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Sequential online subsampling for thinning experimental designs

Luc Pronzato* and HaiYing Wang�

April 1, 2020

Abstract

We consider a design problem where experimental conditions (design pointsXi) are presented
in the form of a sequence of i.i.d. random variables, generated with an unknown probability
measure µ, and only a given proportion α ∈ (0, 1) can be selected. The objective is to select good
candidates Xi on the �y and maximize a concave function Φ of the corresponding information
matrix. The optimal solution corresponds to the construction of an optimal bounded design
measure ξ∗α ≤ µ/α, with the di�culty that µ is unknown and ξ∗α must be constructed online.
The construction proposed relies on the de�nition of a threshold τ on the directional derivative
of Φ at the current information matrix, the value of τ being �xed by a certain quantile of
the distribution of this directional derivative. Combination with recursive quantile estimation
yields a nonlinear two-time-scale stochastic approximation method. It can be applied to very
long design sequences since only the current information matrix and estimated quantile need
to be stored. Convergence to an optimum design is proved. Various illustrative examples are
presented.

Keywords: Active learning, data thinning, design of experiments, sequential design, subsampling
AMS subject classi�cations: 62K05, 62L05, 62L20, 68Q32

1 Introduction

Consider a rather general parameter estimation problem in a model with independent observations
Yi = Yi(xi) conditionally on the experimental variables xi, with xi in some set X . Suppose that
for any x ∈ X there exists a measurable set Yx ∈ R and a σ-�nite measure µx on Yx such that
Y (x) has the density ϕx,θ with respect to µx, with θ the true value of the model parameters θ to
be estimated, θ ∈ Rp. In particular, this covers the case of regression models, with µx the Lebesgue
measure on Yx = R and Y (x) = η(θ, x) + ε(x), where the ε(xi) are independently distributed
with zero mean and known variance σ2

i (or unknown but constant variance σ2), and the case of
generalized linear models, with ϕx,θ in the exponential family and logistic regression as a special

case. Denoting by θ̂
n
the estimated value of θ from data (Xi, Yi), i = 1, . . . , n, under rather weak

conditions on the xi and ϕx,θ, see below, we have

√
n(θ̂

n − θ)
d→ N (0,M−1(ξ,θ)) as n→∞ , (1.1)
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where M(ξ,θ) denotes the (normalized) Fisher information matrix for parameters θ and (asymp-
totic) design ξ (that is, a probability measure on X ),

M(ξ,θ) = lim
n→∞

1

n
Ex1,...,xn,θ


n∑
i=1

∂ logϕx,θ(Yi)

∂θ

n∑
j=1

∂ logϕx,θ(Yj)

∂θ>


=

∫
X

[∫
Yx

∂ logϕx,θ(y)

∂θ

∂ logϕx,θ(y)

∂θ>
ϕx,θ(y)µx(dy)

]
ξ(dx) .

This is true in particular for randomized designs such that the xi are independently sampled from
ξ, and for asymptotically discrete designs, such that ξ is a discrete measure on X and the empirical
design measure ξn =

∑n
i=1 δxi converges strongly to ξ; see Pronzato and Pázman (2013). The former

case corresponds to the situation considered here. The choice of µx is somewhat arbitrary, provided
that

∫
Yx
ϕx,θ(y)µx(dy) = 1 for all x, and we shall assume that µx(dy) ≡ 1. We can then write

M(ξ,θ) =

∫
X

M (x,θ) ξ(dx) , where M (x,θ) =

∫
Yx

∂ logϕx,θ(y)

∂θ

∂ logϕx,θ(y)

∂θ>
ϕx,θ(y) dy

denotes the elementary information matrix at x.
Taking motivation from (1.1), optimal experimental design (approximate theory) aims at choos-

ing a measure ξ that minimizes a scalar function of the asymptotic covariance matrix M−1(ξ,θ) of
θ̂
n
, or equivalently, that maximizes a function Φ of M(ξ,θ). For a nonlinear model M (x,θ) and

M(ξ,θ) depend on the model parameters θ. Since θ is unknown, the standard approach is local,
and consists in constructing an optimal design for a nominal value θ0 of θ. This is the point of
view we shall adopt here � although sequential estimation of θ is possible, see Section 6. When θ
is �xed at some θ0, there is fundamentally no di�erence with experimental design in a linear model
for which M (x,θ) and M(ξ,θ) do not depend on θ. For example, in the linear regression model

Y (Xi) = f>(Xi)θ + εi ,

where the errors εi are independent and identically distributed (i.i.d.), with a density ϕε with respect
to the Lebesgue measure having �nite Fisher information for location Iε =

∫
R

{
[ϕ′ε(t)]

2/ϕε(t)
}
dt <

∞ (Iε = 1/σ2 for normal errors N (0, σ2)), then M (x) = Iε f(x)f>(x), M(ξ) = Iε
∫
X f(x)f>(x) ξ(dx).

Polynomial regression provides typical examples of such a situation and will be used for illustration
in Section 4. The construction of an optimal design measure ξ∗ maximizing Φ[M(ξ, θ0)] usually
relies on the application of a specialized algorithm to a discretization of the design space X ; see,
e.g., Pronzato and Pázman (2013, Chap. 9).

With the rapid development of connected sensors and the pervasive usage of computers, there
exist more and more situations where extraordinary amounts of massive data (Xi, Yi), i = 1, . . . , N ,

are available to construct models. When N is very large, using all the data to construct θ̂
N
is then

unfeasible, and selecting the most informative subset through the construction of an n-point optimal
design, n � N , over the discrete set XN = {Xi, i = 1, . . . , N} is also not feasible. The objective
of this paper is to present a method to explore XN sequentially and select a proportion n = bαNc
of the N data points to be used to estimate θ. Each candidate Xi is considered only once, which
allows very large datasets to be processed: when the Xi are i.i.d. and are received sequentially, they
can be selected on the �y which makes the method applicable to data streaming; when N data
points are available simultaneously, a random permutation allows XN to be processed as an i.i.d.
sequence.
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The method is based on the construction of an optimal bounded design measure and draws on
the paper (Pronzato, 2006). In that paper, the sequential selection of the Xi relies on a threshold set
on the directional derivative of the design criterion, given by the (1−α)-quantile of the distribution
of this derivative. At stage k, all previous Xi, i = 1, . . . , k, are used for the estimation of the quantile
Ck that de�nes the threshold for the possible selection of the candidate Xk+1. In the present paper,
we combine this approach with the recursive estimation of Ck, following (Tierney, 1983): as a result,
the construction is fully sequential and only requires to record the current value of the information
matrix Mk and of the estimated quantile Ĉk of the distribution of the directional derivative. It relies
on a reinterpretation of the approach in (Pronzato, 2006) as a stochastic approximation method
for the solution of the necessary and su�cient optimality conditions for a bounded design measure,
which we combine with another stochastic approximation method for quantile estimation to obtain
a two-time-scale stochastic approximation scheme.

The paper is organized as follows. Section 2 introduces the notation and assumptions and recalls
main results on optimal bounded design measures. Section 3 presents our subsampling algorithm
based on a two-time-scale stochastic approximation procedure and contains the main result of the
paper. Several illustrative examples are presented in Section 4. We are not aware of any other
method for thinning experimental designs that is applicable to data streaming; nevertheless, in
Section 5 we compare our algorithm with an exchange method and with the IBOSS algorithm
of Wang et al. (2019) in the case where the N design points are available and can be processed
simultaneously. Section 6 concludes and suggests a few directions for further developments. A series
of technical results are provided in the Appendix.

2 Optimal bounded design measures

2.1 Notation and assumptions

Suppose that X is distributed with the probability measure µ on X ⊆ Rd, a subset of Rd with
nonempty interior, with d ≥ 1. For any ξ ∈ P+(X ), the set of positive measure ξ on X (not
necessarily of mass one), we denote M(ξ) =

∫
X M (x) ξ(dx) where, for all x in X , M (x) ∈ M≥,

the set (cone) of symmetric non-negative de�nite p× p matrices. We assume that p > 1 in the rest
of the paper (the optimal selection of information in the case p = 1 forms a variant of the secretary
problem for which an asymptotically optimal solution can be derived, see Albright and Derman
(1972); Pronzato (2001)).

We denote by Φ : M≥ → R ∪ {−∞} the design criterion we wish to maximize, and by λmin(M)
and λmax(M) the minimum and maximum eigenvalues of M, respectively; we shall use the `2 norm
for vectors and Frobenius norm for matrices, ‖M‖ = trace1/2[MM>]; all vectors are column vetors.
For any t ∈ R, we denote [t]+ = max{t, 0} and, for any t ∈ R+, btc denotes the largest integer
smaller than t. For 0 ≤ ` ≤ L we denote by M≥`,L the (convex) set de�ned by

M≥`,L = {M ∈M≥ : ` < λmin(M) and λmax(M) < L} ,

and by M> the open cone of symmetric positive de�nite p × p matrices. We make the following
assumptions on Φ.

HΦ Φ is strictly concave on M>, linearly di�erentiable and increasing for Loewner ordering; its
gradient ∇Φ(M) is well de�ned in M≥ for any M ∈ M> and satis�es ‖∇Φ(M)‖ < A(`) and
λmin[∇Φ(M)] > a(L) for any M ∈ M≥`,L, for some a(L) > 0 and A(`) < ∞; moreover, ∇Φ

satis�es the following Lipschitz condition: for all M1 and M2 in M≥ such that λmin(Mi) >
` > 0, i = 1, 2, there exists K` <∞ such that ‖∇Φ(M2)−∇Φ(M1)‖ < K` ‖M2 −M1‖.
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The criterion Φ0(M) = log det(M) and criteria Φq(M) = − trace(M−q), q ∈ (−1,∞), q 6= 0,
with Φq(M) = −∞ if M is singular, which are often used in optimal design (in particular with q a
positive integer) satisfy HΦ; see, e.g., Pukelsheim (1993, Chap. 6). Their gradients are ∇Φ0(M) =
M−1 and ∇Φq(M) = qM−(q+1), q 6= 0; the constants a(L) and A(`) are respectively given by
a(L) = 1/L, A(`) =

√
p/` for Φ0 and a(L) = q/Lq+1, A(`) = q

√
p/`q+1 for Φq. The Lispchitz

condition follows from the fact that the criteria are twice di�erentiable on M>. The positively
homogeneous versions Φ+

0 (M) = det1/p(M) and Φ+
q (M) = [(1/p) trace(M−q)]−1/q, which satisfy

Φ+(aM) = aΦ+(M) for any a > 0 and any M ∈ M≥, and Φ+(Ip) = 1, with Ip the p × p identity
matrix, could be considered too; see Pukelsheim (1993, Chaps. 5, 6). The strict concavity of Φ
implies that, for any convex subset M̂ of M>, there exists a unique matrix M∗ maximizing Φ(M)
with respect to M ∈ M̂.

We denote by FΦ(M,M′) the directional derivative of Φ at M in the direction M′,

FΦ(M,M′) = lim
γ→0+

Φ[(1− γ)M + γM′]− Φ(M)

γ
= trace[∇Φ(M)(M′ −M)] ,

and we make the following assumptions on µ and M .

Hµ µ has a bounded positive density ϕ with respect to the Lebesgue measure on every open subset
of X .

HM (i) M is continuous on X and satis�es
∫
X ‖M (x)‖2 µ(dx) < B <∞;

(ii) for any Xε ⊂X of measure µ(Xε) = ε > 0, λmin

{∫
Xε

M (x)µ(dx)
}
> `ε for some `ε > 0.

Since all the designs considered will be formed by points sampled from µ, we shall confound X
with the support of µ: X = {x ∈ Rd : µ(Bd(x, ε)) > 0 ∀ε > 0}, with Bd(x, ε) the open ball with
center x and radius ε. Notice that HM -(i) implies that λmax[M(µ)] <

√
B and ‖M(µ)‖ <

√
pB.

Our sequential selection procedure will rely on the estimation of the (1− α)-quantile C1−α(M)
of the distribution FM(z) of the directional derivative ZM(X) = FΦ[M,M (X)] when X ∼ µ, and
we shall assume that Hµ,M below is satis�ed. It implies in particular that C1−α(M) is uniquely
de�ned by FM(CM,1−α) = 1− α.

Hµ,M For all M ∈ M≥`,L, FM has a uniformly bounded density ϕM; moreover, for any α ∈ (0, 1),
there exists ε`,L > 0 such that ϕM[C1−α(M)] > ε`,L and ϕM is continuous at C1−α(M).

Hµ,M is overrestricting (we only need the existence and boundedness of ϕM, and its positiveness
and continuity at C1−α(M)), but is satis�ed is many common situations; see Section 4 for examples.
Let us emphasize that Hµ and HM are not enough to guarantee the existence of a density ϕM, since
trace[∇Φ(M)M (x)] may remain constant over subsets of X having positive measure. Assuming
the existence of ϕM and the continuity of ϕ on X is also insu�cient, since ϕM is generally not
continuous when ZM(x) is not di�erentiable in x, and ϕM is not necessarily bounded.

