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ABSTRACT
The merging rate of cosmic structures is computed, relying on the ansatz that they can be predicted in the initial linear density
field from the coalescence of critical points with increasing smoothing scale, used here as a proxy for cosmic time. Beyond the
mergers of peaks with saddle points (a proxy for halo mergers), we consider the coalescence and nucleation of all sets of critical
points, including wall-saddle to filament-saddle and wall-saddle to minima (a proxy for filament and void mergers, respectively),
as they impact the geometry of galactic infall, and in particular filament disconnection. Analytical predictions of the one-point
statistics are validated against multiscale measurements in 2D and 3D realizations of Gaussian random fields (the corresponding
code being available upon request) and compared qualitatively to cosmological N-body simulations at early times (z ≥ 10) and
large scales (≥5 Mpc h−1). The rate of filament coalescence is compared to the merger rate of haloes and the two-point clustering
of these events is computed, along with their cross-correlations with critical points. These correlations are qualitatively consistent
with the preservation of the connectivity of dark matter haloes, and the impact of the large-scale structures on assembly bias.
The destruction rate of haloes and voids as a function of mass and redshift is quantified down to z = 0 for a Lambda cold dark
matter cosmology. The one-point statistics in higher dimensions are also presented, together with consistency relations between
critical point and critical event counts.

Key words: galaxies: evolution – galaxies: formation – galaxies: kinematics and dynamics – cosmology: theory – large-scale
structure of Universe.

1 IN T RO D U C T I O N

The large-scale structures of our observable Universe are routinely
observed through the distribution of galaxies, neutral gas, or dark
matter. As such, galaxies and their haloes are both probes of the
large-scale density field (from the point of view of cosmology), and
the subject of interest (from the point of view of galaxy formation). It
is now accepted that the large-scale structures are key to understand
galaxy formation, for example, by driving angular momentum
acquisition through cosmic cold streams (Dekel & Birnboim 2006;
Agertz, Teyssier & Moore 2009; Pichon et al. 2011; Danovich et al.
2012; Dubois et al. 2012) and by galaxy mergers, which efficiently
disrupt galaxies into ellipticals (e.g. Toomre & Toomre 1972; Naab &
Burkert 2003; Bournaud, Jog & Combes 2007). This scale coupling
is also relevant to cosmology, as it influences, for example, lensing
observations through spin alignments (Crittenden et al. 2001; Codis,
Pichon & Pogosyan 2015). In the era of precision cosmology,
any attempt to infer cosmological parameters from observations of
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galaxies and haloes should therefore take into account the influence
of the surrounding large-scale structures. Since the details of the
buildup of cosmic structure and galaxies are encoded in the initial
matter density field and are coupled, one could, in principle, predict
their joint evolution from the initial conditions. Considering that
an initial Gaussian random field with small density perturbations
leads to the formation of both cosmic structures and galaxies, some
descriptive statistics of this field can be used to jointly predict the
final fate of galaxies, haloes, and the cosmic web. More specifically –
and this will be the topic of this paper – we should be able to identify
special sets of points via a multiscale analysis of the initial conditions
(as a means of compressing the relevant information content of this
field) and use them to predict the fate of cosmic structures.

The topology of the initial density field at a given smoothing
scale is encoded in the positions and heights of all its critical points,
namely extrema (maxima and minima) and saddle points (filament-
type and wall-type saddle points). For instance, peaks in the initial
conditions will later form the nodes of the cosmic web (Bardeen
et al. 1986), while bridges in between, in the middle of which is
found a saddle point, will subsequently collapse due to the tidal
anisotropies to form filaments (Bond, Kofman & Pogosyan 1996;

C© 2020 The Author(s)
Published by Oxford University Press on behalf of the Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/496/4/4787/5863232 by guest on 27 M
ay 2024

http://orcid.org/0000-0003-2285-0332
mailto:c.cadiou@ucl.ac.uk


4788 C. Cadiou et al.

Rossi 2013). Conversely, voids will develop from the initial minima
(Sheth & van de Weygaert 2004), and walls around wall-type saddle
points. Beyond the strong focus on extrema, Pogosyan et al. (2009b)
developed a theoretical framework, the skeleton, to understand the
structure of the cosmic web as a whole (walls and filaments) in terms
of gradient lines joining peaks and voids through saddle points.
In this context, computational geometry allows us to quantify the
strength of topological pairing between critical points (Sousbie,
Pichon & Kawahara 2011; van de Weygaert et al. 2011) through
persistence (Edelsbrunner, Letscher & Zomorodian 2002; Pranav
et al. 2017), which measures their relative heights, and defines a scale-
free hierarchy amongst filaments, walls, and voids of the cosmic web.

Focusing now on haloes, within the paradigm of the spherical
gravitational collapse, one can draw a relationship between the time
of collapse of the initial overdense patch and the scale at which it
must be smoothed so as to pass a theoretically given overdensity
threshold (Press & Schechter 1974), and therefore map features
of the initial linear density field to later-time non-linear structures.
In practice, not only does the patch need to pass a given density
threshold as a function of smoothing but additional constraints must
be added, notably to avoid double counting (the so-called cloud-in-
cloud problem). This requires enforcing a first crossing condition to
ensure that no larger scales than the one considered has collapsed,
which makes the core of the excursion set approach (Peacock &
Heavens 1990; Bond et al. 1991; Jedamzik 1995; Maggiore & Riotto
2010; Musso & Sheth 2012). Better agreement with actual collapsed
haloes can be achieved with a modified stochastic threshold that
incorporates the effects of tidal forces on top of spherical collapse
(Bond & Myers 1996; Sheth, Mo & Tormen 2001). When studying
halo statistics in cosmological models with cold dark matter (CDM;
Blumenthal et al. 1984) that exhibit the hierarchical clustering, it
is also of interest to investigate the substructures (hence smaller
scales) within a given patch so as to study its assembly history.
Lacey & Cole (1993) showed that the properties of the excursion
set trajectories carry information on the matter accretion history of
the forming haloes, allowing us to split this accretion into a smooth
component on the one hand and mergers on the other hand. In this
sense, the fate of a given region is encoded in its initial conditions
and is captured by the multiscale properties of the corresponding
Gaussian random field.

Going one step further, Manrique & Salvador-Sole (1995, 1996)
brought together the virtues of the two approaches (peaks and
excursion sets) in the so-called confluent system formalism, where
excursion set trajectories are not randomly located in space and
concentric, but insist on peaks and follow their position as the
smoothing scale changes. This approach was later perfected and
made more analytically manageable (Paranjape & Sheth 2012;
Paranjape, Sheth & Desjacques 2013), including the effect of tidal
shear (Castorina et al. 2016).

The very notion of special points in the position–smoothing space
is hence crucial in the context of modelling the evolution of haloes
but also of the cosmic web as a whole. The drift of critical points
with smoothing defines the so-called skeleton tree (Hanami 2001),
which captures the variation of this topology with smoothing scale,
hence time. One can identify special scales at which two such points
coalesce, hence producing merger events, as they are located in time
as well as in space, of different types, corresponding to mergers of
haloes, filaments, walls, or voids. In that paper, the focus was on
the coalescence of filament saddles with maxima, which the author
named sloping saddles (as they are vanishing saddle points on the
slope of peaks), identified as proxies for merging events. These
are known to play a significant role in triggering active galactic

nucleus feedback, which impacts gas inflow and therefore galactic
morphology (Dubois et al. 2016). Coalescence of other critical
points also impact the geometry of the cosmic web (in particular the
filaments), which defines preferred directions along which galaxies
are fed cold gas and acquire their spin. They also impact wall
disappearance, hence void statistics (Dubinski et al. 1993).

The focus should now therefore be on special points in the
3 + 1D1 position–smoothing space, where these paired critical points
merge, i.e. when the persistence level tends to zero as a function of
smoothing. Using the above-mentioned mapping between scale and
cosmic time provided by the spherical collapse model, we will rely
on the ansatz that these mergers in the initial linear density field can
be matched to structurally important special moments that modify the
topology of the evolved non-linear density field, while a more careful
evaluation of the accuracy of this assumption will be carried out in
future works. For instance, when two haloes merge, the topology
of the excursion set of the density field (i.e. the region above a
given threshold) is changed because it decrements the number of
components above the threshold.

Mapping the geometry of the Gaussian random field on to the
knowledge of only these singular events is a very efficient and useful
compression of the information encoded in the field. It is efficient
because it compresses the information about a 3D random field into
a finite set of points in 3 + 1D. It is useful because (i) these points
bear significance in terms of cosmology or galaxy formation, and
(ii) we will be able to characterize the corresponding point process
in terms of the properties of the underlying initial Gaussian field –
therefore, statistically, in terms of the underlying power spectrum.

Hence, in this paper, we will present a ‘critical event theory’ to
capture not only the evolution of the halo hosting the galaxy via its
merger tree, but also the evolution of the spatial structures that fed it,
which are known to affect the acquisition of secondary galactic prop-
erties (such as their angular momentum) and may thus contribute to
assembly bias. We will include the coalescence of minima with wall-
type saddles and wall-type saddles with filament-type saddles corre-
sponding, respectively, to the merging of two walls (with a void disap-
pearing in between) and two filaments (with disappearance of a wall).
We will finally study the clustering properties of all these critical
events in the multiscale landscape, as a means to relate their sequence
and geometry to the events relevant to the evolution of galaxies.

Our astrophysical motivations are the following. Study the gener-
alized history of accretion: What kind of mergers happen when,
and where? Quantify the conditional rate of filament and wall
disappearance in conjunction to that of an existing larger scale critical
point. Understand the origin of void disappearance and its usefulness
as a cosmic probe for dark energy. Connect the multiscale landscape
of initial conditions to the properties of dark matter haloes. Study how
the anisotropic large-scale modes bias its assembly history. Beyond
astrophysics, we aim to quantify the statistical properties of zero
persistence points in a multiscale landscape and to provide tools to
identify such points.

This paper proceeds as follows. Section 2 forecasts critical events
through the coalescence of critical points in the multiscale density
landscape. We present a formal definition of critical events and re-
derive the condition for a critical event in an arbitrary frame. We
derive their one-point statistics in two and three dimensions (in the
main text) and higher dimensions (in the Appendix) as a function of
their height and kind. We also propose an extension of the theory

1The field smoothed at all scales has a 3D spatial component and a 1D
smoothing scale component, hence the short-hand notation ‘3 + 1D’.
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Table 1. Summary of notations and definitions.

Notation Equation Note

Definitions
δ(R) (1) Density field smoothed over a scale R
σ 2

i (R) (3) Variance of the ith derivative of the density field
x, xi, xij, xijk (2) Density, density first, second, and third derivatives, normalized by their variance
R0, R∗, R̃ (4) Typical separation between zero-crossings, critical points, and inflection points
γ, γ̃ (5) Cross-correlation coefficients between the field and its derivatives
H, H = det(H) (7), (8) Density Hessian matrix and determinant

Notations
p, f, w, v Peak, filament-saddle, wall-saddle, and void (minima) critical points
P,F ,W Peak, filament, and wall critical events

Critical point definitions
ncp Total number density

n
(j )
cp Total number density of kind j ∈ {p, f, w, v}

n
(j )
cp (ν) Number density of kind j ∈ {p, f, w, v} at height ν

Critical event definitions
nce (9), (11) Total number density
nce, +, nce, − (13) Total number density of nucleation (+) and destruction (−)
nme (15) Total net merger rate (critical event net density)

n
(j )
me (21) Total net merger rate of kind j ∈ {P,F ,W}

n
(j )
me(ν) (30) Net merger rate of kind j ∈ {P,F ,W} at height ν

for mildly non-Gaussian fields. Section 3 presents the two-point
statistics of critical events in simplified setups. We present numerical
integrations of the auto- and cross-correlation functions of different
kind of critical events and of their number densities in the presence
of a large-scale tide. We also derive analytically the clustering
of peak critical events in their simplest configuration. Section 4
compares the predictions of the one-point statistics to realizations
of Gaussian random fields for validation for different linear matter
power spectra. We also present measurements of the auto- and cross-
correlation functions in the general case. Section 5 discusses possible
applications in astrophysics and beyond. We present predictions of
the destruction rate of haloes and voids as a function of cosmic time.
We present consistency relations with the evolution of the cosmic
connectivity. We develop how the framework can be applied to the
problem of assembly bias. We also make qualitative comparisons to
N-body simulations. Section 6 presents our conclusions. A summary
of the notations and conventions used throughout this paper is
provided in Table 1.

Appendix A presents the counts in arbitrary dimensions and
illustrates them in up to 6D. Appendix B explores the duality between
critical points and critical events. Appendix C discusses alterna-
tive interpretations of critical events from low to high densities.
Appendix D describes the local behaviour of critical point lines
near their coalescence. Appendix E presents algorithms to generate
Gaussian random fields satisfying a set of given ‘events’ at some scale
and position. Appendix F generalizes some results using alternative
definitions to relate critical events to mergers in physical space.
Appendix G gives the joint PDF of a Gaussian random field up to
the third derivative of the field. Appendix H explains how the critical
events are measured in random field maps and cubes.

2 THEORY: ONE-POINT STATISTICS O F
C R I T I C A L E V E N T S

In this paper, we consider the overdensity at position r , δ(r) =
ρ(r)/ρ̄ − 1, to be a homogeneous and isotropic Gaussian random
field of zero mean and linear power spectrum Pk, smoothed on scale

R. In this section, we will focus on one-point statistics associated
with merger rates of the field critical points as the smoothing
scale increases. In Section 2.1, we define different quantities used
throughout this paper to describe the relevant features of the field.
Section 2.2 presents the number density of critical events. Section 2.3
introduces critical events of different types (peak, filament, and wall
mergers) and calculates their total and differential densities at given
height. Section 2.4 sketches the corresponding theory for projected
maps, while Section 2.5 presents its extension to non-Gaussian fields.

In this section, limiting assumptions are introduced as late as
possible: All the results are general up to Section 2.2, which
introduces the requirement for a Gaussian filter. In Section 2.3 and
after, and unless stated otherwise, it is assumed that the field is
a Gaussian random field smoothed by a Gaussian filter. We also
remind the reader that a summary of the notations and definitions
used throughout this paper can be found in Table 1.

2.1 Characteristic features of a field

Let us first introduce the dimensionless quantities for the density
field, smoothed over a scale R by a filter function W:

δ(r, R) =
∫

d3k

(2π)3
δ(k)W (kR)eik·r . (1)

We will consider the statistics of this field and its derivatives in
this paper. For practical purposes, let us introduce the dimensionless
quantities:

x ≡ δ

σ0
, xk ≡ ∇kδ

σ1
, xkl ≡ ∇k∇lδ

σ2
, xklm ≡ ∇k∇l∇mδ

σ3
, (2)

which are normalized by their respective variance,

σ 2
i (R) ≡ 1

2π2

∫ ∞

0
dkk2Pk(k)k2iW 2(kR) , (3)

so that we have 〈x2〉 =∑
k〈xkxk〉 =∑

k, l〈xklxkl〉 =∑
k, l, m〈xklmxklm〉 =

1. Note that here and in the rest of this paper, we have dropped the
explicit dependence of the quantities of equation (2) on the smoothing
scale.
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Following closely Pogosyan et al. (2009b), let us introduce the
characteristic scales of the field:

R0 = σ0

σ1
, R∗ = σ1

σ2
, R̃ = σ2

σ3
. (4)

These scales are ordered as R0 ≥ R∗ ≥ R̃. The first two have well-
known meanings of typical separation between zero-crossing of the
field and mean distance between extrema, respectively (Bardeen et al.
1986). The third one, R̃, is by analogy the typical distance between
inflection points.

