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Abstract

We consider a design problem where experimental conditions (design points Xi) are presented in the form
of a sequence of i.i.d. random variables, generated with an unknown probability measure µ, and only a given
proportion α ∈ (0, 1) can be selected. The objective is to select good candidates Xi on the fly and maximize
a concave function Φ of the corresponding information matrix. The optimal solution corresponds to the
construction of an optimal bounded design measure ξ∗α ≤ µ/α, with the difficulty that µ is unknown and
ξ∗α must be constructed online. The construction proposed relies on the definition of a threshold τ on the
directional derivative of Φ at the current information matrix, the value of τ being fixed by a certain quantile
of the distribution of this directional derivative. Combination with recursive quantile estimation yields a
nonlinear two-time-scale stochastic approximation method. It can be applied to very long design sequences
since only the current information matrix and estimated quantile need to be stored. Convergence to an
optimum design is proved. Various illustrative examples are presented.
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1. Introduction

Consider a rather general parameter estimation problem in a model with independent observations
Yi = Yi(xi) conditionally on the experimental variables xi, with xi in some set X . Suppose that for any
x ∈ X there exists a measurable set Yx ∈ R and a σ-finite measure µx on Yx such that Y (x) has the
density ϕx,θ with respect to µx, with θ the true value of the model parameters θ to be estimated, θ ∈ Rp.5

In particular, this covers the case of regression models, with µx the Lebesgue measure on Yx = R and
Y (x) = η(θ, x) + ε(x), where the ε(xi) are independently distributed with zero mean and known variance
σ2
i (or unknown but constant variance σ2), and the case of generalized linear models, with ϕx,θ in the

exponential family and logistic regression as a special case. Denoting by θ̂
n

the estimated value of θ from
data (Xi, Yi), i = 1, . . . , n, under rather weak conditions on the xi and ϕx,θ, see below, we have10

√
n(θ̂

n
− θ)

d→ N (0,M−1(ξ,θ)) as n→∞ , (1.1)

where M(ξ,θ) denotes the (normalized) Fisher information matrix for parameters θ and (asymptotic) design
ξ (that is, a probability measure on X ),

M(ξ,θ) = lim
n→∞

1

n
Ex1,...,xn,θ


n∑
i=1

∂ logϕx,θ(Yi)

∂θ

n∑
j=1

∂ logϕx,θ(Yj)

∂θ>


=

∫
X

[∫
Yx

∂ logϕx,θ(y)

∂θ

∂ logϕx,θ(y)

∂θ>
ϕx,θ(y)µx(dy)

]
ξ(dx) .
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This is true in particular for randomized designs such that the xi are independently sampled from ξ, and for
asymptotically discrete designs, such that ξ is a discrete measure on X and the empirical design measure
ξn =

∑n
i=1 δxi converges strongly to ξ; see Pronzato and Pázman (2013). The former case corresponds to15

the situation considered here. The choice of µx is somewhat arbitrary, provided that
∫

Yx
ϕx,θ(y)µx(dy) = 1

for all x, and we shall assume that µx(dy) ≡ 1. We can then write

M(ξ,θ) =

∫
X

M (x,θ) ξ(dx) , where M (x,θ) =

∫
Yx

∂ logϕx,θ(y)

∂θ

∂ logϕx,θ(y)

∂θ>
ϕx,θ(y) dy

denotes the elementary information matrix at x.
Taking motivation from (1.1), optimal experimental design (approximate theory) aims at choosing a

measure ξ that minimizes a scalar function of the asymptotic covariance matrix M−1(ξ,θ) of θ̂
n
, or equiv-20

alently, that maximizes a function Φ of M(ξ,θ). For a nonlinear model M (x,θ) and M(ξ,θ) depend on
the model parameters θ. Since θ is unknown, the standard approach is local, and consists in constructing
an optimal design for a nominal value θ0 of θ. This is the point of view we shall adopt here — although
sequential estimation of θ is possible, see Section 6. When θ is fixed at some θ0, there is fundamentally no
difference with experimental design in a linear model for which M (x,θ) and M(ξ,θ) do not depend on θ.25

For example, in the linear regression model

Y (Xi) = f>(Xi)θ + εi ,

where the errors εi are independent and identically distributed (i.i.d.), with a density ϕε with respect to
the Lebesgue measure having finite Fisher information for location Iε =

∫
R

{
[ϕ′ε(t)]

2/ϕε(t)
}

dt < ∞ (Iε =

1/σ2 for normal errors N (0, σ2)), then M (x) = Iε f(x)f>(x), M(ξ) = Iε
∫

X f(x)f>(x) ξ(dx). Polynomial
regression provides typical examples of such a situation and will be used for illustration in Section 4. The30

construction of an optimal design measure ξ∗ maximizing Φ[M(ξ,θ0)] usually relies on the application of
a specialized algorithm to a discretization of the design space X ; see, e.g., Pronzato and Pázman (2013,
Chap. 9).

With the rapid development of connected sensors and the pervasive usage of computers, there exist more
and more situations where extraordinary amounts of massive data (Xi, Yi), i = 1, . . . , N , are available to35

construct models. When N is very large, using all the data to construct θ̂
N

is then unfeasible, and selecting
the most informative subset through the construction of an n-point optimal design, n� N , over the discrete
set XN = {Xi, i = 1, . . . , N} is also not feasible. The objective of this paper is to present a method to
explore XN sequentially and select a proportion n = bαNc of the N data points to be used to estimate θ.
Each candidate Xi is considered only once, which allows very large datasets to be processed: when the Xi40

are i.i.d. and are received sequentially, they can be selected on the fly which makes the method applicable
to data streaming; when N data points are available simultaneously, a random permutation allows XN to
be processed as an i.i.d. sequence. When N is too large for the storage capacity and the i.i.d. assumption
is not tenable, interleaving or scrambling techniques can be used. Since de-scrambling is not necessary here
(the objective is only to randomize the sequence), a simple random selection in a fixed size buffer may be45

sufficient; an example is presented in Section 4.3.
The method is based on the construction of an optimal bounded design measure and draws on the paper

(Pronzato, 2006). In that paper, the sequential selection of the Xi relies on a threshold set on the directional
derivative of the design criterion, given by the (1−α)-quantile of the distribution of this derivative. At stage
k, all previous Xi, i = 1, . . . , k, are used for the estimation of the quantile Ck that defines the threshold50

for the possible selection of the candidate Xk+1. In the present paper, we combine this approach with the
recursive estimation of Ck, following (Tierney, 1983): as a result, the construction is fully sequential and only

requires to record the current value of the information matrix Mk and of the estimated quantile Ĉk of the
distribution of the directional derivative. It relies on a reinterpretation of the approach in (Pronzato, 2006)
as a stochastic approximation method for the solution of the necessary and sufficient optimality conditions55

for a bounded design measure, which we combine with another stochastic approximation method for quantile
estimation to obtain a two-time-scale stochastic approximation scheme.
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The paper is organized as follows. Section 2 introduces the notation and assumptions and recalls main
results on optimal bounded design measures. Section 3 presents our subsampling algorithm based on a two-
time-scale stochastic approximation procedure and contains the main result of the paper. Several illustrative60

examples are presented in Section 4. We are not aware of any other method for thinning experimental designs
that is applicable to data streaming; nevertheless, in Section 5 we compare our algorithm with an exchange
method and with the IBOSS algorithm of Wang et al. (2019) in the case where the N design points are
available and can be processed simultaneously. Section 6 concludes and suggests a few directions for further
developments. A series of technical results are provided in the Appendix.65

2. Optimal bounded design measures

2.1. Notation and assumptions

Suppose that X is distributed with the probability measure µ on X ⊆ Rd, a subset of Rd with nonempty
interior, with d ≥ 1. For any ξ ∈ P+(X ), the set of positive measure ξ on X (not necessarily of mass
one), we denote M(ξ) =

∫
X M (x) ξ(dx) where, for all x in X , M (x) ∈ M≥, the set (cone) of symmetric70

non-negative definite p×p matrices. We assume that p > 1 in the rest of the paper (the optimal selection of
information in the case p = 1 forms a variant of the secretary problem for which an asymptotically optimal
solution can be derived, see Albright and Derman (1972); Pronzato (2001)).

We denote by Φ : M≥ → R ∪ {−∞} the design criterion we wish to maximize, and by λmin(M) and
λmax(M) the minimum and maximum eigenvalues of M, respectively; we shall use the `2 norm for vectors75

and Frobenius norm for matrices, ‖M‖ = trace1/2[MM>]; all vectors are column vectors. For any t ∈ R, we
denote [t]+ = max{t, 0} and, for any t ∈ R+, btc denotes the largest integer smaller than t. For 0 ≤ ` ≤ L

we denote by M≥`,L the (convex) set defined by

M≥`,L = {M ∈M≥ : ` < λmin(M) and λmax(M) < L} ,

and by M> the open cone of symmetric positive definite p×p matrices. We make the following assumptions
on Φ.80

HΦ Φ is strictly concave on M>, linearly differentiable and increasing for Loewner ordering; its gradient
∇Φ(M) is well defined in M≥ for any M ∈M> and satisfies ‖∇Φ(M)‖ < A(`) and λmin[∇Φ(M)] > a(L)

for any M ∈ M≥`,L, for some a(L) > 0 and A(`) < ∞; moreover, ∇Φ satisfies the following Lipschitz

condition: for all M1 and M2 in M≥ such that λmin(Mi) > ` > 0, i = 1, 2, there exists K` <∞ such
that ‖∇Φ(M2)−∇Φ(M1)‖ < K` ‖M2 −M1‖.85

The criterion Φ0(M) = log det(M) and criteria Φq(M) = − trace(M−q), q ∈ (−1,∞), q 6= 0, with
Φq(M) = −∞ if M is singular, which are often used in optimal design (in particular with q a positive
integer), satisfy HΦ; see, e.g., Pukelsheim (1993, Chap. 6). Their gradients are ∇Φ0

(M) = M−1 and
∇Φq (M) = qM−(q+1), q 6= 0; the constants a(L) and A(`) are respectively given by a(L) = 1/L, A(`) =

√
p/`

for Φ0 and a(L) = q/Lq+1, A(`) = q
√
p/`q+1 for Φq. The Lispchitz condition follows from the fact that90

the criteria are twice differentiable on M>. The positively homogeneous versions Φ+
0 (M) = det1/p(M) and

Φ+
q (M) = [(1/p) trace(M−q)]−1/q, which satisfy Φ+(aM) = aΦ+(M) for any a > 0 and any M ∈ M≥, and

Φ+(Ip) = 1, with Ip the p× p identity matrix, could be considered too; see Pukelsheim (1993, Chaps. 5, 6).

The strict concavity of Φ implies that, for any convex subset M̂ of M>, there exists a unique matrix M∗

maximizing Φ(M) with respect to M ∈ M̂.95

We denote by FΦ(M,M′) the directional derivative of Φ at M in the direction M′,

FΦ(M,M′) = lim
γ→0+

Φ[(1− γ)M + γM′]− Φ(M)

γ
= trace[∇Φ(M)(M′ −M)] ,

and we make the following assumptions on µ and M .
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Hµ µ has a bounded positive density ϕ with respect to the Lebesgue measure on every open subset of X .

HM (i) M is continuous on X and satisfies
∫

X ‖M (x)‖2 µ(dx) < B <∞;

(ii) for any Xε ⊂X of measure µ(Xε) = ε > 0, λmin

{∫
Xε

M (x)µ(dx)
}
> `ε for some `ε > 0.100

Since all the designs considered will be formed by points sampled from µ, we shall confound X with
the support of µ: X = {x ∈ Rd : µ(Bd(x, ε)) > 0 ∀ε > 0}, with Bd(x, ε) the open ball with center x and
radius ε. Notice that HM -(i) implies that λmax[M(µ)] <

√
B and ‖M(µ)‖ <

√
pB.

Our sequential selection procedure will rely on the estimation of the (1 − α)-quantile C1−α(M) of the
distribution FM(z) of the directional derivative ZM(X) = FΦ[M,M (X)] when X ∼ µ, and we shall assume105

that Hµ,M below is satisfied. It implies in particular that C1−α(M) is uniquely defined by FM(CM,1−α) =
1− α.

Hµ,M For all M ∈ M≥`,L, FM has a uniformly bounded density ϕM; moreover, for any α ∈ (0, 1), there
exists ε`,L > 0 such that ϕM[C1−α(M)] > ε`,L and ϕM is continuous at C1−α(M).

