by Figures 1 and2.

Figure 4 shows M n k -M * α (Frobenius norm) as a function of k (log scale), averaged over 1 000 independent repetitions with random samples X N of size N = 10 000, for α = 1/2. It suggests that

M n k -M * α = O(1/ √ k)
for large k, although the conditions in [START_REF] Konda | Convergence rate of linear two-time-scale stochastic approximation[END_REF] are not satisfied since the scheme we consider is nonlinear. This convergence rate is significantly faster than what is suggested by [START_REF] Dalal | Finite sample analysis of two-timescale stochastic approximation with applications to reinforcement learning[END_REF]. These investigations require further developments and will be pursued elsewhere. 

Example 2: multilinear regression with normal independent variables

Take M (X) = XX , with X = (x 1 , x 2 , . . . , x d ) , d > 1, and Φ(M) = log det(M), the vectors X i being i.i.d. N (0, I d ) (so that p = d). Denote by ϕ(x) = (2 π) -d/2 exp(-x 2 /2) the probability density of X. For symmetry reasons, for any α ∈ (0, 1) the optimal (normalized) information matrix is with S d (1) = 2 π d/2 /Γ(d/2), the surface area of the d-dimensional unit sphere, and R α the solution of (2004, Th. 4). Closed-form expressions are available for d = 2, with R α = √ -2 log α and ρ α = 1 -log α; R α and ρ α can easily be computed numerically for any d > 2 and α ∈ (0, 1). One may notice that, from a result by [START_REF] Harman | Lower bounds on efficiency ratios based on φp-optimal designs[END_REF], the design matrix M * α is optimal for any other orthogonally invariant criterion Φ.

M * α = ρ α I d , with Φ(M * α ) = d log ρ α , where ρ α = 1 α x ≥Rα x 2 1 ϕ(x) dx = 1 d α x ≥Rα x 2 ϕ(x) dx = 1 d α r≥Rα r 2 1 (2 π) d/2 exp(-r 2 /2) S d (1) r d-1 dr ,
320 α = x ≥Rα ϕ(x) dx = r≥Rα 1 (2 π) d/2 exp(-r 2 /2) S d (1) r d-1 dr . Since F Φ [M, M (X)] = trace[M -1 M (X)]-d, we get F Φ [M * α , M (X)] = x 2 /ρ α -d, C 1-α (M * α ) = R 2 α /ρ α - d ≤ 0, and Φ * α = Φ(M * α ) is differentiable with respect to α, with dΦ * α /dα = C 1-α (M * α )/α; see Pronzato
matrix is

M * α = 1 0 0 M * α
with M * α = ρ α I d the optimal matrix for the model without intercept. The same design is thus optimal for both models. Also, when the X i are i.i.d. N (0, Σ), the optimal matrix M * Σ,α for Φ(

•) = log det(•) simply equals Σ 1/2 M * α Σ 1/2 .
Again, we present results obtained for one random set X N . Figure 5 shows the evolution of Φ(M n k ) as a function of k for d = 3 with α = 1/1 000 and N = 100 000 when we want we select exactly 100 points: the blue dashed-line is when we combine truncation and forced selection; the red solid line is when we adapt α according to α k = (n -n k )/(N -k); see Remark 1-(iv ) -the final values, for k = N , are indicated by a triangle and a star, respectively; we only show the evolution of Φ(M n k ) for k between 10 000 and 100 000 since the curves are confounded for smaller k (they are based on the same X N ). In the first case, the late forced selection of unimportant X i yields a significant decrease of Φ(M n k ), whereas adaptation of α anticipates the need of being less selective to reach the target number n of selected points. When the design points X i are not from an i.i.d. sequence, Algorithm 1 cannot be used directly and some preprocessing is required. When storage of the whole sequence X N is possible, a random permutation can be applied to X N before using Algorithm 1. When N is too large for that, for instance in the context of data streaming, and the sequence possesses a structured time-dependence, one may try to identify the dependence model through time series analysis and use forecasting to decide which design points should be selected. The data thinning mechanism is then totally dependent on the model of the sequence, and the investigation of the techniques to be used is beyond the scope of this paper. Examples of the application of a simple scrambling method to the sequence prior to selection by Algorithm 1 are presented below. The method corresponds to Algorithm 2 below; its output sequence X k is used as input for Algorithm 1. We do not study the properties of the method in conjunction with the convergence properties of Algorithm 1, which would require further developments.

Algorithm 2: random scrambling in a buffer.

1) Initialization: choose the buffer size B, set k = 1 and X (1) = {X 1 , . . . , X B }.

2) Draw X k by uniform sampling within X (k) .

3) Set X

(k+1) = X (k) \ { X k } ∪ {X B+k }, k ← k + 1, return to Step 2.
Direct calculation shows that the probability that X k equals X i is

Prob{ X k = X i } =      1 B 1 -1 B k-1 for 1 ≤ i ≤ B , 1 B 1 -1 B k-1+B-i for B + 1 ≤ i ≤ B + k -1 , 0 for B + k -1 < i ,
showing the limits of randomization via Algorithm 2 (in particular, the first points of the sequence X i will tend to appear first among the X k ). However, the method will give satisfactory results if the size B of the buffer is large enough, as its performance improves as B increases. As an illustration, we consider the same quadratic regression model as in Example 1, with Φ(M) = log det(M), in the extreme case where X i = x(t i ) with x(t) a simple function of t. First, we consider the extremely unfavorable situation where x(t) = t. When t is uniformly distributed on T = [0, T ], the optimal design ξ * α selects all points associated with t in [0,

t a ] ∪ [t b , T -t b ] ∪ [T -t a , T ],
for some t a < t b in T satisfying 2 t a + T -2 t b = α T . For α = 1/10, we get t a /T 0.03227 and t b /T 0.48227. The horizontal black line in Figure 7 indicates the optimal value Φ * α when T = 1. The blue dotted line shows Φ(M n k ) when Algorithm 1 is directly applied to the points X i = i/N , i = 1, . . . , N = 100 000. The red line is when randomization via Algorithm 2, with buffer size B = αN = 10 000, is applied first; the dotted curve in magenta is for B = 3 αN . The positive effects of randomization through Algorithm 2 and the influence of the buffer size are visible on the figure. Here, the monotonicity of the X i , which inhibits early exploration of their range of variation, prevents convergence to the optimum. We now consider the more favorable case where X i = sin(2πνi/N ), i = 1, . . . , N = 100 000, with ν = 5. The left panel of Figure 8 shows the same information as Figure 7, when Algorithm 1 is applied directly to the X i (blue dotted line) and after preprocessing with Algorithm 2 with B = αN (red line) and B = αN/10 (magenta dotted line). The early exploration of the range of variability of the X i , possible here thanks to the periodicity of x(t), makes the randomization through Algorithm 2 efficient enough to allow Algorithm 1 to behave correctly when B = αN (red line). The situation improves when B is increased, but naturally deteriorates if B is too small (magenta dotted line). The right panel shows the points X k produced by Algorithm 2 (with B = αN = 10 000) which are selected by Algorithm 1. The effect of randomization is visible. For k < 5 000, all points in the buffer are in the interval [sin(2πν(k + B)/N ), 1] ⊂ [-1, 1], and the points selected by Algorithm 1 are near the end points or the center of this moving interval. For larger k, randomization is strong enough to maintain the presence of suitable candidates in the buffer for selection by Algorithm 1.