Let us define a set of spectral parameters that depend on the shape
of the underlying power spectrum. Out of the three scales introduced
above, two dimensionless ratios may be constructed that are intrinsic
parameters of the theory:

γ ≡ R∗
R0

= σ 2
1

σ0σ2
, γ̃ ≡ R̃

R∗
= σ 2

2

σ1σ3
. (5)

From the geometrical point of view, γ specifies how frequently one
encounters a maximum between two zero-crossings of the field, while
γ̃ describes, on average, how many inflection points are between two
extrema. From a statistical perspective, γ and γ̃ are cross-correlation
coefficients between the field and its derivatives at the same point:

γ = −〈δ�δ〉
σ0σ2

, γ̃ = −〈∇δ · ∇2∇δ〉
σ1σ3

. (6)

These scales and scale ratios fully specify the correlations between
the field and its derivative (up to third order) at the same point.
For power-law power spectra of index n, Pk(k) ∝ kn, with Gaus-
sian smoothing at the scale R in 3D, R0 = R

√
2/(n + 3), R∗ =

R
√

2/(n + 5), and R̃ = R
√

2/(n + 7) while γ = √
(n + 3)/(n + 5)

and γ̃ = √
(n + 5)/(n + 7). See also Appendix A1 for their general-

ization to any dimension.

2.1.1 Critical points of the random field

Critical points of the 3D field at fixed smoothing scale are defined as
places where the spatial gradient of the field vanishes: ∇δ = 0. This
provides a number of conditions exactly equal to the dimensionality
of the space, and thus is, in general, satisfied only at isolated points.
The type of critical point is given by the signs of the eigenvalues
σ 2λi of the Hessian of the field,

H ≡ ∇∇δ, (7)

which we will always consider sorted λ1 ≤ λ2 ≤ λ3.
Local extrema of the field are critical points whose eigenvalues

have all the same sign, negative for maxima, and positive for minima.
Other critical points are saddles of different types: In 3D, filamentary
saddles have λ1 ≤ λ2 < 0 < λ3 and wall-like saddles have λ1 < 0 <

λ2 ≤ λ3. Requiring ever more eigenvalues to be positive, we go from
maxima to filamentary saddles to wall saddles and to minima, each
type differing from the neighbours by the sign of one eigenvalue.
Correspondingly, the Hessian determinant,

H ≡ det(∇∇δ) = σ 3
2 λ1λ2λ3, (8)

changes sign at every step of this progression.
In Euclidean space, the average Euler characteristic is zero.

This means that the alternating sum of critical points is null, i.e.
np

cp − nf
cp + nw

cp − nv
cp = 0, with np,f,w,v

cp the mean number densities
of peaks, filament-type saddle, wall-type saddles, and voids, respec-
tively. A more formal definition is given in Appendix B. Thus, the
density of all the critical points with H > 0 is equal to the density
of ones with H < 0. For any dimension, this mathematically reads∑

Hi>0 n(i)
cp = ∑

Hi<0 n(i)
cp .

Figure 1. 1 + 1D landscape of a 1D field smoothed at a scale R. Solid lines
indicate maxima (red) and minima (blue). Smoothing length R is the smallest
at the backplane and increases toward the viewer; critical point lines end at
critical events (black dots). The critical point lines are projected on the δ = −1
plane (red and blue dashed lines). Vertical purple lines indicate the projection
of critical events on to the δ = −1 plane and illustrate that critical events are
found at the location where two critical points merge. An interactive version
can be found in the online supplemental material and online.

2.1.2 Critical event definition

Let us now define critical events. These events – which generalize
the notion of sloping saddles in Hanami (2001) – are defined in the
3 + 1D position–smoothing space as locations where, besides ∇δ =
0, the Hessian determinant H also vanishes.2 Because we impose
these four conditions in a 4D space, the solution is a set of points in
the position–smoothing space, which will be interpreted as points in
space–time, hence the denomination events. These events in 3 + 1D
space correspond to mergers of the trajectories traced by critical
points as the smoothing scale R changes. Since, in general, at each
critical event only one eigenvalue of H vanishes, only the tracks of
critical points of neighbouring types can merge.

Fig. 1 shows the critical events for a 1 + 1D field. These events are
found at the tip of critical point lines and represent the disappearance
of a pair of critical points of neighbouring kind (e.g. a maximum
and a minimum in case of one spatial dimension, a maximum, and a
saddle point for higher dimensions). At a critical event, the topology
of the field at fixed R slice is changed by removing a pair of critical
points. The inverse process where a critical point pair is created and
two trajectories emerge from a critical event3 is also possible (for a
Gaussian filter, only in more than 1D), although, as we will show
further, much less probable.

Let us illustrate the concept of critical events using an analogy with
a mountainous landscape, the latter being restricted to 2D space. A
mountainous landscape is made of peaks analogous to proto-haloes.
A peak is linked to some of its neighbours via mountain passes that
form a proto-filamentary structure. Following the ridge from one
peak to another one is analogous to following a filamentary structure
between two proto-haloes. With the action of time, the mountains

2We warn against possible confusion that critical events are not a gener-
alization of critical points to the position–smoothing space. The additional
condition imposed is not ∂δ/∂R = 0 but H = 0.
3In this paper, we will always be speaking about mergers or creation as
smoothing increases, i.e. consider trajectories traced by critical points in the
direction of increasing R. In general, one could also consider unsmoothing
the field as a proxy for some control parameter in the context of bifurcation
theory.
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Figure 2. 2 + 1D landscape of a 2D field smoothed at a scale R. The density
field (blue to red map) is smoothed at increasing (upward) R. For each scale,
the critical points (red lines: peaks, green lines: saddle points, blue lines:
minima) are found. At the tip of each branch, a critical event is found (red:
peak-saddle critical events, blue: saddle-minima). Isocontours of density in
2 + 1D are shown as transparent surfaces (blue for negative density and
red for positive density). An interactive version can be found in the online
supplemental material and online. Note that the critical points at coordinate
∼(50, 20) (see inset) or ∼(110, 55) are indeed clearly sloping saddles: One
of the eigenvalues of the Hessian vanishes as the curvature changes.

will erode until eventually no peak will subsist – this is analogous
to the smoothing operation. In the process, a disappearing peak will
see its height (the density) decrease with time. If the peak is not
prominent enough, it will eventually be smoothed to the point where
it no longer is a peak but a shoulder on another peak’s slope. Just
before the peak disappears, it is still linked to its neighbour via a
pass. When the peak disappears, so does the pass – indeed, a pass
is always located between two peaks; when one disappears, so does
the pass. This particular event is what we defined as a critical event.
It encodes the moment when two critical points (here a peak and a
saddle point) annihilate. This can also be interpreted as the moment
a peak disappears on the slope of its nearest neighbour – the two
peaks merged and the most prominent subsisted. Critical events have
hence a dual interpretation. Figs 2 and 3 show an illustration in
this specific case of a 2 + 1D field using a 3D visualization and
a sequence of 2D renderings at various smoothing length. Critical
events can be equivalently defined as pairs of critical points with
vanishing persistence (Edelsbrunner et al. 2002).4

In the following, we will rely on the ansatz that critical points
(peaks, filament saddles, wall saddles, and minima) in the linear
density field can be mapped into late-time structures of the cosmic
web (haloes, filaments, walls, and voids, respectively), with increas-
ing smoothing scales probing later times. Under this assumption,
critical events (where critical points merge) can be interpreted
as mergers of cosmic structures. While this assumption sounds

4Recalling that topology defines a special relationship between specific sets
of critical points, which create and destroy topological components of the
excursion, persistence – the height difference between such points – is a mea-
sure of the robustness of the newly created component. Hence, vanishingly
low persistence pairs correspond to vanishingly short-lived components when
scanning the excursion, or changes in topology when smoothing. Note that
persistence is traditionally used in computational geometry to de-noise data,
rather than to probe multiple scales at once.

generally reasonable, a word of caution is required. For instance,
the formation redshift, z, of a halo is usually related to the height δ of
the corresponding peak through the relation δ = δc/D(z), with peaks
of vanishing height forming haloes asymptotically late in the future.
This automatically excludes local maxima of negative height from
the picture. Thus, critical events where local maxima of negative
height disappear should never be associated to halo mergers, nor
should those where local minima of positive height disappear be
associated to void mergers. Similarly, critical events leading to the
creation of critical points (unlikely, but possible nucleation) have no
obvious late-time counterparts. We will come back to these details
later.

Since the primordial density field is a 3D field, the density
landscape is made of peaks (proto-haloes), saddle points (proto-
filaments and proto-walls), and minima (proto-voids). Critical events
record the merger of peaks into proto-filaments (PF critical events),
of proto-filaments into proto-walls (FW critical events) and of proto-
walls into proto-voids (WV critical events). This is illustrated in
Fig. 4. PF critical events (top panel) encode the merger of two
haloes separated by a filament. After the merger, the most prominent
peak subsists, while the other proto-halo and the proto-filament have
disappeared. FW critical events (centre panel) encode the merger
of two filaments separated by a wall. After the merger, the most
prominent proto-filament subsists, while the other proto-filament
and the proto-wall have disappeared. WV critical events (bottom
panel) encode the merger of two walls separated by a void. After
the merger, the most prominent wall subsists, while the other proto-
wall and the proto-void have disappeared. Note that here we have
interpreted the merger from the viewpoint of the densest surviving
structure (e.g. the surviving peak of a peak-filament merger), but a
dual interpretation is possible that instead takes the viewpoint of the
least dense structure. This is further discussed in Appendix C but is
kept out of the main text for the sake of conciseness. In the rest of
this paper and unless stated otherwise (as in e.g. Section 5.1), we
will always use the former interpretation.

2.2 Critical event number density

In this section, we will present the derivation of the mean number
density of critical events in the 3 + 1D position–smoothing space.
The averaging is performed over ensemble of field realizations on 3D
spatial slices and the resulting mean density is smoothing dependent.
In Section 2.2.1, we demonstrate how one can express the critical
event constraint as a function of the local properties of the field and
its derivatives. We also describe in more details the link between
the 3 + 1D density of critical events and the rate of change with
smoothing of the 3D spatial density of critical points and introduce
the concept of net merger event density (see also Appendix B). We
then perform in Section 2.2.2 the computation of the critical event
density in the eigenframe of the Hessian of the field where it takes a
simpler form.

2.2.1 General formulation

As defined in Section 2.1.2, each critical event is a solution (rce, Rce)
of the set of constraint equations ∇δ = 0 and H = 0, the latter
implying that one eigenvalue of the Hessian vanishes. In the direction
of the null eigenvector, the field behaves as at a flat (critical) inflection
point. Following Hanami (2001), the number density of critical events
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4792 C. Cadiou et al.

Figure 3. From the left- to right-hand side and top to bottom, a smoothing sequence of a Gaussian random field, whose density is colour coded from blue to red
as a function of height (analogous to the slices shown in Fig. 2). The skeleton tracing the ridges (Pogosyan et al. 2009b) is shown in purple, while the antiskeleton
tracing the trough is shown in white. The saddles shown as green crosses lie at the intersection. The maxima are shown as red triangles and the minima as blue
squares. As one smooths the field, these critical points drift towards each other along the skeletons, until they vanish in (zero persistence) pairs. The upcoming
coalescence are identified with grey circles. Note that as saddle points vanish, the two corresponding skeletons also do. Note also that the direction of coalescence
is typically set by the skeleton’s just before coalescence. In this 2D example, the ratio of peak + saddle to void + saddle event is 1. The black segment in the
bottom left-hand panel of the first and last image represents the amount of smoothing. This paper is concerned with studying the one and two-point statistics of
these grey circles. Note that these events are indeed proxy for mergers of the peaks of the underlying field: For instance, between snapshots 3 and 5, the central
four peaks have merged into one. Similarly, between 1 and 4, the central four voids have merged into one. We provide an interactive tool to follow such events
in 2D and 3D.

in the position–smoothing space is given by

n3D
ce ≡

〈∑
ce

δ
(3)
D (r − rce)δD(R − Rce)

〉
, (9)

where rce is the position of a critical event (i.e. a critical point with a
degenerate direction) in real space and Rce its associated smoothing
scale, and δD is the Dirac function. The brackets in equation (9)
denote the 3 + 1D spatial averaging over volume V and scale range
�R, 〈. . . 〉 = (V �R)−1

∫
�R

dR
∫

V
. . . d3r .

In the following, we will use ∂R to denote derivatives with respect
to scale R. Since critical events are characterized by H and ∇δ, let us
rewrite equation (9) in terms of the properties of the field, using the
coordinate transformation from (r, R) to (∇δ, H ). As pointed out
by Musso & Sheth (2019), this involves the 3 + 1D Jacobian of the
transformation

J (H, ∇δ) =
∣∣∣∣∂RH ∇H

∂R∇δ ∇∇δ

∣∣∣∣ ,
= H

(
∂RH − ∂R∇δ · H−1 · ∇H

)
. (10)

The latter expression for the 3 + 1 decomposition of the Jacobian
formally requires the HessianH to be invertible, which is not the case
at the critical event. Still, the Jacobian is well defined even there since
the product HH−1 remains finite in the H → 0 limit. Interestingly,

the term ∂RH does not contribute to J since it enters the result only
multiplied by the vanishing H.

The fully covariant formulation of the number density of critical
events, which generalizes Hanami (2001), is then

n3D
ce = 〈|J | δ

(3)
D (∇δ)δD(H )

〉
, (11)

where the brackets now indicate the expectation value over the joint
distribution of the field and its successive derivatives up to second
order, as well as derivatives of the field gradient with respect to R,
P(x, xi, xij, ∂Rxi).

The statistics of ∂R∇δ variables depend on the choice of filtering
function and may be non-local. Its treatment is significantly simpli-
fied when filtering with a Gaussian window, in which case the change
in the value of the field with R is given by a local quantity via the
diffusion-type equation:

∂Rδ = R∇2δ, (12)

so we can replace the problem by averaging over the one-point
distribution of the field and its derivatives up to the third order, P(x,
xi, xij, xijk). This distribution involves 20 variables; see Appendix G
for the PDF for Gaussian random fields. For the calculations that
follow, we will use a Gaussian filtering model and equation (12).

It is important to stress now that the 3 + 1D number density of
critical events given by equation (11) is not equivalent to the rate of
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Critical event theory in a multiscale landscape 4793

Figure 4. Illustration of critical events in a 3D random field and their physical
meaning. � symbols are peaks, × symbols are filament-type saddle points
(filament centres), ⊗ symbols are wall-type saddle points (wall centres),
and � symbols are minima (void centres). Top panel: Peak-filament critical
events encode the merger of two haloes and the disappearance of their
shared filament. After the merger, only one peak subsists and the filament
disappears. Middle panel: Filament-wall critical events encode the merger of
two filaments and the disappearance of their shared wall. After the merger,
only one filament subsists. Bottom panel: Wall-void critical events encode
the merger of two walls and the disappearance of their joint void (surrounded
by the two walls and the dotted lines). After the merger, only one wall-type
saddle-point subsists and the void has disappeared. Halo mergers are encoded
by peak-filament critical events, filament mergers. Alternatively, one could
have chosen to describe these events as, respectively, filament, wall, and void
disappearances, while describing the excursion from the low-density end.
This is illustrated in Fig. C1.

change with smoothing R of the 3D density of critical point pairs.
Indeed, at a critical event, one pair of critical points of adjacent
topological types (e.g. maximum and filamentary saddle) coalesce,
but as a local analysis in Appendix D demonstrates, this event can
describe either the merging or the creation of the pair, depending on
the sign of Jacobian J. Namely, the partial number densities,

n3D
ce,± ≡ 〈|J |�H(±J ) δ

(3)
D (∇δ)δD(H )

〉
, (13)

such that n3D
ce = n3D

ce,− + n3D
ce,+, count separately critical events where

a pair of critical points is created (+, also called a nucleation)
or destroyed (−). The two kinds are illustrated on Fig. 5, which
was generated using the code detailed in Appendix E for two
likely configurations. Note however that nucleation critical events
are ∼30 times less probable than the destruction critical event (see
Fig. F1) for ns < −1 (γ � 0.8). The quantity that is equal to the
rate of change of the density of critical points with smoothing is,
therefore, obtained by removing the absolute value from the Jacobian
in equation (11), as shown in Appendix B, which shows that the rate
of change of the number density of critical points with smoothing

Figure 5. 2D slice, in the (x, R) plane, of the conditional mean density in
the 3 + 1D position–smoothing space, under the constraint of a destruction
critical event (red sphere, top panel) and a nucleation critical event (red box,
bottom panel) at R = 1, x = 0. The slice position is chosen to contain the
events. Green lines show filament-type saddle points at each R and red lines
show peaks. Density isocontours are represented as coloured lines (from red,
high density to blue, low density). The top panel is reminiscent of Fig. 1,
since 3D merger events closely resemble 1D merger events along filaments,
while the bottom panel is unique to dimensions larger than one for Gaussian
smoothing. An interactive version can be found in the online supplemental
material and online. While nucleation events such as that shown on the
bottom panel can occur, they statistically seem to remain short-lived and are
less frequent than destruction ones.

obeys

dncp

dR
= 2

〈
J δ

(3)
D (∇δ)δD(H )

〉 ≡ −2 n3D
me , (14)

where we introduced the ‘net merger rate’ (taken with minus sign)
as

n3D
me = n3D

ce,− − n3D
ce,+ . (15)

While in this paper the term ‘net merger rate’ has been chosen for the
sake of readability, we must emphasize that this quantity measures
rates in the position–smoothing scale space. Care should be taken to
relate these mergers to mergers in space–time, as will be discussed
in Section 5.1.