Hµ,M is overrestricting (we only need the existence and boundedness of ϕM, and its positiveness and con-110

tinuity at C1−α(M)), but is satisfied is many common situations; see Section 4 for examples. Let us empha-
size that Hµ and HM are not enough to guarantee the existence of a density ϕM, since trace[∇Φ(M)M (x)]
may remain constant over subsets of X having positive measure. Assuming the existence of ϕM and the con-
tinuity of ϕ on X is also insufficient, since ϕM is generally not continuous when ZM(x) is not differentiable
in x, and ϕM is not necessarily bounded.115

2.2. Optimal design

As mentioned in introduction, when the cardinality of XN is very large, one may wish to select only
n candidates Xi among the N available, a fraction n = bαNc say, with α ∈ (0, 1). For any n ≤ N , we
denote by M∗

n,N a design matrix (non necessarily unique) obtained by selecting n points optimally within

XN ; that is, M∗
n,N gives the maximum of Φ(Mn) with respect to Mn = (1/n)

∑n
j=1 M (Xij ), where the120

Xij are n distinct points in XN . Note that this forms a difficult combinatorial problem, unfeasible for
large n and N . If one assumes that the Xi are i.i.d., with µ their probability measure on X , for large N
the optimal selection of n = bαNc points amounts at constructing an optimal bounded design measure ξ∗α,
such that Φ[M(ξ∗α)] is maximum and ξα ≤ µ/α (in the sense ξα(A) ≤ µ(A)/α for any µ-measurable set A,
which makes ξα absolutely continuous with respect to µ). Indeed, Lemma 1 in Appendix A indicates that125

lim supN→∞ Φ(M∗
bαNc,N ) = Φ[M(ξ∗α)]. Also, under HΦ, E{Φ(M∗

n,N )} ≤ Φ[M(ξ∗n/N )] for all N ≥ n > 0; see

Pronzato (2006, Lemma 3).
A key result is that, when all subsets of X with constant ZM(x) have zero measure, ZM(ξ∗α)(x) =

FΦ[M(ξ∗α),M (x)] separates two sets X ∗
α and X \ X ∗

α , with FΦ[M(ξ∗α),M (x)] ≥ C∗1−α and ξ∗α = µ/α
on X ∗

α , and FΦ[M(ξ∗α),M (x)] ≤ C∗1−α and ξ∗α = 0 on X \ X ∗
α , for some constant C∗1−α; moreover,130 ∫

X FΦ[M(ξ∗α),M (x)] ξ∗α(dx) =
∫

X ∗
α
FΦ[M(ξ∗α),M (x)]µ(dx) = 0; see Wynn (1982); Fedorov (1989) and

Fedorov and Hackl (1997, Chap. 4). (The condition mentioned in those references is that µ has no atoms,
but the example in Section 4.4.2 will show that this is not sufficient; the extension to arbitrary measures is
considered in (Sahm and Schwabe, 2001).)

For α ∈ (0, 1), denote135

M(α) =

{
M(ξα) =

∫
X

M (x) ξα(dx) : ξα ∈P+(X ), ξα ≤
µ

α
,

∫
X

ξα(dx) = 1

}
.

In (Pronzato, 2006), it is shown that, for any M ∈M>,

M+(M, α) = arg max
M′∈M(α)

FΦ(M,M′) =
1

α

∫
X

I{FΦ[M,M (x)]≥C1−α}M (x)µ(dx) , (2.1)
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where, for any proposition A, I{A} = 1 if A is true and is zero otherwise, and C1−α = C1−α(M) is an
(1− α)-quantile of FΦ[M,M (X)] when X ∼ µ and satisfies∫

X

I{FΦ[M,M (x)]≥C1−α(M)} µ(dx) = α . (2.2)

Therefore, M∗
α = M(ξ∗α) is the optimum information matrix in M(α) (unique since Φ is strictly concave) if

and only if it satisfies maxM′∈M(α) FΦ(M∗
α,M

′) = 0, or equivalently M∗
α = M+(M∗

α, α), and the constant140

C∗1−α equals C1−α(M∗
α); see (Pronzato, 2006, Th. 5); see also Pronzato (2004). Note that C∗1−α ≤ 0 since∫

X FΦ[M(ξ∗α),M (x)] ξ∗α(dx) = 0 and FΦ[M(ξ∗α),M (x)] ≥ C∗1−α on the support of ξ∗α.

3. Sequential construction of an optimal bounded design measure

3.1. A stochastic approximation problem

Suppose that the Xi are i.i.d. with µ. The solution of M = M+(M, α), α ∈ (0, 1), with respect to M by145

stochastic approximation yields the iterations

nk+1 = nk + I{FΦ[Mnk
,M (Xk+1)]≥C1−α(Mnk

)} ,

Mnk+1
= Mnk + 1

nk+1 I{FΦ[Mnk
,M (Xk+1)]≥C1−α(Mnk

)} [M (Xk+1)−Mnk ] .
(3.1)

Note that E
{
I{FΦ[M,M (X)]≥C1−α(M)} [M (X)−M]

}
= α [M+(M, α) −M]. The almost sure (a.s.) conver-

gence of Mnk in (3.1) to M(ξ∗α) that maximizes Φ(M) with respect M ∈M(α) is proved in (Pronzato, 2006)
under rather weak assumptions on Φ, M and µ.

The construction (3.1) requires the calculation of the (1 − α)-quantile C1−α(Mnk) for all nk, see (2.2),150

which is not feasible when µ is unknown and has a prohibitive computational cost when we know µ. For
that reason, it is proposed in (Pronzato, 2006) to replace C1−α(Mnk) by the empirical quantile C̃α,k(Mnk)

that uses the empirical measure µk = (1/k)
∑k
i=1 δXi of the Xi that have been observed up to stage k.

This construction preserves the a.s. convergence of Mnk to M(ξ∗α) in (3.1), but its computational cost and
storage requirement increase with k, which makes it unadapted to situations with very large N . The next155

section considers the recursive estimation of C1−α(Mnk) and contains the main result of the paper.

3.2. Recursive quantile estimation

The idea is to plug a recursive estimator of the (1 − α)-quantile C1−α(Mnk) in (3.1). Under mild
assumptions, for random variables Zi that are i.i.d. with distribution function F such that the solution of
the equation F (z) = 1− α is unique, the recursion160

Ĉk+1 = Ĉk +
β

k + 1

(
I{Zk+1≥Ĉk} − α

)
(3.2)

with β > 0 converges a.s. to the quantile C1−α such that F (C1−α) = 1−α. Here, we shall use a construction
based on (Tierney, 1983). In that paper, a clever dynamical choice of β = βk is shown to provide the optimal

asymptotic rate of convergence of Ĉk towards C1−α, with
√
k(Ĉk − C1−α)

d→ N (0, α(1− α)/f2(C1−α)) as
k →∞, where f(z) = dF (z)/dz is the p.d.f. of the Zi — note that it coincides with the asymptotic behavior
of the sample (empirical) quantile. The only conditions on F are that f(z) exists for all z and is uniformly165

bounded, and that f is continuous and positive at the unique root C1−α of F (z) = 1− α.
There is a noticeable difference, however, with the estimation of C1−α(Mnk): in our case we need to

estimate a quantile of Zk(X) = FΦ[Mnk ,M (X)] for X ∼ µ, with the distribution of Zk(X) evolving with

k. For that reason, we shall impose a faster dynamic to the evolution of Ĉk, and replace (3.2) by

Ĉk+1 = Ĉk +
βk

(k + 1)q

(
I{Zk(Xk+1)≥Ĉk} − α

)
(3.3)

5



for some q ∈ (0, 1). The combination of (3.3) with (3.1) yields a particular nonlinear two-time-scale stochastic170

approximation scheme. There exist advanced results on the convergence of linear two-time-scale stochastic
approximation, see Konda and Tsitsiklis (2004); Dalal et al. (2018). To the best of our knowledge, however,
there are few results on convergence for nonlinear schemes. Convergence is shown in (Borkar, 1997) under
the assumption of boundedness of the iterates using the ODE method of Ljung (1977); sufficient conditions
for stability are provided in (Lakshminarayanan and Bhatnagar, 2017), also using the ODE approach. In175

the proof of Theorem 1 we provide justifications for our construction, based on the analyses and results in
the references mentioned above.

The construction is summarized in Algorithm 1 below. The presence of the small number ε1 is only due
to technical reasons: setting zk+1 = +∞ when nk/k < ε1 in (3.4) has the effect of always selecting Xk+1

when less than ε1 k points have been selected previously; it ensures that nk+1/k > ε1 for all k and thus that180

Mnk always belongs to M≥`,L for some ` > 0 and L <∞; see Lemma 2 in Appendix B.

Algorithm 1: sequential selection (α given).

0) Choose k0 ≥ p, q ∈ (1/2, 1), γ ∈ (0, q − 1/2), and 0 < ε1 � α.

1) Initialization: select X1, . . . , Xk0 , compute Mnk0
= (1/k0)

∑k0

i=1 M (Xi). If Mnk0
is singular, increase

k0 and select the next points until Mnk0
has full rank. Set k = nk = k0, the number of points selected.185

Compute ζi = Zk0
(Xi), for i = 1, . . . , k0 and order the ζi as ζ1:k0

≤ ζ2:k0
≤ · · · ≤ ζk0:k0

; denote
k+

0 = d(1− α/2) k0e and k−0 = max{b(1− 3α/2) k0c, 1}.

Initialize Ĉk0 at ζd(1−α) k0e:k0
; set β0 = k0/(k

+
0 − k

−
0 ), h = (ζk+

0 :k0
− ζk−0 :k0

), hk0 = h/kγ0 and f̂k0 =[∑k0

i=1 I{|ζi−Ĉk0
|≤hk0

}

]
/(2 k0 hk0).

2) Iteration k + 1: collect Xk+1 and compute Zk(Xk+1) = FΦ[Mnk ,M (Xk+1)].190

If nk/k < ε1 set zk+1 = +∞ ;
otherwise set zk+1 = Zk(Xk+1) .

(3.4)

If zk+1 ≥ Ĉk, update nk into nk+1 = nk + 1 and Mnk into

Mnk+1
= Mnk +

1

nk + 1
[M (Xk+1)−Mnk ] ; (3.5)

otherwise, set nk+1 = nk.

3) Compute βk = min{1/f̂k, β0 k
γ}; update Ĉk using (3.3).

Set hk+1 = h/(k + 1)γ and update f̂k into

f̂k+1 = f̂k +
1

(k + 1)q

[
1

2hk+1
I{|Zk(Xk+1)−Ĉk|≤hk+1} − f̂k

]
.

4) k ← k + 1, return to Step 2.195

Note that Ĉk is updated whatever the value of Zk(Xk+1). Recursive quantile estimation by (3.3) follows

(Tierney, 1983). To ensure a faster dynamic for the evolution of Ĉk than for Mnk , we take q < 1 instead of

q = 1 in (Tierney, 1983), and the construction of f̂k and the choices of βk and hk are modified accordingly.
Following the same arguments as in the proof of Proposition 1 of (Tierney, 1983), the a.s. convergence of

Ĉk to C1−α in the modified version of (3.2) is proved in Theorem 3 (Appendix C).200

The next theorem establishes the convergence of the combined stochastic approximation schemes with
two time-scales.
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Theorem 1. Under HΦ, Hµ, HM and Hµ,M , the normalized information matrix Mnk corresponding to the
nk candidates selected after k iterations of Algorithm 1 converges a.s. to the optimal matrix M∗

α in M(α)
as k →∞.205

Proof. Our analysis is based on (Borkar, 1997). We denote by Fn the increasing sequence of σ-fields

generated by the Xi. According to (3.3), we can write Ĉk+1 = Ĉk + [βk/(k + 1)q]Vk+1 with Vk+1 =

I{Zk(Xk+1)≥Ĉk} − α. Therefore, E{Vk+1|Fk} =
∫

X [I{Zk(x)≥Ĉk} − α]µ(dx) and var{Vk+1|Fk} = Fk(Ĉk)[1−
Fk(Ĉk)], with Fk the distribution function of Zk(X). From Lemma 2 (Appendix B) and Hµ,M , Fk has a
well defined density fk for all k, with fk(t) > 0 for all t and fk bounded. The first part of the proof of210

Theorem 3 applies (see Appendix C): f̂k is a.s. bounded and βk is bounded away from zero a.s. Therefore,∑
k βk/(k + 1)q →∞ a.s. and (k + 1)q/[βk (k + 1)]→ 0 a.s.; also,

∑
k[βk/(k + 1)q]2 <∞ since q − γ > 1/2.

The o.d.e. associated with (3.3), for a fixed matrix M and thus a fixed Z(·), such that Z(X) =
FΦ[M,M (X)] has the distribution function F and density f , is

dC(t)

dt
= 1− F [C(t)]− α = F (C1−α)− F [C(t)] ,

where C1−α = C1−α(M) satisfies F (C1−α) = 1 − α. Consider the Lyapunov function L(C) = [F (C) −215

F (C1−α)]2. It satisfies dL[C(t)]/dt = −2 f [C(t)]L[C(t)] ≤ 0, with dL[C(t)]/dt = 0 if and only if C = C1−α.
Moreover, C1−α is Lipschitz continuous in M; see Lemma 4 in Appendix D. The conditions for Theorem 1.1

in (Borkar, 1997) are thus satisfied concerning the iterations for Ĉk.