Examples with Z M (x) constant on subsets of positive measure

Here we consider situations where H µ,M is violated due to the existence of subsets of X of positive measure on which Z M (x) is constant. The model is the same as in Section 4.2, with X = (x 1 , x 2 , . . . , x d ) , M (X) = XX and Φ(M) = log det(M).

Example 4: µ has discrete components

This is Example 11 in [START_REF] Pronzato | On the sequential construction of optimum bounded designs[END_REF], where d = 2, µ = (1/2) µ N + (1/2) µ d , with µ N corresponding to the normal distribution N (0, 1) and µ d the discrete measure that puts weight 1/4 at each one of the points (±1, ±1). Denote by B(r) the closed ball centered at the origin 0 with radius r, by µ[r] the measure equal to µ on its complement B(r), and let e = exp(1). The optimal matrix is M * α = M(ξ * α ), with ξ * α the probability measure defined by:

ξ * α =    1 α µ[ -2 log(2 α)] if 0 < α ≤ 1 2e , 1 α µ[ √ 2] + 1 α [α -1/(2 e)]µ d if 1 2e < α ≤ 1 2e + 1 2 , 1 α µ[ -2 log(2 α -1)] if 1 2e + 1 2 < α < 1 , with associated Φ-values Φ(M * α ) =      2 log[1 -log(2 α)] if 0 < α ≤ 1 2e , 2 log 1 + 1 2e α if 1 2e < α ≤ 1 2e + 1 2 , 2 log 1 -(2 α-1) log(2 α-1) 2 α if 1 2e + 1 2 < α ≤ 1 .
Figure 9 shows the evolution of Φ(M n k ) as a function of k for α = 0.5 (left) and α = 0.02 (right). Note that α < 1/(2e) in the second case, but 1/(2e) < α ≤ 1/(2e) + 1/2 in the first one, so that ξ * α is neither zero nor µ/α on the four points (±1, ±1). Figure 9 shows that Algorithm 1 nevertheless behaves satisfactorily in both cases.

Example 5: the distribution of Z M *

α (X) has discrete components Let U [S d (0, r)] denote the uniform probability measure on the d-dimensional sphere S d (0, r) with center 0 and radius r. The probability measure of the

X i is µ = (1/3) 3 i=1 U [S d (0, r i )]
, the mixture of distributions on three nested spheres with radii r 1 > r 2 > r 3 > 0. The optimal bounded measure is Notice that for α ∈ (0, 1/3) (respectively, α ∈ (1/3, 2/3)) ξ * α = 0 and ξ * α = µ/α on S d (0, r 1 ) (respectively, on S d (0, r 2 )) although µ is atomless.

ξ * α =    U [S d (0, r 1 )] if 0 < α ≤ 1 3 , 1 3α U [S d (0, r 1 )] + α-1/3 α U [S d (0, r 2 )] if 1 3 < α ≤ 2 3 , 1 3α {U [S d (0, r 1 )] + U [S d (0, r 2 )]} + α-2/3 α U [S d (0, r 3 )] if 2 3 < α < 1 , with associated Φ-values Φ(M * α ) =        d log(r 2 1 /d) if 0 < α ≤ 1 3 , d log r 2 1 /3+(α-1/3)r 2 2 αd if 1 3 < α ≤ 2 3 , d log (r 2 1 +r 2 2 )/3+(α-2/3)r 2 3 αd if 2 3 < α < 1 .
The left panel of Figure 10 

Comparison with other methods

Case n fixed with large N : comparison with an exchange method

The convergence of Φ(M n k ) to Φ * α in Algorithm 1 relies on the fact that n k grows like O(α k) for some α > 0; see Theorem 1. If the number n of points to be selected is fixed, Algorithm 1 does not provide any performance guarantee when applied to a sequence of length N → ∞ (the situation is different when p = 1 where an asymptotically optimal construction is available; see [START_REF] Pronzato | Optimal and asymptotically optimal decision rules for sequential screening and resource allocation[END_REF]). In that case, a method of the exchange type may look more promising, although large values of N entail serious difficulties. Typically, the algorithm is initialized by a n point design chosen within X N , and at each iteration a temporarily selected X i is replaced by a better point in X N . [START_REF] Fedorov | Theory of Optimal Experiments[END_REF] algorithm considers all n × (N -n) possible replacements at each iteration ((N -n) instead of N since we do not allow repetitions in the present context); its computational cost is prohibitive for large N . The variants suggested by [START_REF] Cook | A comparison of algorithms for constructing exact d-optimal designs[END_REF], or the DETMAX algorithm of [START_REF] Mitchell | An algorithm for the construction of "D-optimal" experimental designs[END_REF], still require the maximization of a function g(X j ) with respect to X j ∈ X N at each iteration, which remains unfeasible for very large N . Below, we consider a simplified version where all N points are examined successively, and replacement is accepted when it improves the current criterion value.

Algorithm 3: sequential exchange (n fixed).

1) Initialization

: select X 1 , . . . , X n , set k = n and X * k = {X 1 , . . . , X k }, compute M n,k = (1/k) k i=1 M (X i ) and Φ(M n,k ). 2) Iteration k + 1: collect X k+1 . If X k+1 ∈ X * k , set ∆ (k) (X i * , X k+1 ) = 0; otherwise compute ∆ (k) (X i * , X k+1 ) = max Xi∈X * k [Φ{M n,k + (1/n)[M (X k+1 ) -M (X i )]} -Φ(M n,k )] . If ∆ (k) (X i * , X k+1 ) > 0, set X * k+1 = X * k \ {X i * } ∪ X k+1 , update M n,k into M n,k+1 = M n,k + (1/n)[M (X k+1 ) -M (X i * )], compute Φ(M n,k+1 ); otherwise, set X * k+1 = X * k , M n,k+1 = M n,k . 3) If k + 1 = N stop; otherwise, k ← k + 1, return to Step 2. Remark 2. When M (x) has rank one, with M (x) = f (x)f (x) and Φ(M) = log det(M) or Φ(M) = det 1/p (M) (D-optimal design), ∆ (k) (X i * , X k+1 ) > 0 is equivalent to f (X k+1 )M -1 n,k f (X k+1 ) -f (X i * )M -1 n,k f (X i * ) + δ (k) (X i * , X k+1 ) > 0 , (5.1)
where

δ (k) (X, X k+1 ) = [f (X k+1 )M -1 n,k f (X)] 2 -[f (X k+1 )M -1 n,k f (X k+1 )][f (X)M -1 n,k f (X)] n , (5.2)
see Fedorov (1972, p. 164). As for Algorithm 1 (see Remark 1-(iii )), we may update M -1 n,k instead of M n,k to avoid matrix inversions. For large enough n, the term (5.2) is negligible and the condition is almost

f (X k+1 )M -1 n,k f (X k+1 ) > f (X i * )M -1 n,k f (X i * ); that is, F Φ [M n,k , M (X k+1 )] > F Φ [M n,k , M (X i * )]. This
is the condition we use in the example below. It does not guarantee in general that Φ(M n,k+1 ) > Φ(M n,k ) (since δ (k) (X i , X k+1 ) ≤ 0 from Cauchy-Schwartz inequality), but no significant difference was observed compared with the use of the exact condition (5.1). Algorithm 3 has complexity O(nd 3 N ) in general (the additional factor n compared with Algorithm 1 is due to the calculation of the maximum over all X i in X * k at

Step 2).