2.2.2 Expression in the frame of the Hessian

One possible method to yield an analytical expression of equation
(14) is to re-express it in the frame of the Hessian, where the Jacobian
becomes sparse and can be computed in terms of the field variables.
We shall denote the field variables in the eigenframe of the Hessian
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4794 C. Cadiou et al.

with a tilde. In this frame, the diagonal components of the Hessian
itself are given by the eigenvalues x̃ii = λi with off-diagonal ones
being zero x̃i �=j = 0. The Jacobian is by construction invariant under
rotation, so we can rewrite it in the Hessian eigenframe without
loss of generality. Developing H into σ 3

2 λ1λ2λ3 and assuming, for
instance, that direction 3 is the degenerate one, the Jacobian can be
rewritten as follows:

J (H,∇δ)

σ1σ
4
2 σ3

= λ1λ2

∣∣∣∣∣∣∣∣
∂Rλ3 x̃331 x̃332 x̃333

∂Rx̃1 λ1 0 0
∂Rx̃2 0 λ2 0
∂Rx̃3 0 0 0

∣∣∣∣∣∣∣∣ (16)

= −(λ1λ2)2x̃333∂Rx̃3 , (17)

where the factorization of λ1λ2 in equation (16) is a consequence
of λ3 being zero, which also nulls the last component of the last
row. Using equation (12) to re-express the derivative with respect to
smoothing in terms of the Laplacian of the field, we find the number
density of critical events in equation (11) to be5

n3D
ce = R

R̃2 R3∗

〈
|∑l x̃3ll ||x̃333|δ(3)

D (x̃i)λ1λ2δD(λ3)
〉

, (18)

where δ
(3)
D (x̃i) is understood as the product of the Dirac delta functions

of all components of the gradient of the field. R∗ and R̃ are the typical
inter-critical point and inter-inflection point separation, respectively,
introduced in equation (4).

Let us stress that in equation (18), the averaging is performed
over the distribution of the fields expressed in the frame of the
Hessian matrix (Doroshkevich 1970) that differs functionally from
the distribution in an arbitrary frame. For computational purposes, it
is useful to avoid this complication. We achieve this by noticing
that in the integral over the Hessian space, the transition to the
eigenframe can be introduced using the Dirac delta functions on
off-diagonal elements of the Hessian coupled with the Jacobian of
the transformation ∝ (λ3 − λ1)(λ3 − λ2)(λ2 − λ1) times 2π2 due to
integration over angles of Hessian orientation assuming statistical
isotropy. Namely, equation (18) can be cast in the form of an
average over the distribution of field variables in an arbitrary frame
as

n3D
ce = 2π2R

R̃2 R3∗

〈
|∑lx3ll ||x333|δ(3)

D (xi)x
2
11x

2
22(x22−x11)

×�H(−x22)�H(x22−x11)δD(x33)δ(3)
D (xi �=k)

〉
. (19)

We can use this expression as is to compute the average n3D
ce over

any isotropic distribution given in an arbitrary coordinate frame,
since the Hessian eigenframe condition is now enforced explicitly
by δ

(3)
D (xi �=k), which denotes again a product of Dirac delta functions

of all the off-diagonal components of the Hessian matrix, while the
Heaviside functions �H enforce the sorting of the Hessian’s diagonal
elements. Thus, we have dropped the tilde sign from the variables.
For compactness, we have given the integrand in a non-rotation
invariant form, having used the presence of δD(x33) in the integral
that describes condition of the vanishing third Hessian eigenvalue.

The novelty of equation (19) compared to the classical BBKS
formula is the weight |∑ix3ii||x333|, which requires the knowledge
of the statistics of the third-order derivatives of the field. The
expectations in equation (19) can be evaluated with the joint statistics
of the field and its successive derivatives, P(x113, x223, x333, x11, x22),

5One factor of λ1λ2 drops between equations (17) and (18) because of δD(H)
in equation (11). We also note that λ1λ2 ≥ 0 when λ3 = 0.

which now only involves five of the variables listed above to average
over.

Following the same derivation, one can also compute the net
merger rate:

n3D
me = 2π2R

R̃2 R3∗

〈(
x333

∑
lx3ll

)
δ

(3)
D (xi)x

2
11x

2
22(x22−x11)

×�H(−x22)�H(x22−x11)δD(x33)δ(3)
D (xi �=k)

〉
. (20)

Let us stress here that equations (19) and (20) describe different
quantities that were defined in equations (11) and (15), respectively.
In equation (20) and in the rest of this paper, the quantity of interest
will be the net merger rate.

Note that equation (18) closely resembles the equation giving
the flux of critical lines per unit surface presented in Pogosyan
et al. (2009b), up to the delta function on the third eigenvalue
(and the corresponding Jacobian). It involves the product of the
transverse curvatures because the larger those curvatures, the larger
the flux of such lines per unit transverse surface. The extra third
eigenvalue delta function reflects that we also now require that along
the filament’s direction the curvature should be flat, whereas they
marginalized over all possible longitudinal curvature. The similarity
implies that critical points essentially slide along critical lines as
one smooths the field; see Fig. 3: In some loose sense, the 3D event
count can be approximately recast into a 1D event count along the
ridges.

2.3 Gaussian number density of critical events per type

In this section, the number counts are extended to distinguish
different critical event types and count them as a function of density.
Section 2.3.1 presents the number count of the different types of
critical events. Section 2.3.2 presents their number count as a function
of their density. Throughout the section, the field will be assumed to
be a Gaussian random field.

2.3.1 Different critical events and their mean number density

In the previous example, we chose the largest eigenvalue λ3 to be
vanishing at the critical event, which corresponds to the coalescence
of a peak–filamentary saddle pair. Thus, we did not count all possible
critical events in equations (19) and (20). While the coalescence
of peaks with filaments (PF critical events, the sloping saddles of
Hanami 2001) are clearly central to the theory of mass assembly,
the coalescence of filament saddles with wall saddles (FW critical
events) and of wall saddles with voids (WV critical events) are also
likely to affect the topology of galactic infall. FW critical events
correspond to the case when the middle eigenvalue λ2 vanishes,
while WV critical events are the ones with the lowest eigenvalue λ1

being zero.
Let us therefore compute the net merger rate for each type

of mergers (P ≡ PF, F ≡ FW, and W ≡ WV) using Gaussian
assumption about the density field. For an isotropic Gaussian field,
odd- and even-order derivatives of the field at the same point
are completely statistically independent. Therefore, equation (20),
generalized to the case where any eigendirection can be chosen as
a degenerate one, can be split into odd- and even-order derivative
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terms as6

n(j )
me = R

R̃2R3∗
Codd Cj,even , (21)

where

Cj,even =
〈

2π2δD(xjj )�H(x33−x22)�H(x22−x11)

×δ
(3)
D (xk �=l)

∣∣∣∣∑
kl

1

2
εjklx2

kkx
2
ll(xkk−xll)

∣∣∣∣〉 , (22)

with εjkl being the completely antisymmetric Levi–Civita tensor and
j = 3, 2, and 1 for peak, filament, and walls. In turn, the term that
involves the odd-order derivatives of the field,

Codd =
〈∑

l

xjllxjjj δ
(3)
D (xi)

〉
, (23)

is actually independent on j due to isotropy. In the rest of this paper,
we will also make use of the notation P,F ,W instead of j = 3, 2, 1
(for peak, filament, and wall mergers, respectively) in formulas with
an astrophysical interpretation.

The factors Codd and Cj, even that constitute n(j )
me are readily evalu-

ated. In 3 + 1D, they are

C1,even = C3,even = 29 − 6
√

6

18
√

10π
, C2,even = 2√

15π
, (24)

while common to all merger event types,

Codd = 1

5

(
3

2π

)3/2

(1−γ̃ 2) . (25)

Codd can also be computed in arbitrary dimensions as shown in
Appendix A4.

We note that for Gaussian fields, the computation of the total
critical event density nce, as well as partial densities of creation and
destruction events nce, ±, differ from the computation of nme only in
the Codd term that can also be found analytically for these quantities.
The corresponding values are given in Appendix F.

In addition, let us note that the quantities n(j )
me correspond to the

following changes of the critical point densities:

dnp
cp/dR = −nP

me, dnf
cp/dR = −(nP

me + nF
me),

dnv
cp/dR = −nW

me, dnw
cp/dR = −(nF

me + nW
me) . (26)

Here, superscripts p, f, w, and v denote peaks, filament saddle, wall
saddle, and minima, respectively. Thus, for instance, nP

me and the
change in the density of peaks dnp

cp/dR both evaluate to

nP
me = 3R

R3
� R̃

2
(1 − γ̃ 2)

29
√

15 − 18
√

10

1800π2
. (27)

This coincides with the result of Appendix A8, obtained by direct
differentiation of np

cp.
From equation (24), we can compute the ratio of filament to peak

mergers rF/P ≡ nF
me/n

P
me = C2,even/C3,even. Interestingly, the merger

event ratio is independent of the spectral index of the field and is
given by

rF/P = 24
√

3

29
√

2 − 12
√

3
≈ 2.055 08 , (28)

6From now on, to simplify the notation, we will drop the superscript 3D from
the critical event densities where it does not lead to confusion.

which is nothing but the ratio between the mean number of wall-type
saddles and peaks minus 1. This relation can be readily obtained
also from equation (26) by noting that the relative fraction of
different critical points is smoothing-independent, and thus should
be, after some algebra, the ratio of their rates of change, e.g.
(nP

me + nF
me)/nP

me = nf
cp/n

p
cp so that rF/P = nf

cp/n
p
cp − 1. Equation

(28) also shows that there are about twice more filaments disap-
pearing in filament merger events (F events) than in halo merger
events (P events). Similarly, we can compute rF/W to deduce that
there are twice as many walls disappearing due to filament mergers
(F events) as due to wall mergers (W events). Appendix A6 also
presents these ratios in dimensions 4–6.

2.3.2 3D differential event counts of a given height

As argued by Press & Schechter (1974) and Bardeen et al. (1986),
the initial mean density profile of a proto-object contains information
about its future evolution (e.g. the time of collapse). In this section,
we therefore extend our previous results by computing the net merger
rate in 3 + 1D space as a function of the field height (the overdensity).
While the density-integrated net merger rates, computed in the
previous section, are directly connected to the derivatives of the
density-integrated number density of critical points through equation
(26), the net merger rates at fixed ν = δ/σ 0

7 do not verify such a
simple relation, since the field height ν is not preserved along the
3 + 1D trajectory of an individual critical point. In other words, the
field height of the critical event is not simply related to the height
of its two progenitors. This gives us an additional source of change
in the critical point number density at fixed ν. Thus, nme(ν) is a new
statistics, not equivalent to dncp(ν)/dR, which focuses specifically
on the contribution of mergers to the change of the critical point
number density at a given ν. Studying nme(ν) allows us to make
the distinction between mergers of important critical points and less
significant ones. In particular, if we identify astrophysical objects by
a threshold in ν, we will be able to study the mergers of that particular
population.

The differential net merger density as a function of height is
obtained by introducing δD(x − ν) in the expectation of equation
(21). Under the assumption of a Gaussian random field, the field
only correlates with its even-order derivatives (second in this case).
Imposing the height of the critical events considered here therefore
only modifies the term Cj, even while Codd is left unchanged, following

Cj,even(ν) =
〈
δD(x − ν)δD(xjj )�H(x33−x22)�H(x22−x11)

×2π2δ
(3)
D (xk �=l)

∣∣∣∣∑
kl

1
2 εjklx2

kkx
2
ll(xkk−xll)

∣∣∣∣〉 . (29)

The net merger density of kind j at height ν, n(j )
me(ν) then reads

n(j )
me(ν) ≡ R

R̃2R3∗
Cj,even(ν)Codd. (30)

Interestingly, Cj, even(ν) appears to have an analytical expression once
rotational invariants are used to evaluate the expectations. Following
the formalism described in Pogosyan, Gay & Pichon (2009a), we
introduce the variables

J1 = I1 , J2 = I 2
1 − 3I2 , (31)

7Note that here and in the following, ν refers to specific values that the random
field x may take.
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Figure 6. The PDFs of critical events net merger rates of the various types
P,F in 2D for ns from −2 to −1/2 (top panel) and P,F ,W in 3D for ns

from −3 to −1/2 (bottom panel), as labelled. Note that the dominant change
with spectral index is in the amplitude, which scales like 1/(R̃2Rd

� ). The rest
of the shape variation comes from the weaker γ and γ̃ dependence of Codd

and Ceven. In 2D, the P,F merger rates coincide for ns = −2 as the field and
its second derivatives become uncorrelated (γ = 0).

J3 = 27

2
I3 − 9

2
I1I2 + I 3

1 , ζ = x + γ J1√
1 − γ 2

, (32)

which are linear combinations of the density field x and ro-
tational invariants of its second derivatives, namely the trace
I1σ2 = tr H = σ2(λ1 + λ2 + λ3), minor I2σ

2
2 = 1/2((tr H)2 − tr H ·

H) = σ 2
2 (λ1λ2 + λ2λ3 + λ3λ1) and determinant I3σ

3
2 = detH =

σ 3
2 λ1λ2λ3 of the Hessian matrixH. The distribution of these variables

is given by

P (ζ, J1, J2, J3) = 25
√

10π

24π2
exp

(− 1
2 ζ 2 − 1

2 J 2
1 − 5

2 J2

)
, (33)

where J3 is uniformly distributed between −J
3/2
2 and J

3/2
2 and J2 is

positive. Using these rotational invariants, one can rewrite equation
(29) for each type of critical event as

C3,even(ν) =
〈

1
3

(
J 2

1 − J2

)2
δD(x−ν)δD(I3)

× �H(J1+2
√

J2)�H(−
√

J2−J1)
〉

, (34)

C2,even(ν) =
〈

1
3

(
J2 − J 2

1

)2
δD(x−ν)δD(I3)

× �H(J1+
√

J2)�H(
√

J2−J1)
〉

, (35)

C1,even(ν) =
〈

1
3

(
J 2

1 − J2

)2
δD(x−ν)δD(I3)

× �H(J1−
√

J2)�H(2
√

J2−J1)
〉

, (36)

with

δD(I3) = 27

2
δD

(
J3 − 3J1J2 − J 3

1

2

)
, (37)

δD(x − ν) = 1√
1 − γ 2

δD

(
ζ − ν + γ J1√

1 − γ 2

)
. (38)

The condition that the determinant I3 is null due to specific λj being
zero is enforced by restricting the range of J1 according to the
product of Heaviside functions, as specified in equations (34)–(36).
The integration in equations (34)–(36) can be done analytically and
an exact expression for Cj,even(ν) follows

C3,even(ν) =
∑

i=5,6,9

c3,i exp

(
− ν2

2
(
1 − 5γ 2/i

)) ,

C2,even(ν) = c2,6 exp

(
− ν2

2(1 − 5γ 2/6)

)
,

C1,even(ν) = C3,even(−ν), (39)

with

c3,5 = 3
√

5γ ν
√

1 − γ 2
(
275γ 4 + 30γ 2

(
2ν2 − 23

)+ 351
)

π
√

2π
(
9 − 5γ 2

)4 ,

c3,6 = −
erf

(
γ ν√

2(1−γ 2)(6−5γ 2)

)
+ 1

√
5π
√

6 − 5γ 2
, c2,6 = 2√

5π
√

6 − 5γ 2
,

c3,9 =
erf

( √
2γ ν√

(1−γ 2)(9−5γ 2)

)
+ 1

4π
√

5
(
9 − 5γ 2

)5/2

(
3600γ 4ν4

(9 − 5γ 2)2

+ 120γ 2(27 − 35γ 2)ν2

9 − 5γ 2
+ 575γ 4 − 1230γ 2 + 783

)
.