Denote M̂k = Mnk and ρk = nk/k, so that (3.4) implies k ρk ≥ ε1 (k − 1) for all k; see Lemma 2 in
Appendix B. They satisfy220

ρk+1 = ρk +
Rk+1

k + 1
and M̂k+1 = M̂k +

Ωk+1

k + 1
, (3.6)

where Rk+1 = I{Zk(Xk+1)≥Ĉk} − ρk, and Ωk+1 = (1/ρk+1) I{Zk(Xk+1)≥Ĉk}

[
M (Xk+1)− M̂k

]
. We have

E{Rk+1|Fk} =
∫

X I{Zk(x)≥Ĉk} µ(dx)−ρk and var{Rk+1|Fk} = Fk(Ĉk)[1−Fk(Ĉk)], with Fk the distribution

function of Zk(X), which, from Hµ,M , has a well defined density fk for all k. Also,

E{Ωk+1|Fk} =
Ik

ρk + 1−ρk
k+1

=
1 + 1/k

ρk + 1/k
Ik ,

where Ik =
∫

X I{Zk(x)≥Ĉk}

[
M (x)− M̂k

]
µ(dx). Denote ∆k+1 = Ωk+1 − Ik/ρk, so that

M̂k+1 = M̂k +
1

k + 1

Ik
ρk

+
∆k+1

k + 1
. (3.7)

We get E{∆k+1|Fk} = (ρk − 1)/[ρk (k ρk + 1)] Ik and225

var{{∆k+1}i,j |Fk} = var{{Ωk+1}i,j |Fk}

=
(k + 1)2

(k ρk + 1)2

[∫
X

I{Zk(x)≥Ĉk} {M (x)− M̂k}2i,j µ(dx)− {Ik}2i,j
]
,

where (3.4) implies that ρk > ε1/2, and therefore (k+1) (1−ρk)/[ρk (k ρk+1)] < 4/ε21, and var{{∆k+1}i,j |Fk}
is a.s. bounded from HM -(i). This implies that

∑
k ∆k+1/(k + 1) < ∞ a.s. The limiting o.d.e. associated

with (3.6) and (3.7) are

dρ(t)

dt
=

∫
X

I{FΦ[M̂(t),M (x)]≥C1−α[M̂(t)]} µ(dx)− ρ(t) = α− ρ(t) ,

dM̂(t)

dt
=

1

ρ(t)

∫
X

I{FΦ[M̂(t),M (x)]≥C1−α[M̂(t)]}

[
M (x)− M̂(t)

]
µ(dx)

=
α

ρ(t)

{
M+[M̂(t), α]− M̂(t)

}
,
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where M+[M̂(t), α] is defined by (2.1). The first equation implies that ρ(t) converges exponentially fast to
α, with ρ(t) = α+ [ρ(0)− α] exp(−t); the second equation gives230

dΦ[M̂(t)]

dt
= trace

[
∇Φ[M̂(t)]

dM̂(t)

dt

]
=

α

ρ(t)
max

M′∈M(α)
FΦ[M̂(t),M′] ≥ 0 ,

with a strict inequality if M̂(t) 6= M∗
α, the optimal matrix in M(α). The conditions of Theorem 1.1 in

(Borkar, 1997) are thus satisfied, and M̂k converges to M∗
α a.s.

Remark 1.

(i) Algorithm 1 does not require the knowledge of µ and has minimum storage requirements: apart for the

current matrix Mnk , we only need to update the scalar variables Ĉk and fk. Its complexity is O(d3N)235

in general, considering that the complexity of the calculation of FΦ[M,M (X)] is O(d3). It can be
reduced to O(d2N) when M (X) has rank one and M−1

nk
is updated instead of Mnk (see remark (iii)

below), for D-optimality and Φq-optimality with q integer; see Section 2.1. Very long sequences (Xi)
can thus be processed.

(ii) Numerical simulations indicate that we do not need to take q < 1 in Algorithm 1: (3.3) with q = 1240

yields satisfactory performance, provided the step-size obeys Kersten’s rule and does not decrease at
each iteration.

(iii) The substitution of trace[∇Φ(M)M (X)] for FΦ[M,M (X)] = trace{∇Φ(M)[M (X)−M]} everywhere
does not change the behavior of the algorithm. When ∇Φ(M) only depends on M−1 (which is often
the case for classical design criteria, see the discussion following the presentation of HΦ), and if M (X)245

is a low rank matrix, it may be preferable to update M−1
nk

instead of Mnk , thereby avoiding matrix

inversions. For example, if M (Xk+1) = Iε f(Xk+1)f>(Xk+1), then, instead of updating (3.5), it is
preferable to update the following

M−1
nk+1

=

(
1 +

1

nk

)[
M−1

nk
−
Iε M−1

nk
f(Xk+1)f>(Xk+1)M−1

nk

nk + Iε f>(Xk+1)M−1
nk f(Xk+1)

]
.

Low-rank updates of the Cholesky decomposition of the matrix can be considered too.

(iv) Algorithm 1 can be adapted to the case where the number of iterations is fixed (equal to the size N of250

the candidate set XN ) and the number of candidates n to be selected is imposed. A straightforward
modification is to introduce truncation and forced selection: we run the algorithm with α = n/N
and, at Step 2, we set zk+1 = −∞ (reject Xk+1) if nk ≥ n and set zk+1 = +∞ (select Xk+1) if
n− nk ≥ N − k. However, this may induce the selection of points Xi carrying little information when
k approaches N in case nk is excessively small. For that reason, adaptation of α to nk, obtained by255

substituting αk = (n−nk)/(N−k) for the constant α everywhere, seems preferable. This is illustrated
by an example in Section 4.2.

(v) The case when µ has discrete components (atoms), or more precisely when there exist subsets of
X of positive measure where ZM(x) is constant (see Section 4.4.2), requires additional technical
developments which we do not detail here.260

A first difficulty is that HM -(ii) may not be satisfied when the matrices M (x) do not have full rank,
unless we only consider large enough ε. Unless ε1 in (3.4) is large enough, Lemma 2 is not valid,
and other arguments are required in the proof of Theorem 1. Possible remedies may consist (a) in
adding a regularization matrix γIp with a small γ to all matrices M (x) (which amounts at considering
optimal design for Bayesian estimation with a vague prior; see, e.g., Pilz (1983)), or (b) in replacing265

the condition in (3.4) by [If λmin(Mnk) < ε1, set zk+1 = +∞].
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A second difficulty is that C1−α(M∗
α) may correspond to a point of discontinuity of the distribution

function of FΦ[M∗
α,M (X)]. The estimated value fk of the density of FΦ[Mnk ,M (X)] at Ĉk (Step 3

of Algorithm 1) may then increase to infinity and βk tend to zero in (3.3). This can be avoided by

setting βk = max{ε2,min(1/f̂k, β0 k
γ)} for some ε2 > 0.270

In (Pronzato, 2006), where empirical quantiles are used, measures needed to be taken to avoid the
acceptance of too many points, for instance based on the adaptation of α through αk = (n−nk)/(N−k),
see remark (iv) above, or via the addition of the extra condition [if nk/k > α, set zk+1 = −∞] to (3.4)
in case n is not specified. Such measures do not appear to be necessary when quantiles are estimated
by (3.3); see the examples in Section 4.4. /275

4. Examples

We always take k0 = 5 p, q = 5/8, γ = 1/10 in Algorithm 1 (our simulations indicate that these choices
are not critical); we also set ε1 = 0.

4.1. Example 1: quadratic regression with normal independent variables

Take M (x) = f(x)f>(x), with f(x) = (1, x, x2)> and Φ(M) = log det(M), and let the Xi be i.i.d.280

standard normal variables N (0, 1). The D-optimal design for x in an interval [t, t′] corresponds to ξ∗ =
(1/3)

(
δt + δ(t+t′)/2 + δt′

)
. In the data thinning problem, the optimal solution corresponds to the selection

of Xi in the union of three intervals; that is, with the notation of Section 2, X ∗
α = (−∞,−a] ∪ [−b, b] ∪

[a,∞). The values of a and b are obtained by solving the pair of equations
∫ b

0
ϕ(x) dx +

∫∞
a
ϕ(x) dx =

α/2 and trace[M−1(ξ)M (a)] = trace[M−1(ξ)M (b)], with ϕ the standard normal density and M(ξ) =285

[
∫ −a
−∞M (x)ϕ(x) dx+

∫ b
−b M (x)ϕ(x) dx+

∫∞
a

M (x)ϕ(x) dx]/α.
We set the horizon N at 100 000 and consider the two cases α = 1/2 and α = 1/10. In each case

we keep α constant but apply the rule of Remark 1-(iv) (truncation/forced selection) to select exactly
n = 50 000 and n = 10 000 design points, respectively. For α = 1/2, we have a ' 1.0280, b ' 0.2482, and
Φ∗α = Φ(M∗

α) = maxM∈M(α) Φ(M) ' 1.6354, C1−α(M∗
α) ' −1.2470; when α = 1/10, we have a ' 1.8842,290

b ' 0.0507, and Φ∗α ' 3.2963, C1−α(M∗
α) ' −0.8513. The figures below present results obtained for one

simulation (i.e., one random set XN ), but they are rather typical in the sense that different XN yield similar
behaviors.

Figure 1 shows smoothed histograms (Epanechnikov kernel, bandwidth equal to 1/1000 of the range of
the Xi in XN ) of the design points selected by Algorithm 1, for α = 1/2 (left) and α = 1/10 (right). There295

is good adequation with the theoretical optimal density, which corresponds to a truncation of the normal
density at values indicated by the vertical dotted lines.

Figure 2 presents the evolution of Φ(Mnk) as a function of k, together with the optimal value Φ∗α
(horizontal line), for the two choices of α considered (the figures show some similarity on the two panels
since the same set XN is used for both). Convergence of Φ(Mnk) to Φ∗α is fast in both cases; the presence300

of steps on the evolution of Φ(Mnk), more visible on the right panel, is due to long subsequences of samples
consecutively rejected.

Figure 3 shows the behavior of the final directional derivative FΦ[MnN ,M (x)], after observation of all

Xi in XN , together with the value of its estimated quantile ĈN (horizontal solid line). The theoretical values
C1−α(M∗

α) (horizontal dashed line) and the values −a,−b, b, a where FΦ[M∗
α,M (x)] = C1−α(M∗

α) (vertical305

dashed lines) are also shown (ĈN and C1−α(M∗
α) are indistinguishable on the right panel). Although the

figure indicates that FΦ[MnN ,M (x)] differs significantly from FΦ[M∗
α,M (x)], they are close enough to allow

selection of the most informative Xi, as illustrated by Figures 1 and 2.
Figure 4 shows ‖Mnk − M∗

α‖ (Frobenius norm) as a function of k (log scale), averaged over 1 000
independent repetitions with random samples XN of size N = 10 000, for α = 1/2. It suggests that310

‖Mnk −M∗
α‖ = O(1/

√
k) for large k, although the conditions in (Konda and Tsitsiklis, 2004) are not

satisfied since the scheme we consider is nonlinear. This convergence rate is significantly faster than what
is suggested by Dalal et al. (2018). These investigations require further developments and will be pursued
elsewhere.
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Figure 1: Smoothed histogram of the Xi selected by Algorithm 1; the vertical dotted lines indicate the positions of
−a,−b, b, a that define the set X ∗

α = (−∞,−a] ∪ [−b, b] ∪ [a,∞) where ξ∗α = µ/α; N = 100 000; Left: α = 1/2
(n = 50 000); Right: α = 1/10 (n = 10 000).

Figure 2: Evolution of Φ(Mnk ) obtained with Algorithm 1 as a function of k (log scale); the horizontal line indicates
the optimal value Φ∗

α; N = 100 000; Left: α = 1/2 (n = 50 000); Right: α = 1/10 (n = 10 000).

4.2. Example 2: multilinear regression with normal independent variables315

Take M (X) = XX>, with X = (x1, x2, . . . , xd)
>, d > 1, and Φ(M) = log det(M), the vectors Xi being

i.i.d. N (0, Id) (so that p = d). Denote by ϕ(x) = (2π)−d/2 exp(−‖x‖2/2) the probability density of X.
For symmetry reasons, for any α ∈ (0, 1) the optimal (normalized) information matrix is M∗

α = ρα Id, with
Φ(M∗

α) = d log ρα, where

ρα =
1

α

∫
‖x‖≥Rα

x2
1 ϕ(x) dx =

1

dα

∫
‖x‖≥Rα

‖x‖2 ϕ(x) dx

=
1

dα

∫
r≥Rα

r2 1

(2π)d/2
exp(−r2/2)Sd(1) rd−1 dr ,
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Figure 3: FΦ[MnN ,M (x)] = trace[M−1
nN M (x)] − 3 as a function of x (solid line); the horizontal solid (respectively,

dashed) line indicates the value of ĈN (respectively, C1−α(M∗
α)), the vertical lines indicate the positions of −a,−b, b, a

where FΦ[M∗
α,M (x)] = C1−α(M∗

α); N = 100 000; Left: α = 1/2 (n = 50 000); Right: α = 1/10 (n = 10 000).

Figure 4: Evolution of log10 ‖Mnk −M∗
α‖ as a function of log10 k (values averaged over 1 000 random samples XN );

the dashed line has slope −1/2 (α = 1/2: n = 5 000, N = 10 000).

with Sd(1) = 2πd/2/Γ(d/2), the surface area of the d-dimensional unit sphere, and Rα the solution of320

α =

∫
‖x‖≥Rα

ϕ(x) dx =

∫
r≥Rα

1

(2π)d/2
exp(−r2/2)Sd(1) rd−1 dr .