Neither Algorithm 1 with α = n/N and M n,k = M n k nor Algorithm 3 ensures that Φ(M n,N ) tends to Φ * α = Φ(M * α ) as N → ∞. Also, we can expect to have Φ(M n,k ) Φ * n/k for all k with Algorithm 3, since under H Φ the matrix M * n,k corresponding to the optimal selection of n distinct points among X k satisfies E{Φ(M * n,k )} ≤ Φ * n/k for all k ≥ n > 0; see Pronzato (2006, Lemma 3).

Example 6: n fixed and N large. We consider the same situation as in Example 2 (Section 4.2), with X = (x 1 , x 2 , . . . , x d ) , M (X) = XX , Φ(M) = log det(M); the X i are i.i.d. N (0, I d ), with p = d = 3. We still take k 0 = 5 p, q = 5/8, γ = 1/10 in Algorithm 1. We have E{M n k 0 } = M(µ) in Algorithm 1, and, when n is large enough, M n,n M(µ) at Step 1 of Algorithm 3, with M(µ) = I d and therefore Φ(M n,n ) 0.

We consider two values of n, n = 100 and n = 1 000, with α = 10 -3 (that is, with N = 100 000 and N = 1 000 000, respectively). Figure 11 shows the evolutions of Φ(M n k ) (k ≥ k 0 , Algorithm 1, red solid line) and Φ(M n,k ) (k ≥ n, Algorithm 3, blue dashed line) as functions of k in those two cases (n = 100, left; n = 1 000, right). In order to select n points exactly, adaptation of α is used in Algorithm 1, see Remark 1-(iv ). The value of n is too small for Φ(M n k ) to approach Φ * α (indicated by the horizontal black line) in the first case, whereas n = 1 000 is large enough on the right panel; Algorithm 3 performs similarly in both cases and is superior to Algorithm 1 for n = 100; the magenta curve with triangles shows Φ

* n/k , k ≥ n, with Φ * n/k Φ(M n,k
) for all k, as expected.

In case it is possible to store the N points X i , we can replay both algorithms on the same data set in order to increase the final value of Φ for the sample selected. For Algorithm 3, we can simply run the algorithm again on a set X

(2) N -starting with k = 1 at Step 1 since n points have already been selected -with X

(2) N = X N or corresponding to a random permutation of it. Series of runs on sets

X (2) N , X (3) 
N , . . . can be concatenated: the fact that Φ can only increase implies convergence for an infinite sequence of runs, but generally to a local maximum only; see the discussion in (Cook and Nachtsheim, 1980, Sect. 2.4). When applied to Example 6, this method was not able to improve the design obtained in the first run of Algorithm 3, with a similar behavior with or without permutations in the construction of the

X (i) N .
Algorithm 1 requires a more subtle modification since points are selected without replacement. First, we run Algorithm 1 with α fixed at n/N on a set

X mN = X N ∪ X (2) N ∪ • • • ∪ X (m)
N , where the replications

X (i)
N are all identical to X N or correspond to random permutations of it. The values of M n mN and C mN are then used in a second stage, where the N points X 1 , . . . , X N in X N are inspected sequentially: starting at k = 0 and

n k = 0, a new point X k+1 is selected if n k < n and F Φ [M n mN , M (X k+1 )] > C mN (or if n -n k ≥ N -k + 1, see Remark 1-(iv )).
The set X N is thus used m + 1 times in total. The idea is that for m large enough, we can expect M n mN to be close to M * α and C mN to be close to the true quantile C 1-α (M * α ), whereas the optimal rule for selection is

F Φ [M * α , M (X k+1 )] > C 1-α (M * α ).
Note that the quantile of the directional derivative is not estimated in this second phase, and updating of M n k is only used to follow the evolution of Φ(M n k ) on plots.

Example 6 (continued). The black-dotted line in Figure 11 shows the evolution of Φ(M n k ) as a function of k in the second phase (for k large enough to have Φ(M n k ) > 0): we have taken m = 9 for n = 100 (left), so that (m + 1)N = 1 000 000 points are used in total (but 10 times the same), and m = 1 for n = 1 000 (right), with 2 000 000 points used (twice the same). Figure 12 shows the evolution of C k for k = 1, . . . , mN , for n = 100, N = 100 000, m = 9 (left), and n = 1 000, N = 1 000 000, m = 1 (right); the horizontal black line indicates the value of C 1-α (M * α ). The left panel indicates that n = 100 is too small to estimate C 1-α (M * α ) correctly with Algorithm 1 (note that m = 4 would have been enough), which is consistent with the behavior of Φ(M n k ) observed in Figure 11-left (red solid line). The right panel of Figure 12 shows that C k has converged before inspection of the 1 000 000 points in X N , which explains the satisfactory behavior of Algorithm 1 in Figure 11-right. Notice the similarity between the left and right panels of Figure 12 due to the fact that the same value α = 10 -3 is used in both. Here the X (i) N are constructed by random permutations of the points in X N , but the behavior is similar without.

Comparison with IBOSS

IBOSS (Information-Based Optimal Subdata Selection, [START_REF] Wang | Information-based optimal subdata selection for big data linear regression[END_REF]) is a selection procedure motivated by D-optimality developed in the context of multilinear regression with intercept, where M (X) = f (X)f (X) with f (X) = [1, X ] . All points X i in X N are processed simultaneously: the d coordinates of the X i are examined successively; for each k = 1, . . . , d, the r points with largest k-th coordinate and the r points having smallest k-th coordinate are selected (and removed from X N ), where r = n/(2d), possibly 

N ∪ • • • ∪ X (m) N
. Left: n = 100, N = 100 000, m = 9; Right: n = 1 000, N = 1 000 000, m = 1. for all N ≥ n > 0 (Pronzato, 2006, Lemma 3). The asymptotic performance of IBOSS (the behavior of M n,N and M -1 n,N ) for n fixed and N tending to infinity is investigated in [START_REF] Wang | Information-based optimal subdata selection for big data linear regression[END_REF] for X following a multivariate normal or lognormal distribution. Next property concerns the situation where n is a fraction of N , with N → ∞ and the components of X are independent. are independent, with ϕ k the p.d.f. of {X 1 } k for k = 1, . . . , d. Suppose, without any loss of generality, that coordinates are inspected in the order 1, . . . , d. Then, for any α ∈ (0, 1], the matrix V n,N = (1/n) n j=1 X ij X ij corresponding to the n points X ij selected by IBOSS satisfies V n,N → V IBOSS α a.s. when n = αN and N → ∞, with (5.4) where