The resulting net merger rate as a function of their height ν is plotted
in Fig. 6, bottom panel, for different values of the spectral index
ns. Note that n(j )

me(ν) scales like 1/R4 but is also a function of R via
the spectral parameters γ and γ̃ . A comparison to measurement in
numerically drawn random fields will be presented later in Fig. 11.
Note that the mean density of net peak mergers, given by equation
(30) for j = 3 and equation (39), is equivalent to formula C30 in
Hanami (2001).

2.4 2D event counts and differential counts

Given its astrophysical interests when considering 2D maps in
various contexts, let us also briefly present the analogues of equation
(21) for 2 + 1D fields. It reads

nP,2D
me (ν, R) = −2πR

R̃2R2∗

〈
(x211 + x222)x222δD(x1)δD(x2)

〉
× 〈

�H(−x11)δD(x22)δD(x12)δD(x − ν)x11

〉
, (40)

where the even part −2π
〈
�H(−x11)δD(x22)δD(x12)δD(x − ν)x11

〉
is

nothing but

Ceven(ν) = 〈
I 2

1 �H(−I1)δD(I2)δD(x − ν)
〉
, (41)

once written in terms of the trace I1 and determinant I2 of the Hessian
matrix.
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After some algebra, given the knowledge of the 2D PDF written
in Appendix G, we obtain for the peak merger rate

nP,2D
me (ν, R) = 2πRC2D

odd

R̃2R2∗

[
4γ ν

√
1 − γ 2(

3−2γ 2
)2 exp

(
−1

2

ν2

1 − γ 2

)

+
√

8π((1 − γ 2)(3 − 2γ 2) + γ 2ν2)(
3−2γ 2

)5/2

×erfc

( −γ ν√
2(1 − γ 2)(3 − 2γ 2)

)
exp

(
− 3ν2

6 − 4γ 2

)]
,

(42)

with

C2D
odd = 3

8π
(1 − γ̃ 2) .

The wall-filament merger rate is obtained by swapping ν to −ν

in equation (42). The two rates are plotted in Fig. 6, top panel,
and validated against Gaussian random fields later in Fig. 12.
The net merger rate, nP,2D

me (R) = 2CoddR/(3
√

3R̃2R2
∗), follows by

integration over ν.8

Appendix A presents also the differential counts in dimensions
4–6, together with asymptotic expressions in the large dimension
limit for the integrated count ratios. As expected, for any dimension,
the number counts per unit log-volume are scale invariant (up to the
slow variation in the spectral parameters), i.e. Rdnj,dD

me (ν, R) for any
j ∈ {1, . . . , d}, is a function of γ , γ̃ , and ν only.

2.5 Beyond Gaussian statistics

Let us finally compute the one-point statistics for weakly non-
Gaussian fields. Following Gay, Pichon & Pogosyan (2012), the
Edgeworth expansion around a Gaussian kernel of the joint statistics
of the field x and its derivatives, P(x, xi, xij, xijk) involves the hierarchy
of cumulants and reads

P (x) = PG(x)

(
1 +

∞∑
n=3

σn−2
0

〈Hn(x)〉
σ 2n−2

0

· Hn(x)

)
, (43)

where x = (x, xi, xij , xijk), Hn is a vector of orthogonal
polynomials9 with respect to the Gaussian kernel PG, obeying
Hn = (−1)n∂nPG/∂xn/PG. At tree level in perturbation theory
(Bernardeau et al. 2002), 〈Hn(x)〉/σ 2n−2

0 is independent of the
variance at redshift z, σ 0(z), below n = 6. Cumulants such as 〈x2

1x113〉
entering equation (43) could, in the context of a given cosmological
model, involve a parametrization of modified gravity (via e.g. a
parametrization of the perturbation theory kernel F2(k1, k2)), and/or
primordial non-Gaussianities (via e.g. the local non-Gaussianity
parameter fNL), and enable us to study the first stages of the non-
linear evolution of the Universe under the action of gravity. From
this expansion, or relying on the connection between event ratio
and connectivity discussed in Appendix A7, we can, for instance,
compute the non-Gaussian correction to the ratio of critical events,
defined in equation (28) as

rF/P

rF/P,G
= 1+ cr

(
8
〈
J 3

1

〉−10 〈J1J2〉−21
〈
J1q

2
〉)

, (44)

where cr = (29
√

2 + 12
√

3)/210/
√
π, while q2 = ∑

i x2
i =

|∇δ|2/σ 2
1 is the modulus square of the gradient, and J1 and J2 are

8The code to reproduce the figures can be found in the online supplemental
material and online.
9Not to be confused with the Hessian matrix H used elsewhere in this paper.

Figure 7. Predicted cosmic evolution of the product of extrema counts as
a proxy for the event counts (W in blue, F in green, and P in red) for the
variances σ 0(z) = 0, 0.04, 0.08, 0.12, and 0.16 (from light to dark) and an
underlying scale invariant power spectrum of index n = −1. The F counts
have been rescaled by a constant 205/332 factor to better match the actual
counts. The predicted trends with σ 0 are in qualitative agreement with the
measured counts presented in Fig. 18.

defined in equation (32) via the trace and minor of the Hessian.
These extended skewness parameters are isotropic moments of
the underlying bispectrum that, when gravity drives the evolution,
scale with σ at tree order in perturbation theory (e.g.

〈
J 3

1

〉
/σ0

is independent of σ 0). The correction to one entering equation
(44) is negative (approximately equal to −σ 0(1/7 − log (R)/5) for
a Lambda cold dark matter (�CDM) spectrum smoothed over
R Mpc h−1), suggesting that gravitational clustering reduces the
relative number of peak mergers compared to filament mergers.
When astronomers constrain the equation of state of dark energy
using the cosmic evolution of voids disappearance, they effectively
estimate σ (via its dependence in the cumulants) in equation
(44). Conversely, for primordial non-Gaussianities, the extended
skewness parameters from pure gravitational origin must be updated
accordingly (see Gay et al. 2012; Codis et al. 2013). For instance,
〈J1q

2〉 = 〈J1q
2〉grav−2fNL

√
1+f 2

NL/(1+4f 2
NL).

Since the computation of the expectation (21) with the Edge-
worth expansion (43) is beyond the scope of this paper, let us
investigate an alternative proxy for the event rate. Fig. 7 makes
use of the perturbative prediction of Gay et al. (2012) to first
order in σ for the gravitationally driven non-Gaussian differential
extrema counts to compute the product of such counts as a proxy
for the events, namely nP

me(ν, z) ∝ np
cp(ν, z)×nf

cp(ν, z), nF
me(ν, z) ∝

nf
cp(ν, z)×nw

cp(ν, z), and nW
me(ν, z) ∝ nw

cp(ν, z)×nv
cp(ν, z). This ansatz

is reasonable, since for a merger to occur, two critical points of the
same height must exist beforehand. We use the Gaussian PDF as
a reference, to recalibrate the relative amplitude of the filament to
peak merger counts. Since Gay et al. (2012) provide fits to the critical
point PDFs as a function of σ 0, it is straightforward to compute their
product.

From Fig. 7, we see that gravitational clustering shifts the peak
event counts to lower contrast. Less trivially, the filament merger
rates also shift towards negative contrasts. From these PDFs, we
can re-compute the cosmic evolution of the ratio of critical events,
which appears to closely follow rP/F = 7/34(1 − σ0/7) (for n =
−1), in good agreement with equation (44), suggesting that this
approximation indeed captures the main features of gravitational
clustering.
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3 THEORY: TWO-POINT STATISTICS O F
C R I T I C A L E V E N T S

Let us now present a method to compute the two-point statistics
of critical events. Such statistics are of interest, as they allow us
to qualitatively understand the upcoming sequencing of processes
of importance for galaxy formation, for example, to study the
cosmic evolution of the connectivity of peaks, or to understand
how large-scale tides bias mass accretion (the so-called assembly
bias). Section 3.1 presents the two-point statistics of merger events in
3D, while Section 3.2 provides analytical approximations assuming
mergers occur along a straight filament. Section 3.3 computes the
conditional merger rates subject to larger scale tides. We match these
predictions to simulations in Section 4.

3.1 Clustering of critical events in R, r space

We cannot generally assume that the orientations of two critical
events are aligned with respect to the separation vector, so the
covariant condition for critical event of type j ∈ {P,F ,W}, condj, is
given by the argument of the expectation in equation (14) multiplied
by a requirement on the sign of the two non-zero eigenvalues. For
instance,

condP (x) = J δ
(3)
D (xi)δD(H )

×�H(−tr(xik))�H(tr2(xik) − tr(xilxlk)),

where the two Heaviside conditions ensure that the trace is negative
and the minor positive so that the two eigenvalues are negative. Note
that we use an implicit sum on repeated indices here. From the
joint two-point count of critical events, we can define the relative
clustering of critical events of kind i, j smoothed at scales (Rx, Ry)
and located at positions (rx, ry), ξij (s) as

1 + ξij (s) = 〈condi(x) × condj ( y)〉
〈condi(x)〉〈condj (x)〉 , (45)

where x = {x, xi, xij , xijk} (respectively, y) is the set of fields at
location rx (respectively, ry), and

s ≡
√

2

⎛⎝ rx − ry√
R2

x + R2
y

⎞⎠ , (46)

the event separation that we define as the spatial separation between
the two points in units of the quadratic mean smoothing length.
We chose this definition as we expect the correlation lengths to be
proportional to the smoothing scale; hence, events at different scales
can only be meaningfully stacked if distances are expressed in terms
of the smoothing length. Because we focus on a Gaussian smoothing,
it is natural to associate the two smoothing scales using a quadratic
mean as the product of two Gaussian kernels with scales Rx, Ry

is equivalent to smoothing at a single scale R =
√

(R2
x + R2

y)/2.

Evaluating the expectation in equation (45) requires full knowledge
of the joint statistics of the field P (x, y) (involving 40 variables; see
Appendix G2).

We rely on Monte Carlo methods in MATHEMATICA in order
to evaluate numerically equation (45). Namely, we draw random
numbers from the conditional probability that x and y satisfy the
joint PDF, subject to the condition that xj = yj = 0, x = ν1, and
y = ν2. For each draw (x(α), y(α)), α = 1, . . . , N, we drop or
keep the sample, depending on the type of critical event given by
the signs of tr(xij) and tr2(xij) − tr(xilxlj); if it is kept, we evaluate

Figure 8. The autocorrelation of peak merger ξPP (in shades of red, as
labelled in terms of the height of the two critical points) and the cross-
correlation of peak and filament merger ξPF (in shades of yellow, as labelled)
as a function of separation s. As expected, the saddle mergers are clustered
closer to the higher peak compared to the peak mergers.

Figure 9. Same as Fig. 8 for the two-point correlation of events in 2D fields
with scale-invariant power spectrum of index ns = −1. Next, filament mergers
will occur before next peak mergers. The rarer the event, the more delayed,
and the higher the clustering amplitude.

J (x)δ(ε)
D (H (x)) J ( y)δ(ε)

D (H ( y)), where δ
(ε)
D is a normalized Gaussian

of width ε, which in the limit of ε → 0 would correspond to a Dirac
function, imposing here that the two determinants are zero. For small
enough ε, we then have

〈condi(x)condj ( y)〉≈Pm(x = ν1,y =ν2, xl =yl =0)

N∑
k∈Sij

J (x(k))δ(ε)
D

(
H (x(k))

)
J ( y(k))δ(ε)

D

(
H ( y(k))

)
, (47)

where N is the total number of draws, Pm is the marginal probability
for the field values and its gradients, andSij is the subset of the indices
of draws satisfying the constraints i, j on the Hessians. The same
procedure can be applied to evaluate the denominator of equation
(45), which then yields an estimation of ξ ij(s, ν1, ν2). This algorithm
is embarrassingly parallel.

The results of the numerical integrations are presented in Figs. 8
and 9 (in 3D and 2D respectively) which show the autocorrelation of
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Critical event theory in a multiscale landscape 4799

peak merger ξPP on the one hand, and the cross-correlation of peak
and filament merger ξPF on the other hand at fixed merger height, as
labelled. Here we used ε = 0.002. Note that because equation (45)
is a ratio, the prefactors in the counts involving scales all cancel out.

3.2 Correlation of peak mergers along filament

Let us briefly present the two-point statistics of high-density peak
mergers while assuming for simplicity that the mergers occur along
the same (straight) filament (discussed in Section 2.2), as it is
instructive and simpler. In this approximation, we can resort to
1D statistics. In the high-density limit, we may drop the Heaviside
constraint on the sign of the eigenvalues since all high-density critical
points tend to be automatically maxima. Then the (1D) correlation
function of peak mergers, 1 + ξν1ν2 (s) of height ν1 and ν2 becomes

〈δD(x−ν1)x2
111δD(x1)δD(x11) δD(y−ν2)y2

111δD(y1)δD(y11)〉
〈δD(x−ν1)x2

111δD(x1)δD(x11)〉〈δD(y−ν2)y2
111δD(y1)δD(y11)〉 ,

where the expectation is over the Gaussian PDF whose covariance
for the field (x, x1, x11, x111, y, y1, y11, y111) obeys⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 −γ 0 γ00 γ01 γ02 γ03

0 1 0 −γ̃ −γ01 γ11 γ12 γ13

−γ 0 1 0 γ02 −γ12 γ22 γ23

0 −γ̃ 0 1 −γ03 γ13 −γ23 γ33

γ00 −γ01 γ02 −γ03 1 0 −γ 0
γ01 γ11 −γ12 γ13 0 1 0 −γ̃

γ02 γ12 γ22 −γ23 −γ 0 1 0
γ03 γ13 γ23 γ33 0 −γ̃ 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (48)

where, for instance, γ02(s) = 〈x(rx)y11(ry)〉. The dominant contri-
bution in the large threshold ν1, ν2 � 1, large separation s � 1
regime reads

ξ 0
ν1ν2

(s) = ν1ν2 (γ00(s) + γ (2γ02(s) + γ γ22(s)))(
1 − γ 2

)2 , (49)

which as expected scales like the underlying correlation, γ 00(s),
boosted by the bias factor ν1ν2 (Kaiser 1984). In that limit, the
next-order correction to the correlation function involving the third
derivative of the field reads

ξ 1
ν1ν2

(s) = 2
(
γ̃ 2γ11(s) + 2γ̃ γ13(s) + γ33(s)

)2(
1 − γ̃ 2

)2 , (50)

where γ̃ -weighted linear combination of the autocorrelation of ∇�δ

and the cross-correlation of ∇∇2δ and ∇δ appear, evaluated at events
separated by s. The assumption of successive mergers of peaks
occurring along a straight filament is of course very simplified,
and prevents us from considering cross-correlations between peak
mergers and, for example, filament mergers.