Since FΦ[M,M (X)] = trace[M−1M (X)]−d, we get FΦ[M∗
α,M (X)] = ‖x‖2/ρα−d, C1−α(M∗

α) = R2
α/ρα−

d ≤ 0, and Φ∗α = Φ(M∗
α) is differentiable with respect to α, with dΦ∗α/dα = C1−α(M∗

α)/α; see Pronzato
(2004, Th. 4). Closed-form expressions are available for d = 2, with Rα =

√
−2 logα and ρα = 1 − logα;

Rα and ρα can easily be computed numerically for any d > 2 and α ∈ (0, 1). One may notice that, from a
result by Harman (2004), the design matrix M∗

α is optimal for any other orthogonally invariant criterion Φ.325

For the linear model with intercept, such that M ′(X) = f(X)f>(X) with f(X) = [1, X>]>, the optimal
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matrix is

M′∗
α =

(
1 0>

0 M∗
α

)
with M∗

α = ρα Id the optimal matrix for the model without intercept. The same design is thus optimal for
both models. Also, when the Xi are i.i.d. N (0,Σ), the optimal matrix M∗

Σ,α for Φ(·) = log det(·) simply

equals Σ1/2 M∗
α Σ1/2.330

Again, we present results obtained for one random set XN . Figure 5 shows the evolution of Φ(Mnk) as
a function of k for d = 3 with α = 1/1 000 and N = 100 000 when we want we select exactly 100 points: the
blue dashed-line is when we combine truncation and forced selection; the red solid line is when we adapt
α according to αk = (n − nk)/(N − k); see Remark 1-(iv) — the final values, for k = N , are indicated
by a triangle and a star, respectively; we only show the evolution of Φ(Mnk) for k between 10 000 and335

100 000 since the curves are confounded for smaller k (they are based on the same XN ). In the first case,
the late forced selection of unimportant Xi yields a significant decrease of Φ(Mnk), whereas adaptation of
α anticipates the need of being less selective to reach the target number n of selected points.

Figure 5: Evolution of Φ(Mnk ) obtained with Algorithm 1 as a function of k (log scale): d = 3, N = 100 000, exactly
n = 100 points are collected using truncation/forced selection (blue dashed line and O) or adaptation of α (red solid
line and F); see Remark 1-(iv).

Figure 2 has illustrated the convergence of Φ(Mnk) to Φ∗α for a fixed α as k → ∞, but in fact what
really matters is that nk tends to infinity: indeed, Φ(Mnk) does not converge to Φ∗α if we fix nk = n and340

let k tend to infinity, so that α = n/k tends to zero (see also Section 5.1). This is illustrated on the left
panel of Figure 6, where d = 25 and, from left to right, α equals 0.5 (magenta dotted line), 0.1, 0.05 and
0.01 (red solid line). Since the optimal value Φ∗α depends on α, here we present the evolution with k of the
D-efficiency [det(Mnk)/ det(M∗

α)]1/p = exp[(Φ(Mnk) − Φ∗α)/d]. The right panel is for fixed α = 0.1 and
varying d, with, from left to right, d = 5 (red solid line), 10, 20, 30 and 50 (cyan solid line). As one may345

expect, performance (slightly) deteriorates as d increases due to the increasing variability of ZM(X), with
var[ZM(X)] = var[X>MX] = 2 trace(M2).

4.3. Example 3: processing a non i.i.d. sequence

When the design points Xi are not from an i.i.d. sequence, Algorithm 1 cannot be used directly and
some preprocessing is required. When storage of the whole sequence XN is possible, a random permutation350

can be applied to XN before using Algorithm 1. When N is too large for that, for instance in the context
of data streaming, and the sequence possesses a structured time-dependence, one may try to identify the
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Figure 6: Evolution of D-efficiency of Mnk obtained with Algorithm 1 as a function of k (log scale); the horizontal
line indicates the optimal value 1. Left: d = 25 and α = 0.5 (magenta dotted line), 0.1 (black), 0.05 (blue) and 0.01
(red solid line). Right: α = 0.1 and d = 5 (red solid line), 10 (blue), 20 (black), 30 (magenta) and 50 (cyan solid
line).

dependence model through time series analysis and use forecasting to decide which design points should be
selected. The data thinning mechanism is then totally dependent on the model of the sequence, and the
investigation of the techniques to be used is beyond the scope of this paper. Examples of the application355

of a simple scrambling method to the sequence prior to selection by Algorithm 1 are presented below. The
method corresponds to Algorithm 2 below; its output sequence X̃k is used as input for Algorithm 1. We
do not study the properties of the method in conjunction with the convergence properties of Algorithm 1,
which would require further developments.

Algorithm 2: random scrambling in a buffer.360

1) Initialization: choose the buffer size B, set k = 1 and X (1) = {X1, . . . , XB}.

2) Draw X̃k by uniform sampling within X (k).

3) Set X (k+1) = X (k) \ {X̃k} ∪ {XB+k}, k ← k + 1, return to Step 2.

Direct calculation shows that the probability that X̃k equals Xi is

Prob{X̃k = Xi} =


1
B

(
1− 1

B

)k−1
for 1 ≤ i ≤ B ,

1
B

(
1− 1

B

)k−1+B−i
for B + 1 ≤ i ≤ B + k − 1 ,

0 for B + k − 1 < i ,

showing the limits of randomization via Algorithm 2 (in particular, the first points of the sequence Xi will365

tend to appear first among the X̃k). However, the method will give satisfactory results if the size B of the
buffer is large enough, as its performance improves as B increases. As an illustration, we consider the same
quadratic regression model as in Example 1, with Φ(M) = log det(M), in the extreme case where Xi = x(ti)
with x(t) a simple function of t.

First, we consider the extremely unfavorable situation where x(t) = t. When t is uniformly distributed370

on T = [0, T ], the optimal design ξ∗α selects all points associated with t in [0, ta]∪ [tb, T − tb]∪ [T − ta, T ], for
some ta < tb in T satisfying 2 ta+T −2 tb = αT . For α = 1/10, we get ta/T ' 0.03227 and tb/T ' 0.48227.
The horizontal black line in Figure 7 indicates the optimal value Φ∗α when T = 1. The blue dotted line
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shows Φ(Mnk) when Algorithm 1 is directly applied to the points Xi = i/N , i = 1, . . . , N = 100 000. The
red line is when randomization via Algorithm 2, with buffer size B = αN = 10 000, is applied first; the375

dotted curve in magenta is for B = 3αN . The positive effects of randomization through Algorithm 2 and
the influence of the buffer size are visible on the figure. Here, the monotonicity of the Xi, which inhibits
early exploration of their range of variation, prevents convergence to the optimum.

Figure 7: Evolution of Φ(Mnk ) obtained with Algorithm 1 as a function of k (log scale), the horizontal line indicates the
optimal value Φ∗

α; N = 100 000, α = 1/10; direct processing of the points Xi = i/N (dotted blue line), preprocessing
with Algorithm 2 with B = αN (red solid line) and B = 3αN (magenta dotted line).

We now consider the more favorable case where Xi = sin(2πνi/N), i = 1, . . . , N = 100 000, with ν = 5.
The left panel of Figure 8 shows the same information as Figure 7, when Algorithm 1 is applied directly to380

the Xi (blue dotted line) and after preprocessing with Algorithm 2 with B = αN (red line) and B = αN/10
(magenta dotted line). The early exploration of the range of variability of the Xi, possible here thanks to
the periodicity of x(t), makes the randomization through Algorithm 2 efficient enough to allow Algorithm 1
to behave correctly when B = αN (red line). The situation improves when B is increased, but naturally

deteriorates if B is too small (magenta dotted line). The right panel shows the points X̃k produced by385

Algorithm 2 (with B = αN = 10 000) which are selected by Algorithm 1. The effect of randomization is
visible. For k < 5 000, all points in the buffer are in the interval [sin(2πν(k + B)/N), 1] ⊂ [−1, 1], and the
points selected by Algorithm 1 are near the end points or the center of this moving interval. For larger k,
randomization is strong enough to maintain the presence of suitable candidates in the buffer for selection
by Algorithm 1.390

4.4. Examples with ZM(x) constant on subsets of positive measure

Here we consider situations where Hµ,M is violated due to the existence of subsets of X of positive
measure on which ZM(x) is constant. The model is the same as in Section 4.2, with X = (x1, x2, . . . , xd)

>,
M (X) = XX> and Φ(M) = log det(M).

4.4.1. Example 4: µ has discrete components395

This is Example 11 in (Pronzato, 2006), where d = 2, µ = (1/2)µN + (1/2)µd, with µN corresponding
to the normal distribution N (0, 1) and µd the discrete measure that puts weight 1/4 at each one of the
points (±1,±1). Denote by B(r) the closed ball centered at the origin 0 with radius r, by µ[r] the measure
equal to µ on its complement B(r), and let e = exp(1). The optimal matrix is M∗

α = M(ξ∗α), with ξ∗α the
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Figure 8: Left: Evolution of Φ(Mnk ) obtained with Algorithm 1 as a function of k (log scale), the horizontal line
indicates the optimal value Φ∗

α; N = 100 000, α = 1/10; direct processing of the points Xi = sin(2πνi/N) (dotted
blue line), preprocessing with Algorithm 2 with B = αN (red solid line) and B = αN/10 (magenta dotted line).

Right: Xi, i = 1, . . . , N = 100 000 (black) and points X̃k produced by Algorithm 2 with B = αN which are selected
by Algorithm 1 (red).

probability measure defined by:400

ξ∗α =


1
α µ[

√
−2 log(2α)] if 0 < α ≤ 1

2e ,
1
α µ[
√

2] + 1
α [α− 1/(2 e)]µd if 1

2e < α ≤ 1
2e + 1

2 ,
1
α µ[

√
−2 log(2α− 1)] if 1

2e + 1
2 < α < 1 ,

with associated Φ-values

Φ(M∗
α) =


2 log[1− log(2α)] if 0 < α ≤ 1

2e ,
2 log

(
1 + 1

2eα

)
if 1

2e < α ≤ 1
2e + 1

2 ,

2 log
(

1− (2α−1) log(2α−1)
2α

)
if 1

2e + 1
2 < α ≤ 1 .

Figure 9 shows the evolution of Φ(Mnk) as a function of k for α = 0.5 (left) and α = 0.02 (right). Note
that α < 1/(2e) in the second case, but 1/(2e) < α ≤ 1/(2e) + 1/2 in the first one, so that ξ∗α is neither zero
nor µ/α on the four points (±1,±1). Figure 9 shows that Algorithm 1 nevertheless behaves satisfactorily
in both cases.405

4.4.2. Example 5: the distribution of ZM∗α(X) has discrete components

Let U [Sd(0, r)] denote the uniform probability measure on the d-dimensional sphere Sd(0, r) with cen-

ter 0 and radius r. The probability measure of the Xi is µ = (1/3)
∑3
i=1 U [Sd(0, ri)], the mixture of

distributions on three nested spheres with radii r1 > r2 > r3 > 0. The optimal bounded measure is

ξ∗α =


U [Sd(0, r1)] if 0 < α ≤ 1

3 ,
1

3α U [Sd(0, r1)] + α−1/3
α U [Sd(0, r2)] if 1

3 < α ≤ 2
3 ,

1
3α {U [Sd(0, r1)] + U [Sd(0, r2)]}+ α−2/3

α U [Sd(0, r3)] if 2
3 < α < 1 ,

with associated Φ-values410

Φ(M∗
α) =


d log(r2

1/d) if 0 < α ≤ 1
3 ,

d log
(
r2
1/3+(α−1/3)r2

2

αd

)
if 1

3 < α ≤ 2
3 ,

d log
(

(r2
1+r2

2)/3+(α−2/3)r2
3

αd

)
if 2

3 < α < 1 .
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Figure 9: Evolution of Φ(Mnk ) obtained with Algorithm 1 as a function of k (log scale) when d = 2 and µ =
(1/2)µN + (1/2)µd with α = 0.5 (left) and α = 0.02 (right); the horizontal line indicates the optimal value Φ∗

α.

Notice that for α ∈ (0, 1/3) (respectively, α ∈ (1/3, 2/3)) ξ∗α 6= 0 and ξ∗α 6= µ/α on Sd(0, r1) (respectively,
on Sd(0, r2)) although µ is atomless.

The left panel of Figure 10 gives the evolution with k of the D-efficiency [det(Mnk)/ det(M∗
α)]1/p =

exp[(Φ(Mnk) − Φ∗α)/d], for α = 0.5 (red solid line) and α = 0.2 (blue dashed line) when d = 5. The right
panel shows the evolution of the ratio nk/k for those two situations, with the limiting value α indicated by415

a horizontal line. Although assumption Hµ,M is violated, Algorithm 1 continues to perform satisfactorily.

Figure 10: Left: Evolution of D-efficiency of Mnk obtained with Algorithm 1 as a function of k (log scale) for α = 0.5
(red solid line) and α = 0.2 (blue dashed line); the horizontal line indicates the optimal value 1; d = 5. Right:
evolution of the ratio nk/k in the same simulations.
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5. Comparison with other methods

5.1. Case n fixed with large N : comparison with an exchange method

The convergence of Φ(Mnk) to Φ∗α in Algorithm 1 relies on the fact that nk grows like O(αk) for some
α > 0; see Theorem 1. If the number n of points to be selected is fixed, Algorithm 1 does not provide any420

performance guarantee when applied to a sequence of length N →∞ (the situation is different when p = 1
where an asymptotically optimal construction is available; see Pronzato (2001)). In that case, a method of
the exchange type may look more promising, although large values of N entail serious difficulties. Typically,
the algorithm is initialized by a n point design chosen within XN , and at each iteration a temporarily
selected Xi is replaced by a better point in XN . Fedorov’s (1972) algorithm considers all n × (N − n)425

possible replacements at each iteration ((N−n) instead of N since we do not allow repetitions in the present
context); its computational cost is prohibitive for large N . The variants suggested by Cook and Nachtsheim
(1980), or the DETMAX algorithm of Mitchell (1974), still require the maximization of a function g(Xj)
with respect to Xj ∈ XN at each iteration, which remains unfeasible for very large N . Below, we consider
a simplified version where all N points are examined successively, and replacement is accepted when it430

improves the current criterion value.