2.2 Optimal design

As mentioned in introduction, when the cardinality of XN is very large, one may wish to select only
n candidatesXi among theN available, a fraction n = bαNc say, with α ∈ (0, 1). For any n ≤ N , we
denote by M∗

n,N a design matrix (non necessarily unique) obtained by selecting n points optimally
within XN ; that is, M∗

n,N gives the maximum of Φ(Mn) with respect to Mn = (1/n)
∑n

j=1 M (Xij ),
where the Xij are n distinct point in XN . Note that this forms a di�cult combinatorial problem,
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unfeasible for large n and N . If one assumes that the Xi are i.i.d., with µ their probability measure
on X , for large N the optimal selection of n = bαNc points amounts at constructing an optimal
bounded design measure ξ∗α, such that Φ[M(ξ∗α)] is maximum and ξα ≤ µ/α (in the sense ξα(A) ≤
µ(A)/α for any µ-measurable set A, which makes ξα absolutely continuous with respect to µ).
Indeed, Lemma A.1 in Appendix A indicates that lim supN→∞Φ(M∗

bαNc,N ) = Φ[M(ξ∗α)]. Also,

under HΦ, E{Φ(M∗
n,N )} ≤ Φ[M(ξ∗n/N )] for all N ≥ n > 0; see Pronzato (2006, Lemma 3).

A key result is that, when all subsets of X with constant ZM(x) have zero measure, ZM(ξ∗α)(x) =
FΦ[M(ξ∗α),M (x)] separates two sets X ∗

α and X \X ∗
α , with FΦ[M(ξ∗α),M (x)] ≥ C∗1−α and ξ∗α = µ/α

on X ∗
α , and FΦ[M(ξ∗α),M (x)] ≤ C∗1−α and ξ∗α = 0 on X \X ∗

α , for some constant C∗1−α; moreover,∫
X FΦ[M(ξ∗α),M (x)] ξ∗α(dx) =

∫
X ∗α

FΦ[M(ξ∗α),M (x)]µ(dx) = 0; see Wynn (1982); Fedorov (1989)

and Fedorov and Hackl (1997, Chap. 4). (The condition mentioned in those references is that µ
has no atoms, but the example in Section 4.3.2 will show that this is not su�cient; extension to
arbitrary measures is considered in (Sahm and Schwabe, 2001).)

For α ∈ (0, 1), denote

M(α) =

{
M(ξα) =

∫
X

M (x) ξα(dx) : ξα ∈P+(X ), ξα ≤
µ

α
,

∫
X
ξα(dx) = 1

}
.

In (Pronzato, 2006), it is shown that, for any M ∈M>,

M+(M, α) = arg max
M′∈M(α)

FΦ(M,M′) =
1

α

∫
X

I{FΦ[M,M (x)]≥C1−α}M (x)µ(dx) , (2.1)

where, for any proposition A, I{A} = 1 if A is true and is zero otherwise, and C1−α = C1−α(M) is
an (1− α)-quantile of FΦ[M,M (X)] when X ∼ µ and satis�es∫

X
I{FΦ[M,M (x)]≥C1−α(M)} µ(dx) = α . (2.2)

Therefore, M∗
α = M(ξ∗α) is the optimum information matrix in M(α) (unique since Φ is strictly

concave) if and only if it satis�es maxM′∈M(α) FΦ(M∗
α,M

′) = 0, or equivalently M∗
α = M+(M∗

α, α),
and the constant C∗1−α equals C1−α(M∗

α); see (Pronzato, 2006, Th. 5); see also Pronzato (2004).
Note that C∗1−α ≤ 0 since

∫
X FΦ[M(ξ∗α),M (x)] ξ∗α(dx) = 0 and FΦ[M(ξ∗α),M (x)] ≥ C∗1−α on the

support of ξ∗α.

3 Sequential construction of an optimal bounded design measure

3.1 A stochastic approximation problem

Suppose that the Xi are i.i.d. with µ. The solution of M = M+(M, α), α ∈ (0, 1), with respect to
M by stochastic approximation yields the iterations

nk+1 = nk + I{FΦ[Mnk
,M (Xk+1)]≥C1−α(Mnk

)} ,

Mnk+1
= Mnk + 1

nk+1 I{FΦ[Mnk
,M (Xk+1)]≥C1−α(Mnk

)} [M (Xk+1)−Mnk ] .
(3.1)

Note that E
{
I{FΦ[M,M (X)]≥C1−α(M)} [M (X)−M]

}
= α [M+(M, α) −M]. The almost sure (a.s.)

convergence of Mnk in (3.1) to M(ξ∗α) that maximizes Φ(M) with respect M ∈ M(α) is proved in
(Pronzato, 2006) under rather weak assumptions on Φ, M and µ.
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The construction (3.1) requires the calculation of the (1−α)-quantile C1−α(Mnk) for all nk, see
(2.2), which is not feasible when µ is unknown and has a prohibitive computational cost when we
know µ. For that reason, it is proposed in (Pronzato, 2006) to replace C1−α(Mnk) by the empirical

quantile C̃α,k(Mnk) that uses the empirical measure µk = (1/k)
∑k

i=1 δXi of the Xi that have been
observed up to stage k. This construction preserves the a.s. convergence of Mnk to M(ξ∗α) in (3.1),
but its computational cost and storage requirement increase with k, which makes it unadapted to
situations with very large N . The next section considers the recursive estimation of C1−α(Mnk)
and contains the main result of the paper.

3.2 Recursive quantile estimation

The idea is to plug a recursive estimator of the (1 − α)-quantile C1−α(Mnk) in (3.1). Under mild
assumptions, for random variables Zi that are i.i.d. with distribution function F such that the
solution of the equation F (z) = 1− α is unique, the recursion

Ĉk+1 = Ĉk +
β

k + 1

(
I{Zk+1≥Ĉk} − α

)
(3.2)

with β > 0 converges a.s. to the quantile C1−α such that F (C1−α) = 1 − α. Here, we shall use a
construction based on (Tierney, 1983). In that paper, a clever dynamical choice of β = βk is shown

to provide the optimal asymptotic rate of convergence of Ĉk towards C1−α, with
√
k(Ĉk−C1−α)

d→
N (0, α(1− α)/f2(C1−α)) as k →∞, where f(z) = dF (z)/dz is the p.d.f. of the Zi � note that it
coincides with the asymptotic behavior of the sample (empirical) quantile. The only conditions on
F are that f(z) exists for all z and is uniformly bounded, and that f is continuous and positive at
the unique root C1−α of F (z) = 1− α.

There is a noticeable di�erence, however, with the estimation of C1−α(Mnk): in our case we
need to estimate a quantile of Zk(X) = FΦ[Mnk ,M (X)] for X ∼ µ, with the distribution of Zk(X)

evolving with k. For that reason, we shall impose a faster dynamic to the evolution of Ĉk, and
replace (3.2) by

Ĉk+1 = Ĉk +
βk

(k + 1)q

(
I{Zk(Xk+1)≥Ĉk} − α

)
(3.3)

for some q ∈ (0, 1). The combination of (3.3) with (3.1) yields a particular nonlinear two-time-scale
stochastic approximation scheme. There exist advanced results on the convergence of linear two-
time-scale stochastic approximation, see Konda and Tsitsiklis (2004); Dalal et al. (2018). To the
best of our knowledge, however, there are few results on convergence for nonlinear schemes. Con-
vergence is shown in (Borkar, 1997) under the assumption of boundedness of the iterates using the
ODE method of Ljung (1977); su�cient conditions for stability are provided in (Lakshminarayanan
and Bhatnagar, 2017), also using the ODE approach. In the proof of Theorem 3.1 we provide
justi�cations for our construction, based on the analyses and results in the references mentioned
above.

The construction is summarized in Algorithm 1 below. The presence of the small number ε1 is
only due to technical reasons: setting zk+1 = +∞ when nk/k < ε1 in (3.4) has the e�ect of always
selecting Xk+1 when less than ε1 k points have been selected previously; it ensures that nk+1/k > ε1
for all k and thus that Mnk always belongs to M≥`,L for some ` > 0 and L <∞; see Lemma B.1 in
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Appendix.

Algorithm 1: sequential selection (α given).

0) Choose k0 ≥ p, q ∈ (1/2, 1), γ ∈ (0, q − 1/2), and 0 < ε1 � α.

1) Initialization: select X1, . . . , Xk0 , compute Mnk0
= (1/k0)

∑k0
i=1 M (Xi). If Mnk0

is singular,
increase k0 and select the next points until Mnk0

has full rank. Set k = nk = k0, the number
of points selected.

Compute ζi = Zk0(Xi), for i = 1, . . . , k0 and order the ζi as ζ1:k0 ≤ ζ2:k0 ≤ · · · ≤ ζk0:k0 ; denote
k+

0 = d(1− α/2) k0e and k−0 = max{b(1− 3α/2) k0c, 1}.

Initialize Ĉk0 at ζd(1−α) k0e:k0
; set β0 = k0/(k

+
0 − k

−
0 ), h = (ζk+

0 :k0
− ζk−0 :k0

), hk0 = h/kγ0 and

f̂k0 =
[∑k0

i=1 I{|ζi−Ĉk0
|≤hk0

}

]
/(2 k0 hk0).

2) Iteration k + 1: collect Xk+1 and compute Zk(Xk+1) = FΦ[Mnk ,M (Xk+1)].

If nk/k < ε1 set zk+1 = +∞ ;
otherwise set zk+1 = Zk(Xk+1) .

(3.4)

If zk+1 ≥ Ĉk, update nk into nk+1 = nk + 1 and Mnk into

Mnk+1
= Mnk +

1

nk + 1
[M (Xk+1)−Mnk ] ; (3.5)

otherwise, set nk+1 = nk.

3) Compute βk = min{1/f̂k, β0 k
γ}; update Ĉk using (3.3).

Set hk+1 = h/(k + 1)γ and update f̂k into

f̂k+1 = f̂k +
1

(k + 1)q

[
1

2hk+1
I{|Zk(Xk+1)−Ĉk|≤hk+1} − f̂k

]
.

4) k ← k + 1, return to Step 2.

Note that Ĉk is updated whatever the value of Zk(Xk+1). Recursive quantile estimation by
(3.3) follows (Tierney, 1983). To ensure a faster dynamic for the evolution of Ĉk than for Mnk , we

take q < 1 instead of q = 1 in (Tierney, 1983), and the construction of f̂k and the choices of βk
and hk are modi�ed accordingly. Following the same arguments as in the proof of Proposition 1
of (Tierney, 1983), the a.s. convergence of Ĉk to C1−α in the modi�ed version of (3.2) is proved in
Theorem C.1 (Appendix C).

The next theorem establishes the convergence of the combined stochastic approximation schemes
with two time-scales.

Theorem 3.1. Under HΦ, Hµ, HM and Hµ,M , the normalized information matrix Mnk corre-

sponding to the nk candidates selected after k iterations of Algorithm 1 converges a.s. to the optimal

matrix M∗
α in M(α) as k →∞.

7



Proof. Our analysis is based on (Borkar, 1997). We denote by Fn the increasing sequence of σ-�elds
generated by the Xi. According to (3.3), we can write Ĉk+1 = Ĉk + [βk/(k+ 1)q]Vk+1 with Vk+1 =
I{Zk(Xk+1)≥Ĉk} − α. Therefore, E{Vk+1|Fk} =

∫
X [I{Zk(x)≥Ĉk} − α]µ(dx) and var{Vk+1|Fk} =

Fk(Ĉk)[1 − Fk(Ĉk)], with Fk the distribution function of Zk(X). From Lemma B.1 (Appendix B)
and Hµ,M , Fk has a well de�ned density fk for all k, with fk(t) > 0 for all t and fk bounded.

The �rst part of the proof of Theorem C.1 applies (see Appendix C): f̂k is a.s. bounded and βk is
bounded away from zero a.s. Therefore,

∑
k βk/(k + 1)q → ∞ a.s. and (k + 1)q/[βk (k + 1)] → 0

a.s.; also,
∑

k[βk/(k + 1)q]2 <∞ since q − γ > 1/2.
The o.d.e. associated with (3.3), for a �xed matrix M and thus a �xed Z(·), such that Z(X) =

FΦ[M,M (X)] has the distribution function F and density f , is

dC(t)

dt
= 1− F [C(t)]− α = F (C1−α)− F [C(t)] ,

where C1−α = C1−α(M) satis�es F (C1−α) = 1 − α. Consider the Lyapunov function L(C) =
[F (C)− F (C1−α)]2. It satis�es dL[C(t)]/dt = −2 f [C(t)]L[C(t)] ≤ 0, with dL[C(t)]/dt = 0 if and
only if C = C1−α. Moreover, C1−α is Lipschitz continuous in M; see Lemma D.1 in Appendix D.
The conditions for Theorem 1.1 in (Borkar, 1997) are thus satis�ed concerning the iterations for Ĉk.