3.3 Conditional merger rates in the vicinity of larger tides

In the context of galaxy formation, it is of interest to quantify
conditional merger rates subject to tides imposed by the large-scale
structure to explain geographically the origin of assembly bias. To do
so one must compute the conditional event counts, subject to a given
large-scale critical point at some distance s from the running point
x(rx). The critical point can be e.g. a peak of a given geometry
and height, if one is concerned with the impact of clusters on
mergers trees of dark matter haloes in their vicinity (Hahn et al.
2009; Ramakrishnan et al. 2019), or it could be a saddle point, as a
proxy for a larger scale filament, when studying how haloes growth

stalls in such vicinity (Borzyszkowski et al. 2017; Musso et al. 2018).
In turn, this involves the joint expectation,

〈condj (x) δD(yi)|det yij |〉 . (51)

Evaluating equation (51) requires the full knowledge of the joint
statistics of the field at x(rx) and y(ry), P(x, xi, xij, xijk, y, yi, yij)
(involving 30 variables). The correlations of the PDF involves the
covariance of the field and its derivatives computed at two smoothing
scales, R and Rc corresponding to the proxy for the timeline of
the haloes and the large-scale structure, respectively. We can then
marginalize over all variables, subject to, for example, imposing the
height, νc, and shape, μc

i , of the large-scale critical point:

〈cond(x)δD(yi)|det yij |δD(x − ν)δD(y − νc)�H(−λi)δD(μi − μc
i )〉,

where λi are the eigenvalues of xij and μi are the eigenvalues of yij.
The conditions imposed by the mergers and the properties of the
peaks and large-scale environment reduce the number of integrals
from 30 to 21. Appendix E describes how to sample conditional event
counts using constrained realizations of Gaussian random fields.

For the sake of simplicity, let us restrict computation to the
conditional merger rates in 2D. Fig. 10 presents the excess probability
of having a peak/filament merger at some distance r and orientation
θ with respect to the frame set by a given critical point. Two
configurations and types of events are considered. As expected,
the tides impact merger rates. While it is beyond the scope of this
paper to explore systematically all possible geometries and relative
heights, let us stress that such two-point functions are physically very
informative: For instance, the bottom panel is an indication of the
early disappearance of filaments perpendicular to a wall embedding a
filament, which seems qualitatively consistent with what is observed
in N-body simulations.

4 M E A S U R E M E N T S FO R G AU S S I A N R A N D O M
FIELDS

Let us validate the theory while counting critical events within
realizations of Gaussian random fields. We then bin them to estimate
their one and two-point statistics.

4.1 Method

For each power-law power spectrum Pk(k) = kns , with spectral index
ns = −2, −1.5, −1, and −0.5, we have generated 250 Gaussian
random fields. We have also generated 400 Gaussian random fields
with a �CDM power spectrum usingmpgrafic (Prunet et al. 2008)
in a Planck Collaboration VI (2018a) cosmology generated using
the Eisenstein & Hu (1999) fitting formula. Each realization will
henceforth be called a ‘cube’. Each cube has a size of 2563 pixels and
a physical extent of 100 Mpc h−1.10 Each cube has been smoothed
using a Gaussian filter with scale ranging from 1 to 20 Mpc h−1

(2.56 pixel to 51.2 pixel). The smoothing was operated in Fourier
space, assuming periodic boundary conditions. At each scale, all
critical points are detected (maxima, minima, and saddle points)
using the method detailed in Appendix H1. The critical events are
then detected by matching cubes of different smoothing scales using
the method detailed in Appendix H2.

Additionally, we have generated 200 20482 cubes with a power-
law power spectrum with spectral index ns = −1 and a physical box

10The box size is only relevant in the �CDM case, as the power-law cases
are scale invariant.
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4800 C. Cadiou et al.

Figure 10. Theoretical prediction for the conditional excess probability, 1
+ ξ , of peak merger events in the frame of a 2D critical point at the origin
as labelled. The critical point defines a local exclusion zone whose geometry
is set by its fixed eigenvalues. For simplicity, we have chosen Rc = R, while
the underlying power spectrum index is −1. See Fig. 17 for measured 3D
counterparts.

size of 1000 Mpc h−1, which we smoothed with a Gaussian filter
with scale ranging from 1 to 20 Mpc h−1.

4.2 Critical events counts

In this section, we present the number density of critical events
measured in cubes with a power-law power spectrum and compare
the theoretical predictions of Section 2.3.2 to measurements in cubes.

We first measured the ratio of the number of critical events
of different kind. We found rF/P = rF/W ≈ 2.1, regardless of the
smoothing scale or the underlying power spectrum. This excess of
about 2 per cent in the ratio originates from a slight overdetection of
saddle points with respect to local extrema. Theory predicts this ratio
to be Nsaddle/Npeak ≈ 3.055 in 3D (see e.g. Codis, Pogosyan & Pichon
2018, equation 2), while the measured value is 3.1. In the rest of
this paper, we have corrected the excess number density of F critical
events so that the number density ratio matches the prediction.

Let us now proceed to the number count at fixed density. Fig. 11
shows the PDF of the critical events as a function of their height

Figure 11. PDF of the critical events as a function of height in a scale-
invariant GRF (Gaussian random field) as labelled. The left-hand bundle
corresponds to wall mergers, the middle bundle to filament mergers, and
the right-hand bundle to peak mergers. The solid curve corresponds to the
theory while the error bars correspond to the error on the mean extracted from
160 simulations. The grey lines are the results obtained for a �CDM power
spectrum initially smoothed over a scale of 2.5 Mpc h−1. The top panel shows
the residuals for ns = −2. The detection algorithm is still accurate in 3D.

for different power-law spectra (ns = −2, −1.5, −1, and −0.5;
�CDM). The critical events have been selected at scale 2.35 ≤ R ≤
3.01 Mpc h−1 (6.0 ≤ R ≤ 7.7 pixel). The lower boundary ensures
that the critical points are well separated.11 The upper boundary is
fixed so that the smoothed cubes have consistent effective spectral pa-
rameters γ eff(R) and γ̃eff (R). Indeed, the cubes have scale-dependent
spectral parameters induced by the finiteness of the box and the
discreteness of the grid (see e.g. Gay 2011, figure 5.1). Error bars
have been estimated using a bootstrap method on 400 subsamples
each made of 50 randomly chosen cubes. Solid lines show the result
of a fit of the theoretical formula to the cube data with free parameters
γ̂ , ˆ̃γ .

The effective spectral index n̂s is fixed using γ =√
(ns + 3)/(ns + 5). The measured values of γ and γ̃ are consistent

with the effective values measured directly in the cubes using equa-
tion (6). For example with ns = −2, the values measured in the cubes
are γeff = 0.62 ± 0.02, γ̃eff = 0.72 ± 0.01 (ns, eff = −1.75 ± 0.13)
using equation (6). The mean values have been estimated with a
sample of 100 cubes and the errors are the standard deviations of the
sample. The fitting procedure on the PDF of the critical events yields
γ̂ = 0.621 ± 0.002, ˆ̃γ = 0.724 ± 0.003 (n̂s = −1.75 ± 0.02). The
relative difference between theory and measurements, presented on
the upper panel of Fig. 11, shows no systematic deviation of the
measurements and is within a few per cent in the region where most
of the events are.

In order to further test the theoretical prediction, we have
proceeded to the same analysis in the 2D case. The results are
presented in Fig. 12 and show that the agreement between theory
and measurements is of the order of the per cent. Once again, no
systematic deviation of the measurements is noted. The results in 2 +
1 and 3 + 1D confirm the analytical formula derived in Section 2.3.2
and illustrate the accuracy of the detection algorithm presented in
Appendix H. Interestingly, since the algorithm has been designed to

11Critical points are typically separated by R∗ � 0.6R (for ns < 0), so R =
6 pixel gives a typical separation of 3.6 pixel between critical points, which
is larger than the number of points used to infer the curvature.
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Critical event theory in a multiscale landscape 4801

Figure 12. PDF of the critical events as a function of height in a scale-
invariant GRF in 2D with spectral index ns = −1. The left-hand curve
corresponds to filament mergers and the right-hand curve to peak mergers.
The solid curve correspond to the theory while the error bars correspond
to the error on the mean extracted from 200 simulations. The top panel
shows the residuals. The agreement between the analytic prediction and the
measurements reflects the accuracy of the algorithm presented in Appendix H
for identifying critical events.

make no assumption on the number of dimensions, it is expected to
work as well in d dimensions.

4.3 Two-point statistics

Let us now estimate the two-point statistics of critical events using
the critical events from the cubes presented above. For each cube
in the simulation, we select all critical events in a thick slice of
smoothing scales (�R/R = 0.3). The critical events are then split in
two subsamples, the first is selected at an overdensity ν = 1 with
kind j and the second at ν = 0.7 with kind k (j, k ∈ {P,F ,W}). The
correlation functions are then computed from the number of pairs at
distance s = r/R in all cubes. The pair counting was done using a
dual-tree algorithm, as described in Moore et al. (2001).12

Fig. 13 shows the measured correlation functions in 2D for a
power-law power spectrum with spectral index ns = −1 (top panel)
and in 3D with a �CDM power spectrum smoothed at scales between
1 and 20 Mpc h−1 (bottom panel). In both cases, the PF cross-
correlation function (peak merger to filament merger correlation)
peaks at r ≈ 1.5R, while the PP autocorrelation function (peak
merger autocorrelation) peaks at r ≈ 2.1R. This indicates that each
halo merger is more likely to be followed by a filament merger
compared to another halo merger. Interestingly, peak mergers are also
more likely to be followed by wall mergers. Indeed, a halo merger
induces a topological defect, as it leads to a resulting overconnected
halo. The defect is quickly corrected by a filament merger, decreasing
the local connectivity of the halo back towards the cosmic average.
Doing so, another topological defect appears as a void becomes
underconnected as one of its walls disappeared. This last defect is
then corrected by a last wall merger that makes the underconnected
void disappear. Note that, while the above sequence of critical
events is a possible one, other sequences are possible that leave the
connectivity conserved. On average, critical events happen so that
the local ratio of peak-to-filament, filament-to-wall, and wall-to-void
stays constant as smoothing increases, so that the global connectivity

12See the SCIPY doc for more information.

Figure 13. Top panel: correlation functions between critical events P,F in
2D at fixed smoothing scale for ns = −1. Bottom panel: correlation functions
between critical events P,F ,W in 3D at fixed smoothing scale for a �CDM
power spectrum. Pairs of critical events have been selected at ν = 0.7 and 1.0.
The correlation function of halo merger with filament merger, ξPF , peaks at
r ∼ 1.5R, while the halo merger autocorrelation function, ξFF , peaks at r ∼
2R. This shows that halo mergers are more likely to be followed by filament
mergers. The data have been filtered using a Savgol filter. Error bars have
been estimated assuming a Poisson noise on the sample.

is preserved. The link between critical events and global connectivity
of the cosmic web is further discussed in Section 5.2.

5 A PPLI CATI ONS AND DI SCUSSI ON

The scope of application of the present formalism is obviously very
wide. Rather than attempting to cover it all, only a few examples will
be presented, while a more thorough investigation is left for future
work.

In a cosmic framework, Section 5.1 will first translate the one-point
statistics presented in the previous section into destruction rates as
a function of mass and redshift. Section 5.2 explains how mergers
of filaments need to match that of haloes in order to preserve the
connectivity of peaks. Section 5.3 explains how conditional merger
counts in the vicinity of a filament explains how the environment
drives assembly bias. Section 5.4 compares theoretical predictions of
the destruction rates to results from N-body simulations and shows
that the theory is able to reproduce the early non-linear stages of
gravitational collapse. Finally, Section 5.5 presents an illustration of
a correspondence between two critical events and mergers of walls
and filaments in N-body simulations, while applications to other
fields of research in cosmology (semi-analytical models, machine
learning, intensity mapping) and beyond are discussed.
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5.1 Destruction rates as a function of mass and time

The predictions in the initial Lagrangian space bear theoretical
interest, yet they do not translate easily into measurable quantities.
In this section, let us show how one can map these predictions to
observable quantities, and in particular destruction rates in mass
M and redshift z space. Qualitatively, each critical event encodes
a merger that involves three proto-structures (e.g. two proto-haloes
and their shared proto-filament). In the rest of this section, we will
show that it is possible to relate the mass and the destruction time
of the disappearing structure13 to the density and smoothing scale of
the field at the same location.

Together with the results of Section 2.3, one can then compute
the destruction rates at different epochs for different object masses.
When dealing with void mergers, we will in this section use the
dual interpretation of critical events from the point of view of
the low-density objects (see Fig. C1). One can use the spherical
collapse model to establish a mapping between collapse time of
spherical regions and their initial overdensity – high-overdensity
regions collapse earlier in the history of the Universe than lower
densities. At the same time, larger overdensities enclose more mass
and will hence give birth to more massive structures. These relations
mathematically read

νTH(R) = δc

σTH(R)D(z)
, M = 4π

3
ρ̄R3, (52)

where σ TH(R) is the variance of the field smoothed by a Top-Hat filter
on scale R, δc = 1.69 is the spherical collapse critical overdensity,
D(z) is the linear matter growth function, and ρ̄ is the mean matter
density of the Universe. The spherical collapse threshold can also be
adapted to study the formation of voids (Sheth & van de Weygaert
2004; Jennings, Li & Hu 2013) with δv = −2.7. Note that this
simple relation holds in principle for small enough voids only (R �
3 Mpc h−1).

From a theoretical perspective, the action of smoothing the density
field δ enables to probe the time evolution of spherical proto-haloes
by following the density evolution of peaks as the smoothing scale
increases. In order to match the results of equation (52) with a
Gaussian filter, one needs to establish a mapping of the smoothing
scales between Top-Hat filtering and Gaussian filtering. This can
be achieved by matching the variance of the field smoothed with
a Gaussian filter σ G(R/α) = σ TH(R), although different approaches
have been used.14 Without loss of generality, equation (52) becomes
for a Gaussian filter and a prescription for the value of α:

M = 4π

3
ρ̄(αR)3. (53)

This means that the volume associated to a Gaussian filter is
equivalent to the volume associated with a Top-Hat filter (a sphere)
with an effective size α times larger.

It is now straightforward to change variable from R to M and from
ν to z using the spherical collapse condition with a Gaussian filter
(equations 52 and 53), so that for condition c (peak or void),15 the

13For halo mergers spotted by critical events, the disappearing halo is likely
to be, but not necessarily, the less massive of the two proto-haloes.
14Possible prescriptions include matching 〈δTHδG〉 = σ 2

TH or matching
masses MG = MTH.
15Since dDdz = −Df/(1 + z) with f ≡ dlog D/dlog a ∼ �0.6

m .

destruction rate reads

∂2n

∂ log M∂z

∣∣∣∣
c

= n(c)
me(R, ν)

∂R

∂ log M

∣∣∣∣∂ν

∂z

∣∣∣∣ ,

= −n(c)
me(R, ν)

|δc|
3ασ (R)D(z)2

dD

dz

(
3M

4πρ̄

)1/3

, (54)

where α ≈ 2.1 and ρ̄ ≈ 2.8 × 1011 h2M�/Mpc3 �m (see e.g. Musso
et al. 2018, table A1). From equations (30) and (54), we can now
count explicitly how many peaks and voids of a certain mass or
within some mass range are destroyed early or late in the accretion
history, via straightforward integration.

Fig. 14 shows the destruction rate of peaks and voids as a function
of the object mass. The cosmology-dependent terms of equation (54)
(D(z), dD/dz, and σ ) have been computed using the code COLOSSUS

(Diemer 2018) in a �CDM cosmology. The power spectrum has
been computed using the fitting formulas of Eisenstein & Hu (1998).
In order to evaluate the number density of critical events (the nme

term), we have assumed a scale-dependent equivalent power-law
power spectrum.16 The figure shows that for both peaks and voids,
there is a cut-off mass scale above which objects are not destroyed
any more.