Algorithm 3: sequential exchange (n fixed).

1) Initialization: select X1, . . . , Xn, set k = n and X ∗
k = {X1, . . . , Xk},

compute Mn,k = (1/k)
∑k
i=1 M (Xi) and Φ(Mn,k).

2) Iteration k + 1: collect Xk+1. If Xk+1 ∈X ∗
k , set ∆(k)(Xi∗ , Xk+1) = 0; otherwise compute435

∆(k)(Xi∗ , Xk+1) = max
Xi∈X ∗

k

[Φ{Mn,k + (1/n)[M (Xk+1)−M (Xi)]} − Φ(Mn,k)] .

If ∆(k)(Xi∗ , Xk+1) > 0, set X ∗
k+1 = X ∗

k \ {Xi∗} ∪ Xk+1, update Mn,k into Mn,k+1 = Mn,k +
(1/n)[M (Xk+1)−M (Xi∗)], compute Φ(Mn,k+1);

otherwise, set X ∗
k+1 = X ∗

k , Mn,k+1 = Mn,k.

3) If k + 1 = N stop; otherwise, k ← k + 1, return to Step 2.

Remark 2. When M (x) has rank one, with M (x) = f(x)f>(x) and Φ(M) = log det(M) or Φ(M) =440

det1/p(M) (D-optimal design), ∆(k)(Xi∗ , Xk+1) > 0 is equivalent to

f>(Xk+1)M−1
n,kf

>(Xk+1)− f>(Xi∗)M
−1
n,kf

>(Xi∗) + δ(k)(Xi∗ , Xk+1) > 0 , (5.1)

where

δ(k)(X,Xk+1) =
[f>(Xk+1)M−1

n,kf
>(X)]2 − [f>(Xk+1)M−1

n,kf
>(Xk+1)][f>(X)M−1

n,kf
>(X)]

n
, (5.2)

see Fedorov (1972, p. 164). As for Algorithm 1 (see Remark 1-(iii)), we may update M−1
n,k instead of Mn,k

to avoid matrix inversions. For large enough n, the term (5.2) is negligible and the condition is almost
f>(Xk+1)M−1

n,kf
>(Xk+1) > f>(Xi∗)M

−1
n,kf

>(Xi∗); that is, FΦ[Mn,k,M (Xk+1)] > FΦ[Mn,k,M (Xi∗)]. This445

is the condition we use in the example below. It does not guarantee in general that Φ(Mn,k+1) > Φ(Mn,k)
(since δ(k)(Xi, Xk+1) ≤ 0 from Cauchy-Schwartz inequality), but no significant difference was observed
compared with the use of the exact condition (5.1). Algorithm 3 has complexity O(nd3N) in general (the
additional factor n compared with Algorithm 1 is due to the calculation of the maximum over all Xi in X ∗

k

at Step 2). /450

Neither Algorithm 1 with α = n/N and Mn,k = Mnk nor Algorithm 3 ensures that Φ(Mn,N ) tends to
Φ∗α = Φ(M∗

α) as N → ∞. Also, we can expect to have Φ(Mn,k) . Φ∗n/k for all k with Algorithm 3, since
under HΦ the matrix M∗

n,k corresponding to the optimal selection of n distinct points among Xk satisfies
E{Φ(M∗

n,k)} ≤ Φ∗n/k for all k ≥ n > 0; see Pronzato (2006, Lemma 3).
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Example 6: n fixed and N large. We consider the same situation as in Example 2 (Section 4.2), with455

X = (x1, x2, . . . , xd)
>, M (X) = XX>, Φ(M) = log det(M); the Xi are i.i.d. N (0, Id), with p = d = 3. We

still take k0 = 5 p, q = 5/8, γ = 1/10 in Algorithm 1. We have E{Mnk0
} = M(µ) in Algorithm 1, and, when

n is large enough, Mn,n 'M(µ) at Step 1 of Algorithm 3, with M(µ) = Id and therefore Φ(Mn,n) ' 0.
We consider two values of n, n = 100 and n = 1 000, with α = 10−3 (that is, with N = 100 000 and

N = 1 000 000, respectively). Figure 11 shows the evolutions of Φ(Mnk) (k ≥ k0, Algorithm 1, red solid460

line) and Φ(Mn,k) (k ≥ n, Algorithm 3, blue dashed line) as functions of k in those two cases (n = 100,
left; n = 1 000, right). In order to select n points exactly, adaptation of α is used in Algorithm 1, see
Remark 1-(iv). The value of n is too small for Φ(Mnk) to approach Φ∗α (indicated by the horizontal black
line) in the first case, whereas n = 1 000 is large enough on the right panel; Algorithm 3 performs similarly
in both cases and is superior to Algorithm 1 for n = 100; the magenta curve with triangles shows Φ∗n/k,465

k ≥ n, with Φ∗n/k & Φ(Mn,k) for all k, as expected. /

In case it is possible to store the N points Xi, we can replay both algorithms on the same data set
in order to increase the final value of Φ for the sample selected. For Algorithm 3, we can simply run the

algorithm again on a set X
(2)
N — starting with k = 1 at Step 1 since n points have already been selected

— with X
(2)
N = XN or corresponding to a random permutation of it. Series of runs on sets X

(2)
N ,X

(3)
N , . . .470

can be concatenated: the fact that Φ can only increase implies convergence for an infinite sequence of
runs, but generally to a local maximum only; see the discussion in (Cook and Nachtsheim, 1980, Sect. 2.4).
When applied to Example 6, this method was not able to improve the design obtained in the first run of

Algorithm 3, with a similar behavior with or without permutations in the construction of the X
(i)
N .

Algorithm 1 requires a more subtle modification since points are selected without replacement. First,475

we run Algorithm 1 with α fixed at n/N on a set XmN = XN ∪X
(2)
N ∪ · · · ∪X

(m)
N , where the replications

X
(i)
N are all identical to XN or correspond to random permutations of it. The values of MnmN and ĈmN

are then used in a second stage, where the N points X1, . . . , XN in XN are inspected sequentially: starting
at k = 0 and nk = 0, a new point Xk+1 is selected if nk < n and FΦ[MnmN ,M (Xk+1)] > ĈmN (or if
n− nk ≥ N − k+ 1, see Remark 1-(iv)). The set XN is thus used m+ 1 times in total. The idea is that for480

m large enough, we can expect MnmN to be close to M∗
α and ĈmN to be close to the true quantile C1−α(M∗

α),
whereas the optimal rule for selection is FΦ[M∗

α,M (Xk+1)] > C1−α(M∗
α). Note that the quantile of the

directional derivative is not estimated in this second phase, and updating of Mnk is only used to follow the
evolution of Φ(Mnk) on plots.

Example 6 (continued). The black-dotted line in Figure 11 shows the evolution of Φ(Mnk) as a function of485

k in the second phase (for k large enough to have Φ(Mnk) > 0): we have taken m = 9 for n = 100 (left),
so that (m + 1)N = 1 000 000 points are used in total (but 10 times the same), and m = 1 for n = 1 000

(right), with 2 000 000 points used (twice the same). Figure 12 shows the evolution of Ĉk for k = 1, . . . ,mN ,
for n = 100, N = 100 000, m = 9 (left), and n = 1 000, N = 1 000 000, m = 1 (right); the horizontal
black line indicates the value of C1−α(M∗

α). The left panel indicates that n = 100 is too small to estimate490

C1−α(M∗
α) correctly with Algorithm 1 (note that m = 4 would have been enough), which is consistent with

the behavior of Φ(Mnk) observed in Figure 11-left (red solid line). The right panel of Figure 12 shows that

Ĉk has converged before inspection of the 1 000 000 points in XN , which explains the satisfactory behavior
of Algorithm 1 in Figure 11-right. Notice the similarity between the left and right panels of Figure 12

due to the fact that the same value α = 10−3 is used in both. Here the X
(i)
N are constructed by random495

permutations of the points in XN , but the behavior is similar without.

5.2. Comparison with IBOSS

IBOSS (Information-Based Optimal Subdata Selection, Wang et al. (2019)) is a selection procedure
motivated by D-optimality developed in the context of multilinear regression with intercept, where M (X) =
f(X)f>(X) with f(X) = [1, X>]>. All points Xi in XN are processed simultaneously: the d coordinates500

of the Xi are examined successively; for each k = 1, . . . , d, the r points with largest k-th coordinate and the
r points having smallest k-th coordinate are selected (and removed from XN ), where r = n/(2d), possibly
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Figure 11: Evolutions of Φ(Mnk ) (k ≥ k0, Algorithm 1, red solid line) Φ(Mn,k) (k ≥ n, Algorithm 3, blue dashed
line), and Φ∗

n/k (magenta curve with triangles) as functions of k; the horizontal black line corresponds to Φ∗
α; the black

dotted curve shows the evolution of Φ(Mnk ) as a function of k when the selection is based on FΦ[MnmN ,M (Xk+1)] >

ĈmN , with MnmN and ĈmN obtained with Algorithm 1 applied to XmN = XN ∪X (2)
N ∪ · · · ∪X (m)

N . Left: n = 100,
N = 100 000, m = 9; Right: n = 1 000, N = 1 000 000, m = 1.

Figure 12: Evolution of Ĉk in Algorithm 1 when applied to XmN = XN ∪X (2)
N ∪ · · · ∪X (m)

N , the horizontal black
line corresponds to C1−α(M∗

α). Left: n = 100, N = 100 000, m = 9; Right: n = 1 000, N = 1 000 000, m = 1.

with suitable rounding, when exactly n points have to be selected. The design selected is sensitive to the
order in which coordinates are inspected. The necessity to find the largest or smallest coordinate values
yields a complexity of O(dN); parallelization with simultaneous sorting of each coordinate is possible. Like505

for any design selection algorithm, the matrix Mn,N obtained with IBOSS satisfies E{Φ(Mn,N )} ≤ Φ∗n/N
for all N ≥ n > 0 (Pronzato, 2006, Lemma 3). The asymptotic performance of IBOSS (the behavior of
Mn,N and M−1

n,N ) for n fixed and N tending to infinity is investigated in (Wang et al., 2019) for X following
a multivariate normal or lognormal distribution. Next property concerns the situation where n is a fraction
of N , with N →∞ and the components of X are independent.510

Theorem 2. Suppose that the Xi are i.i.d. with µ satisfying Hµ and, moreover, that their components {Xi}k
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are independent, with ϕk the p.d.f. of {X1}k for k = 1, . . . , d. Suppose, without any loss of generality, that co-
ordinates are inspected in the order 1, . . . , d. Then, for any α ∈ (0, 1], the matrix Vn,N = (1/n)

∑n
j=1XijX

>
ij

corresponding to the n points Xij selected by IBOSS satisfies Vn,N → VIBOSS
α a.s. when n = bαNc and

N →∞, with515

{VIBOSS
α }k,k =

1

α

[
E[{X}2k]− πk sk(α)

]
, k = 1 . . . , d , (5.3)

{VIBOSS
α }k,k′ =

1

α

[
E[{X}k]E[{X}′k]− πk πk′

1− α
mk(α)mk′(α)

]
, k 6= k′ , (5.4)

where E[{X}k] =
∫∞
−∞ xϕk(x) dx, E[{X}2k] =

∫∞
−∞ x2 ϕk(x) dx, πk = (1− α)[d− (k − 1)α]/(d− kα),

sk(α) =

∫ qk(1− α
2[d−(k−1)α] )

qk( α
2[d−(k−1)α] )

x2 ϕk(x) dx and mk(α) =

∫ qk(1− α
2[d−(k−1)α] )

qk( α
2[d−(k−1)α] )

xϕk(x) dx ,

with qk(·) the quantile function for ϕk, satisfying
∫ qk(t)

−∞ ϕk(u) du = t for any t ∈ (0, 1].