{V IBOSS α } k,k = 1 α E[{X} 2 k ] -π k s k (α) , k = 1 . . . , d , (5.3) {V IBOSS α } k,k = 1 α E[{X} k ] E[{X} k ] - π k π k 1 -α m k (α) m k (α) , k = k ,
E[{X} k ] = ∞ -∞ x ϕ k (x) dx, E[{X} 2 k ] = ∞ -∞ x 2 ϕ k (x) dx, π k = (1 -α)[d -(k -1)α]/(d -kα), s k (α) = q k (1- α 2[d-(k-1)α] ) q k ( α 2[d-(k-1)α] )
x 2 ϕ k (x) dx and m k (α) =

q k (1- α 2[d-(k-1)α] ) q k ( α 2[d-(k-1)α] )
x ϕ k (x) dx , with q k (•) the quantile function for ϕ k , satisfying

q k (t)
-∞ ϕ k (u) du = t for any t ∈ (0, 1]. Proof. By construction, IBOSS asymptotically first selects all points such that {X} 1 does not belong to I 1 = (q 1 [α/(2d)], q 1 [1 -α/(2d)]), then, among remaining points, all those such that

{X} 2 ∈ I 2 = (q 2 [α/(2d(1 - α/d))], q 1 [1-α/(2d(1-α/d))]). By induction, all points such that {X} k ∈ I k = (q k [α/(2[d-(k-1)α])], q k [1- α/(2[d -(k -1)α])]
) are selected at stage k ∈ {3, . . . , d}. Denote x = (x 1 , . . . , x d ) . We have

{V IBOSS α } k,k = 1 α X \ d =1 I x 2 k ϕ(x) dx = 1 α X x 2 k ϕ(x) dx - d =1 I x 2 k ϕ(x) dx = 1 α   E[{X} 2 k ] -   =k Pr{{X} ∈ I }   I k x 2 ϕ k (x) dx   .
Direct calculation gives Pr{X ∈

d k=1 I k } = 1 -α and =k Pr{{X} ∈ I } = 1 -α Pr{{X} k ∈ I k } = 1 -α 1 - α d-(k-1)α = π k ,
which proves (5.3). Similarly,

{V IBOSS α } k,k = 1 α X \ d =1 I x k x k ϕ(x) dx = 1 α X x k x k ϕ(x) dx - d =1 I x k x k ϕ(x) dx = 1 α   E[{X} k ] E[{X} k ] -   =k, =k Pr{{X} ∈ I }   m k (α) m k (α)   , with =k, =k Pr{{X} ∈ I } = 1 -α Pr{{X} k ∈ I k } Pr{{X} k ∈ I k } = π k π k 1 -α ,
which proves (5.4) and concludes the proof.

A key difference between IBOSS and Algorithm 1 is that IBOSS is nonsequential and therefore cannot be used in the streaming setting. Also, IBOSS is motivated by D-optimal design and may not perform well for other criteria, whereas Algorithm 1 converges to the optimal solution when n = αN and N → ∞ for any criterion satisfying H Φ . Moreover, IBOSS strongly relies on the assumption that M (X) = f (X)f (X) with f (X) = [1, X ] and, as the next example illustrates, it can perform poorly in other situations, in particular when the X i are functionally dependent.

X is normally distributed N (0, I d ). The expression of the optimal matrix M * α has been derived in Section 4.2; the asymptotic value for N → ∞ of the matrix M αN ,N is

M IBOSS α = 1 0 0 V IBOSS α ,
where the expression of V IBOSS α (here a diagonal matrix) is given in Theorem 2. Figure 14 showing that the performance of IBOSS deteriorates as d increases. We also performed series of simulations for d = 25, with 100 independent repetitions of selections of n = αN points within X N (N = 10 000) based on IBOSS and Algorithm 1. Due to the small value of N , we apply Algorithm 1 to replications

X mN = X N ∪ X (2) N ∪ • • • ∪ X (m) N
of X N , see Section 5.1, with m = 99 for α < 0.1, m = 9 for 0.1 ≤ α < 0.5 and m = 4 for α ≥ 0.5. The colored areas on Figure 14 show the variability range for efficiency, corresponding to the empirical mean ± 2 standard deviations obtained for the 100 repetitions, for IBOSS (green, bottom) and Algorithm 1 (magenta, top); note that variability decreases as n = αN increases. The approximation of M n,N obtained with IBOSS by the asymptotic matrix M IBOSS α is quite accurate although N is rather small; Algorithm 1 (incorporating m repetitions of X N ) performs significantly better than IBOSS although the setting is particularly favorable to IBOSS -it is significantly slower than IBOSS, however, when m is large. 

Conclusions and further developments

We have proposed a sequential subsampling method for experimental design (Algorithm 1) that converges to the optimal solution when the length of the sequence tends to infinity and a fixed proportion of design points is selected. Since the method only needs to keep the memory of the current information matrix associated with the design problem (or its inverse), and to update a pair of scalar variables (an estimated quantile, and an estimate of the p.d.f. value at the quantile), it can be applied to sequences of arbitrary length and is suitable for data streaming.

We have not tried to optimize the choice of initialization and tuning parameters in Algorithm 1. Although it does not seem critical (the same tuning has been used in all the examples presented), there is certainly an opportunity to improve, in particular concerning β 0 and C k0 (for instance, using the information that C * 1-α ≤ 0 whereas C k0 > 0 for small α with the initialization we use).

We have only considered the case of linear models, where the information matrix does not depend on unknown parameters (equivalent to local optimum design in case of a nonlinear model), but extension to online parameter estimation in a nonlinear model with M (x) = M (x, θ) would not require important modifications. Denote by θn the estimated value of the parameters after observation at the n design points selected, X i1 , . . . , X in , say. Then, we can use

M n k 0 = (1/k 0 ) k0 i=1 M (X i , θk0 ) at
Step 1 of Algorithm 1, and M n k +1 given by (3.5) can be replaced by

M n k +1 = [1/(n k + 1)] [ n k j=1 M (X ij , θn k ) + M (X k+1 , θn k )] at
Step 2. Recursive estimation can be used for k > k 0 to reduce computational cost. For instance for maximum likelihood estimation, with the notation of Section 1, we can update θn k as

θn k +1 = θn k + 1 n k + 1 M -1 n k +1 ∂ log ϕ X k+1 ,θ (Y k+1 ) ∂θ θ= θn k
when X k+1 is selected; see [START_REF] Ljung | Theory and Practice of Recursive Identification[END_REF]; [START_REF] Tsypkin | Optimality in identification of linear plants[END_REF]. A further simplification would be to update

M n k as M n k+1 = M n k + [1/(n k + 1)] [M (X k+1 , θn k ) -M n k ]. When the X i are i.i.d. with
µ satisfying H µ , the strong consistency of θn k holds with such recursive schemes under rather general conditions when all X i are selected. Showing that this remains true when only a proportion α is selected by Algorithm 1 requires technical developments outside the scope of this paper, but we anticipate that

M n k → M *
α,θ a.s., with M * α,θ the optimal matrix for the true value θ of the model parameters. Algorithm 1 can be viewed as an adaptive version of the treatment allocation method presented in [START_REF] Metelkina | Information-regret compromise in covariate-adaptive treatment allocation[END_REF]: consider the selection or rejection of X i as the allocation of individual i to treatment 1 (selection) or 2 (rejection), with respective contributions M 1 (X i ) = M (X i ) or M 2 (X i ) = 0 to the collection of information; count a cost of one for allocation to treatment 1 and zero for rejection.