The high-mass cut-off comes from the exponential cut-off of
high |ν| objects, which suppresses massive objects (high R) at high
redshifts. Due to the dependence of the destruction rate to the
effective spectral index of the power spectrum as well as σ (R),
the destruction rates show significant redshift evolution. This is
particularly emphasized on Fig. 14, right-hand panel, which shows
the evolution of the destruction rate with mass at different redshifts.
The evolution with redshift both depends on the rarity of the object,
as encoded by ν but also on the local shape of the power spectrum,
as encoded by the equivalent spectral index ns, eq.

Quantitatively, it should be noted that the mass scale of the cut-off
and the precise value of the merger rate–mass relation will be
subject to the same uncertainty in the value of δc, which also affects
the halo mass function (Robertson et al. 2009; Ludlow, Porciani &
Borzyszkowski 2014). The focus of this section is anyway to
rephrase the critical event theory in astrophysical variables: The
implementation of realistic merger tree models is left for future
work. It should also, in principle, be possible to generalize equation
(54) to filament mergers, but this would require the knowledge of a
relation between the initial overdensity (or any other functional of
the initial overdensity field) and the mass of the filament or its length,
as well as a collapse condition. Shen et al. (2006) and Pogosyan
et al. (1998) suggested this could be achieved using a spherical
collapse criterion with a critical overdensity smaller than δc.

The impact of our results on filament merger rates in M, z space will
be done in a follow-up work. Beyond the scope of this paper, those
results could also be re-expressed in terms of the surviving structure
and take into account the two objects’ mass ratio, so that they can be
compared to merger ratios measured in numerical simulations (e.g.
Genel et al. 2009; Fakhouri, Ma & Boylan-Kolchin 2010; Rodriguez-
Gomez et al. 2015).

5.2 Consistency with cosmic connectivity evolution

The properties of the initial random field was shown by Codis et al.
(2018) to control to a large extent the connectivity of dark matter

16At each scale, the equivalent power-law power spectrum is given by the
formula ns, eq(R) = −3 − 2dlog σ /dlog R, where σ is computed using a
�CDM power spectrum.
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Critical event theory in a multiscale landscape 4803

Figure 14. Destruction rates of haloes (red lines) and voids (blue lines) from expansion factor 0.1 (light colour) to 1.0 (dark colour), linearly spaced, in a
�CDM universe as a function of object mass (left-hand panel) and as a function of mass relative to the non-linear mass (right-hand panel).

haloes, as defined by the number of connected filaments (locally and
globally) at a given cosmic time. The upshot of this work is that
the packing of peaks (i.e. the ‘volume’ they occupy, as imposed
by their exclusion zone) and saddles implies that three to four
filaments typically dominate locally. Interestingly, the rate of filament
disappearing must match the peak merger rate, in order to preserve
this number. Beyond numerology, this rate is important because
filaments feed coherently dark matter haloes, so their lifespan matters
to understand the balance between filamentary cold gas inflow (from
subsisting filaments) and environmentally driven disruptions (from
filament mergers).

Our qualitative understanding of the critical structure of Gaussian
random fields remains in close relation to packaging: Each vicinity
of a critical point, and with the same argument, of a critical event,
must by continuity occupy a certain volume of space, as set by its
eigenvalues, which puts constraints on the position of other points
in the vicinity. Indeed, critical points are found where the gradient
vanishes, with some local curvature, so that the field is quadratic
in each eigenvector’s direction. As a consequence, the gradient of
the field is linear at non-null separation and cannot vanish, so that
no other critical point can be found in the direct vicinity of another
critical point or event. At large separations, the field decorrelates
from its values at the critical point, so that another critical point
event becomes likely. In other words, before connecting a given peak
to a peak of a different height, the field must first go through a local
saddle point along the ridge whose distance is set by the ‘width’ of
that peak.

The same reasoning applies to critical events, except that the field
has a specific third-order behaviour along the ridge defined by the
eigendirection of the vanishing eigenvalue (it is an inflection point
in that direction). For critical events, the process of smoothing the
field will impact both the local curvature but also the curvature of
all other critical points. Hence, it is expected that smoothing will
also disconnect neighbouring peaks as mergers occur: The ridges are
smoothed out because technically their saddle points vanish.

We can quantify this process via the two-point function of these
events. From the auto- and cross-correlations of the P and F events
presented in Section 3, we can define the ratio of the separation at
the maximum of these two correlations (sij = argmaxsξ ij(s)) as a
measure of the relative ‘proximity’ of the two events. Since this ratio
sPF/sPP ≈ 3/4 is smaller than 1 (see Fig. 13), it means that filament
mergers are more clustered around halo mergers than halo mergers
around halo mergers, so that the rate at which filaments disappear

matches the merger rate and the typical number of filaments per halo
remains constant through cosmic time. As a result of this spatial
clustering, the most likely sequence happening is a PFFP in 2D
(one halo merger, followed by two filament mergers, followed by a
halo merger), as presented on the cartoon of Fig. 15. This sequence
conserves the connectivity of peaks, and is consistent with the relative
rates of events. Fig. 15 illustrates an analogous consistent PF4P (one
halo merger, followed by four filament mergers, followed by a halo
merger) sequence in 3D. Fig. 16 shows how the local connectivity of
3 can also be preserved, as the weaker filaments typically lie off the
main plane.

Finally, the clustering of filament disappearance impacts the
connectivity of peaks as they merge as discussed in the next section
(see Fig. 17, bottom right-hand panel). This is a direct consequence
of the clustering of events of the various types.

5.3 Assembly bias in the frame of filaments

Previous works have highlighted the modulation effect induced by the
environment on the assembly of dark matter haloes and the galaxies
therein, which affect the secondary halo or galaxy properties, an
effect often called ‘assembly bias’. Let us now make use of the merger
statistics to study the impact of the large-scale structures on assembly
bias, following Section 3.3. Indeed, it is expected on theoretical
ground that, at fixed mass, the typical accretion rate increases when
going from the filament centre towards nodes (Musso et al. 2018).
Looking at galactic properties instead, Kraljic et al. (2018) showed
that the ratio of stellar rotation to dispersion (v/σ ) is also modulated
as a function of the distance and orientation to the nearest filamentary
structure. Kraljic et al. (2020) suggested that galactic properties are
linked to the connectivity of the halo, with more connected haloes
hosting more quenched and less rotation-supported galaxies.

In this section, we show that in our framework, the connectivity
of haloes increases in nodes and decreases in voids, resulting in a
differential evolution of haloes, depending on their spatial location in
the cosmic web. In order to do this, a suite of Gaussian random fields
constrained to the presence of a proto-filament have been generated.
The proto-filament is modelled as a filament-type saddle point at the
centre of the box, the exact generation procedure being described
in Appendix E. It is defined at a scale R = 5 Mpc h−1, is oriented
along the z-axis, and lies in a wall in the yz plane. Using the set of
constrained GRFs, we compute the excess density of each kind of
critical event with respect to the cosmic mean, at fixed smoothing
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4804 C. Cadiou et al.

Figure 15. Top panels: snapshots of the density field in 2D at two smoothing
scales (colour coded from blue, low density to red, high density). The black
lines represent density ridges/troughs connecting the red peaks, and the blue
voids via the green saddle points. As the two low persistence pairs of peaks
(in white) merge, the connectivity increases from 4 to 6 (as labelled). The
fate of this connectivity now depends on the nature and location of the next
merger events (inspired from Sousbie 2011). Bottom panels: as labelled from
(a) to (d), an abstraction of the merger sequence of a 2D ‘cosmic crystal’
impacting the connectivity of the central peak. Ridges are shown in black
while troughs are shown in dark blue. The red circles represent the peaks,
the green stars the saddles, and the blue diamonds the voids. A P1 merger
(highlighted in light grey) raises the mean connectivity of the central peak
from 4 to 6, but the next two F1,2 mergers (highlighted in darker grey) lower
it back to 4. The next P2 merger (panel d) will reduce the void’s connectivity.
A more realistic representation of this process is also visible in Fig. 3.

scale (hence at fixed object mass) 2.5 ≤ R ≤ 5 Mpc h−1. The results
are shown in Fig. 17.

Let us first restrict ourselves to the halo merger rate (top left-hand
panel of Fig. 17). Going from one void to the wall, from the wall
to the filament and from the filament to the nearest node, the halo
merger rate increases and the maximum halo merger rate is found
near the location where a node is expected (z ∼ ±10 Mpc h−1). At
larger scales, the field becomes unconstrained so that the merger rate
falls back to its cosmic mean. We reproduce here from first principles
the results of Borzyszkowski et al. (2017), showing that haloes close
to the filament centre are stalled compared to those in nodes: They
do not undergo many mergers nor do they accrete much as the local

Figure 16. Following the cartoon shown in Fig. 15, the left-hand panel shows
a smoothing sequence (from the top to bottom), which would preserve the
connectivity of a 3D peak. It requires that each P merger should be followed
by four F mergers in the vicinity. The right-hand panel highlights how the
multiplicity is preserved if one starts with three dominant co-planar filaments.

tidal fields channels all the matter towards the two surrounding nodes,
bypassing the centre of the filament. Quantitatively, haloes forming
at the centre of the filament are found to have a halo merger rate close
to the cosmic average, while those close to the nodes are expected
to have 40 per cent more mergers. Conversely, haloes forming in a
void next to a filamentary structure are expected to have a merger
rate 20 per cent smaller than the cosmic mean.

Let us now add to the emerging picture the filament coalescence
rate. Filament merger rates act locally to decrease the connectivity
of haloes, as each merger will disconnect one filament from two
haloes. The top right-hand panel of Fig. 17 shows that the merger
rate is maximal along the wall and minimal along the filament.
Going off the plane of the wall (x-direction), the filament merger
rate simply decreases towards the cosmic mean. The filament merger
rate is minimal in the nodes (−13 per cent) and maximal in the wall
(+10 per cent). As a consequence, haloes forming in a filament and
close to a node have a larger halo merger rate but a smaller filament
merger rate. This, in turn, will have an impact on the assembly of
dark matter haloes and their galaxies. In the wall, where the filament
merger rate is the highest, we expect filaments to merge faster than
haloes, resulting in haloes with fewer connected filaments. This can
be interpreted using the results of Section 2.4. Indeed, in a cosmic
wall, the geometry is locally 2D so that the theoretically expected
connectivity becomes 4 instead of 6.

The bottom left-hand panel of Fig. 17 shows that the wall merger
rate is decreased in walls and even more strongly in filaments
compared to the rate found in voids. The minimum wall merger rate
is found at the location of the node with a rate −40 per cent smaller
than the cosmic mean. Conversely, the wall merger rate is enhanced
in the two voids surrounding the wall with a rate 20 per cent above
the cosmic mean.

The evolution of the connectivity with cosmic environment is
summarized by the bottom right-hand panel of Fig. 17, which shows
the ratio of halo mergers (P critical events) to filament mergers (F
critical events), for which the cosmic mean is 2.055 (see equation 28).
Small values of rF/P indicate that haloes merge faster than their
surrounding filaments, so that the connectivity increases as haloes
grow. In contrast, large values of rF/P indicate that filaments merge
faster than haloes, so that the connectivity decreases as haloes grow.
The bottom right-hand panel of Fig. 17 shows that in nodes, the ratio
drops to about rF/P ≈ 1.1. In contrast, haloes forming in voids are
expected to have a ratio of about 2.4.
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Critical event theory in a multiscale landscape 4805

Figure 17. From the left- to right-hand side and top to bottom, peak-merger, filament-merger, and wall-merger excess density around a large-scale proto-
filament, illustrated by the vertical cylinder (z-direction) and the wall in which it resides, illustrated by the grey plane (yz plane). The bottom right-hand panel
shows the local ratio of filament to peak mergers rF/P . Each side of the cube shows a slice through the centre, shifted to the side of the plot for visualization
purposes. Red regions have an excess of critical events, while blue regions have a deficit of critical events with respect to cosmic average. Interactive versions of
these plots can be found online for the halo mergers, filament mergers, wall mergers, and filament-to-peak-merger ratio. Going from voids to wall, from wall to
filament, and from filament to the nearest node (along the z-axis), the halo merger rate increases and the filament merger rate decreases. Haloes in the filament
are therefore stalled: they merge less than those in the nodes. At the same time, the filament merger rate decreases when going from the filament towards the
node so that the mean connectivity, given by the ratio of halo merger to filament merger, is expected to increase.

We therefore expect that, at fixed final mass, haloes forming next to
a node will grow an increasing number of connected filaments.17 The

17Conversely Codis et al. (2015) found that when averaged over all large-scale
structures, connectivity increases with mass.

expected physical outcome of this process is that the streams feeding
a galaxy growing next to a node will become more and more isotropic
with increasing connectivity. Assuming that an isotropic acquisition
of matter leads to a smaller amount of angular momentum being
transferred down to the disc, we propose that this effect prevents
the formation of gaseous discs in the vicinity of nodes. Conversely,
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4806 C. Cadiou et al.

Figure 18. Critical events number counts as a function of the rarity in �CDM
N-body simulations in different redshift bins as mentioned in the legend, with
the same colours as Fig. 11. The curves have been normalized so that in each
redshift bin, the integral of the three curves (W,P,F ) equals 1. At high
redshift, the merger rates resemble the Gaussian prediction (thick dashed
grey lines, with an arbitrary normalization). The skewness of the distributions
increases with decreasing redshift as the field departs from Gaussianity, in
qualitative agreement with the predictions of Fig. 7.

we expect that haloes growing in the neighbouring voids see their
filaments destroyed faster than they merge, so that the halo is likely
to grow with steadier flows coming from a few filaments (only the
dominant ones survive) (see also Codis et al. 2015; Laigle et al. 2015,
sections 6.2.1 and 5, respectively, for similar conclusions reached via
the kinematic structure of large-scale flows in filaments).

5.4 Departure from Gaussianity at high z

Using the results of Section 2.5, we detail in this section the evolution
of the critical event number counts in the mildly non-linear regime,
at high z. Let us briefly quantify the effect first on simulations,
and then compare to the proxy of Section 2.5 relying on known
perturbative results. Fig. 18 presents the redshift evolution of critical
event counts measured in 45 realizations of �CDM simulations
in boxes of 500 Mpc h−1 involving 2563 particles evolved using
GADGET (Springel, Yoshida & White 2001). At each snapshot, the
density field is sampled on a 2563 grid smoothed with a Gaussian
filter over 6 Mpc h−1. The algorithm described in Appendix H is used
to identify and match the critical points and critical events.

At high redshift (z � 10), the measured number counts of critical
events is close to the Gaussian prediction. While we cannot make
definite statements given the level of shot noise in the measurements
and existing transients at high redshifts, clear trends are seen in the
counts. In particular, at lower redshift, the P and F counts shift
towards lower contrast, but, respectively, decrease and increase in
amplitude, while the W counts increase in amplitude. Since haloes
in low-density environments form later, it is expected that the low-z
counts are biased towards low densities. Similarly, the mean density
of a filamentary structure decreases with increasing time, as the less
dense filaments take more time to gravitationally form, so that the
PDFs of the filament mergers shifts to smaller densities at low z.
The evolution of void structures with cosmological time mirrors that
of peaks: early forming voids are the most underdense while late-
time voids form out of less underdense regions. At fixed resolution,
this results in a shift of the typical density of voids towards higher
densities which in turn shifts the nW

me towards higher densities.

Overall, the cosmic evolution of the measured event counts seems
to be in fairly good agreement with the model presented in Fig. 7,
suggesting that, indeed, the set of critical events in the initial density
field do capture the upcoming cosmic evolution of the cosmic web.
Further works beyond the scope of this paper will be necessary to
better match the weakly non-Gaussian regime in more details.