Proof. By construction, IBOSS asymptotically first selects all points such that {X}1 does not belong to I1 =
(q1[α/(2d)], q1[1 − α/(2d)]), then, among remaining points, all those such that {X}2 6∈ I2 = (q2[α/(2d(1 −
α/d))], q1[1−α/(2d(1−α/d))]). By induction, all points such that {X}k 6∈ Ik = (qk[α/(2[d−(k−1)α])], qk[1−520

α/(2[d− (k − 1)α])]) are selected at stage k ∈ {3, . . . , d}. Denote x = (x1, . . . , xd)
>. We have

{VIBOSS
α }k,k =

1

α

∫
X \

∏d
`=1 I`

x2
k ϕ(x) dx =

1

α

[∫
X

x2
k ϕ(x) dx−

∫
∏d
`=1 I`

x2
k ϕ(x) dx

]

=
1

α

E[{X}2k]−

∏
` 6=k

Pr{{X}` ∈ I`}

 ∫
Ik
x2 ϕk(x) dx

 .
Direct calculation gives Pr{X ∈

∏d
k=1 Ik} = 1− α and∏

` 6=k

Pr{{X}` ∈ I`} =
1− α

Pr{{X}k ∈ Ik}
=

1− α
1− α

d−(k−1)α

= πk ,

which proves (5.3). Similarly,

{VIBOSS
α }k,k′ =

1

α

∫
X \

∏d
`=1 I`

xk xk′ ϕ(x) dx =
1

α

[∫
X

xk xk′ ϕ(x) dx−
∫
∏d
`=1 I`

xk xk′ ϕ(x) dx

]

=
1

α

E[{X}k]E[{X}′k]−

 ∏
` 6=k, ` 6=k′

Pr{{X}` ∈ I`}

 mk(α)mk′(α)

 ,
with ∏

` 6=k, ` 6=k′
Pr{{X}` ∈ I`} =

1− α
Pr{{X}k ∈ Ik} Pr{{X}k′ ∈ Ik′}

=
πk πk′

1− α
,

which proves (5.4) and concludes the proof.525

A key difference between IBOSS and Algorithm 1 is that IBOSS is nonsequential and therefore cannot
be used in the streaming setting. Also, IBOSS is motivated by D-optimal design and may not perform well
for other criteria, whereas Algorithm 1 converges to the optimal solution when n = bαNc and N → ∞ for
any criterion satisfying HΦ. Moreover, IBOSS strongly relies on the assumption that M (X) = f(X)f>(X)
with f(X) = [1, X>]> and, as the next example illustrates, it can perform poorly in other situations, in530

particular when the Xi are functionally dependent.
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Example 7: quadratic regression on [0, 1]. Take f(X) = [X, X2]>, with X uniformly distributed in [0, 1]
and Φ(M) = log det(M). For α ≤ α∗ ' 0.754160, the optimal measure ξ∗α equals µ/α on [1/2 − a, 1/2 +
b] ∪ [1− (α− a− b), 1] for some a > b (which are determined by the two equations FΦ[M∗

α,M (1/2− a)] =
FΦ[M∗

α,M (1/2 + b)] = FΦ[M∗
α,M (1 − (α − a − b))]). For α ≥ α∗, ξ

∗
α = µ/α on [1 − α, 1]. When535

n = bαNc when N → ∞, the matrix MIBOSS
n,N obtained with IBOSS applied to the points f(Xi) converges

to MIBOSS
α = M(ξIBOSS

α ), with ξIBOSS
α = µ/α on [0, α/2] ∪ [1 − α/2, 1]. The left panel of Figure 13 shows

det(M∗
α) (red solid line) and det(MIBOSS

α ) (blue dotted line) as functions of α ∈ [0, 1]. We have det(MIBOSS
α ) =

(1/960)α2(α4 + 25− 40α+ 26α2 − 8α3), which tends to 0 as α→ 0. /

Next examples show that IBOSS performs more comparably to Algorithm 1 for multilinear regression540

with intercept, where M (X) = f(X)f>(X) with f(X) = [1, X>]>. Its performance may nevertheless be
significantly poorer than that of Algorithm 1.

Example 8: multilinear regression with intercept, Φ(M) = log det(M).

X is uniformly distributed in [−1, 1]2. Direct calculation shows that, for any α ∈ [0, 1], the optimal
measure ξ∗α equals µ/α on [−1, 1]2 \ B2(0, Rα), with B2(0, r) the open ball centered at the origin with545

radius r. Here, Rα = 2
√

(1− α)/π when α ≥ 1 − π/4, and Rα > 1 is solution of 1 + πR2/4 −
√
R2 − 1 −

R2 arcsin(1/R) = α when α ∈ (1−π/4, 1]. The associated optimal matrix is diagonal, M∗
α = diag{1, ρα, ρα},

with

ρα =

{
1

2α [2/3− 2(1− α)2/π] if 0 ≤ α ≤ 1− π/4 ,
1

2α

[
2/3 + πR4

α/8− (R4
α/2) arcsin(1/Rα)−

√
R2
α − 1 (R2

α + 2)/6
]

if 1− π/4 < α ≤ 1 .

Extension to d > 2 is possible but involves complicated calculations.
When n = bαNc andN →∞, the matrix MIBOSS

n,N obtained with IBOSS converges to MIBOSS
α = M(ξIBOSS

α )550

when n = bαNc and N → ∞, with ξIBOSS
α = µ/α on [−1, 1]2 \ ([−1 + a, 1 − a] × [−1 + b, 1 − b]), with

a = α/2 and b = α/(1 − α) ≥ a. The matrix MIBOSS
α is diagonal, MIBOSS

α = diag{1, Dα,1, Dα,2}, where
VIBOSS
α = diag{Dα,1, Dα,2} is the matrix in Theorem 2 with Dα,1 = (8−5α+α2)/12 and Dα,2 = (8−11α+

4α2)/[3(2−α)2]. The right panel of Figure 13 shows det(M∗
α) (red solid line) and det(MIBOSS

α ) (blue dashed
line) as functions of α ∈ [0, 1]. Note that det(M∗

α) → 1 whereas det(MIBOSS
α ) → 4/9 when α → 0. The555

problem is due to selection by IBOSS of points having one coordinate in the central part of the interval. /

Figure 13: det(M∗
α) (red solid line) and det(MIBOSS

α ) (blue dotted line) as functions of α ∈ [0, 1]. Left: quadratic
regression on [0, 1]; Right: multilinear regression with intercept on [−1, 1]2.
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X is normally distributed N (0, Id). The expression of the optimal matrix M∗
α has been derived in

Section 4.2; the asymptotic value for N →∞ of the matrix MbαNc,N is

MIBOSS
α =

(
1 0>

0 VIBOSS
α

)
,

where the expression of VIBOSS
α (here a diagonal matrix) is given in Theorem 2. Figure 14 shows the D-

efficiency det1/(d+1)(MIBOSS
α )/det1/(d+1)(M∗

α) as a function of α ∈ (0, 1] for d = 3 (left) and d = 25 (right),560

showing that the performance of IBOSS deteriorates as d increases. We also performed series of simulations
for d = 25, with 100 independent repetitions of selections of n = bαNc points within XN (N = 10 000)
based on IBOSS and Algorithm 1. Due to the small value of N , we apply Algorithm 1 to replications

XmN = XN ∪X
(2)
N ∪ · · · ∪X

(m)
N of XN , see Section 5.1, with m = 99 for α < 0.1, m = 9 for 0.1 ≤ α < 0.5

and m = 4 for α ≥ 0.5. The colored areas on Figure 14 show the variability range for efficiency, corresponding565

to the empirical mean ± 2 standard deviations obtained for the 100 repetitions, for IBOSS (green, bottom)
and Algorithm 1 (magenta, top); note that variability decreases as n = bαNc increases. The approximation
of Mn,N obtained with IBOSS by the asymptotic matrix MIBOSS

α is quite accurate although N is rather
small; Algorithm 1 (incorporating m repetitions of XN ) performs significantly better than IBOSS although
the setting is particularly favorable to IBOSS — it is significantly slower than IBOSS, however, when m is570

large.

Figure 14: D-efficiency of IBOSS (blue solid line) as a function of α ∈ (0, 1] for d = 3 (left) and d = 25 (right).
The enveloppes on the right panel show the empirical mean efficiency ± 2 standard deviations obtained for 100
independent repetitions with n = bαNc and N = 10 000 for IBOSS (green, bottom) and Algorithm 1 (magenta, top).

6. Conclusions and further developments

We have proposed a sequential subsampling method for experimental design (Algorithm 1) that converges
to the optimal solution when the length of the sequence tends to infinity and a fixed proportion of design
points is selected. Since the method only needs to keep the memory of the current information matrix575

associated with the design problem (or its inverse), and to update a pair of scalar variables (an estimated
quantile, and an estimate of the p.d.f. value at the quantile), it can be applied to sequences of arbitrary
length and is suitable for data streaming.

We have not tried to optimize the choice of initialization and tuning parameters in Algorithm 1. Although
it does not seem critical (the same tuning has been used in all the examples presented), there is certainly580
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an opportunity to improve, in particular concerning β0 and Ĉk0 (for instance, using the information that

C∗1−α ≤ 0 whereas Ĉk0
> 0 for small α with the initialization we use).

We have only considered the case of linear models, where the information matrix does not depend on
unknown parameters (equivalent to local optimum design in case of a nonlinear model), but extension to
online parameter estimation in a nonlinear model with M (x) = M (x,θ) would not require important585

modifications. Denote by θ̂
n

the estimated value of the parameters after observation at the n design points

selected, Xi1 , . . . , Xin , say. Then, we can use Mnk0
= (1/k0)

∑k0

i=1 M (Xi, θ̂
k0

) at Step 1 of Algorithm 1,

and Mnk+1 given by (3.5) can be replaced by Mnk+1 = [1/(nk + 1)] [
∑nk
j=1 M (Xij , θ̂

nk
) + M (Xk+1, θ̂

nk
)]

at Step 2. Recursive estimation can be used for k > k0 to reduce computational cost. For instance for

maximum likelihood estimation, with the notation of Section 1, we can update θ̂
nk

as590

θ̂
nk+1

= θ̂
nk

+
1

nk + 1
M−1

nk+1

∂ logϕXk+1,θ(Yk+1)

∂θ

∣∣∣∣
θ=θ̂

nk

when Xk+1 is selected; see Ljung and Söderström (1983); Tsypkin (1983). A further simplification would

be to update Mnk as Mnk+1
= Mnk + [1/(nk + 1)] [M (Xk+1, θ̂

nk
) −Mnk ]. When the Xi are i.i.d. with

µ satisfying Hµ, the strong consistency of θ̂
nk

holds with such recursive schemes under rather general
conditions when all Xi are selected. Showing that this remains true when only a proportion α is selected
by Algorithm 1 requires technical developments outside the scope of this paper, but we anticipate that595

Mnk →M∗
α,θ

a.s., with M∗
α,θ

the optimal matrix for the true value θ of the model parameters.

Algorithm 1 can be viewed as an adaptive version of the treatment allocation method presented in
(Metelkina and Pronzato, 2017): consider the selection or rejection of Xi as the allocation of individual i
to treatment 1 (selection) or 2 (rejection), with respective contributions M1(Xi) = M (Xi) or M2(Xi) = 0
to the collection of information; count a cost of one for allocation to treatment 1 and zero for rejection.600

Then, the doubly-adaptive sequential allocation (4.6) of Metelkina and Pronzato (2017) that optimizes a

compromise between information and cost exactly coincides with Algorithm 1 where Ĉk is frozen to a fixed
C, i.e., without Step 3. In that sense, the two-time-scale stochastic approximation procedure of Algorithm 1
opens the way to the development of adaptive treatment allocation procedures where the proportion of
individuals allocated to the poorest treatment could be adjusted online to a given target.605

Finally, the designs obtained with the proposed thinning procedure are model-based: when the model is
wrong, ξ∗α is no longer optimal for the true model. Model-robustness issues are not considered in the paper
and would require specific developments, following for instance the approach in (Wiens, 2005; Nie et al.,
2018).

Appendix A. Maximum of Φ(Mnk)610

The property below is stated without proof in (Pronzato, 2006). We provide here a formal proof based
on results on conditional value-at-risk by Rockafellar and Uryasev (2000) and Pflug (2000).

Lemma 1. Suppose that nk/k → α as k → ∞. Then, under HΦ and HM , for any choice of nk points Xi

among k points i.i.d. with µ, we have lim supk→∞ Φ(Mnk,k) ≤ Φ(M∗
α) a.s., where M∗

α maximizes Φ(M)
with respect to M ∈M(α).615

Proof. Denote by M∗
nk,k

the matrix that corresponds to choosing nk distinct candidates that maximize
Φ(Mnk,k). The concavity of Φ implies

Φ(M∗
nk,k

) ≤ Φ(M∗
α) + trace[∇Φ(M∗

α)(M∗
nk,k
−M∗

α)] . (A.1)

The rest of the proof consists in deriving an upper bound on the second term on the right-hand side of
(A.1).

Denote zi = trace[∇Φ(M∗
α)M (Xi)] for all i = 1, . . . , k and let the zi:k denote the version sorted by620

decreasing values. Since Φ is increasing for Loewner ordering, Φ(M) ≤ Φ(M + zz>) for any M ∈ M≥
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and any z ∈ Rp, and concavity implies Φ(M + zz>) ≤ Φ(M) + z>∇Φ(M)z, showing that ∇Φ(M) ∈ M≥.
Therefore, zi:k ≥ 0 for all i.