Then, the doubly-adaptive sequential allocation (4.6) of [START_REF] Metelkina | Information-regret compromise in covariate-adaptive treatment allocation[END_REF] that optimizes a compromise between information and cost exactly coincides with Algorithm 1 where C k is frozen to a fixed C, i.e., without Step 3. In that sense, the two-time-scale stochastic approximation procedure of Algorithm 1 opens the way to the development of adaptive treatment allocation procedures where the proportion of individuals allocated to the poorest treatment could be adjusted online to a given target.

Finally, the designs obtained with the proposed thinning procedure are model-based: when the model is wrong, ξ * α is no longer optimal for the true model. Model-robustness issues are not considered in the paper and would require specific developments, following for instance the approach in [START_REF] Wiens | Robustness in spatial studies II: minimax design[END_REF][START_REF] Nie | Minimax robust active learning for approximately specified regression models[END_REF]. and any z ∈ R p , and concavity implies Φ(M + zz ) ≤ Φ(M) + z ∇ Φ (M)z, showing that ∇ Φ (M) ∈ M ≥ . Therefore, z i:k ≥ 0 for all i.

First, we may notice that trace

[∇ Φ (M * α )M * n k ,k ] ≤ (1/n k ) n k i=1 z i:k and that trace[∇ Φ (M * α )M * α ] = 1 α X I {trace[∇Φ(M * α )M (x)]≥c1-α} trace[∇ Φ (M * α )M (x)] µ(dx)
with c 1-α ≥ 0 and such that X I {trace[∇Φ(M * α )M (x)]≥c1-α} µ(dx) = α; see (2.2).

Following [START_REF] Rockafellar | Optimization of conditional value-at-risk[END_REF]; [START_REF] Pflug | Some remarks on the value-at-risk and the conditional value-at-risk[END_REF], we then define the functions g(

x; β, a) = a + (1/β) [trace[∇ Φ (M * β )M (x) -a] + , x ∈ X , β ∈ (0, 1), a ∈ R. We can then write, for any β ∈ (0, 1), trace[∇ Φ (M * β )M * β ] = E{g(X; β, c 1-β )} = inf a E{g(X; β, a)} ≥ c 1-β , (A.2) and 1 n k n k i=1 z i:k = E µ k {g(X; α k , z n k :k )} = inf a E µ k {g(X; α k , a)} ,
where α k = n k /k ∈ (α/2, 1] for all k larger than some k 1 and where E µ k {•} denotes expectation for the empirical measure

µ k = (1/k) k i=1 δ Xi .
Next, we construct an upper bound on z n k :k . For k > k 1 , the matrix

M k = (1/k) k i=1 M (X i ) satisfies trace[∇ Φ (M * α )M k ] = (1/k) k i=1 z i:k ≥ (n k /k) z n k :k > (α/2) z n k :k . (A.3) Now, M * α = M(ξ * α ) with ξ * α = µ/α on a set X * α ⊂ X and ξ * α = 0 elsewhere, and µ(X * α ) = α ξ * α (X * α ) = α ξ * α (X ) = α. H M -(ii ) then implies that λ min (M * α ) = (1/α) λ min [ X * α M (x) µ(dx)] > α /α, and H Φ implies that ∇ Φ (M * α ) < A( α /α) < ∞. Therefore trace[∇ Φ (M * α )M(µ)] < A α = A( α /α) √ pB from H M -(i ). Since trace[∇ Φ (M * α )M k ] tends to trace[∇ Φ (M * α )M(µ)] a.s. as k → ∞, (A.
3) implies that there exists a.s.

k 2 such that, for all k > k 2 , z n k :k < A α /(4α).

To summarize, (A.1) implies

Φ(M * n k ,k ) ≤ Φ(M * α ) + E µ k {g(X; α k , z n k :k )} -E{g(X; α, c 1-α )} ≤ Φ(M * α ) + |E µ k {g(X; α k , z n k :k )} -E{g(X; α k , c 1-α k )}| + trace[∇ Φ (M * α k )M * α k ] -trace[∇ Φ (M * α )M * α ]
. The last term tends to zero as k tends to infinity, due to (A.2) and the continuity of conditional value-at-risk; see (Rockafellar and Uryasev, 2002, Prop. 13)

. Since c 1-α k ≤ trace[∇ Φ (M * α k )M * α k ], see (A.
2), and α k → α, for all k large enough we have c

1-α k ≤ 2 trace[∇ Φ (M * α )M * α ]. Denote ā = max{A α /(4α), 2 trace[∇ Φ (M * α )M * α ]}.
The second term can then be rewritten as

|E µ k {g(X; α k , z n k :k )} -E{g(X; α k , c 1-α k )}| = inf a∈[0,ā] E µ k {g(X; α k , a)} -inf a∈[0,ā] E{g(X; α k , a)} ≤ max a∈[0,ā] |E µ k {g(X; α k , a)} -E{g(X; α k , a)}| .
The functions g(•; t, a) with t ∈ (α/2, 1], a ∈ [0, ā], form a Glivenko-Cantelli class; see (van der Vaart, 1998, p. 271). It implies that max a∈[0,ā] |E µ k {g(X; α k , a)} -E{g(X; α k , a)}| → 0 a.s., which concludes the proof.

The class of functions g(•; t, a) is in fact Donsker (van der Vaart, 1998, p. 271). The strict concavity of Φ(•) implies that optimal matrices are unique, and in complement of Lemma 1 we get M * αk ,k -M * α = O p (1/ √ k). Note that when an optimal bounded design measure ξ * α is known, a selection procedure such that n k /k → α and Φ(M n k ,k ) → Φ(M * α ) a.s. is straightforwardly available: simply select the points that belong to the set X * α on which ξ * α = µ/α.

showing that the worst case corresponds to the smallest admissible n k , and we can restrict our attention to the case when α k = n k /k → as k → ∞.