Denote M̂k = Mnk and ρk = nk/k, so that (3.4) implies k ρk ≥ ε1 (k−1) for all k; see Lemma B.1
in Appendix. They satisfy

ρk+1 = ρk +
Rk+1

k + 1
and M̂k+1 = M̂k +

Ωk+1

k + 1
, (3.6)

where Rk+1 = I{Zk(Xk+1)≥Ĉk} − ρk, and Ωk+1 = (1/ρk+1) I{Zk(Xk+1)≥Ĉk}

[
M (Xk+1)− M̂k

]
. We

have E{Rk+1|Fk} =
∫
X I{Zk(x)≥Ĉk} µ(dx) − ρk and var{Rk+1|Fk} = Fk(Ĉk)[1 − Fk(Ĉk)], with Fk

the distribution function of Zk(X), which, from Hµ,M , has a well de�ned density fk for all k. Also,

E{Ωk+1|Fk} =
Ik

ρk + 1−ρk
k+1

=
1 + 1/k

ρk + 1/k
Ik ,

where Ik =
∫
X I{Zk(x)≥Ĉk}

[
M (x)− M̂k

]
µ(dx). Denote ∆k+1 = Ωk+1 − Ik/ρk, so that

M̂k+1 = M̂k +
1

k + 1

Ik
ρk

+
∆k+1

k + 1
. (3.7)

We get E{∆k+1|Fk} = (ρk − 1)/[ρk (k ρk + 1)] Ik and

var{{∆k+1}i,j |Fk} = var{{Ωk+1}i,j |Fk}

=
(k + 1)2

(k ρk + 1)2

[∫
X

I{Zk(x)≥Ĉk} {M (x)− M̂k}2i,j µ(dx)− {Ik}2i,j
]
,

where (3.4) implies that ρk > ε1/2, and therefore (k + 1) (1 − ρk)/[ρk (k ρk + 1)] < 4/ε21, and
var{{∆k+1}i,j |Fk} is a.s. bounded from HM -(i). This implies that

∑
k ∆k+1/(k+ 1) <∞ a.s. The

limiting o.d.e. associated with (3.6) and (3.7) are

dρ(t)

dt
=

∫
X

I{FΦ[M̂(t),M (x)]≥C1−α[M̂(t)]} µ(dx)− ρ(t) = α− ρ(t) ,

dM̂(t)

dt
=

1

ρ(t)

∫
X

I{FΦ[M̂(t),M (x)]≥C1−α[M̂(t)]}

[
M (x)− M̂(t)

]
µ(dx)

=
α

ρ(t)

{
M+[M̂(t), α]− M̂(t)

}
,
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where M+[M̂(t), α] is de�ned by (2.1). The �rst equation implies that ρ(t) converges exponentially
fast to α, with ρ(t) = α+ [ρ(0)− α] exp(−t); the second equation gives

dΦ[M̂(t)]

dt
= trace

[
∇Φ[M̂(t)]

dM̂(t)

dt

]
=

α

ρ(t)
max

M′∈M(α)
FΦ[M̂(t),M′] ≥ 0 ,

with a strict inequality if M̂(t) 6= M∗
α, the optimal matrix in M(α). The conditions of Theorem 1.1

in (Borkar, 1997) are thus satis�ed, and M̂k converges to M∗
α a.s.

Remark 3.1.

(i) Algorithm 1 does not require the knowledge of µ and has minimum storage requirements:
apart for the current matrix Mnk , we only need to update the scalar variables Ĉk and fk.
Its complexity is O(d3N) in general, considering that the complexity of the calculation of
FΦ[M,M (X)] is O(d3). It can be reduced to O(d2N) when M (X) has rank one and M−1

nk
is

updated instead of Mnk (see remark (iii) below), for D-optimality and Φq-optimality with q
integer; see Section 2.1. Very long sequences (Xi) can thus be processed.

(ii) Numerical simulations indicate that we do not need to take q < 1 in Algorithm 1: (3.3) with
q = 1 yields satisfactory performance, provided the step-size obeys Kersten's rule and does
not decrease at each iteration.

(iii) The substitution of trace[∇Φ(M)M (X)] for FΦ[M,M (X)] = trace{∇Φ(M)[M (X)−M]} ev-
erywhere does not change the behavior of the algorithm. When ∇Φ(M) only depends on M−1

(which is often the case for classical design criteria, see the discussion following the presenta-
tion of HΦ), and if M (X) is a low rank matrix, it may be preferable to update M−1

nk
instead of

Mnk , thereby avoiding matrix inversions. For example, if M (Xk+1) = Iε f(Xk+1)f>(Xk+1),
then, instead of updating (3.5), it is preferable to update the following

M−1
nk+1

=

(
1 +

1

nk

)[
M−1

nk
−
Iε M−1

nk
f(Xk+1)f>(Xk+1)M−1

nk

nk + Iε f>(Xk+1)M−1
nk f(Xk+1)

]
.

Low-rank updates of the Cholesky decomposition of the matrix can be considered too.

(iv) Algorithm 1 can be adapted to the case where the number of iterations is �xed (equal to the
size N of the candidate set XN ) and the number of candidates n to be selected is imposed.
A straightforward modi�cation is to introduce truncation and forced selection: we run the
algorithm with α = n/N and, at Step 2, we set zk+1 = −∞ (reject Xk+1) if nk ≥ n and
set zk+1 = +∞ (select Xk+1) if n − nk ≥ N − k. However, this may induce the selection of
points Xi carrying little information when k approaches N in case nk is excessively small. For
that reason, adaptation of α to nk, obtained by substituting αk = (n − nk)/(N − k) for the
constant α everywhere, seems preferable. This is illustrated by an example in Section 4.2.

(v) The case when µ has discrete components (atoms), or more precisely when there exist subsets
of X of positive measure where ZM(x) is constant (see Section 4.3.2), requires additional
technical developments which we do not detail here.

A �rst di�culty is that HM -(ii) may not be satis�ed when the matrices M (x) do not have full
rank, unless we only consider large enough ε. Unless ε1 in (3.4) is large enough, Lemma B.1
is not valid, and other arguments are required in the proof of Theorem 3.1. Possible remedies
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may consist (a) in adding a regularization matrix γIp with a small γ to all matrices M (x)
(which amounts at considering optimal design for Bayesian estimation with a vague prior;
see, e.g., Pilz (1983)), or (b) in replacing the condition in (3.4) by [If λmin(Mnk) < ε1, set
zk+1 = +∞].

A second di�culty is that C1−α(M∗
α) may correspond to a point of discontinuity of the distri-

bution function of FΦ[M∗
α,M (X)]. The estimated value fk of the density of FΦ[Mnk ,M (X)]

at Ĉk (Step 3 of Algorithm 1) may then increase to in�nity and βk tend to zero in (3.3). This
can be avoided by setting βk = max{ε2,min(1/f̂k, β0 k

γ)} for some ε2 > 0.

In (Pronzato, 2006), where empirical quantiles are used, measures needed to be taken to
avoid the acceptance of too many points, for instance based on the adaptation of α through
αk = (n − nk)/(N − k), see remark (iv) above, or via the addition of the extra condition [if
nk/k > α, set zk+1 = −∞] to (3.4) in case n is not speci�ed. Such measures do not appear
to be necessary when quantiles are estimated by (3.3); see the examples in Section 4.3. /

4 Examples

We always take k0 = 5 p, q = 5/8, γ = 1/10 in Algorithm 1 (our simulations indicate that these
choices are not critical); we also set ε1 = 0.

4.1 Example 1: quadratic regression with normal independent variables

Take M (x) = f(x)f>(x), with f(x) = (1, x, x2)> and Φ(M) = log det(M), and let the Xi be i.i.d.
standard normal variables N (0, 1). The D-optimal design for x in an interval [t, t′] corresponds
to ξ∗ = (1/3)

(
δt + δ(t+t′)/2 + δt′

)
. In the data thinning problem, the optimal solution corresponds

to the selection of Xi in the union of three intervals; that is, with the notation of Section 2,
X ∗
α = (−∞,−a]∪[−b, b]∪[a,∞). The values of a and b are obtained by solving the pair of equations∫ b

0 ϕ(x) dx+
∫∞
a ϕ(x) dx = α/2 and trace[M−1(ξ)M (a)] = trace[M−1(ξ)M (b)], with ϕ the standard

normal density and M(ξ) = [
∫ −a
−∞M (x)ϕ(x) dx+

∫ b
−b M (x)ϕ(x) dx+

∫∞
a M (x)ϕ(x) dx]/α.

We set the horizon N at 100 000 and consider the two cases α = 1/2 and α = 1/10. In
each case we keep α constant but apply the rule of Remark 3.1-(iv) (truncation/forced selection)
to select exactly n = 50 000 and n = 10 000 design points, respectively. For α = 1/2, we have
a ' 1.0280, b ' 0.2482, and Φ∗α = Φ(M∗

α) = maxM∈M(α) Φ(M) ' 1.6354, C1−α(M∗
α) ' −1.2470;

when α = 1/10, we have a ' 1.8842, b ' 0.0507, and Φ∗α ' 3.2963, C1−α(M∗
α) ' −0.8513. The

�gures below present results obtained for one simulation (i.e., one random set XN ), but they are
rather typical in the sense that di�erent XN yield similar behaviors.

Figure 1 shows a smoothed histogram (Epanechnikov kernel, bandwidth equal to 1/1000 of
the range of the Xi in XN ) of the design points selected by Algorithm 1, for α = 1/2 (left) and
α = 1/10 (right). There is good adequation with the theoretical optimal density, which corresponds
to a truncation of the normal density at values indicated by the vertical dotted lines.

Figure 2 presents the evolution of Φ(Mnk) as a function of k, together with the optimal value
Φ∗α (horizontal line), for the two choices of α considered (the �gures show some similarity on the
two panels since the same set XN is used for both). Convergence of Φ(Mnk) to Φ∗α is fast in both
cases; the presence of steps on the evolution of Φ(Mnk), more visible on the right panel, is due to
long subsequences of samples consecutively rejected.

Figure 3 shows the behavior of the �nal directional derivative FΦ[MnN ,M (x)], after obser-

vation of all Xi in XN , together with the value of its estimated quantile ĈN (horizontal solid
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Figure 1: Smoothed histogram of the Xi selected by Algorithm 1; the vertical dotted lines indicate the
positions of −a,−b, b, a that de�ne the set X ∗

α = (−∞,−a] ∪ [−b, b] ∪ [a,∞) where ξ∗α = µ/α; N = 100 000;
Left: α = 1/2 (n = 50 000); Right: α = 1/10 (n = 10 000).

Figure 2: Evolution of Φ(Mnk
) obtained with Algorithm 1 as a function of k (log scale); the horizontal line

indicates the optimal value Φ∗
α; N = 100 000; Left: α = 1/2 (n = 50 000); Right: α = 1/10 (n = 10 000).

line). The theoretical values C1−α(M∗
α) (horizontal dashed line) and the values −a,−b, b, a where

FΦ[M∗
α,M (x)] = C1−α(M∗

α) (vertical dashed lines) are also shown (ĈN and C1−α(M∗
α) are in-

distinguishable on the right panel). Although the �gure indicates that FΦ[MnN ,M (x)] di�ers
signi�cantly from FΦ[M∗

α,M (x)], they are close enough to allow selection of the most informative
Xi, as illustrated by Figures 1 and 2.

Figure 4 shows ‖Mnk−M∗
α‖ (Frobenius norm) as a function of k (log scale), averaged over 1 000

independent repetitions with random samples XN of size N = 10 000, for α = 1/2. It suggests that
‖Mnk −M∗

α‖ = O(1/
√
k) for large k, although the conditions in (Konda and Tsitsiklis, 2004) are

not satis�ed since the scheme we consider is nonlinear. This convergence rate is signi�cantly faster
than what is suggested by Dalal et al. (2018). These investigations require further developments
and will be pursued elsewhere.
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Figure 3: FΦ[MnN
,M (x)] = trace[M−1

nN
M (x)] − 3 as a function of x (solid line); the horizontal solid

(respectively, dashed) line indicates the value of ĈN (respectively, C1−α(M∗
α)), the vertical lines indicate

the positions of −a,−b, b, a where FΦ[M∗
α,M (x)] = C1−α(M∗

α); N = 100 000; Left: α = 1/2 (n = 50 000);
Right: α = 1/10 (n = 10 000).