First, we may notice that trace[∇Φ(M∗
α)M∗

nk,k
] ≤ (1/nk)

∑nk
i=1 zi:k and that

trace[∇Φ(M∗
α)M∗

α] =
1

α

∫
X

I{trace[∇Φ(M∗α)M (x)]≥c1−α} trace[∇Φ(M∗
α)M (x)]µ(dx)

with c1−α ≥ 0 and such that
∫

X I{trace[∇Φ(M∗α)M (x)]≥c1−α} µ(dx) = α; see (2.2).625

Following Rockafellar and Uryasev (2000); Pflug (2000), we then define the functions g(x;β, a) = a +
(1/β) [trace[∇Φ(M∗

β)M (x)− a]+, x ∈X , β ∈ (0, 1), a ∈ R. We can then write, for any β ∈ (0, 1),

trace[∇Φ(M∗
β)M∗

β ] = E{g(X;β, c1−β)} = inf
a
E{g(X;β, a)} ≥ c1−β , (A.2)

and

1

nk

nk∑
i=1

zi:k = Eµk{g(X;αk, znk:k)} = inf
a
Eµk{g(X;αk, a)} ,

where αk = nk/k ∈ (α/2, 1] for all k larger than some k1 and where Eµk{·} denotes expectation for the

empirical measure µk = (1/k)
∑k
i=1 δXi .630

Next, we construct an upper bound on znk:k. For k > k1, the matrix Mk = (1/k)
∑k
i=1 M (Xi) satisfies

trace[∇Φ(M∗
α)Mk] = (1/k)

k∑
i=1

zi:k ≥ (nk/k) znk:k > (α/2) znk:k . (A.3)

Now, M∗
α = M(ξ∗α) with ξ∗α = µ/α on a set X ∗

α ⊂ X and ξ∗α = 0 elsewhere, and µ(X ∗
α ) = α ξ∗α(X ∗

α ) =
α ξ∗α(X ) = α. HM -(ii) then implies that λmin(M∗

α) = (1/α)λmin[
∫

X ∗
α

M (x)µ(dx)] > `α/α, and HΦ implies

that ‖∇Φ(M∗
α)‖ < A(`α/α) < ∞. Therefore trace[∇Φ(M∗

α)M(µ)] < Aα = A(`α/α)
√
pB from HM -(i).

Since trace[∇Φ(M∗
α)Mk] tends to trace[∇Φ(M∗

α)M(µ)] a.s. as k → ∞, (A.3) implies that there exists a.s.635

k2 such that, for all k > k2, znk:k < Aα/(4α).
To summarize, (A.1) implies

Φ(M∗
nk,k

) ≤ Φ(M∗
α) + Eµk{g(X;αk, znk:k)} − E{g(X;α, c1−α)}

≤ Φ(M∗
α) + |Eµk{g(X;αk, znk:k)} − E{g(X;αk, c1−αk)}|

+
∣∣trace[∇Φ(M∗

αk
)M∗

αk
]− trace[∇Φ(M∗

α)M∗
α]
∣∣ .

The last term tends to zero as k tends to infinity, due to (A.2) and the continuity of conditional value-at-risk;
see (Rockafellar and Uryasev, 2002, Prop. 13). Since c1−αk ≤ trace[∇Φ(M∗

αk
)M∗

αk
], see (A.2), and αk → α,

for all k large enough we have c1−αk ≤ 2 trace[∇Φ(M∗
α)M∗

α]. Denote ā = max{Aα/(4α), 2 trace[∇Φ(M∗
α)M∗

α]}.640

The second term can then be rewritten as

|Eµk{g(X;αk, znk:k)} − E{g(X;αk, c1−αk)}| =

∣∣∣∣ inf
a∈[0,ā]

Eµk{g(X;αk, a)} − inf
a∈[0,ā]

E{g(X;αk, a)}
∣∣∣∣

≤ max
a∈[0,ā]

|Eµk{g(X;αk, a)} − E{g(X;αk, a)}| .

The functions g(·; t, a) with t ∈ (α/2, 1], a ∈ [0, ā], form a Glivenko-Cantelli class; see (van der Vaart,
1998, p. 271). It implies that maxa∈[0,ā] |Eµk{g(X;αk, a)} − E{g(X;αk, a)}| → 0 a.s., which concludes the
proof.

The class of functions g(·; t, a) is in fact Donsker (van der Vaart, 1998, p. 271). The strict concavity of645

Φ(·) implies that optimal matrices are unique, and in complement of Lemma 1 we get ‖M∗
bαkc,k −M∗

α‖ =

Op(1/
√
k). Note that when an optimal bounded design measure ξ∗α is known, a selection procedure such

that nk/k → α and Φ(Mnk,k) → Φ(M∗
α) a.s. is straightforwardly available: simply select the points that

belong to the set X ∗
α on which ξ∗α = µ/α.
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Appendix B. Non degeneracy of Mnk650

To invoke Hµ,M in order to ensure the existence of a density ϕMnk
having the required properties for

all k (which is essential for the convergence of Algorithm 1, see Theorem 1), we need to guarantee that

Mnk ∈M≥`,L for all k, for some ` and L. This is the object of the following lemma.

Lemma 2. Under HM , when ε1 > 0 in Algorithm 1, nk+1/k > ε1 for all k and there exists a.s. ` > 0 and

L <∞ such that Mnk ∈M≥`,L for all k > k0.655

Proof. Since the first k0 points are selected, we have nk/k = 1 > ε1 for k ≤ k0. Let k∗ be the first k for which
nk/k < ε1. It implies that nk∗ = nk∗−1 > (k∗ − 1) ε1, and (3.4) implies that nk∗+1 = nk∗ + 1. Therefore,
nk∗+1/k∗ > ε1 + (1− ε1)/k∗ > ε1, and nk/(k − 1) > ε1 for all k > 1.

If the nk points were chosen randomly, nk > (k − 1) ε1 would be enough to obtain that, from HM ,
λmin(Mnk) > `ε1/2 and λmax(Mnk) <

√
B/2 for all k larger than some k1. However, here the situation is660

more complicated since points are accepted or rejected according to a sequential decision rule, and a more
sophisticated argumentation is required. An expedite solution is to consider the worst possible choices of nk
points, that yield the smallest value of λmin(Mnk) and largest value of λmax(Mnk). This approach is used
in Lemma 3 presented below, which permits to conclude the proof.

Lemma 3. Under HM , any matrix Mnk obtained by choosing nk points out of k independently distributed665

with µ and such that nk/k > ε > 0 satisfies lim infk→∞ λmin(Mnk) > ` and lim supk→∞ λmax(Mnk) < L
a.s. for some ` > 0 and L <∞.

Proof. We first construct a lower bound on lim infk→∞ λmin(Mnk). Consider the criterion Φ+
∞(M) =

λmin(M), and denote by M∗
nk,k

the nk-point design matrix that minimizes Φ+
∞ over the design space formed

by k points Xi i.i.d. with µ. We can write M∗
nk,k

= (1/nk)
∑nk
i=1 M (Xki), where the ki correspond to the670

indices of positive ui in the minimization of f(u) = Φ+
∞[
∑k
i=1 ui M (Xi)] with respect to u = (u1, . . . , uk)

under the constraints ui ∈ {0, 1} for all i and
∑
i ui = nk. Obviously, any matrix Mnk obtained by choosing

nk distinct points Xi among X1, . . . , Xk satisfies λmin(Mnk) ≥ λmin(M∗
nk,k

).

For any M ∈ M≥, denote U (M) = {u ∈ Rp : ‖u‖ = 1 , Mu = λmin(M)u}. Then, for any
u ∈ U (M∗

nk,k
), u>M∗

nk,k
u = λmin(M∗

nk,k
) = minv∈Rp: ‖v‖=1 v>M∗

nk,k
v = (1/nk)

∑nk
i=1 zi:k(u), where675

the zi:k(u) correspond to the values of u>M (Xi)u sorted by increasing order for i = 1, . . . , k. For any
m ∈ {1, . . . , nk − 1}, we thus have

λmin(M∗
nk,k

) ≥ 1

m

m∑
i=1

zi:k(u) ≥ λmin(M∗
m,k) ,

showing that the worst situation corresponds to the smallest admissible nk; that is, we only have to consider
the case when nk/k → ε as k →∞.

Since Φ+
∞ is concave, for any M′ ∈M≥ we have680

λmin(M′) ≤ λmin(M∗
nk,k

) + FΦ+
∞

(M∗
nk,k

,M′) , (B.1)

where FΦ+
∞

(M,M′) = minu∈U (M) u>(M′ −M)u is the directional derivative of Φ+
∞ at M in the direction

M′.
For any α ∈ (0, 1) and any ξα ≤ µ/α, there exists a set Xα ⊂ X such that ξα ≥ (1 − α)µ on Xα and

µ(Xα) ≥ α2. Indeed, any set Z on which ξα < (1 − α)µ is such that ξα(Z ) < (1 − α)µ(Z ) ≤ (1 − α);
therefore, taking Xα = X \ Z , we get µ(Xα) ≥ α ξα(Xα) ≥ α2. Denote αk = nk/k, with αk > ε and685

αk → ε as k →∞, and take any M′ = M(ξαk) ∈ M(αk). Applying HM -(ii) to the set Xαk defined above,
we get

λmin(M′) = λmin

(∫
X

M (x) ξαk(dx)

)
≥ λmin

(∫
Xαk

M (x) ξαk(dx)

)

≥ (1− αk)λmin

(∫
Xαk

M (x)µ(dx)

)
> (1− αk) `α2

k
.
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For k larger than some k1 we have αk ∈ (ε, 2ε), and therefore λmin(M′) > cε = (1 − 2ε) `ε2 > 0. The
inequality (B.1) thus gives, for k > k1,

cε < λmin(M∗
nk,k

) + min
u∈U (M∗nk,k

)
min

M′∈M(αk)
u>(M′ −M∗

nk,k
)u . (B.2)

The rest of the proof follows from results on conditional value-at-risk by Rockafellar and Uryasev (2000)690

and Pflug (2000). For a fixed u ∈ Rp, u 6= 0, and α ∈ (0, 1), we have

min
M′∈M(α)

u>M′u =
1

α

∫
X

I{u>M (x)u≤aα(u)} [u>M (x)u]µ(dx) ,

where the α-quantile aα(u) satisfies
∫

X I{u>M (x)u≤aα(u)} µ(dx) = α. For any a ∈ R and u ∈ Rp, denote

h(x;α, a,u) = a− 1

α
[a− u>M (x)u]+ , x ∈X .

We can write minM′∈M(α) u>M′u = E{h(X;α, aα(u),u)} = supa∈R E{h(X;α, a,u)}, where the expectation
is with respect to X distributed with µ (Rockafellar and Uryasev, 2000). Also, from Pflug (2000), for any
u ∈ U (M∗

nk,k
) we can write u>M∗

nk,k
u = Eµk{h(X;αk, znk:k(u),u)} = supa∈R Eµk{h(X;αk, a,u)}, where695

Eµk{·} denotes expectation for the empirical measure µk = (1/k)
∑k
i=1 δXi .

Now, from HM -(i), for any u ∈ Rp with ‖u‖ = 1,

(1− α) aα(u) ≤
∫

X

I{u>M (x)u>aα(u)} [u>M (x)u]µ(dx) <
√
B . (B.3)

We also have (k − nk) znk:k(u) ≤
∑k
i=nk+1 zi:k(u) ≤

∑k
i=1 zi:k(u) = k (u>Mku) ≤ k λmax(Mk), with

Mk →M(µ) a.s. as k → ∞. Denote zε = 2
√
B/(1 − 2ε); since αk → ε, from HM 2-(i) there exists a.s. k2

such that, for all k > k2, znk:k(u) < zε and, from (B.3), aαk(u) < zε.700

Therefore, for large enough k, for any u ∈ U (M∗
nk,k

),

min
M′∈M(αk)

u>(M′ −M∗
nk,k

)u = E{h(X;αk, aαk(u),u)} − Eµk{h(X;αk, znk:k(u),u)}

≤ sup
a∈[0,zε]

|E{h(X;αk, a,u)} − Eµk{h(X;αk, a,u)}| .

The functions h(·;α, a,u) with α ∈ (ε, 2ε), a ∈ [0, zε] and u ∈ Rp, ‖u‖ = 1, form a Glivenko-Cantelli
class; see (van der Vaart, 1998, p. 271). This implies that there exists a.s. k3 such that

max
u∈Rp:‖u‖=1

sup
a∈[0,zε]

|E{h(X;αk, a,u)} − Eµk{h(X;αk, a,u)}| < cε/2 , ∀k > k3 .

Therefore, from (B.2), λmin(M∗
nk,k

) > cε/2 for all k > k3, which concludes the first part of the proof.

We construct now an upper bound on lim supk→∞ λmax(Mnk) following steps similar to the above de-705

velopments but exploiting now the convexity of the criterion M→ 1/Φ+
−∞(M) = λmax(M). Its directional

derivative is F1/Φ+
−∞

(M,M′) = maxu∈U (M) u>(M′ −M)u, with U (M) = {u ∈ Rp : ‖u‖ = 1 , Mu =

λmax(M)u}. Denote by M∗
nk,k

the nk-point design matrix that maximizes 1/Φ+
−∞ over the design space

formed by k points Xi i.i.d. with µ. We can write M∗
nk,k

= (1/nk)
∑nk
i=1 M (Xki), where the ki corre-

spond to the indices of positive ui in the maximization of f(u) = λmax[
∑k
i=1 ui M (Xi)] with respect to710

u = (u1, . . . , uk) under the constraints ui ∈ {0, 1} for all i and
∑
i ui = nk. Any matrix Mnk obtained by

selecting nk distinct points Xi among X1, . . . , Xk satisfies λmax(Mnk) ≤ λmax(M∗
nk,k

).

For any u ∈ U (M∗
nk,k

) we can write u>M∗
nk,k

u = λmax(M∗
nk,k

) = maxv∈Rp: ‖v‖=1 v>M∗
nk,k

v =

(1/nk)
∑nk
i=1 zi:k(u), where the zi:k(u) correspond to the values of u>M (Xi)u sorted by decreasing or-

der for i = 1, . . . , k. For any m ∈ {1, . . . , nk − 1}, we thus have715

λmax(M∗
nk,k

) ≤ 1

m

m∑
i=1

zi:k(u) ≤ λmax(M∗
m,k) ,
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showing that the worst case corresponds to the smallest admissible nk, and we can restrict our attention to
the case when αk = nk/k → ε as k →∞.