The convexity of 1/Φ + -∞ implies that, for any M ∈ M ≥ ,

λ max (M ) ≥ λ max (M * n k ,k ) + F 1/Φ + -∞ (M * n k ,k , M ) . (B.4)
Take M ∈ M(α k ), corresponding to some ξ α k . From H M -(i ),

λ max (M ) = λ max X M (x) ξ α k (dx) ≤ 1 α k λ max [M(µ)] < √ B α k .
Therefore, there exists some k 1 such that, for all k > k 1 , λ max (M ) < 2 √ B/ , and (B.4) gives

2 √ B ≥ λ max (M * n k ,k ) + max u∈U (M * n k ,k ) max M ∈M(α k ) u (M -M * n k ,k )u .
For a ∈ R, α ∈ (0, 1) and u ∈ R p , denote h(x; α, a, u) = a + (1/α)[u M (x)u -a] + , x ∈ X . We have λ max (M * n k ,k ) = (1/n k )

n k i=1 z i:k (u) = E µ k {h(X; α k , z n k :k (u), u)} = inf a E µ k {h(X; α k , a, u)}, u ∈ U (M * n k ,k ), with z n k :k (u) satisfying 0 ≤ n k z n k :k (u) ≤ n k i=1 z i:k (u) < k i=1 z i:k (u) = k λ max (M k )
. Also, for any α ∈ (0, 1) and u ∈ R p , u = 0, max M ∈M(α) u M u = E{h(X; α, a α (u), u)} = inf a E{h(X; α, a, u)}, where a α (u) satisfies X I {u M (x)u≥aα(u)} µ(dx) = α, and H M -(i ) implies that 0 ≤ a α (u) ≤ (1/α) The rest of the proof is similar to the case above for λ min , using the fact that the functions h(•; α, a, u) with α ∈ ( , 2 ), a ∈ [0, 2 √ B/ ] and u ∈ R p , u = 1, form a Glivenko-Cantelli class.

Appendix C. Convergence of C k

We consider the convergence properties of (3.3) when the matrix M k is fixed, that is,

C k+1 = C k + β k (k + 1) q I {Z k+1 ≥ C k } -α , (C.1)
where the Z k have a fixed distribution with uniformly bounded density f such that f (C 1-α ) > 0. We follow the arguments of [START_REF] Tierney | A space-efficient recursive procedure for estimating a quantile of an unknown distribution[END_REF]. The construction of β k is like in Algorithm 1, with β k = max{min(1/ f k , β 0 k γ )} and f k following the recursion

f k+1 = f k + 1 (k + 1) q 1 2 h k+1 I {|Z k+1 -C k |≤h k+1 } -f k (C.2)
with h k = h/k γ .

Theorem 3. Let α ∈ (0, 1), β 0 > 0, h > 0, 1/2 < q ≤ 1, 0 < γ < q -1/2. Let F be a distribution function such that f (t) = dF (t)/dt exists for all t, is uniformly bounded, and is strictly positive in a neighborhood of C 1-α , the unique value of C such that F (C) = 1 -α. Let (X i ) be an i. Proof. We first show that f k is a.s. bounded. From the mean-value theorem, there exists a

t k in [ C k - h k+1 , C k + h k+1 ] such that Pr{|Z k+1 -C k | ≤ h k+1 } = F ( C k + h k+1 ) -F ( C k -h k+1 ) = 2 h k+1 f (t k ). Denote ω k+1 = I {|Z k+1 -C k |≤h k+1 } -2 h k+1 f (t k ).
We can write

f k+1 = (1 -B k ) f k + A k + A k
where B k = 1/[(k + 1) q ], A k = ω k+1 /[2 h k+1 (k + 1) q ] and A k = B k f (t k ). Therefore,

f k+1 = f 1 k i=1 (1 -B i ) + k j=1 (A j + A j ) k i=j+1
(1 -B i ) .

We have

k i=1 (1 -B i ) < exp(- k i=1 B i ) → 0 as k → ∞ since q ≤ 1.
Next, for h k = h/k γ and 0 < γ < q -1/2, k 1/[h k k q ] 2 < ∞, k j=1 A j forms an L 2 -bounded martingale and therefore converges a.s. to some limit. Lemma 2 of Albert and Gardner (1967, p. 190) then implies that (1 -B i ). Since f is bounded, A j < f B j for some f < ∞ and

T k < f k j=1 B j k i=j+1 (1 -B i ) = f 1 - k i=1 (1 -B i ) < f ,
where the equality follows from Albert and Gardner (1967, Lemma 1, p. 189). This shows that f k is a.s.

bounded. Therefore, β k = min{1/ f k , β 0 k γ } is a.s. bounded away from zero.

We consider now the convergence of (C.1). Following [START_REF] Tierney | A space-efficient recursive procedure for estimating a quantile of an unknown distribution[END_REF], define

D k = β k (k + 1) q I {Z k+1 ≥ C k } -[1 -F ( C k )] and E k = β k (k + 1) q F ( C k ) -(1 -α) C k -C 1-α .
Denote by F k the increasing sequence of σ-fields generated by the X i ; we have E{D k |F k } = 0 and

E{D 2 k |F k } = β 2 k F ( C k ) [1 -F ( C k )]/(k + 1) 2q . We can rewrite (C.1) as C k+1 -C 1-α = ( C k -C 1-α ) (1 - E k ) + D k , which gives E{( C k+1 -C 1-α ) 2 |F k } = ( C k -C 1-α ) 2 (1 -E k ) 2 + β 2 k (k + 1) 2q F ( C k ) [1 -F ( C k )] . E k ≥ 0 for all k, [F ( C k ) -(1 -α)]/( C k -C 1-α
) is bounded since f is bounded, and therefore E k → 0. Since β k ≤ β 0 k γ and 0 < γ < q -1/2, k β 2 k /(k + 1) 2q < ∞. Robbins-Siegmund Theorem (1971) then implies that C k converges a.s. to some limit and that k ( C k -C 1-α ) 2 [1 -(1 -E k ) 2 ] < ∞ a.s.; since E k → 0, we obtain k ( C k -C 1-α ) 2 E k < ∞ a.s. Since q ≤ 1, β k is a.s. bounded away from zero, and f is strictly positive in a neighborhood of C 1-α , we obtain that k E k = ∞, implying that C k → C 1-α a.s., which concludes the proof. [START_REF] Tierney | A space-efficient recursive procedure for estimating a quantile of an unknown distribution[END_REF] uses q = 1; the continuity of f at C 1-α then implies that f k → f (C 1-α ) a.s., and his construction also achieves the optimal rate of convergence of

C k to C 1-α , with √ k( C k -C 1-α ) d → N (0, α(1 -α)/f 2 (C 1-α ) as k → ∞.

XM

  (x, θ) ξ(dx) , where M (x, θ) = Yx ∂ log ϕ x,θ (y) ∂θ ∂ log ϕ x,θ (y) ∂θ ϕ x,θ (y) dy denotes the elementary information matrix at x.

  ) the open ball with center x and radius . Notice that H M -(i ) implies that λ max [M(µ)] < √ B and M(µ) < √ p B. Our sequential selection procedure will rely on the estimation of the (1
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  The values of a and b are obtained by solving the pair of equations b 0

  1.2470; when α = 1/10, we have a 1.8842, b 0.0507, and Φ * α 3.2963, C 1-α (M * α )

  together with the value of its estimated quantile C N (horizontal solid line). The theoretical values C 1-α (M * α ) (horizontal dashed line) and the values -a, -b, b, a where F Φ [M * α , M (x)] = C 1-α (M * α ) (vertical dashed lines) are also shown ( C N and C 1-α (M * α ) are indistinguishable on the right panel). Although the figure indicates that

Figure 1 :

 1 Figure 1: Smoothed histogram of the Xi selected by Algorithm 1; the vertical dotted lines indicate the positions of -a, -b, b, a that define the set X * α = (-∞, -a] ∪ [-b, b] ∪ [a, ∞) where ξ * α = µ/α; N = 100 000; Left: α = 1/2 (n = 50 000); Right: α = 1/10 (n = 10 000).