Figure 4: Evolution of log10 ‖Mnk
−M∗

α‖ as a function of log10 k (values averaged over 1 000 random
samples XN ); the dashed line has slope −1/2 (α = 1/2: n = 5 000, N = 10 000).

4.2 Example 2: multilinear regression with normal independent variables

Take M (X) = XX>, with X = (x1, x2, . . . , xd)
>, d > 1, and Φ(M) = log det(M), the vectors Xi

being i.i.d. N (0, Id) (so that p = d). Denote by ϕ(x) = (2π)−d/2 exp(−‖x‖2/2) the probability
density of X. For symmetry reasons, for any α ∈ (0, 1) the optimal (normalized) information matrix
is M∗

α = ρα Id, with Φ(M∗
α) = d log ρα, where

ρα =
1

α

∫
‖x‖≥Rα

x2
1 ϕ(x) dx =

1

dα

∫
‖x‖≥Rα

‖x‖2 ϕ(x) dx

=
1

dα

∫
r≥Rα

r2 1

(2π)d/2
exp(−r2/2)Sd(1) rd−1 dr ,
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with Sd(1) = 2πd/2/Γ(d/2), the surface area of the d-dimensional unit sphere, and Rα the solution
of

α =

∫
‖x‖≥Rα

ϕ(x) dx =

∫
r≥Rα

1

(2π)d/2
exp(−r2/2)Sd(1) rd−1 dr .

Since FΦ[M,M (X)] = trace[M−1M (X)]− d, we get FΦ[M∗
α,M (X)] = ‖x‖2/ρα− d, C1−α(M∗

α) =
R2
α/ρα−d ≤ 0, and Φ∗α = Φ(M∗

α) is di�erentiable with respect to α, with dΦ∗α/dα = C1−α(M∗
α)/α;

see Pronzato (2004, Th. 4). Closed-form expressions are available for d = 2, with Rα =
√
−2 logα

and ρα = 1 − logα; Rα and ρα can easily be computed numerically for any d > 2 and α ∈ (0, 1).
One may notice that, from a result by Harman (2004), the design matrix M∗

α is optimal for any
other orthogonally invariant criterion Φ.

For the linear model with intercept, such that M ′(X) = f(X)f>(X) with f(X) = [1, X>]>,
the optimal matrix is

M′∗
α =

(
1 0>

0 M∗
α

)
with M∗

α = ρα Id the optimal matrix for the model without intercept. The same design is thus
optimal for both models. Also, when the Xi are i.i.d. N (0,Σ), the optimal matrix M∗

Σ,α for

Φ(·) = log det(·) simply equals Σ1/2 M∗
α Σ1/2.

Again, we present results obtained for one random set XN . Figure 5 shows the evolution of
Φ(Mnk) as a function of k for d = 3 with α = 1/1 000 and N = 100 000 when we want we select
exactly 100 points: the blue dashed-line is when we combine truncation and forced selection; the
red solid line is when we adapt α according to αk = (n − nk)/(N − k); see Remark 3.1-(iv) �
the �nal values, for k = N , are indicated by a triangle and a star, respectively; we only show the
evolution of Φ(Mnk) for k between 10 000 and 100 000 since the curves are confounded for smaller
k (they are based on the same XN ). In the �rst case, the late forced selection of unimportant Xi

yields a signi�cant decrease of Φ(Mnk), whereas adaptation of α anticipates the need of being less
selective to reach the target number n of selected points.

Figure 5: Evolution of Φ(Mnk
) obtained with Algorithm 1 as a function of k (log scale): d = 3, N = 100 000,

exactly n = 100 points are collected using truncation/forced selection (blue dashed line and O) or adaptation
of α (red solid line and F); see Remark 3.1-(iv).
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Figure 2 has illustrated the convergence of Φ(Mnk) to Φ∗α for a �xed α as k → ∞, but in fact
what really matters is that nk tends to in�nity: indeed, Φ(Mnk) does not converge to Φ∗α if we �x
nk = n and let k tend to in�nity, so that α = n/k tends to zero (see also Section 5.1). This is
illustrated on the left panel of Figure 6, where d = 25 and, from left to right, α equals 0.5 (magenta
dotted line), 0.1, 0.05 and 0.01 (red solid line). Since the optimal value Φ∗α depends on α, here we
present the evolution with k of the D-e�ciency [det(Mnk)/ det(M∗

α)]1/p = exp[(Φ(Mnk)− Φ∗α)/d].
The right panel is for �xed α = 0.1 and varying d, with, from left to right, d = 5 (red solid line), 10,
20, 30 and 50 (cyan solid line). As one may expect, performance (slightly) deteriorates as d increases
due to the increasing variability of ZM(X), with var[ZM(X)] = var[X>MX] = 2 trace(M2).

Figure 6: Evolution of D-e�ciency of Mnk
obtained with Algorithm 1 as a function of k (log scale); the

horizontal line indicates the optimal value 1. Left: d = 25 and α = 0.5 (magenta dotted line), 0.1 (black),
0.05 (blue) and 0.01 (red solid line). Right: α = 0.1 and d = 5 (red solid line), 10 (blue), 20 (black), 30
(magenta) and 50 (cyan solid line).

4.3 Examples with ZM(x) constant on subsets of positive measure

Here we consider situations where Hµ,M is violated due to the existence of subsets of X of
positive measure on which ZM(x) is constant. The model is the same as in Section 4.2, with
X = (x1, x2, . . . , xd)

>, M (X) = XX> and Φ(M) = log det(M).

4.3.1 Example 3: µ has discrete components

This is Example 11 in (Pronzato, 2006), where d = 2, µ = (1/2)µN + (1/2)µd, with µN corre-
sponding to the normal distribution N (0, 1) and µd the discrete measure that puts weight 1/4 at
each one of the points (±1,±1). Denote by B(r) the closed ball centered at the origin 0 with radius
r, by µ[r] the measure equal to µ on its complement B(r), and let e = exp(1). The optimal matrix
is M∗

α = M(ξ∗α), with ξ∗α the probability measure de�ned by:

ξ∗α =


1
α µ[

√
−2 log(2α)] if 0 < α ≤ 1

2e ,
1
α µ[
√

2] + 1
α [α− 1/(2 e)]µd if 1

2e < α ≤ 1
2e + 1

2 ,
1
α µ[

√
−2 log(2α− 1)] if 1

2e + 1
2 < α < 1 ,
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with associated Φ-values

Φ(M∗
α) =


2 log[1− log(2α)] if 0 < α ≤ 1

2e ,
2 log

(
1 + 1

2eα

)
if 1

2e < α ≤ 1
2e + 1

2 ,

2 log
(

1− (2α−1) log(2α−1)
2α

)
if 1

2e + 1
2 < α ≤ 1 .

Figure 7 shows the evolution of Φ(Mnk) as a function of k for α = 0.5 (left) and α = 0.02
(right). Note that α < 1/(2e) in the second case, but 1/(2e) < α ≤ 1/(2e) + 1/2 in the �rst one,
so that ξ∗α is neither zero nor µ/α on the four points (±1,±1). Figure 7 shows that Algorithm 1
nevertheless behaves satisfactorily in both cases.

Figure 7: Evolution of Φ(Mnk
) obtained with Algorithm 1 as a function of k (log scale) when d = 2 and

µ = (1/2)µN + (1/2)µd with α = 0.5 (left) and α = 0.02 (right); the horizontal line indicates the optimal
value Φ∗

α.

4.3.2 Example 4: the distribution of ZM∗α(X) has discrete components

Let U [Sd(0, r)] denote the uniform probability measure on the d-dimensional sphere Sd(0, r) with
center 0 and radius r. The probability measure of the Xi is µ = (1/3)

∑3
i=1 U [Sd(0, ri)], the

mixture of distributions on three nested spheres with radii r1 > r2 > r3 > 0. The optimal bounded
measure is

ξ∗α =


U [Sd(0, r1)] if 0 < α ≤ 1

3 ,
1

3α U [Sd(0, r1)] + α−1/3
α U [Sd(0, r2)] if 1

3 < α ≤ 2
3 ,

1
3α {U [Sd(0, r1)] + U [Sd(0, r2)]}+ α−2/3

α U [Sd(0, r3)] if 2
3 < α < 1 ,

with associated Φ-values

Φ(M∗
α) =


d log(r2

1/d) if 0 < α ≤ 1
3 ,

d log
(
r2
1/3+(α−1/3)r2

2
αd

)
if 1

3 < α ≤ 2
3 ,

d log
(

(r2
1+r2

2)/3+(α−2/3)r2
3

αd

)
if 2

3 < α < 1 .

Notice that for α ∈ (0, 1/3) (respectively, α ∈ (1/3, 2/3)) ξ∗α 6= 0 and ξ∗α 6= µ/α on Sd(0, r1)
(respectively, on Sd(0, r2)) although µ is atomless.
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The left panel of Figure 8 gives the evolution with k of the D-e�ciency [det(Mnk)/ det(M∗
α)]1/p =

exp[(Φ(Mnk)−Φ∗α)/d], for α = 0.5 (red solid line) and α = 0.2 (blue dashed line) when d = 5. The
right panel shows the evolution of the ratio nk/k for those two situations, with the limiting value
α indicated by a horizontal line. Although assumption Hµ,M is violated, Algorithm 1 continues to
perform satisfactorily.

Figure 8: Left: Evolution of D-e�ciency of Mnk
obtained with Algorithm 1 as a function of k (log scale)

for α = 0.5 (red solid line) and α = 0.2 (blue dashed line); the horizontal line indicates the optimal value 1;
d = 5. Right: evolution of the ratio nk/k in the same simulations.

5 Comparison with other methods

5.1 Case n �xed with large N : comparison with an exchange method

The convergence of Φ(Mnk) to Φ∗α in Algorithm 1 relies on the fact that nk grows like O(αk) for
some α > 0; see Theorem 3.1. If the number n of points to be selected is �xed, Algorithm 1 does not
provide any performance guarantee when applied to a sequence of length N →∞ (the situation is
di�erent when p = 1 where an asymptotically optimal construction is available; see Pronzato (2001)).
In that case, a method of the exchange type may look more promising, although large values of N
entail serious di�culties. Typically, the algorithm is initialized by a n point design chosen within
XN , and at each iteration a temporarily selected Xi is replaced by a better point in XN . Fedorov's
(1972) algorithm considers all n× (N −n) possible replacements at each iteration ((N −n) instead
of N since we do not allow repetitions in the present context); its computational cost is prohibitive
for large N . The variants suggested by Cook and Nachtsheim (1980), or the DETMAX algorithm
of Mitchell (1974), still require the maximization of a function g(Xj) with respect to Xj ∈ XN at
each iteration, which remains unfeasible for very large N . Below, we consider a simpli�ed version
where all N points are examined successively, and replacement is accepted when it improves the
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current criterion value.

Algorithm 2: sequential exchange (n �xed).

1) Initialization: select X1, . . . , Xn, set k = n and X ∗
k = {X1, . . . , Xk}, compute Mn,k =

(1/k)
∑k

i=1 M (Xi) and Φ(Mn,k).

2) Iteration k + 1: collect Xk+1. If Xk+1 ∈X ∗
k , set ∆(k)(Xi∗ , Xk+1) = 0; otherwise compute

∆(k)(Xi∗ , Xk+1) = max
Xi∈X ∗k

[Φ{Mn,k + (1/n)[M (Xk+1)−M (Xi)]} − Φ(Mn,k)] .

If ∆(k)(Xi∗ , Xk+1) > 0, set X ∗
k+1 = X ∗

k \ {Xi∗} ∪Xk+1, update Mn,k into Mn,k+1 = Mn,k +
(1/n)[M (Xk+1)−M (Xi∗)], compute Φ(Mn,k+1);

otherwise, set X ∗
k+1 = X ∗

k , Mn,k+1 = Mn,k.

3) If k + 1 = N stop; otherwise, k ← k + 1, return to Step 2.