5.5 Discussion

There is a long tradition of relying on merger trees of dark matter
haloes extracted from simulations as a means to tag the haloes with
physical properties (see, e.g. Lacey & Silk 1991; White & Frenk
1991; Benson & Bower 2010, and references therein). It has been
suggested that galactic properties, such as spin, do not seem to be
entirely encoded in the (halo) merger tree (Vitvitska et al. 2002;
Benson, Behrens & Lu 2020), a conclusion that could indicate that
the anisotropy of the environment contributes to the spin of galaxies
(Codis et al. 2015). One of the long-term main motivations for
the present work was to provide us with a theoretically motivated
extension to halo merger trees by adding the other two merger trees
(filaments and walls). Using the theory and the tools developed in
this paper, the set of critical events that define these merger trees
could be fed into semi-analytical modelling. This would complement
existing approaches by providing not only the past history of the DM
halo (via its merger tree), but also of the other substructures in the
Lagrangian patch (via the filament and wall merger trees). To that end,
the critical event theory provides an unambiguous and theoretically
motivated framework to describe and detect such events, either in the
initial conditions (as a means to make predictions) or in numerical
simulations (as a means to quantify the evolution).

Another possible approach would be to rely on modern machine
learning techniques to identify which combination(s) of critical
events are most likely to lead to galaxies of a certain type to be
produced in cosmological simulations. This strategy is likely to be
efficient and rewarding, as the set of critical events is a very strong
compression of the set of initial conditions, and because once the
segmentation has been done, the subset of events which are in the
past history of a galaxy with a given tag have physical meaning.
For instance, recent disconnect of filaments are likely to impact
gas infall hence star formation and disc reformation (Pichon et al.
2011; Danovich et al. 2012; Aragon Calvo, Neyrinck & Silk 2019).
The set of critical events represents a useful effective topological
compression of the initial conditions which will impact the upcoming
‘dressed’ merger tree (i.e. the cosmic evolution of peaks and their
filaments and walls). Note that the exact relative configuration of
critical events in the position–smoothing space may be of relevance,
and is not fully captured by the sole knowledge of the one- and
two-point statistics.

As an illustrative proof of concept, we have detected the crit-
ical events in the initial conditions of two 2563 N-body simula-
tions. Fig. 19 shows two pairs of consecutive snapshots zoomed
around an F and a W critical event (in simulations of sizes
100 and 500 Mpc h−1, respectively). In order to take into account
the Zel’dovich flow, we have displaced the critical events from
their initial Lagrangian position by the mean displacement of the
neighbouring DM particles. As expected, the F critical event can be
related to the disappearance of a filament between two walls, while
the W critical event encodes the disappearance of a wall between
two voids. This figure illustrates that there exists at least a subset
of critical events that can indeed be mapped to actual mergers in
the evolved Universe, but note that the mapping between the critical
events and the time of the merger in the simulation was done here
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Critical event theory in a multiscale landscape 4807

Figure 19. Top panels: two consecutive snapshots in a 100 Mpc h−1 simulation showing an F critical event (yellow ball) that encodes the disappearance
of a filament (highlighted in red) separating two walls (red and blue wireframes). After the event, only one wall has survived (yellow wireframe). Bottom
panels: two consecutive shapshots in a 500 Mpc h−1 simulation showing a W critical event (yellow ball) that encodes the merger of two voids separated by a
wall (green wireframe). After the event, only one void subsists and the wall has disappeared. Individual DM particles are shown as black dots. The skeleton
(green lines) and the walls (green and red surfaces) have been extracted using DISPERSE. Both critical events can be related to merger event in the evolved
Universe.

by visual inspection. The quantitative study of the accuracy of the
mapping between critical events in the initial conditions and in the
corresponding dynamically evolved simulation will be the subject of
future work.

One should note that, even if the mapping between critical events
in the initial conditions and critical events in the density field evolved
by the simulation could not be established uniquely, the applications
highlighted above would be left unchanged as they only rely upon the
detection of critical events in the evolved field, but it would however
limit the scope of theoretical predictions.

Mapping of intensity of spectral lines, for instance, the H I 21-
cm line (Madau, Meiksin & Rees 1997) across the sky, could also
benefit from applying the present formalism to sequences of 2D maps
as a function of redshift. Existing (e.g. Chime, Shaw et al. 2014) or
upcoming surveys (e.g. SKA; Camera, Santos & Maartens 2015) will
indeed provide both extrema and merger counts extracted from sets

of maps at various redshifts. The cosmology dependence of extrema
counts is through (R∗, γ ) and the relevant cumulants, whereas the
cosmology dependence of critical event counts also involve (R̃, γ̃ )
and higher order cumulants at fixed level of non-Gaussianity (e.g.
involving third-order derivative of the field to first order as discussed
in Section 2.5). Hence, studying both counts as a function of redshift
will prove complementary.

These possible applications highlight the versatility of critical
events: They yield diagnostics in the initial conditions, together
with a theoretically motivated description of processes driving the
evolution of the cosmic web in the evolved Universe. The theory
presented in this paper provides a description of the evolution of mass
infall that may play an important role in galaxy formation. Further
efforts should be made to relate infall to the internal effects driving
the formation of galaxies (star formation, feedback, turbulence,
etc.).
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5.5.1 Applications beyond cosmology

The present analysis was mostly restricted to (quasi-)Gaussian
random fields because of their relevance in cosmology and also
because in this context the theory can be developed in some details
(as a Gaussian process defines a Morse function on a scale-by-scale
basis). But the concept of bifurcation of critical points in a one
parameter set of random fields extends beyond Gaussianity. Any
system involving random field controlled by one parameter could,
in principle, be investigated with this framework in order to identify
bifurcation/mergers of ridges (though the specific role played by
Gaussian smoothing would clearly generally not hold). For instance,
critical events in dust maps (such as Meisner & Finkbeiner 2013;
Planck Collaboration XI 2018b) could be used as an alternative
statistics to quantify the properties of the underlying turbulence.

The theory of critical events could also find applications in fields
where data are well described by their geometry, as critical events
describe how this geometry changes with scale. For example, in the
context of streaming of images, the set of critical events within a 2D
image characterizes its multiscale topology. It would therefore be of
interest to send the set of critical events, starting from the ones at the
largest smoothing scales, as a means of prioritizing which subregion
of the image needs to be streamed first because the topology of its
excursion (i.e. the local parsimonious representation of the image as
iso-contours) has changed. This would allow the received image to
acquire its most important topological features first.

Following the results of Appendix A, our formalism could be
extended to situations where the field whose evolution is investigated
corresponds to realizations of probability distributions living in
higher dimensions (or on more complex manifolds). In a more
abstract setting corresponding to a landscape drawn from a given
probability function, a wide range of important physical processes
occur when rare events collide, boosting detection probabilities and
passing a given threshold. For instance, dark matter annihilation
rates (which scale like the density squared) are boosted when two
substructures merges (Clark et al. 2018). In the context of this work,
this corresponds to nucleation, or the appearance of pairs of critical
points as one ‘unsmoothes’ (or more generally evolves) the field.

6 C O N C L U S I O N

As a proxy for cosmic evolution, we computed the merger rate of
critical points (peaks, saddle points, and minima) as a function of
smoothing scale from the primordial density field to forecast critical
events (halo, filament, and wall mergers) that drive the assembly
of dark matter haloes and possibly galaxies. We recovered the non-
linear prediction for the net density of peak merger found by Hanami
(2001) and further considered all sets of critical points coalescence,
including wall saddle to filament saddle (filament mergers) and
wall saddle to minima (wall or void mergers), as they modify the
geometry of galactic infall, such as filament disconnection or void
disappearance, thus generalizing previous results that focused only
on peaks. This ‘critical event theory’ is central to our understanding
of the effect of the cosmic web on the formation of galaxies, since
their evolution is the result of their past history, which is encoded in
their extended merger tree and the properties of their host halo.

The key results of this paper are the following:

(i) We studied critical events of all types and presented analytical
formulas for the one-point statistics of these events in fields of
dimensions up to 6 (Section 2), and also their clustering properties
via their two-point statistics (Section 3).

(ii) We have developed an algorithm to find critical events in
numerical data sets that we used as a confirmation of the theory
(Section 4). Such algorithm could be used, for example, to pre-
compress streaming of images, or as input to machine learning as
a means to learn galactic morphology from the initial conditions.
We also developed an algorithm to generate Gaussian random fields
subject to a given critical event.

(iii) We provided a covariant formulation of the critical event
theory, which allowed us to also compute the two-point statistics for
critical events. The two-point statistics show that halo mergers are
typically followed by filament mergers, so that the connectivity is
preserved.

(iv) We have shown that the critical event theory can be further
extended to take into account the early stages of non-linear grav-
itational evolution. This has then been compared qualitatively to
numerical simulations at high redshift. This extension also probes
the non-Gaussianities that arise from primordial non-Gaussianities
and can be used as a cosmological measurement.

We also presented some practical applications of the theory to
astrophysical problems in Section 5. We computed the destruction
rate of haloes and voids as a function of mass and redshift in a �CDM
cosmology using a simple model to assign a mass and time to critical
events (Section 5.1). This can be used as a test for the critical event
theory, as well as an alternative cosmological measurement. We have
established the link between critical events and connectivity. This
allowed us to compute the connectivity of peaks and other critical
events in arbitrary dimensions.18 Physically, a duality between the
evolution of the cosmic web (critical events) and its topological
features (connectivity) was highlighted (Section 5.2) In addition, we
showed that haloes forming near cosmic nodes do so by increasing
their connectivity, with possible implication for the formation of
their host galaxy (Section 5.3). Finally, using N-body simulations,
we have shown that the critical event theory statistically recovers
the evolution of the merger rates of the different structures (haloes,
filaments, walls) in the mildly non-linear regime at high redshift
(Section 5.4).

We have only touched on practical applications for the forecasting
of special events in a multiscale landscape. It may prove to be a
fruitful field of upcoming research in astronomy and beyond.
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APPENDIX A : CRITICAL EVENTS IN ND

For the sake of completeness and possible interest in other fields
of research, let us present the one-point statistics of critical events
in arbitrary dimensions. We first generalize the spectral parameters
relevant to the critical event theory in d dimensions in Appendix A1.
We then proceed to derive the joint PDFs of the field and its second
derivatives in Appendix A2, and its first and third derivatives in
Appendix A3. These results are then used in Appendix A4 to derive
the critical event number counts in higher dimensions. From this, we
then proceed to provide asymptotic formulas in the high-density limit
(Appendix A5), compute the ratios of critical events (Appendix A6),
and establish the connection between critical points counts and
critical events in any dimension (Appendix A7). In Appendix A8,
we finally provide a confirmation of the net merger density derived
using the number counts of critical points in 3D.

A1 Spectral parameters

In this section, we provide definitions for the spectral parameters of a
d-dimensional Gaussian random field. Let us first define the variance
of the ith derivative of the field:

σ 2
i (R)= d

(4π)d/2�
(
1 + d

2

) ∫ ∞

0
dkkd−1Pk(k)k2iW 2(kR), (A1)

where Pk(k) is the ND power spectrum and W(kR) = exp (−(kR)2/2).
The characteristic scales R0, R∗, and R̃ are defined by equation (4),
and the spectral parameters γ and γ̃ are defined by equation (5). In d
dimensions for a power-law power spectrum with index n, we have

R2
0

R2
= 2

n + d
,

R2
∗

R2
= 2

n + d + 2
,

R̃2

R2
= 2

n + d + 4
,

γ 2 = n + d

n + d + 2
, γ̃ 2 = n + d + 2

n + d + 4
. (A2)

A2 Joint PDF of the field and its second derivatives

From Pogosyan et al. (2009b), the joint distribution function of the
set of d eigenvalues of the d-dimensional Hessian σ2λ and density ν

is

P (ν, λ) = 1

N �(λ) exp

(
−1

2
Qγ (ν,λ)

)
, (A3)

where λ = {λi}i=1...d , �(λ) = ∏
i<j (λj − λi) is the Vandermonde

determinant, and Qγ is a quadratic form in λi and ν given by

Qγ (ν,λ) = ν2 +
(∑

i λi + γ ν
)2

(1 − γ 2)
+ Qd (λ) , (A4)

with

Qd (λ) = d(d + 2)

2

⎡⎣∑
i

λ2
i − 1

d

(∑
i

λi

)2
⎤⎦

= (d + 2)

⎡⎣1

2
(d − 1)

∑
i

λ2
i −

∑
i<j

λiλj

⎤⎦ (A5)

proportional to the Euclidean norm of the detraced Hessian matrix.
Note that the expression in equation (A3) assumes that the eigen-
values are sorted; otherwise, the Vandermonde determinant would
come with an absolute value. Finally N is a normalization quantified
below.

A2.1 Determining the PDF normalization

Directly integrating equation (A3) is not easy due to the presence
of couplings between the different variables in Qγ . However, this
integral is actually related to the integral over the joint PDF of
the field and its second derivatives in an arbitrary frame. Indeed,
the expression of the PDF in equations (A3)–(A5) was obtained
after a change of variables from an arbitrary frame to the Hessian
eigenframe, and the presence of the Vandermonde determinant is
related to the orthogonality constraint of the matrix of eigenvectors
(Doroshkevich 1970; Bardeen et al. 1986; Pogosyan et al. 2009b).
More precisely, taking into account the volume of integration over
all possible eigenvectors that keep the diagonalization of the Hessian
unique, we have (Zhang 2015)

I =
∫

d y exp(−1

2
yT · �−1 · y) ,

= Vol(O(d))

2d

∫
dν

d∏
i=1

dλi�(λ) exp

(
−Qγ (λ)

2

)
, (A6)

where y = {ν, xij , 1 ≤ i ≤ j ≤ d}, and the volume of the orthogonal
group in dimension d, O(d), is given by

Vol(O(d)) = 2dπd(d+1)/4∏d

k=1 �(k/2)
. (A7)

Note that in equation (A6), the integral is made over the sorted
eigenvalues λ1 < λ2 <, . . . , < λd. The factor 2d in the denominator
comes from the fact that the diagonalization mapping is unique if
we sort the eigenvalues and we choose the sign of each eigenvector.
Finally, the matrix � above is the covariance matrix of the y vector.

We note that the first line of equation (A6) is nothing else than a
multivariate Gaussian integral over d(d + 1)/2 + 1 variables, so that
its value is

I = (2π)(d(d+1)+2)/4|�|1/2 . (A8)

Comparing equations (A6) and (A3), the normalization factor N can
then be written as a function of the determinant of �:

N = 2d

Vol(O(d))
(2π)

d(d+1)+2
4 |�|1/2. (A9)

A2.2 Determinant of �

To evaluate |�|, we recall that simple computations in Fourier space
show that (Bardeen et al. 1986; Pogosyan et al. 2009b)

〈xij xkl〉 = 1

d(d + 2)

(
δij δkl + δikδjl + δilδjk

)
, (A10)

while 〈x2〉 = 1 and 〈xxii〉 = −γ /d. Therefore, the matrix � is block
diagonal, with a dense subblock �diag corresponding to the field x
itself and the diagonal elements of the Hessian xii, and a diagonal
subblock �offdiag corresponding to the d(d − 1)/2 independent off-
diagonal elements xi < j of the Hessian, each having equal variance
(d(d + 2))−1. The determinant of � thus factorizes into |�diag| ×
|�offdiag|, where the determinant of the off-diagonal Hessian elements
is simply given by

|�offdiag| = (d(d + 2))−d(d−1))/2 . (A11)

Let us now compute the contribution of the dense covariance
matrix �diag of the field and the diagonal elements xii of the Hessian.
To compute its determinant, we will diagonalize the matrix using
two successive steps. Let us first change to set of variables {ν, I1,
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x11 − I1/d, . . . , x(d − 1)(d − 1) − I1/d}. The matrix M of the variable
change reads

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . . . . . . . 0
0 1 . . . . . . . . . 1
... d−1

d
− 1

d
. . . . . . − 1

d

... − 1
d

d−1
d

− 1
d

. . .
...

...
...

. . .
. . .

. . .
...