The convexity of 1/Φ+
−∞ implies that, for any M′ ∈M≥,

λmax(M′) ≥ λmax(M∗
nk,k

) + F1/Φ+
−∞

(M∗
nk,k

,M′) . (B.4)

Take M′ ∈M(αk), corresponding to some ξαk . From HM -(i),

λmax(M′) = λmax

[∫
X

M (x) ξαk(dx)

]
≤ 1

αk
λmax[M(µ)] <

√
B

αk
.

Therefore, there exists some k1 such that, for all k > k1, λmax(M′) < 2
√
B/ε, and (B.4) gives720

2
√
B

ε
≥ λmax(M∗

nk,k
) + max

u∈U (M∗nk,k
)

max
M′∈M(αk)

u>(M′ −M∗
nk,k

)u .

For a ∈ R, α ∈ (0, 1) and u ∈ Rp, denote h(x;α, a,u) = a + (1/α)[u>M (x)u − a]+, x ∈ X . We
have λmax(M∗

nk,k
) = (1/nk)

∑nk
i=1 zi:k(u) = Eµk{h(X;αk, znk:k(u),u)} = infa Eµk{h(X;αk, a,u)}, u ∈

U (M∗
nk,k

), with znk:k(u) satisfying 0 ≤ nk znk:k(u) ≤
∑nk
i=1 zi:k(u) <

∑k
i=1 zi:k(u) = k λmax(Mk). Also,

for any α ∈ (0, 1) and u ∈ Rp, u 6= 0, maxM′∈M(α) u>M′u = E{h(X;α, aα(u),u)} = infa E{h(X;α, a,u)},
where aα(u) satisfies

∫
X I{u>M (x)u≥aα(u)} µ(dx) = α, and HM -(i) implies that725

0 ≤ aα(u) ≤ (1/α)

∫
X

I{u>M (x)u≥aα(u)} u>M (x)uµ(dx) <
√
B/α .

Since αk = nk/k → ε and Mk →M(µ) a.s., there exists a.s. k2 such that, for all k > k2, 0 ≤ aαk(u) < 2
√
B/ε

and 0 ≤ znk:k(u) < 2
√
B/ε. This implies that, for u ∈ U (M∗

nk,k
) and k > k2,

max
M′∈M(αk)

u>(M′ −M∗
nk,k

)u = E{h(X;αk, aαk(u),u)} − Eµk{h(X;αk, znk:k(u),u)}

≤ sup
a∈[0,2

√
B/ε]

|E{h(X;αk, a,u)} − Eµk{h(X;αk, a,u)}| .

The rest of the proof is similar to the case above for λmin, using the fact that the functions h(·;α, a,u) with
α ∈ (ε, 2ε), a ∈ [0, 2

√
B/ε] and u ∈ Rp, ‖u‖ = 1, form a Glivenko-Cantelli class.

Appendix C. Convergence of Ĉk730

We consider the convergence properties of (3.3) when the matrix Mk is fixed, that is,

Ĉk+1 = Ĉk +
βk

(k + 1)q

(
I{Zk+1≥Ĉk} − α

)
, (C.1)

where the Zk have a fixed distribution with uniformly bounded density f such that f(C1−α) > 0. We follow

the arguments of Tierney (1983). The construction of βk is like in Algorithm 1, with βk = max{min(1/f̂k, β0 k
γ)}

and f̂k following the recursion

f̂k+1 = f̂k +
1

(k + 1)q

[
1

2hk+1
I{|Zk+1−Ĉk|≤hk+1} − f̂k

]
(C.2)

with hk = h/kγ .735
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Theorem 3. Let α ∈ (0, 1), β0 > 0, h > 0, 1/2 < q ≤ 1, 0 < γ < q − 1/2. Let F be a distribution function
such that f(t) = dF (t)/dt exists for all t, is uniformly bounded, and is strictly positive in a neighborhood
of C1−α, the unique value of C such that F (C) = 1 − α. Let (Xi) be an i.i.d. sequence distributed with F

and define Ĉk and f̂k by (C.1) and (C.2) respectively, with βk = min{1/f̂k, β0 k
γ} and hk = h/kγ . Then,

Ĉk → C1−α a.s. when k →∞.740

Proof. We first show that f̂k is a.s. bounded. From the mean-value theorem, there exists a tk in [Ĉk −
hk+1, Ĉk +hk+1] such that Pr{|Zk+1− Ĉk| ≤ hk+1} = F (Ĉk +hk+1)−F (Ĉk−hk+1) = 2hk+1 f(tk). Denote
ωk+1 = I{|Zk+1−Ĉk|≤hk+1} − 2hk+1 f(tk). We can write

f̂k+1 = (1−Bk) f̂k +Ak +A′k

where Bk = 1/[(k + 1)q], Ak = ωk+1/[2hk+1 (k + 1)q] and A′k = Bk f(tk). Therefore,

f̂k+1 = f̂1

k∏
i=1

(1−Bi) +

k∑
j=1

(Aj +A′j)

k∏
i=j+1

(1−Bi) .

We have
∏k
i=1(1 − Bi) < exp(−

∑k
i=1Bi) → 0 as k → ∞ since q ≤ 1. Next, for hk = h/kγ and 0 < γ <745

q−1/2,
∑
k 1/[hk k

q]2 <∞,
∑k
j=1Aj forms an L 2-bounded martingale and therefore converges a.s. to some

limit. Lemma 2 of Albert and Gardner (1967, p. 190) then implies that
∑k
j=1Aj

∏k
i=j+1(1− Bi) → 0 a.s.

as k →∞. Consider now the term Tk =
∑k
j=1A

′
j

∏k
i=j+1(1−Bi). Since f is bounded, A′j < f̄ Bj for some

f̄ <∞ and

Tk < f̄

k∑
j=1

Bj

k∏
i=j+1

(1−Bi) = f̄

[
1−

k∏
i=1

(1−Bi)

]
< f̄ ,

where the equality follows from Albert and Gardner (1967, Lemma 1, p. 189). This shows that f̂k is a.s.750

bounded. Therefore, βk = min{1/f̂k, β0 k
γ} is a.s. bounded away from zero.

We consider now the convergence of (C.1). Following Tierney (1983), define

Dk =
βk

(k + 1)q

{
I{Zk+1≥Ĉk} − [1− F (Ĉk)]

}
and Ek =

βk
(k + 1)q

F (Ĉk)− (1− α)

Ĉk − C1−α
.

Denote by Fk the increasing sequence of σ-fields generated by the Xi; we have E{Dk|Fk} = 0 and

E{D2
k|Fk} = β2

k F (Ĉk) [1 − F (Ĉk)]/(k + 1)2q. We can rewrite (C.1) as Ĉk+1 − C1−α = (Ĉk − C1−α) (1 −
Ek) +Dk, which gives755

E{(Ĉk+1 − C1−α)2|Fk} = (Ĉk − C1−α)2 (1− Ek)2 +
β2
k

(k + 1)2q
F (Ĉk) [1− F (Ĉk)] .

Ek ≥ 0 for all k, [F (Ĉk)− (1−α)]/(Ĉk−C1−α) is bounded since f is bounded, and therefore Ek → 0. Since
βk ≤ β0 k

γ and 0 < γ < q − 1/2,
∑
k β

2
k/(k + 1)2q < ∞. Robbins-Siegmund Theorem (1971) then implies

that Ĉk converges a.s. to some limit and that
∑
k(Ĉk − C1−α)2 [1 − (1 − Ek)2] < ∞ a.s.; since Ek → 0,

we obtain
∑
k(Ĉk − C1−α)2Ek < ∞ a.s. Since q ≤ 1, βk is a.s. bounded away from zero, and f is strictly

positive in a neighborhood of C1−α, we obtain that
∑
k Ek = ∞, implying that Ĉk → C1−α a.s., which760

concludes the proof.

Tierney (1983) uses q = 1; the continuity of f at C1−α then implies that fk → f(C1−α) a.s., and

his construction also achieves the optimal rate of convergence of Ĉk to C1−α, with
√
k(Ĉk − C1−α)

d→
N (0, α(1− α)/f2(C1−α) as k →∞.
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Appendix D. Lipschitz continuity of C1−α(M)765

Lemma 4. Under HΦ and Hµ,M , the (1 − α)-quantile C1−α(M) of the distribution FM of ZM(X) =

FΦ[M,M (X)] is a Lipschitz continuous function of M ∈M≥`,L.

Proof. For any A ∈M>, define the random variable TA(X) = trace[AM (X)] and denote GA its distribution
function and Q1−α(A) the associated (1− α)-quantile. We have ZM(X) = T∇Φ(M)(X)− trace[∇Φ(M)M],
and therefore770

C1−α(M) = Q1−α[∇Φ(M)]− trace[∇Φ(M)M] . (D.1)

We fist show that trace[∇Φ(M)M] is Lipschitz continuous in M. Indeed, for any M, M′ in M≥`,L, we
have

|trace[∇Φ(M′)M′]− trace[∇Φ(M)M]| ≤ ‖M′‖ ‖∇Φ(M′)−∇Φ(M)‖+ ‖∇Φ(M)‖ ‖M′ −M‖
< [L

√
pK` +A(`)] ‖M′ −M‖ , (D.2)

where we used HΦ and the fact that M,M′ ∈M≥`,L.

Consider now GA and GA′ for two matrices A and A′ in M>. We have

GA′(t)−GA(t) =

∫
X

(
I{trace[A′M (x)]≤t} − I{trace[AM (x)]≤t}

)
µ(dx) ,

and therefore775

|GA′(t)−GA(t)| ≤ Prob {min{trace[A′M (X)], trace[AM (X)]} ≤ t
≤ max{trace[A′M (X)], trace[AM (X)]}}

≤ Prob {trace[(A− ‖A−A′‖Ip)M (X)] ≤ t ≤ trace[(A + ‖A−A′‖Ip)M (X)]} ,

with Ip the p × p identity matrix. Since A − λmin(A) Ib ∈ M≥, denoting b1 = 1 − ‖A −A′‖/λmin(A) and
b2 = 1 + ‖A−A′‖/λmin(A), we obtain

|GA′(t)−GA(t)| ≤ Prob {b1 trace[AM (X)] ≤ t ≤ b2 trace[AM (X)]}

= Prob

{
trace[AM (X)] ≤ t

b1

∧
trace[AM (X)] ≥ t

b2

}
= GA(t/b1)−GA(t/b2) . (D.3)

In the rest of the proof we show that Q1−α[∇Φ(M)] is Lipschitz continuous in M. Take two matrices

M,M′ ∈ M≥`,L, and consider the associated (1− α)-quantiles Q1−α[∇Φ(M)] and Q1−α[∇Φ(M′)], which we
shall respectively denote Q1−α and Q′1−α to simplify notation. From Hµ,M , the p.d.f. ψM associated with780

G∇Φ(M) is continuous at Q1−α and satisfies ψM(Q1−α) > ε`,L. From the identities∫ Q1−α

−∞
ψM(z) dz =

∫ Q′1−α

−∞
ψM′(z) dz = 1− α ,

we deduce∣∣∣∣∣
∫ Q′1−α

Q1−α

ψM(z) dz

∣∣∣∣∣ =

∣∣∣∣∣
∫ Q′1−α

−∞
[ψM′(z)− ψM(z)] dz

∣∣∣∣∣ =
∣∣G∇Φ(M′)(Q

′
1−α)−G∇Φ(M)(Q

′
1−α)

∣∣ . (D.4)

From HΦ, when substituting ∇Φ(M) for A and ∇Φ(M′) for A′ in b1 and b2, we get b1 > B1 = 1−K`‖M′−
M‖/a(L) and b2 < B2 = 1+K`‖M′−M‖/a(L), showing that Q′1−α → Q1−α as ‖M′−M‖ → 0. Therefore,
there exists some β1 such that, for ‖M′ −M‖ < β1 we have785 ∣∣∣∣∣

∫ Q′1−α

Q1−α

ψM(z) dz

∣∣∣∣∣ > 1

2

∣∣Q′1−α −Q1−α
∣∣ ε`,L . (D.5)
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Using (D.3), we also obtain for ‖M′ −M‖ smaller than some β2∣∣G∇Φ(M′)(Q
′
1−α)−G∇Φ(M)(Q

′
1−α)

∣∣ ≤ G∇Φ(M)(Q
′
1−α/B1)−G∇Φ(M)(Q

′
1−α/B2)

< 2ψM(Q′1−α)

(
Q′1−α
B1

−
Q′1−α
B2

)
< 4‖M′ −M‖ψM(Q′1−α)Q′1−α

a(L)

K` (a2(L)/K2
` − ‖M′ −M‖2)

.

Therefore, when ‖M′ −M‖ < a(L)/(K`

√
2),∣∣G∇Φ(M′)(Q

′
1−α)−G∇Φ(M)(Q

′
1−α)

∣∣ < κ ‖M−M′‖

with κ = 8ϕ̄MQ′1−αK`/a(L), where ϕ̄M is the upper bound on ϕM in Hµ,M . Using (D.4) and (D.5) we
thus obtain, for ‖M′ −M‖ small enough,

|Q1−α[∇Φ(M′)]−Q1−α[∇Φ(M)]| < 2κ/ε`,L ‖M−M′‖ ,

which, combined with (D.2) and (D.1), completes the proof.790
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