Remark 5.1. When M (x) has rank one, with M (x) = f(x)f>(x) and Φ(M) = log det(M) or
Φ(M) = det1/p(M) (D-optimal design), ∆(k)(Xi∗ , Xk+1) > 0 is equivalent to

f>(Xk+1)M−1
n,kf

>(Xk+1)− f>(Xi∗)M
−1
n,kf

>(Xi∗) + δ(k)(Xi∗ , Xk+1) > 0 , (5.1)

where

δ(k)(X,Xk+1) =
[f>(Xk+1)M−1

n,kf
>(X)]2 − [f>(Xk+1)M−1

n,kf
>(Xk+1)][f>(X)M−1

n,kf
>(X)]

n
, (5.2)

see Fedorov (1972, p. 164). As for Algorithm 1 (see Remark 3.1-(iii)), we may update M−1
n,k

instead of Mn,k to avoid matrix inversions. For large enough n, the term (5.2) is negligible and the
condition is almost f>(Xk+1)M−1

n,kf
>(Xk+1) > f>(Xi∗)M

−1
n,kf

>(Xi∗); that is, FΦ[Mn,k,M (Xk+1)] >
FΦ[Mn,k,M (Xi∗)]. This is the condition we use in the example below. It does not guarantee in
general that Φ(Mn,k+1) > Φ(Mn,k) (since δ(k)(Xi, Xk+1) ≤ 0 from Cauchy-Schwartz inequality),
but no signi�cant di�erence was observed compared with the use of the exact condition (5.1).
Algorithm 2 has complexityO(nd3N) in general (the additional factor n compared with Algorithm 1
is due to the calculation of the maximum over all Xi in X ∗

k at Step 2). /

Neither Algorithm 1 with α = n/N and Mn,k = Mnk nor Algorithm 2 ensures that Φ(Mn,N )
tends to Φ∗α = Φ(M∗

α) as N → ∞. Also, we can expect to have Φ(Mn,k) . Φ∗n/k for all k with
Algorithm 2, since under HΦ the matrix M∗

n,k corresponding to the optimal selection of n distinct
points among Xk satis�es E{Φ(M∗

n,k)} ≤ Φ∗n/k for all k ≥ n > 0; see Pronzato (2006, Lemma 3).

Example 5: n �xed and N large We consider the same situation as in Example 2 (Section 4.2),
with X = (x1, x2, . . . , xd)

>, M (X) = XX>, Φ(M) = log det(M); the Xi are i.i.d. N (0, Id), with
p = d = 3. We still take k0 = 5 p, q = 5/8, γ = 1/10 in Algorithm 1. We have E{Mnk0

} = M(µ) in
Algorithm 1, and, when n is large enough, Mn,n 'M(µ) at Step 1 of Algorithm 2, with M(µ) = Id
and therefore Φ(Mn,n) ' 0.

We consider two values of n, n = 100 and n = 1 000, with α = 10−3 (that is, with N = 100 000
and N = 1 000 000, respectively). Figure 9 shows the evolutions of Φ(Mnk) (k ≥ k0, Algorithm 1,
red solid line) and Φ(Mn,k) (k ≥ n, Algorithm 2, blue dashed line) as functions of k in those two
cases (n = 100, left; n = 1 000, right). In order to select n points exactly, adaptation of α is
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used in Algorithm 1, see Remark 3.1-(iv). The value of n is too small for Φ(Mnk) to approach
Φ∗α (indicated by the horizontal black line) in the �rst case, whereas n = 1 000 is large enough on
the right panel; Algorithm 2 performs similarly in both cases and is superior to Algorithm 1 for
n = 100; the magenta curve with triangles shows Φ∗n/k, k ≥ n, with Φ∗n/k & Φ(Mn,k) for all k, as
expected. /

In case it is possible to store the N points Xi, we can replay both algorithms on the same data
set in order to increase the �nal value of Φ for the sample selected. For Algorithm 2, we can simply

run the algorithm again on a set X
(2)
N � starting with k = 1 at Step 1 since n points have already

been selected � with X
(2)
N = XN or corresponding to a random permutation of it. Series of runs on

sets X
(2)
N ,X

(3)
N , . . . can be concatenated: the fact that Φ can only increase implies convergence for

an in�nite sequence of runs, but generally to a local maximum only; see the discussion in (Cook and
Nachtsheim, 1980, Sect. 2.4). When applied to Example 5, this method was not able to improve the
design obtained in the �rst run of Algorithm 2, with a similar behavior with or without permutations

in the construction of the X
(i)
N .

Algorithm 1 requires a more subtle modi�cation since points are selected without replacement.

First, we run Algorithm 1 with α �xed at n/N on a set XmN = XN ∪X
(2)
N ∪ · · · ∪X

(m)
N , where

the replications X
(i)
N are all identical to XN or correspond to random permutations of it. The

values of MnmN and ĈmN are then used in a second stage, where the N points X1, . . . , XN in XN

are inspected sequentially: starting at k = 0 and nk = 0, a new point Xk+1 is selected if nk < n
and FΦ[MnmN ,M (Xk+1)] > ĈmN (or if n − nk ≥ N − k + 1, see Remark 3.1-(iv)). The set XN

is thus used m + 1 times in total. The idea is that for m large enough, we can expect MnmN to

be close to M∗
α and ĈmN to be close to the true quantile C1−α(M∗

α), whereas the optimal rule for
selection is FΦ[M∗

α,M (Xk+1)] > C1−α(M∗
α). Note that the quantile of the directional derivative

is not estimated in this second phase, and updating of Mnk is only used to follow the evolution of
Φ(Mnk) on plots.

Example 5 (continued) The black-dotted line in Figure 9 shows the evolution of Φ(Mnk) as a
function of k in the second phase (for k large enough to have Φ(Mnk) > 0): we have taken m = 9
for n = 100 (left), so that (m + 1)N = 1 000 000 points are used in total (but 10 times the same),
and m = 1 for n = 1 000 (right), with 2 000 000 points used (twice the same). Figure 10 shows
the evolution of Ĉk for k = 1, . . . ,mN , for n = 100, N = 100 000, m = 9 (left), and n = 1 000,
N = 1 000 000, m = 1 (right); the horizontal black line indicates the value of C1−α(M∗

α). The left
panel indicates that n = 100 is too small to estimate C1−α(M∗

α) correctly with Algorithm 1 (note
that m = 4 would have been enough), which is consistent with the behavior of Φ(Mnk) observed

in Figure 9-left (red solid line). The right panel of Figure 10 shows that Ĉk has converged before
inspection of the 1 000 000 points in XN , which explains the satisfactory behavior of Algorithm 1
in Figure 9-right. Notice the similarity between the left and right panels of Figure 10 due to the

fact that the same value α = 10−3 is used in both. Here the X
(i)
N are constructed by random

permutations of the points in XN , but the behavior is similar without.

5.2 Comparison with IBOSS

IBOSS (Information-Based Optimal Subdata Selection, Wang et al. (2019)) is a selection procedure
motivated by D-optimality developed in the context of multilinear regression with intercept, where
M (X) = f(X)f>(X) with f(X) = [1, X>]>. All points Xi in XN are processed simultaneously:
the d coordinates of the Xi are examined successively; for each k = 1, . . . , d, the r points with largest
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Figure 9: Evolutions of Φ(Mnk
) (k ≥ k0, Algorithm 1, red solid line) Φ(Mn,k) (k ≥ n, Algorithm 2,

blue dashed line), and Φ∗
n/k (magenta curve with triangles) as functions of k; the horizontal black line

corresponds to Φ∗
α; the black dotted curve shows the evolution of Φ(Mnk

) as a function of k when the

selection is based on FΦ[MnmN
,M (Xk+1)] > ĈmN , with MnmN

and ĈmN obtained with Algorithm 1

applied to XmN = XN ∪ X
(2)
N ∪ · · · ∪ X

(m)
N . Left: n = 100, N = 100 000, m = 9; Right: n = 1 000,

N = 1 000 000, m = 1.

Figure 10: Evolution of Ĉk in Algorithm 1 when applied to XmN = XN ∪X
(2)
N ∪· · ·∪X

(m)
N , the horizontal

black line corresponds to C1−α(M∗
α). Left: n = 100, N = 100 000, m = 9; Right: n = 1 000, N = 1 000 000,

m = 1.

k-th coordinate and the r points having smallest k-th coordinate are selected (and removed from
XN ), where r = n/(2d), possibly with suitable rounding, when exactly n points have to be selected.
The design selected is sensitive to the order in which coordinates are inspected. The necessity to
�nd the largest or smallest coordinate values yields a complexity of O(dN); parallelization with
simultaneous sorting of each coordinate is possible. Like for any design selection algorithm, the
matrix Mn,N obtained with IBOSS satis�es E{Φ(Mn,N )} ≤ Φ∗n/N for all N ≥ n > 0 (Pronzato,

2006, Lemma 3). The asymptotic performance of IBOSS (the behavior of Mn,N and M−1
n,N ) for n

�xed and N tending to in�nity is investigated in (Wang et al., 2019) for X following a multivariate
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normal or lognormal distribution. Next property concerns the situation where n is a fraction of N ,
with N →∞ and the components of X are independent.

Theorem 5.1. Suppose that the Xi are i.i.d. with µ satisfying Hµ and, moreover, that their com-

ponents {Xi}k are independent, with ϕk the p.d.f. of {X1}k for k = 1, . . . , d. Suppose, without any
loss of generality, that coordinates are inspected in the order 1, . . . , d. Then, for any α ∈ (0, 1], the
matrix Vn,N = (1/n)

∑n
j=1XijX

>
ij

corresponding to the n points Xij selected by IBOSS satis�es

Vn,N → VIBOSS
α a.s. when n = bαNc and N →∞, with

{VIBOSS
α }k,k =

1

α

[
E[{X}2k]− πk sk(α)

]
, k = 1 . . . , d , (5.3)

{VIBOSS
α }k,k′ =

1

α

[
E[{X}k]E[{X}′k]−

πk πk′

1− α
mk(α)mk′(α)

]
, k 6= k′ , (5.4)

where E[{X}k] =
∫∞
−∞ xϕk(x) dx, E[{X}2k] =

∫∞
−∞ x

2 ϕk(x) dx, πk = (1−α)[d− (k− 1)α]/(d− kα),

sk(α) =

∫ qk

(
1− α

2[d−(k−1)α]

)
qk

(
α

2[d−(k−1)α]

) x2 ϕk(x) dx and mk(α) =

∫ qk

(
1− α

2[d−(k−1)α]

)
qk

(
α

2[d−(k−1)α]

) xϕk(x) dx ,

with qk(·) the quantile function for ϕk, satisfying
∫ qk(t)
−∞ ϕk(u) du = t for any t ∈ (0, 1].

Proof. By construction, IBOSS asymptotically �rst selects all points such that {X}1 does not
belong to I1 = (q1[α/(2d)], q1[1 − α/(2d)]), then, among remaining points, all those such that
{X}2 6∈ I2 = (q2[α/(2d(1 − α/d))], q1[1 − α/(2d(1 − α/d))]). By induction, all points such that
{X}k 6∈ Ik = (qk[α/(2[d−(k−1)α])], qk[1−α/(2[d−(k−1)α])]) are selected at stage k ∈ {3, . . . , d}.
Denote x = (x1, . . . , xd)

>. We have

{VIBOSS
α }k,k =

1

α

∫
X \

∏d
`=1 I`

x2
k ϕ(x) dx =

1

α

[∫
X
x2
k ϕ(x) dx−

∫
∏d
`=1 I`

x2
k ϕ(x) dx

]

=
1

α

E[{X}2k]−

∏
`6=k

Pr{{X}` ∈ I`}

 ∫
Ik
x2 ϕk(x) dx

 .
Direct calculation gives Pr{X ∈

∏d
k=1 Ik} = 1− α and∏

` 6=k
Pr{{X}` ∈ I`} =

1− α
Pr{{X}k ∈ Ik}

=
1− α

1− α
d−(k−1)α

= πk ,

which proves (5.3). Similarly,

{VIBOSS
α }k,k′ =

1

α

∫
X \

∏d
`=1 I`

xk xk′ ϕ(x) dx =
1

α

[∫
X
xk xk′ ϕ(x) dx−

∫
∏d
`=1 I`

xk xk′ ϕ(x) dx

]

=
1

α

E[{X}k]E[{X}′k]−

 ∏
` 6=k, 6̀=k′

Pr{{X}` ∈ I`}

 mk(α)mk′(α)

 ,
with ∏

` 6=k, 6̀=k′
Pr{{X}` ∈ I`} =

1− α
Pr{{X}k ∈ Ik} Pr{{X}k′ ∈ Ik′}

=
πk πk′

1− α
,
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which proves (5.4) and concludes the proof.

A key di�erence between IBOSS and Algorithm 1 is that IBOSS is nonsequential and therefore
cannot be used in the streaming setting. Also, IBOSS is motivated by D-optimal design and may
not perform well for other criteria, whereas Algorithm 1 converges to the optimal solution when
n = bαNc and N → ∞ for any criterion satisfying HΦ. Moreover, IBOSS strongly relies on the
assumption that M (X) = f(X)f>(X) with f(X) = [1, X>]> and, as the next example illustrates,
it can perform poorly in other situations, in particular when the Xi are functionally dependent.