Figure 2 :

 2 Figure 2: Evolution of Φ(Mn k ) obtained with Algorithm 1 as a function of k (log scale); the horizontal line indicates the optimal value Φ * α ; N = 100 000; Left: α = 1/2 (n = 50 000); Right: α = 1/10 (n = 10 000).

Figure 3 :

 3 Figure 3: FΦ[Mn N , M (x)] = trace[M -1 n N M (x)] -3 as a function of x (solid line); the horizontal solid (respectively, dashed) line indicates the value of CN (respectively, C1-α(M * α )), the vertical lines indicate the positions of -a, -b, b, a where FΦ[M * α , M (x)] = C1-α(M * α ); N = 100 000; Left: α = 1/2 (n = 50 000); Right: α = 1/10 (n = 10 000).

Figure 4 :

 4 Figure 4: Evolution of log 10 Mn k -M * α as a function of log 10 k (values averaged over 1 000 random samples XN ); the dashed line has slope -1/2 (α = 1/2: n = 5 000, N = 10 000).

Figure 5 :

 5 Figure 5: Evolution of Φ(Mn k ) obtained with Algorithm 1 as a function of k (log scale): d = 3, N = 100 000, exactly n = 100 points are collected using truncation/forced selection (blue dashed line and ) or adaptation of α (red solid line and ); see Remark 1-(iv ).

Figure 2

 2 Figure 2 has illustrated the convergence of Φ(M n k ) to Φ * α for a fixed α as k → ∞, but in fact what really matters is that n k tends to infinity: indeed, Φ(M n k ) does not converge to Φ * α if we fix n k = n and let k tend to infinity, so that α = n/k tends to zero (see also Section 5.1). This is illustrated on the left panel of Figure 6, where d = 25 and, from left to right, α equals 0.5 (magenta dotted line), 0.1, 0.05 and 0.01 (red solid line). Since the optimal value Φ * α depends on α, here we present the evolution with k of the D-efficiency [det(M n k )/ det(M * α )] 1/p = exp[(Φ(M n k ) -Φ * α )/d]. The right panel is for fixed α = 0.1 and varying d, with, from left to right, d = 5 (red solid line), 10, 20, 30 and 50 (cyan solid line). As one may expect, performance (slightly) deteriorates as d increases due to the increasing variability of Z M (X), with var[Z M (X)] = var[X MX] = 2 trace(M 2 ).

4. 3 .

 3 Example 3: processing a non i.i.d. sequence

Figure 6 :

 6 Figure 6: Evolution of D-efficiency of Mn k obtained with Algorithm 1 as a function of k (log scale); the horizontal line indicates the optimal value 1. Left: d = 25 and α = 0.5 (magenta dotted line), 0.1 (black), 0.05 (blue) and 0.01 (red solid line). Right: α = 0.1 and d = 5 (red solid line), 10 (blue), 20 (black), 30 (magenta) and 50 (cyan solid line).

Figure 7 :

 7 Figure 7: Evolution of Φ(Mn k ) obtained with Algorithm 1 as a function of k (log scale), the horizontal line indicates the optimal value Φ * α ; N = 100 000, α = 1/10; direct processing of the points Xi = i/N (dotted blue line), preprocessing with Algorithm 2 with B = αN (red solid line) and B = 3 αN (magenta dotted line).

Figure 8 :

 8 Figure 8: Left: Evolution of Φ(Mn k ) obtained with Algorithm 1 as a function of k (log scale), the horizontal line indicates the optimal value Φ * α ; N = 100 000, α = 1/10; direct processing of the points Xi = sin(2πνi/N ) (dotted blue line), preprocessing with Algorithm 2 with B = αN (red solid line) and B = αN/10 (magenta dotted line). Right: Xi, i = 1, . . . , N = 100 000 (black) and points X k produced by Algorithm 2 with B = αN which are selected by Algorithm 1 (red).

Figure 9 :

 9 Figure 9: Evolution of Φ(Mn k ) obtained with Algorithm 1 as a function of k (log scale) when d = 2 and µ = (1/2) µ N + (1/2) µ d with α = 0.5 (left) and α = 0.02 (right); the horizontal line indicates the optimal value Φ * α .

  gives the evolution with k of the D-efficiency [det(M n k )/ det(M * α )] 1/p = exp[(Φ(M n k ) -Φ * α )/d], for α = 0.5 (red solid line) and α = 0.2 (blue dashed line) when d = 5. The right panel shows the evolution of the ratio n k /k for those two situations, with the limiting value α indicated by a horizontal line. Although assumption H µ,M is violated, Algorithm 1 continues to perform satisfactorily.

Figure 10 :

 10 Figure 10: Left: Evolution of D-efficiency of Mn k obtained with Algorithm 1 as a function of k (log scale) for α = 0.5 (red solid line) and α = 0.2 (blue dashed line); the horizontal line indicates the optimal value 1; d = 5. Right: evolution of the ratio n k /k in the same simulations.

Figure 11 :

 11 Figure 11: Evolutions of Φ(Mn k ) (k ≥ k0, Algorithm 1, red solid line) Φ(M n,k ) (k ≥ n, Algorithm 3, blue dashed line), and Φ * n/k (magenta curve with triangles) as functions of k; the horizontal black line corresponds to Φ * α ; the black dotted curve shows the evolution of Φ(Mn k ) as a function of k when the selection is based on FΦ[Mn mN , M (X k+1 )] > CmN , with Mn mN and CmN obtained with Algorithm 1 applied to XmN = XN ∪ X (2)

Figure 12 :

 12 Figure 12: Evolution of C k in Algorithm 1 when applied to XmN = XN ∪ X (2)N ∪ • • • ∪ X (m) N, the horizontal black line corresponds to C1-α(M * α ). Left: n = 100, N = 100 000, m = 9; Right: n = 1 000, N = 1 000 000, m = 1.

  shows the Defficiency det 1/(d+1) (M IBOSS α )/ det 1/(d+1) (M * α ) as a function of α ∈ (0, 1] for d = 3 (left) and d = 25 (right),

Figure 14 :

 14 Figure 14: D-efficiency of IBOSS (blue solid line) as a function of α ∈ (0, 1] for d = 3 (left) and d = 25 (right). The enveloppes on the right panel show the empirical mean efficiency ± 2 standard deviations obtained for 100 independent repetitions with n = αN and N = 10 000 for IBOSS (green, bottom) and Algorithm 1 (magenta, top).
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  {u M (x)u≥aα(u)} u M (x)u µ(dx) < √ B/α . Since α k = n k /k → and M k → M(µ) a.s., there exists a.s. k 2 such that, for all k > k 2 , 0 ≤ a α k (u) < 2 √ B/ and 0 ≤ z n k :k (u) < 2 √ B/ . This implies that, for u ∈ U (M * n k ,k ) and k > k 2 , max M ∈M(α k ) u (M -M * n k ,k )u = E{h(X; α k , a α k (u), u)} -E µ k {h(X; α k , z n k :k (u), α k , a,u)} -E µ k {h(X; α k , a, u)}| .

  i.d. sequence distributed with F and define C k and f k by (C.1) and (C.2) respectively, withβ k = min{1/ f k , β 0 k γ } and h k = h/k γ . Then, C k → C 1-α a.s. when k → ∞.