Example 6: quadratic regression on [0, 1] Take f(X) = [X, X2]>, with X uniformly dis-
tributed in [0, 1] and Φ(M) = log det(M). For α ≤ α∗ ' 0.754160, the optimal measure ξ∗α equals
µ/α on [1/2−a, 1/2+b]∪[1−(α−a−b), 1] for some a > b (which are determined by the two equations
FΦ[M∗

α,M (1/2−a)] = FΦ[M∗
α,M (1/2+ b)] = FΦ[M∗

α,M (1− (α−a− b))]). For α ≥ α∗, ξ∗α = µ/α
on [1− α, 1]. When n = bαNc when N →∞, the matrix MIBOSS

n,N obtained with IBOSS applied to

the points f(Xi) converges to MIBOSS
α = M(ξIBOSS

α ), with ξIBOSS
α = µ/α on [0, α/2] ∪ [1 − α/2, 1].

The left panel of Figure 11 shows det(M∗
α) (red solid line) and det(MIBOSS

α ) (blue dotted line) as
functions of α ∈ [0, 1]. We have det(MIBOSS

α ) = (1/960)α2(α4 +25−40α+26α2−8α3), which tends
to 0 as α→ 0. /

Next examples show that IBOSS performs more comparably to Algorithm 1 for multilinear
regression with intercept, where M (X) = f(X)f>(X) with f(X) = [1, X>]>. Its performance may
nevertheless be signi�cantly poorer than that of Algorithm 1.

Example 7: multilinear regression with intercept, Φ(M) = log det(M)

X is uniformly distributed in [−1, 1]2. Direct calculation shows that, for any α ∈ [0, 1],
the optimal measure ξ∗α equals µ/α on [−1, 1]2 \B2(0, Rα), with B2(0, r) the open ball centered at
the origin with radius r. Here, Rα = 2

√
(1− α)/π when α ≥ 1 − π/4, and Rα > 1 is solution of

1 + πR2/4−
√
R2 − 1−R2 arcsin(1/R) = α when α ∈ (1− π/4, 1]. The associated optimal matrix

is diagonal, M∗
α = diag{1, ρα, ρα}, with

ρα =

{
1

2α [2/3− 2(1− α)2/π] if 0 ≤ α ≤ 1− π/4 ,
1

2α

[
2/3 + πR4

α/8− (R4
α/2) arcsin(1/Rα)−

√
R2
α − 1 (R2

α + 2)/6
]

if 1− π/4 < α ≤ 1 .

Extension to d > 2 is possible but involves complicated calculations.
When n = bαNc and N →∞, the matrix MIBOSS

n,N obtained with IBOSS converges to MIBOSS
α =

M(ξIBOSS
α ) when n = bαNc and N →∞, with ξIBOSS

α = µ/α on [−1, 1]2 \ ([−1 + a, 1− a]× [−1 +
b, 1 − b]), with a = α/2 and b = α/(1 − α) ≥ a. The matrix MIBOSS

α is diagonal, MIBOSS
α =

diag{1, Dα,1, Dα,2}, where VIBOSS
α = diag{Dα,1, Dα,2} is the matrix in Theorem 5.1 with Dα,1 =

(8 − 5α + α2)/12 and Dα,2 = (8 − 11α + 4α2)/[3(2 − α)2]. The right panel of Figure 11 shows
det(M∗

α) (red solid line) and det(MIBOSS
α ) (blue dashed line) as functions of α ∈ [0, 1]. Note that

det(M∗
α)→ 1 whereas det(MIBOSS

α )→ 4/9 when α→ 0. The problem is due to selection by IBOSS
of points having one coordinate in the central part of the interval. /

X is normally distributed N (0, Id). The expression of the optimal matrix M∗
α has been

derived in Section 4.2; the asymptotic value for N →∞ of the matrix MbαNc,N is

MIBOSS
α =

(
1 0>

0 VIBOSS
α

)
,
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Figure 11: det(M∗
α) (red solid line) and det(MIBOSS

α ) (blue dotted line) as functions of α ∈ [0, 1]. Left:
quadratic regression on [0, 1]; Right: multilinear regression with intercept on [−1, 1]2.

where the expression of VIBOSS
α (here a diagonal matrix) is given in Theorem 5.1. Figure 12 shows

the D-e�ciency det1/(d+1)(MIBOSS
α )/det1/(d+1)(M∗

α) as a function of α ∈ (0, 1] for d = 3 (left)
and d = 25 (right), showing that the performance of IBOSS deteriorates as d increases. We also
performed series of simulations for d = 25, with 100 independent repetitions of selections of n =
bαNc points within XN (N = 10 000) based on IBOSS and Algorithm 1. Due to the small value of

N , we apply Algorithm 1 to replications XmN = XN ∪X
(2)
N ∪ · · · ∪X

(m)
N of XN , see Section 5.1,

with m = 99 for α < 0.1, m = 9 for 0.1 ≤ α < 0.5 and m = 4 for α ≥ 0.5. The colored areas
on Figure 12 show the variability range for e�ciency, corresponding to the empirical mean ± 2
standard deviations obtained for the 100 repetitions, for IBOSS (green, bottom) and Algorithm 1
(magenta, top); note that variability decreases as n = bαNc increases. The approximation of Mn,N

obtained with IBOSS by the asymptotic matrix MIBOSS
α is quite accurate although N is rather

small; Algorithm 1 (incorporating m repetitions of XN ) performs signi�cantly better than IBOSS
although the setting is particularly favourable to IBOSS � it is signi�cantly slower than IBOSS,
however, when m is large.

6 Conclusions and further developments

We have proposed a sequential subsampling method for experimental design (Algorithm 1) that
converges to the optimal solution when the length of the sequence tends to in�nity and a �xed
proportion of design points is selected. Since the method only needs to keep the memory of the
current information matrix associated with the design problem (or its inverse), and to update a pair
of scalar variables (an estimated quantile, and an estimate of the p.d.f. value at the quantile), it can
be applied to sequences of arbitrary length and is suitable for data streaming.

We have not tried to optimize the choice of initialization and tuning parameters in Algorithm 1.
Although it does not seem critical (the same tuning has been used in all the examples presented),
there is certainly an opportunity to improve, in particular concerning β0 and Ĉk0 (for instance,
using the information that C∗1−α ≤ 0 whereas Ĉk0 > 0 for small α with the initialization we use).

We have only considered the case of linear models, where the information matrix does not de-
pend on unknown parameters (equivalent to local optimum design in case of a nonlinear model),
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Figure 12: D-e�ciency of IBOSS (blue solid line) as a function of α ∈ (0, 1] for d = 3 (left) and d = 25
(right). The enveloppes on the right panel show the empirical mean e�ciency ± 2 standard deviations
obtained for 100 independent repetitions with n = bαNc and N = 10 000 for IBOSS (green, bottom) and
Algorithm 1 (magenta, top).

but extension to online parameter estimation in a nonlinear model with M (x) = M (x,θ) would
not require important modi�cations. Denote by θ̂

n
the estimated value of the parameters af-

ter observation at the n design points selected, Xi1 , . . . , Xin , say. Then, we can use Mnk0
=

(1/k0)
∑k0

i=1 M (Xi, θ̂
k0

) at Step 1 of Algorithm 1, and Mnk+1 given by (3.5) can be replaced by

Mnk+1 = [1/(nk + 1)] [
∑nk

j=1 M (Xij , θ̂
nk

) + M (Xk+1, θ̂
nk

)] at Step 2. Recursive estimation can be
used for k > k0 to reduce computational cost. For instance for maximum likelihood estimation,
with the notation of Section 1, we can update θ̂

nk
as

θ̂
nk+1

= θ̂
nk

+
1

nk + 1
M−1

nk+1

∂ logϕXk+1,θ(Yk+1)

∂θ

∣∣∣∣
θ=θ̂

nk

when Xk+1 is selected; see Ljung and Söderström (1983); Tsypkin (1983). A further simpli�cation
would be to update Mnk as Mnk+1

= Mnk + [1/(nk + 1)] [M (Xk+1, θ̂
nk

)−Mnk ]. When the Xi are

i.i.d. with µ satisfying Hµ, the strong consistency of θ̂
nk

holds with such recursive schemes under
rather general conditions when all Xi are selected. Showing that this remains true when only a
proportion α is selected by Algorithm 1 requires technical developments outside the scope of this
paper, but we anticipate that Mnk →M∗

α,θ
a.s., with M∗

α,θ
the optimal matrix for the true value

θ of the model parameters.
Algorithm 1 can be viewed as an adaptive version of the treatment allocation method presented

in (Metelkina and Pronzato, 2017): consider the selection or rejection of Xi as the allocation of indi-
vidual i to treatment 1 (selection) or 2 (rejection), with respective contributions M1(Xi) = M (Xi)
or M2(Xi) = 0 to the collection of information; count a cost of one for allocation to treatment
1 and zero for rejection. Then, the doubly-adaptive sequential allocation (4.6) of Metelkina and
Pronzato (2017) that optimizes a compromise between information and cost exactly coincides with
Algorithm 1 where Ĉk is frozen to a �xed C, i.e., without Step 3. In that sense, the two-time-scale
stochastic approximation procedure of Algorithm 1 opens the way to the development of adap-
tive treatment allocation procedures where the proportion of individuals allocated to the poorest
treatment could be adjusted online to a given target.
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Finally, the designs obtained with the proposed thinning procedure are model-based: when
the model is wrong, ξ∗α is no longer optimal for the true model. Model-robustness issues are not
considered in the paper and would require speci�c developments, following for instance the approach
in (Wiens, 2005; Nie et al., 2018).

Appendix

A Maximum of Φ(Mnk)

The property below is stated without proof in (Pronzato, 2006). We provide here a formal proof
based on results on conditional value-at-risk by Rockafellar and Uryasev (2000) and P�ug (2000).

Lemma A.1. Suppose that nk/k → α as k →∞. Then, under HΦ and HM , for any choice of nk
points Xi among k points i.i.d. with µ, we have lim supk→∞Φ(Mnk,k) ≤ Φ(M∗

α) a.s., where M∗
α

maximizes Φ(M) with respect to M ∈M(α).

Proof. Denote by M∗
nk,k

the matrix that corresponds to choosing nk distinct candidates that max-
imize Φ(Mnk,k). The concavity of Φ implies

Φ(M∗
nk,k

) ≤ Φ(M∗
α) + trace[∇Φ(M∗

α)(M∗
nk,k
−M∗

α)] . (A1)

The rest of the proof consists in deriving an upper bound on the second term on the right-hand side
of (A1).

Denote zi = trace[∇Φ(M∗
α)M (Xi)] for all i = 1, . . . , k and let the zi:k denote the version sorted

by decreasing values. Since Φ is increasing for Loewner ordering, Φ(M) ≤ Φ(M + zz>) for any
M ∈M≥ and any z ∈ Rp, and concavity implies Φ(M + zz>) ≤ Φ(M) + z>∇Φ(M)z, showing that
∇Φ(M) ∈M≥. Therefore, zi:k ≥ 0 for all i.

First, we may notice that trace[∇Φ(M∗
α)M∗

nk,k
] ≤ (1/nk)

∑nk
i=1 zi:k and that

trace[∇Φ(M∗
α)M∗

α] =
1

α

∫
X

I{trace[∇Φ(M∗α)M (x)]≥c1−α} trace[∇Φ(M∗
α)M (x)]µ(dx)

with c1−α ≥ 0 and such that
∫
X I{trace[∇Φ(M∗α)M (x)]≥c1−α} µ(dx) = α; see (2.2).

Following Rockafellar and Uryasev (2000); P�ug (2000), we then de�ne the functions g(x;β, a) =
a+(1/β) [trace[∇Φ(M∗

β)M (x)−a]+, x ∈X , β ∈ (0, 1), a ∈ R. We can then write, for any β ∈ (0, 1),

trace[∇Φ(M∗
β)M∗

β] = E{g(X;β, c1−β)} = inf
a
E{g(X;β, a)} ≥ c1−β , (A2)

and

1

nk

nk∑
i=1

zi:k = Eµk{g(X;αk, znk:k)} = inf
a
Eµk{g(X;αk, a)} ,

where αk = nk/k ∈ (α/2, 1] for all k larger than some k1 and where Eµk{·} denotes expectation for

the empirical measure µk = (1/k)
∑k

i=1 δXi .

Next, we construct an upper bound on znk:k. For k > k1, the matrix Mk = (1/k)
∑k

i=1 M (Xi)
satis�es

trace[∇Φ(M∗
α)Mk] = (1/k)

k∑
i=1

zi:k ≥ (nk/k) znk:k > (α/2) znk:k . (A3)
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Now, M∗
α = M(ξ∗α) with ξ∗α = µ/α on a set X ∗

α ⊂ X and ξ∗α = 0 elsewhere, and µ(X ∗
α ) =

α ξ∗α(X ∗
α ) = α ξ∗α(X ) = α. HM -(ii) then implies that λmin(M∗

α) = (1/α)λmin[
∫
X ∗α

M (x)µ(dx)] >

`α/α, and HΦ implies that ‖∇Φ(M∗
α)‖ < A(`α/α) < ∞. Therefore trace[∇Φ(M∗

α)M(µ)] < Aα =
A(`α/α)

√
pB from HM -(i). Since trace[∇Φ(M∗

α)Mk] tends to trace[∇Φ(M∗
α)M(µ)] a.s. as k →∞,

(A3) implies that there exists a.s. k2 such that, for all k > k2, znk:k < Aα/(4α).
To summarize, (A1) implies

Φ(M∗
nk,k

) ≤ Φ(M∗
α) + Eµk{g(X;αk, znk:k)} − E{g(X;α, c1−α)}

≤ Φ(M∗
α) + |Eµk{g(X;αk, znk:k)} − E{g(X;αk, c1−αk)}|

+
∣∣trace[∇Φ(M∗

αk
)M∗

αk
]− trace[∇Φ(M∗

α)M∗
α]
∣∣ .

The last term tends to zero as k tends to in�nity, due to (A2) and the continuity of conditional
value-at-risk; see (Rockafellar and Uryasev, 2002, Prop. 13). Since c1−αk ≤ trace[∇Φ(M∗

αk
)M∗

αk
],

see (A2), and αk → α, for all k large enough we have c1−αk ≤ 2 trace[∇Φ(M∗
α)M∗

α]. Denote
ā = max{Aα/(4α), 2 trace[∇Φ(M∗

α)M∗
α]}. The second term can then be rewritten as

|Eµk{g(X;αk, znk:k)} − E{g(X;αk, c1−αk)}| =

∣∣∣∣ inf
a∈[0,ā]

Eµk{g(X;αk, a)} − inf
a∈[0,ā]

E{g(X;αk, a)}
∣∣∣∣

≤ max
a∈[0,ā]

|Eµk{g(X;αk, a)} − E{g(X;αk, a)}| .

The functions g(·; t, a) with t ∈ (α/2, 1], a ∈ [0, ā], form a Glivenko-Cantelli class; see (van der
Vaart, 1998, p. 271). It implies that maxa∈[0,ā] |Eµk{g(X;αk, a)} − E{g(X;αk, a)}| → 0 a.s., which
concludes the proof.

The class of functions g(·; t, a) is in fact Donsker (van der Vaart, 1998, p. 271). The strict
concavity of Φ(·) implies that optimal matrices are unique, and in complement of Lemma A.1 we
get ‖M∗

bαkc,k −M∗
α‖ = Op(1/

√
k). Note that when an optimal bounded design measure ξ∗α is

known, a selection procedure such that nk/k → α and Φ(Mnk,k)→ Φ(M∗
α) a.s. is straightforwardly

available: simply select the points that belong to the set X ∗
α on which ξ∗α = µ/α.

B Non degeneracy of Mnk

To invoke Hµ,M in order to ensure the existence of a density ϕMnk
having the required properties for

all k (which is essential for the convergence of Algorithm 1, see Theorem 3.1), we need to guarantee
that Mnk ∈M≥`,L for all k, for some ` and L. This is the object of the following lemma.

Lemma B.1. Under HM , when ε1 > 0 in Algorithm 1, nk+1/k > ε1 for all k and there exists a.s.

` > 0 and L <∞ such that Mnk ∈M≥`,L for all k > k0.

Proof. Since the �rst k0 points are selected, we have nk/k = 1 > ε1 for k ≤ k0. Let k∗ be the
�rst k for which nk/k < ε1. It implies that nk∗ = nk∗−1 > (k∗ − 1) ε1, and (3.4) implies that
nk∗+1 = nk∗ + 1. Therefore, nk∗+1/k∗ > ε1 + (1− ε1)/k∗ > ε1, and nk/(k − 1) > ε1 for all k > 1.

If the nk points were chosen randomly, nk > (k − 1) ε1 would be enough to obtain that, from
HM , λmin(Mnk) > `ε1/2 and λmax(Mnk) <

√
B/2 for all k larger than some k1. However, here the

situation is more complicated since points are accepted or rejected according to a sequential decision
rule, and a more sophisticated argumentation is required. An expedite solution is to consider the
worst possible choices of nk points, that yield the smallest value of λmin(Mnk) and largest value of
λmax(Mnk). This approach is used in Lemma B.2 presented below, which permits to conclude the
proof.
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Lemma B.2. Under HM , any matrix Mnk obtained by choosing nk points out of k indepen-

dently distributed with µ and such that nk/k > ε > 0 satis�es lim infk→∞ λmin(Mnk) > ` and

lim supk→∞ λmax(Mnk) < L a.s. for some ` > 0 and L <∞.

Proof. We �rst construct a lower bound on lim infk→∞ λmin(Mnk). Consider the criterion Φ+
∞(M) =

λmin(M), and denote by M∗
nk,k

the nk-point design matrix that minimizes Φ+
∞ over the design

space formed by k points Xi i.i.d. with µ. We can write M∗
nk,k

= (1/nk)
∑nk

i=1 M (Xki), where

the ki correspond to the indices of positive ui in the minimization of f(u) = Φ+
∞[
∑k

i=1 ui M (Xi)]
with respect to u = (u1, . . . , uk) under the constraints ui ∈ {0, 1} for all i and

∑
i ui = nk.

Obviously, any matrix Mnk obtained by choosing nk distinct points Xi among X1, . . . , Xk satis�es
λmin(Mnk) ≥ λmin(M∗

nk,k
).

For any M ∈ M≥, denote U (M) = {u ∈ Rp : ‖u‖ = 1 , Mu = λmin(M)u}. Then, for
any u ∈ U (M∗

nk,k
), u>M∗

nk,k
u = λmin(M∗

nk,k
) = minv∈Rp: ‖v‖=1 v>M∗

nk,k
v = (1/nk)

∑nk
i=1 zi:k(u),

where the zi:k(u) correspond to the values of u>M (Xi)u sorted by increasing order for i = 1, . . . , k.
For any m ∈ {1, . . . , nk − 1}, we thus have

λmin(M∗
nk,k

) ≥ 1

m

m∑
i=1

zi:k(u) ≥ λmin(M∗
m,k) ,

showing that the worst situation corresponds to the smallest admissible nk; that is, we only have
to consider the case when nk/k → ε as k →∞.

Since Φ+
∞ is concave, for any M′ ∈M≥ we have

λmin(M′) ≤ λmin(M∗
nk,k

) + FΦ+
∞

(M∗
nk,k

,M′) , (B1)

where FΦ+
∞

(M,M′) = minu∈U (M) u>(M′ −M)u is the directional derivative of Φ+
∞ at M in the

direction M′.
For any α ∈ (0, 1) and any ξα ≤ µ/α, there exists a set Xα ⊂X such that ξα ≥ (1−α)µ on Xα

and µ(Xα) ≥ α2. Indeed, any set Z on which ξα < (1−α)µ is such that ξα(Z ) < (1−α)µ(Z ) ≤
(1− α); therefore, taking Xα = X \Z , we get µ(Xα) ≥ α ξα(Xα) ≥ α2. Denote αk = nk/k, with
αk > ε and αk → ε as k → ∞, and take any M′ = M(ξαk) ∈ M(αk). Applying HM -(ii) to the set
Xαk de�ned above, we get

λmin(M′) = λmin

(∫
X

M (x) ξαk(dx)

)
≥ λmin

(∫
Xαk

M (x) ξαk(dx)

)

≥ (1− αk)λmin

(∫
Xαk

M (x)µ(dx)

)
> (1− αk) `α2

k
.

For k larger than some k1 we have αk ∈ (ε, 2ε), and therefore λmin(M′) > cε = (1− 2ε) `ε2 > 0. The
inequality (B1) thus gives, for k > k1,

cε < λmin(M∗
nk,k

) + min
u∈U (M∗nk,k

)
min

M′∈M(αk)
u>(M′ −M∗

nk,k
)u . (B2)

The rest of the proof follows from results on conditional value-at-risk by Rockafellar and Uryasev
(2000) and P�ug (2000). For a �xed u ∈ Rp, u 6= 0, and α ∈ (0, 1), we have

min
M′∈M(α)

u>M′u =
1

α

∫
X

I{u>M (x)u≤aα(u)} [u>M (x)u]µ(dx) ,
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where the α-quantile aα(u) satis�es
∫
X I{u>M (x)u≤aα(u)} µ(dx) = α. For any a ∈ R and u ∈ Rp,

denote

h(x;α, a,u) = a− 1

α
[a− u>M (x)u]+ , x ∈X .

We can write minM′∈M(α) u>M′u = E{h(X;α, aα(u),u)} = supa∈R E{h(X;α, a,u)}, where the
expectation is with respect to X distributed with µ (Rockafellar and Uryasev, 2000). Also, from
P�ug (2000), for any u ∈ U (M∗

nk,k
) we can write u>M∗

nk,k
u = Eµk{h(X;αk, znk:k(u),u)} =

supa∈R Eµk{h(X;αk, a,u)}, where Eµk{·} denotes expectation for the empirical measure µk =

(1/k)
∑k

i=1 δXi .
Now, from HM -(i), for any u ∈ Rp with ‖u‖ = 1,

(1− α) aα(u) ≤
∫

X
I{u>M (x)u>aα(u)} [u>M (x)u]µ(dx) <

√
B . (B3)

We also have (k − nk) znk:k(u) ≤
∑k

i=nk+1 zi:k(u) ≤
∑k

i=1 zi:k(u) = k (u>Mku) ≤ k λmax(Mk),

with Mk →M(µ) a.s. as k → ∞. Denote zε = 2
√
B/(1 − 2ε); since αk → ε, from HM 2-(i) there

exists a.s. k2 such that, for all k > k2, znk:k(u) < zε and, from (B3), aαk(u) < zε.
Therefore, for large enough k, for any u ∈ U (M∗

nk,k
),

min
M′∈M(αk)

u>(M′ −M∗
nk,k

)u = E{h(X;αk, aαk(u),u)} − Eµk{h(X;αk, znk:k(u),u)}

≤ sup
a∈[0,zε]

|E{h(X;αk, a,u)} − Eµk{h(X;αk, a,u)}| .

The functions h(·;α, a,u) with α ∈ (ε, 2ε), a ∈ [0, zε] and u ∈ Rp, ‖u‖ = 1, form a Glivenko-
Cantelli class; see (van der Vaart, 1998, p. 271). This implies that there exists a.s. k3 such that

max
u∈Rp:‖u‖=1

sup
a∈[0,zε]

|E{h(X;αk, a,u)} − Eµk{h(X;αk, a,u)}| < cε/2 , ∀k > k3 .

Therefore, from (B2), λmin(M∗
nk,k

) > cε/2 for all k > k3, which concludes the �rst part of the proof.

We construct now an upper bound on lim supk→∞ λmax(Mnk) following steps similar to the above
developments but exploiting now the convexity of the criterion M → 1/Φ+

−∞(M) = λmax(M).
Its directional derivative is F1/Φ+

−∞
(M,M′) = maxu∈U (M) u>(M′ −M)u, with U (M) = {u ∈

Rp : ‖u‖ = 1 , Mu = λmax(M)u}. Denote by M∗
nk,k

the nk-point design matrix that maxi-

mizes 1/Φ+
−∞ over the design space formed by k points Xi i.i.d. with µ. We can write M∗

nk,k
=

(1/nk)
∑nk

i=1 M (Xki), where the ki correspond to the indices of positive ui in the maximization of

f(u) = λmax[
∑k

i=1 ui M (Xi)] with respect to u = (u1, . . . , uk) under the constraints ui ∈ {0, 1}
for all i and

∑
i ui = nk. Any matrix Mnk obtained by selecting nk distinct points Xi among

X1, . . . , Xk satis�es λmax(Mnk) ≤ λmax(M∗
nk,k

).

For any u ∈ U (M∗
nk,k

) we can write u>M∗
nk,k

u = λmax(M∗
nk,k

) = maxv∈Rp: ‖v‖=1 v>M∗
nk,k

v =

(1/nk)
∑nk

i=1 zi:k(u), where the zi:k(u) correspond to the values of u>M (Xi)u sorted by decreasing
order for i = 1, . . . , k. For any m ∈ {1, . . . , nk − 1}, we thus have

λmax(M∗
nk,k

) ≤ 1

m

m∑
i=1

zi:k(u) ≤ λmax(M∗
m,k) ,

showing that the worst case corresponds to the smallest admissible nk, and we can restrict our
attention to the case when αk = nk/k → ε as k →∞.
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The convexity of 1/Φ+
−∞ implies that, for any M′ ∈M≥,

λmax(M′) ≥ λmax(M∗
nk,k

) + F1/Φ+
−∞

(M∗
nk,k

,M′) . (B4)

Take M′ ∈M(αk), corresponding to some ξαk . From HM -(i),

λmax(M′) = λmax

[∫
X

M (x) ξαk(dx)

]
≤ 1

αk
λmax[M(µ)] <

√
B

αk
.