  B i ) → 0 a.s. as k → ∞. Consider now the term T k =

For the linear model with intercept, such that M (X) = f (X)f (X) with f (X) = [1, X ] , the optimal

Theorem 2. Suppose that the X i are i.i.d. with µ satisfying H µ and, moreover, that their components {X i } k
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Example 7: quadratic regression on [0, 1]. Take f (X) = [X, X 2 ] , with X uniformly distributed in [0, 1] and Φ(M) = log det(M). For α ≤ α * 0.754160, the optimal measure ξ * α equals µ/α on [1/2 -a, 1/2 + b] ∪ [1 -(α -a -b), 1] for some a > b (which are determined by the two equations Next examples show that IBOSS performs more comparably to Algorithm 1 for multilinear regression with intercept, where M (X) = f (X)f (X) with f (X) = [1, X ] . Its performance may nevertheless be significantly poorer than that of Algorithm 1.

Example 8: multilinear regression with intercept, Φ(M) = log det(M).

the open ball centered at the origin with radius r. Here, The property below is stated without proof in [START_REF] Pronzato | On the sequential construction of optimum bounded designs[END_REF]. We provide here a formal proof based on results on conditional value-at-risk by [START_REF] Rockafellar | Optimization of conditional value-at-risk[END_REF] and [START_REF] Pflug | Some remarks on the value-at-risk and the conditional value-at-risk[END_REF].

Proof. Denote by M * n k ,k the matrix that corresponds to choosing n k distinct candidates that maximize Φ(M n k ,k ). The concavity of Φ implies

The rest of the proof consists in deriving an upper bound on the second term on the right-hand side of (A.1).

Denote To invoke H µ,M in order to ensure the existence of a density ϕ Mn k having the required properties for all k (which is essential for the convergence of Algorithm 1, see Theorem 1), we need to guarantee that

,L for all k, for some and L. This is the object of the following lemma. Lemma 2. Under H M , when 1 > 0 in Algorithm 1, n k+1 /k > 1 for all k and there exists a.s. > 0 and

Proof. Since the first k 0 points are selected, we have

If the n k points were chosen randomly,

for all k larger than some k 1 . However, here the situation is more complicated since points are accepted or rejected according to a sequential decision rule, and a more sophisticated argumentation is required. An expedite solution is to consider the worst possible choices of n k points, that yield the smallest value of λ min (M n k ) and largest value of λ max (M n k ). This approach is used in Lemma 3 presented below, which permits to conclude the proof.

Lemma 3. Under H M , any matrix M n k obtained by choosing n k points out of k independently distributed with µ and such that n k /k > > 0 satisfies lim inf k→∞ λ min (M n k ) > and lim sup k→∞ λ max (M n k ) < L a.s. for some > 0 and L < ∞.

Proof. We first construct a lower bound on lim inf k→∞ λ min (M n k ). Consider the criterion Φ + ∞ (M) = λ min (M), and denote by M * n k ,k the n k -point design matrix that minimizes Φ + ∞ over the design space formed by k points

with respect to u = (u 1 , . . . , u k ) under the constraints u i ∈ {0, 1} for all i and i u i = n k . Obviously, any matrix M n k obtained by choosing

, where the z i:k (u) correspond to the values of u M (X i )u sorted by increasing order for i = 1, . . . , k. For any m ∈ {1, . . . , n k -1}, we thus have

showing that the worst situation corresponds to the smallest admissible n k ; that is, we only have to consider the case when

where

For any α ∈ (0, 1) and any ξ α ≤ µ/α, there exists a set

For k larger than some k 1 we have α k ∈ ( , 2 ), and therefore λ min (M ) > c = (1 -2 ) 2 > 0. The inequality (B.1) thus gives, for k > k 1 ,

2)

The rest of the proof follows from results on conditional value-at-risk by [START_REF] Rockafellar | Optimization of conditional value-at-risk[END_REF] and [START_REF] Pflug | Some remarks on the value-at-risk and the conditional value-at-risk[END_REF]. For a fixed u ∈ R p , u = 0, and α ∈ (0, 1), we have min

where the α-quantile a α (u) satisfies

We can write min M ∈M(α) u M u = E{h(X; α, a α (u), u)} = sup a∈R E{h(X; α, a, u)}, where the expectation is with respect to X distributed with µ [START_REF] Rockafellar | Optimization of conditional value-at-risk[END_REF]. Also, from [START_REF] Pflug | Some remarks on the value-at-risk and the conditional value-at-risk[END_REF], for any

where

The functions h(•; α, a, u) with α ∈ ( , 2 ), a ∈ [0, z ] and u ∈ R p , u = 1, form a Glivenko-Cantelli class; see (van der Vaart, 1998, p. 271). This implies that there exists a.s. k 3 such that max

Therefore, from (B.2), λ min (M * n k ,k ) > c /2 for all k > k 3 , which concludes the first part of the proof.

We construct now an upper bound on lim sup k→∞ λ max (M n k ) following steps similar to the above developments but exploiting now the convexity of the criterion

, where the z i:k (u) correspond to the values of u M (X i )u sorted by decreasing order for i = 1, . . . , k. For any m ∈ {1, . . . , n k -1}, we thus have

] is a Lipschitz continuous function of M ∈ M ≥ ,L . Proof. For any A ∈ M > , define the random variable T A (X) = trace[AM (X)] and denote G A its distribution function and Q 1-α (A) the associated (1 -α)-quantile. We have Z M (X) = T ∇Φ(M) (X) -trace[∇ Φ (M)M], and therefore

where we used H Φ and the fact that M, M ∈ M ≥ ,L . Consider now G A and G A for two matrices A and A in M > . We have

and therefore

In the rest of the proof we show that Q

], which we shall respectively denote Q 1-α and Q 1-α to simplify notation. From H µ,M , the p.d.f. ψ M associated with G ∇Φ(M) is continuous at Q 1-α and satisfies ψ M (Q 1-α ) > ,L . From the identities

(D.4)

From H Φ , when substituting ∇ Φ (M) for A and ∇ Φ (M ) for A in b 1 and b 2 , we get b 1 > B 1 = 1 -K M -M /a(L) and b 2 < B 2 = 1 + K M -M /a(L), showing that Q 1-α → Q 1-α as M -M → 0. Therefore, there exists some β 1 such that, for M -M < β 1 we have

Using (D.3), we also obtain for M -M smaller than some β 2

.

Therefore, when M -M < a(L)/(K √ 2), ), where φM is the upper bound on ϕ M in H µ,M . Using (D.4) and (D.5) we thus obtain, for M -M small enough,

which, combined with (D.2) and (D.1), completes the proof.