Therefore, there exists some k1 such that, for all k > k1, λmax(M′) < 2
√
B/ε, and (B4) gives

2
√
B

ε
≥ λmax(M∗

nk,k
) + max

u∈U (M∗nk,k
)

max
M′∈M(αk)

u>(M′ −M∗
nk,k

)u .

For a ∈ R, α ∈ (0, 1) and u ∈ Rp, denote h(x;α, a,u) = a+(1/α)[u>M (x)u−a]+, x ∈X . We have
λmax(M∗

nk,k
) = (1/nk)

∑nk
i=1 zi:k(u) = Eµk{h(X;αk, znk:k(u),u)} = infa Eµk{h(X;αk, a,u)}, u ∈

U (M∗
nk,k

), with znk:k(u) satisfying 0 ≤ nk znk:k(u) ≤
∑nk

i=1 zi:k(u) <
∑k

i=1 zi:k(u) = k λmax(Mk).

Also, for any α ∈ (0, 1) and u ∈ Rp, u 6= 0, maxM′∈M(α) u>M′u = E{h(X;α, aα(u),u)} =
infa E{h(X;α, a,u)}, where aα(u) satis�es

∫
X I{u>M (x)u≥aα(u)} µ(dx) = α, and HM -(i) implies

that 0 ≤ aα(u) ≤ (1/α)
∫
X I{u>M (x)u≥aα(u)} u>M (x)uµ(dx) <

√
B/α. Since αk = nk/k → ε

and Mk → M(µ) a.s., there exists a.s. k2 such that, for all k > k2, 0 ≤ aαk(u) < 2
√
B/ε and

0 ≤ znk:k(u) < 2
√
B/ε. This implies that, for u ∈ U (M∗

nk,k
) and k > k2,

max
M′∈M(αk)

u>(M′ −M∗
nk,k

)u = E{h(X;αk, aαk(u),u)} − Eµk{h(X;αk, znk:k(u),u)}

≤ sup
a∈[0,2

√
B/ε]

|E{h(X;αk, a,u)} − Eµk{h(X;αk, a,u)}| .

The rest of the proof is similar to the case above for λmin, using the fact that the functions h(·;α, a,u)
with α ∈ (ε, 2ε), a ∈ [0, 2

√
B/ε] and u ∈ Rp, ‖u‖ = 1, form a Glivenko-Cantelli class.

C Convergence of Ĉk

We consider the convergence properties of (3.3) when the matrix Mk is �xed, that is,

Ĉk+1 = Ĉk +
βk

(k + 1)q

(
I{Zk+1≥Ĉk} − α

)
, (C1)

where the Zk have a �xed distribution with uniformly bounded density f such that f(C1−α) > 0.
We follow the arguments of Tierney (1983). The construction of βk is like in Algorithm 1, with
βk = max{min(1/f̂k, β0 k

γ)} and f̂k following the recursion

f̂k+1 = f̂k +
1

(k + 1)q

[
1

2hk+1
I{|Zk+1−Ĉk|≤hk+1} − f̂k

]
(C2)

with hk = h/kγ .

Theorem C.1. Let α ∈ (0, 1), β0 > 0, h > 0, 1/2 < q ≤ 1, 0 < γ < q−1/2. Let F be a distribution

function such that f(t) = dF (t)/dt exists for all t, is uniformly bounded, and is strictly positive in a

neighborhood of C1−α, the unique value of C such that F (C) = 1−α. Let (Xi) be an i.i.d. sequence

distributed with F and de�ne Ĉk and f̂k by (C1) and (C2) respectively, with βk = min{1/f̂k, β0 k
γ}

and hk = h/kγ. Then, Ĉk → C1−α a.s. when k →∞.
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Proof. We �rst show that f̂k is a.s. bounded. From the mean-value theorem, there exists a tk in
[Ĉk − hk+1, Ĉk + hk+1] such that Pr{|Zk+1 − Ĉk| ≤ hk+1} = F (Ĉk + hk+1) − F (Ĉk − hk+1) =
2hk+1 f(tk). Denote ωk+1 = I{|Zk+1−Ĉk|≤hk+1} − 2hk+1 f(tk). We can write

f̂k+1 = (1−Bk) f̂k +Ak +A′k

where Bk = 1/[(k + 1)q], Ak = ωk+1/[2hk+1 (k + 1)q] and A′k = Bk f(tk). Therefore,

f̂k+1 = f̂1

k∏
i=1

(1−Bi) +

k∑
j=1

(Aj +A′j)

k∏
i=j+1

(1−Bi) .

We have
∏k
i=1(1 − Bi) < exp(−

∑k
i=1Bi) → 0 as k → ∞ since q ≤ 1. Next, for hk = h/kγ and

0 < γ < q − 1/2,
∑

k 1/[hk k
q]2 < ∞,

∑k
j=1Aj forms an L 2-bounded martingale and therefore

converges a.s. to some limit. Lemma 2 of Albert and Gardner (1967, p. 190) then implies that∑k
j=1Aj

∏k
i=j+1(1−Bi)→ 0 a.s. as k →∞. Consider now the term Tk =

∑k
j=1A

′
j

∏k
i=j+1(1−Bi).

Since f is bounded, A′j < f̄ Bj for some f̄ <∞ and

Tk < f̄
k∑
j=1

Bj

k∏
i=j+1

(1−Bi) = f̄

[
1−

k∏
i=1

(1−Bi)

]
< f̄ ,

where the equality follows from Albert and Gardner (1967, Lemma 1, p. 189). This shows that f̂k
is a.s. bounded. Therefore, βk = min{1/f̂k, β0 k

γ} is a.s. bounded away from zero.
We consider now the convergence of (C1). Following Tierney (1983), de�ne

Dk =
βk

(k + 1)q

{
I{Zk+1≥Ĉk} − [1− F (Ĉk)]

}
and Ek =

βk
(k + 1)q

F (Ĉk)− (1− α)

Ĉk − C1−α
.

Denote by Fk the increasing sequence of σ-�elds generated by the Xi; we have E{Dk|Fk} = 0
and E{D2

k|Fk} = β2
k F (Ĉk) [1 − F (Ĉk)]/(k + 1)2q. We can rewrite (C1) as Ĉk+1 − C1−α = (Ĉk −

C1−α) (1− Ek) +Dk, which gives

E{(Ĉk+1 − C1−α)2|Fk} = (Ĉk − C1−α)2 (1− Ek)2 +
β2
k

(k + 1)2q
F (Ĉk) [1− F (Ĉk)] .

Ek ≥ 0 for all k, [F (Ĉk)−(1−α)]/(Ĉk−C1−α) is bounded since f is bounded, and therefore Ek → 0.
Since βk ≤ β0 k

γ and 0 < γ < q − 1/2,
∑

k β
2
k/(k + 1)2q < ∞. Robbins-Siegmund Theorem (1971)

then implies that Ĉk converges a.s. to some limit and that
∑

k(Ĉk−C1−α)2 [1− (1−Ek)2] <∞ a.s.;

since Ek → 0, we obtain
∑

k(Ĉk − C1−α)2Ek < ∞ a.s. Since q ≤ 1, βk is a.s. bounded away from
zero, and f is strictly positive in a neighborhood of C1−α, we obtain that

∑
k Ek = ∞, implying

that Ĉk → C1−α a.s., which concludes the proof.

Tierney (1983) uses q = 1; the continuity of f at C1−α then implies that fk → f(C1−α) a.s., and

his construction also achieves the optimal rate of convergence of Ĉk to C1−α, with
√
k(Ĉk−C1−α)

d→
N (0, α(1− α)/f2(C1−α) as k →∞.

29



D Lipschitz continuity of C1−α(M)

Lemma D.1. Under HΦ and Hµ,M , the (1 − α)-quantile C1−α(M) of the distribution FM of

ZM(X) = FΦ[M,M (X)] is a Lipschitz continuous function of M ∈M≥`,L.

Proof. For any A ∈ M>, de�ne the random variable TA(X) = trace[AM (X)] and denote GA its
distribution function and Q1−α(A) the associated (1−α)-quantile. We have ZM(X) = T∇Φ(M)(X)−
trace[∇Φ(M)M], and therefore

C1−α(M) = Q1−α[∇Φ(M)]− trace[∇Φ(M)M] . (D1)

We �st show that trace[∇Φ(M)M] is Lipschitz continuous in M. Indeed, for any M, M′ in
M≥`,L, we have∣∣trace[∇Φ(M′)M′]− trace[∇Φ(M)M]

∣∣ ≤ ‖M′‖ ‖∇Φ(M′)−∇Φ(M)‖+ ‖∇Φ(M)‖ ‖M′ −M‖
< [L

√
pK` +A(`)] ‖M′ −M‖ , (D2)

where we used HΦ and the fact that M,M′ ∈M≥`,L.
Consider now GA and GA′ for two matrices A and A′ in M>. We have

GA′(t)−GA(t) =

∫
X

(
I{trace[A′M (x)]≤t} − I{trace[AM (x)]≤t}

)
µ(dx) ,

and therefore

|GA′(t)−GA(t)| ≤ Prob
{

min{trace[A′M (X)], trace[AM (X)]} ≤ t
≤ max{trace[A′M (X)], trace[AM (X)]}

}
≤ Prob

{
trace[(A− ‖A−A′‖Ip)M (X)] ≤ t ≤ trace[(A + ‖A−A′‖Ip)M (X)]

}
,

with Ip the p×p identity matrix. Since A−λmin(A) Ib ∈M≥, denoting b1 = 1−‖A−A′‖/λmin(A)
and b2 = 1 + ‖A−A′‖/λmin(A), we obtain

|GA′(t)−GA(t)| ≤ Prob {b1 trace[AM (X)] ≤ t ≤ b2 trace[AM (X)]}

= Prob

{
trace[AM (X)] ≤ t

b1

∧
trace[AM (X)] ≥ t

b2

}
= GA(t/b1)−GA(t/b2) . (D3)

In the rest of the proof we show that Q1−α[∇Φ(M)] is Lipschitz continuous in M. Take two matrices
M,M′ ∈ M≥`,L, and consider the associated (1 − α)-quantiles Q1−α[∇Φ(M)] and Q1−α[∇Φ(M′)],
which we shall respectively denote Q1−α and Q′1−α to simplify notation. From Hµ,M , the p.d.f. ψM

associated with G∇Φ(M) is continuous at Q1−α and satis�es ψM(Q1−α) > ε`,L. From the identities∫ Q1−α

−∞
ψM(z) dz =

∫ Q′1−α

−∞
ψM′(z) dz = 1− α ,

we deduce∣∣∣∣∣
∫ Q′1−α

Q1−α

ψM(z) dz

∣∣∣∣∣ =

∣∣∣∣∣
∫ Q′1−α

−∞
[ψM′(z)− ψM(z)] dz

∣∣∣∣∣ =
∣∣G∇Φ(M′)(Q

′
1−α)−G∇Φ(M)(Q

′
1−α)

∣∣ . (D4)
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From HΦ, when substituting ∇Φ(M) for A and ∇Φ(M′) for A′ in b1 and b2, we get b1 > B1 =
1 − K`‖M′ −M‖/a(L) and b2 < B2 = 1 + K`‖M′ −M‖/a(L), showing that Q′1−α → Q1−α as
‖M′ −M‖ → 0. Therefore, there exists some β1 such that, for ‖M′ −M‖ < β1 we have∣∣∣∣∣

∫ Q′1−α

Q1−α

ψM(z) dz

∣∣∣∣∣ > 1

2

∣∣Q′1−α −Q1−α
∣∣ ε`,L . (D5)

Using (D3), we also obtain for ‖M′ −M‖ smaller than some β2∣∣G∇Φ(M′)(Q
′
1−α)−G∇Φ(M)(Q

′
1−α)

∣∣ ≤ G∇Φ(M)(Q
′
1−α/B1)−G∇Φ(M)(Q

′
1−α/B2)

< 2ψM(Q′1−α)

(
Q′1−α
B1

−
Q′1−α
B2

)
< 4‖M′ −M‖ψM(Q′1−α)Q′1−α

a(L)

K`

(
a2(L)/K2

` − ‖M′ −M‖2
) .

Therefore, when ‖M′ −M‖ < a(L)/(K`

√
2),∣∣G∇Φ(M′)(Q

′
1−α)−G∇Φ(M)(Q

′
1−α)

∣∣ < κ ‖M−M′‖

with κ = 8ϕ̄MQ′1−αK`/a(L), where ϕ̄M is the upper bound on ϕM in Hµ,M . Using (D4) and (D5)
we thus obtain, for ‖M′ −M‖ small enough,∣∣Q1−α[∇Φ(M′)]−Q1−α[∇Φ(M)]

∣∣ < 2κ/ε`,L ‖M−M′‖ ,

which, combined with (D2) and (D1), completes the proof.
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