0 − 1
d

. . . − 1
d

d−1
d

− 1
d

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (A12)

It is straightforward to show that the Jacobian determinant |M| = 1,
e.g. by first casting the trace I1 as the last variable, and by using
the Schur complement to the diagonal element corresponding to the
trace. In this new set of variables, the covariance matrix reads

M�MT =
⎛⎝( 1 −γ

−γ 1

)
0

0 �

⎞⎠ , (A13)

where

� = 2

d(d + 2)
Id−1 − 2

d2(d + 2)
uuT, (A14)

and u is a d − 1 column vector with all elements equal to 1.
At the second step, we diagonalize the matrix �, which is

easily accomplished by collecting orthogonal bases of Span(u) and
Span(u)⊥, respectively. The last d − 2 eigenvalues are equal to 2/d(d
+ 2), while the first eigenvalue is equal to 2/d(d + 2) − 2(d − 1)/d2(d
+ 2) = 2/d2(d + 2). The determinant of �diag is therefore

|�diag| = (1 − γ 2)

[
d(d + 2)

2

]−(d−1)

d−1. (A15)

Putting everything together, we get the final expression of the PDF
normalization N entering equation (A3):

N =2(d(d+3))/4(d(d + 2))−(d(d+1)−2)/4

√
π

d

√
1 − γ 2

d∏
k=1

�(k/2). (A16)

A3 Joint statistics of the first and third derivatives

A3.1 Expression for the joint PDF

Here, we will look into the pdf of the first and third derivatives
in d dimensions in order to compute the odd derivative term Codd

that enters critical event number counts in d dimensions. Let us
first describe the joint distribution globally. The structure of this
distribution is quite similar to that of the field and its second
derivatives that were presented in Appendix A2. We have

P (z) = 1√
(2π )n |�̃|

exp

(
−1

2
zT�̃

−1
z
)

, (A17)

where z = {xi, xijk, 1 ≤ i ≤ j ≤ k ≤ d} is the set of the first and
third derivative tensors, �̃ is the covariance matrix of z, and n = d(d
+ 1)(d + 2)/6 + 1 is the number of non-redundant terms in z. As
before, the first derivatives get coupled to the third derivatives only
via traces of the latter. Indeed, it can be shown that the quadratic
form of the Gaussian PDF reads (Pogosyan et al. 2009b)

zT�̃
−1

z = d Tr

{[
1 −γ̃

−γ̃ 1

]−1[
xixi xixiaa

xixibb xiccxidd

]}

+d(d + 2)(d + 4)

6
x̄jkl x̄jkl , (A18)

where summation is assumed over repeated indices, and x̄ijk = xijk −
3xaa(iδjk)/(d + 2) is the traceless part of xijk. Given that we have d
traces of xijk, and that the space of traceless symmetric tensors of
the order of 3 is of dimension w3 = d(d + 1)(d + 2)/6 − d = d(d
− 1)(d + 4)/6, one expects the determinant of �̃ to show factors
(1 − γ̃ )d (d(d + 2)(d + 4))−w3 . Indeed, calculations similar to (but
more cumbersome than) those of Appendix A2 yield

|�̃| = 3d2d(d−1)(1 − γ̃ )d (d(d + 2)(d + 4))−w3 (d2(d + 2))−d .

Together with equations (A17) and (A18), this fully describes the
joint distribution of first and third derivatives of the field. In the
following, we will compute the conditional statistics needed for the
term Codd.

A3.2 Conditional statistics needed for Codd

First, let us note that the first derivatives are Gaussian distributed
with individual variance

〈
x2

i

〉 = 1/d so that the probability density
of first derivatives near the configuration when they all vanish is

P (xi = 0) =
(

d

2π

)d/2

. (A19)

Now let us specify the different statistics of the third derivatives.
By symmetry, one can note that〈(∑

i

x1ii

)2〉
= 1

d
, (A20)

since the third derivatives are rescaled by σ 3, and〈
x2

1jj

〉 = 〈
x111x1jj

〉 = 1

5

〈
x2

111

〉 = 3
〈
x1jj x1kk

〉 ∀j �= k �= 1.

Therefore,

1

d
= 〈

x2
111

〉+ (d − 1)
〈
x2

1jj

〉+ 2(d − 1)
〈
x111x1jj

〉
+ (d − 1)(d − 2)

〈
x1kkx1jj

〉 ∀j �= k �= 1

implies that
〈
x2

iii

〉 = 15/d(d + 2)(d + 4) and all terms of the third
derivatives covariance have been specified.

However, we are interested in statistics subject to a zero gradient
constraint, in particular the three quantities of interest are (choosing
the last dimension d as the degenerate one and assuming an implicit
summation on the i indices)〈
x2

ddd |xd = 0
〉 = 〈

x2
ddd

〉− 〈xdiixd〉2〈
x2

d

〉 , (A21)

〈
(xdii)

2 |xd = 0
〉 = 〈

(xdii)
2
〉− 〈xdddxd〉2〈

x2
d

〉 , (A22)

〈xdiixddd |xd = 0〉 = 〈xdiixddd〉 − 〈xdxddd〉 〈xdxdii〉〈
x2

d

〉 , (A23)

which can easily be computed thanks to the additional relation〈
x2

ii

〉 = 3/d(d + 2):

〈
x2

ddd |xd = 0
〉 = 3

d(d + 2)

[
5

d + 4
− 3γ̃ 2

d + 2

]
, (A24)

〈
(xdii)

2 |xd = 0
〉 = 1 − γ̃ 2

d
, (A25)

〈xdiixddd |xd = 0〉 = 3

d(d + 2)
(1 − γ̃ 2). (A26)
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A4 Critical event number counts in ND

It now follows that the critical event number counts of type j at height
ν in dimension d reads

n
(j )
d,ce(ν) = R

R̃2Rd∗
Cd

oddC
d
j,even(ν) . (A27)

The contribution from the odd part of the distribution function,
Cd, odd, depends on whether we consider total critical point count or
net merger events, but can be obtained in a closed analytical form for
arbitrary d in both cases.

To count net merger events as defined in equation (14), we evaluate
Cd, odd as

Cd
odd =

〈∑
i

xjii xjjj δ
(d)
D (xi)

〉
. (A28)

where the expectation in equation (A28) should be computed using
the results for odd-order derivatives given in Appendix A3. Note that
due to symmetries, the result does not depend on j. Using equations
(A19) and (A24), we obtain

Cd
odd = 3

d(d + 2)

(
d

2π

)d/2

(1 − γ̃ 2), (A29)

which is analogous to equation (39) in d dimensions.
If we are counting total density of critical events instead (equation

11 in d dimensions), one is led to introduce

C
ce,d
odd =

〈∣∣∣∣∣∑
i

xjii

∣∣∣∣∣ |xjjj |δ(d)
D (xi)

〉
, (A30)

where, once again, the final results do not depend on j. After a bit of
algebra,

C
ce,d
odd =

( d

2π

)d/2 2
√

6

π

√
(d − 1)

(
1 − γ̃ 2

)
d2(d + 2)2(d + 4)

+
( d

2π

)d/2 6
(
1−γ̃ 2

)
πd(d + 2)

tan−1

(√
3

2

√
d+4

√
1 − γ̃ 2

√
d−1

)
.

(A31)

The contribution from the even, density-threshold-dependent term,
Cd

j,even(ν), is given by

Cd
j,even(ν) =

〈
δD(x − ν)δD(λj )

∣∣∣∣∏
i �=j

λi

∣∣∣∣
〉

, (A32)

where the condition of critical point of type j refers to the vanishing
eigenvalue in the ordered list λ1 ≤ λ2 ≤ . . . ≤ λd, and j =
d corresponds to peak-filament mergers. The expectation value
in equation (A32) is computed using the distribution function in
equation (A3).

Cd
j,even(ν) is a non-trivial function of ν because of the correlation

between ν and
∑

iλi seen in equation (A4). It does not allow for
an exact analytical form; however, we can obtain the asymptotic
behaviour of Cd

j,even(ν) at large overdensities ν, as will be shown
below. The PDFs of total critical events in 3+1D, 4+1D, and 5 + 1D
can be obtained numerically using equations (A3), (A27), and (A29),
and are shown in Fig. A1. Note that the intermediate signature events
dominate in number over the extreme ones, in accordance with the
relative number of critical points.

Figure A1. The PDF of critical events of the various types (P,F ,W1,W2)
in 3 + 1D (top panel), 4 + 1D (middle panel), and 5 + 1D (bottom panel)
for ns = −2, −3/2, −1, −1/2 from light to dark.

A5 Asymptotics

In the large ν limit, the number density of peak-filament mergers in
d dimensions will now be shown to scale like

Cd
j,even(ν) ∝

γ ν→∞
(γ ν)2(d−1) exp

⎛⎜⎝−1

2

ν2

1 − d + 2

3d
γ 2

⎞⎟⎠ . (A33)

To get to equation (A33), first note that in d dimensions, the average
over the full range of eigenvalues of any monomial

∏
i λ

ni

i behaves
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Critical event theory in a multiscale landscape 4813

Figure A2. The ratio of peak to filament merger as a function of d. For
reference, the first diagonal is shown as a dashed grey line as well. The ratio
is approximately fitted as d − 1 + ((2d − 4)/7)7/4/2 and shown as red dots.
The dashed line is the identity.

as〈∏
i

λ
ni

i

〉
∝ (γ ν)

∑
i ni e−ν2/2 (A34)

in the high-ν limit. This follows from rewriting the exponential argu-
ment in equations (A4) and (A5) of the distribution in equation (A3)
in terms of uncorrelated d-dimensional Hessian invariants (Pogosyan
et al. 2009a) J

(d)
1 = ∑

i λi and J
(d)
2 = (∑

i λi

)2 − 2d
d−1

∑
i<j λiλj

as

Qd (ν, λ) = 1

2
(d + 2)(d − 1)J (d)

2 , (A35)

so that

Qγ (ν,λ) = ν2 +
(
J

(d)
1 + γ ν

)2

(1 − γ 2)
+ 1

2
(d + 2)(d − 1)J (d)

2 , (A36)

where J
(d)
2 is also uncorrelated with the overdensity ν. In the limit ν

→∞, J (d)
1 → −∞ and if all eigenvalues λi are unrestricted, the exact

boundaries of integration in λi space become irrelevant. The average
over J

(d)
1 and J

(d)
2 gives a power law in ν, while the factored out ν2

term in Qγ is responsible for the exponential ‘controlling factor’ of
the asymptotic behaviour e−ν2/2. A classical example of this situation
is found in the peak counts (Bardeen et al. 1986). For high peaks, all
eigenvalues tend to be large and negative, and asymptotically yield
equation (A34).

The situation changes when one or more eigenvalues are restricted
to remain small and/or positive. This is the case for critical events
where λj = 0, and thus λi ≥ 0 for all i ≥ j. In the ν → ∞, J (d)

1 → −∞
limit, only the subset of j − 1 eigenvalues λi < j becomes large
and negative, so the average over the Hessian terms is effectively
restricted to a subspace of dimension j − 1. This affects the
asymptotics, since J

(d)
1 and J

(d)
2 are correlated when projected to

a lower dimensional hypersurface. Instead, we need to rewrite the
PDF using combinations of J

(j−1)
1 and J

(j−1)
2 .

In the case of peak filament critical events j = d. Setting λd = 0
leads to the following transformation:

J
(d)
1 → J

(d−1)
1 , but J

(d)
2 → 1

(d − 1)2
J

(d−1)
1 + d(d − 2)

(d − 1)2
J

(d−1)
2 ,

which displays a coupling to J1. Closing the square term for J
(d−1)
1

in equation (A36) now gives

Qγ ({λd−1}, 0) = 3d

3d − (d + 2)γ 2
ν2 + d(d − 2)(d + 2)

2(d − 1)
J

(d−1)
2

+
(

J
(d−1)
1 + 2(d − 1)γ ν

3d − (d + 2)γ 2

)2 3d − (d + 2)γ 2

2(d − 1)(1 − γ 2)
. (A37)

which yields a new coefficient in front of ν2. The averaging in
equation (A32) leaves this term as controlling the exponential factor
of the ν → ∞ asymptote, and yields a polynomial in γ ν scaling
like ∝ (γ ν)2(d − 1), as stated in equation (A33), given that the Dirac in
λd changes the measure

∏
i < j ≤ d(λi − λj) to

∏
i < j ≤ d − 1(λi − λj) ×∏

i < dλi, hence the extra factor (γ ν)(d − 1).
Incidentally, a similar situation arises when computing the number

density of filamentary saddle points (Gay et al. 2012), where the
largest eigenvalue, though not zero, is still restricted to positive
values, leading to an effective change of dimension by 1, and
asymptotes with the same exponential behaviour as equation (A33).

A6 Ratios of critical events

From equation (A3), the integration over ν yields the marginal
probability of λ, which, up to a multiplicative constant, reads

∏
i≤d

dλi

∏
i<j

(λj −λi) exp

(
−1

2
Qd (λ) − 1

2

(∑
i

λi

)
2

)
. (A38)

Finally, the d-dimensional ratio of critical events of type j and k is
simply given by

rj/k =
〈
δD(λj )

∏
i �=j

∣∣λi

∣∣〉/〈δD(λk)
∏
i �=k

∣∣λi

∣∣〉 ,

where the PDF to evaluate this expectation is given by equation
(A38). Note that these counts correspond to the area below each
curve shown in Fig. A1. In 2 + 1D, we recover the ratio presented
in the main text. In 3 + 1D, the ratio is analytic and reads
2(57+25π−50 cot−1(3))

/
(75π−2(57+50 cot−1(2))) ≈ 3.17. More

generally,

d = 2 : rF/W = 1 ,

d = 3 : rF/P = 2.06 ,

d = 4 : rF/P = 3.17 , rW/P = 3.17 ,

d = 5 : rF/P = 4.36 , rW1/P = 6.72 , rW2/P = 4.36 ,

d = 6 : rF/P = 5.67 , rW1/P = 11.97 , rW2/P = 11.97,

and rW3/P = 5.67. Note that these ratios are pure numbers and do
not depend on the detailed shape of the underlying power spectrum.

A7 Self-consistency links with critical points counts

The results of this paper can be used to derive the connectivity as
defined in Codis et al. (2018). Indeed, let us formally write n(i)

cp the
number density of critical point of kind i in d dimensions and n(i)

me the
net number density of critical event of kind d − i + 1. The evolution
of n(i)

cp is given by

dn(i)
cp

dR
= −

⎧⎪⎪⎨⎪⎪⎩
n(1)

me if i = 0,

n(i)
me + n(i+1)

me if 0 < i < d − 1,

n(d)
me if i = d − 1.

(A39)
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For Gaussian random fields, the number density of critical point can
be formally written as

n(i)
cp = 1

Rd∗

〈∣∣∣∏
j

λj

∣∣∣〉〈δ
(3)
D (xi)

〉
︸ ︷︷ ︸

Ci

,

where the PDF to evaluate the left-hand part of the right-hand side is
given by equation (A38). Here Ci is a number common to all power
spectra. The derivative of n(i)

cp with respect to the smoothing scale is
then

dn(i)
cp

dR
= −n(i)

cp × d
d log R∗

dR
. (A40)

Using equations (A39) and (A40) yields a simple relation between the
number density of critical points and the number density of critical
events:

n(i)
cp = 1

d × dlog R∗/dR

⎧⎪⎨⎪⎩
n(1)

me if i = 0,

n(i)
me + n(i+1)

me if 0 < i < d − 1,

n(d)
me if i = d − 1.

For Gaussian random fields, one has the property that n(i)
cp = n(d−i)

cp

(with i ∈ {0, . . . , d}), and n(i)
me = n(d−i+1)

me (with i ∈ {1, . . . , d}).
This provides us with simple way to compute the ratio of critical

events as a function of the ratio of the critical points. For any d, the
ratio of filament to peak is connected to the ratio of F to P critical
events:

nf
cp

n
p
cp

= nP
me + nF

me

nF
me

= 1 + rF/P . (A41)

As an example, let use derive the ratio of other critical points in
dimensions up to 6D. For d = 4,

nf
cp

n
p
cp

= n(1)
cp

n
(0)
cp

= 1 + rF/P ≈ 4.17,

n(2)
cp

n
(1)
cp

= n(1)
me + n(2)

me

n
(0)
me + n

(1)
me

= n(0)
me + n(1)

me

n
(0)
me + n

(1)
me

= 1.

For d = 5,

nf
cp

n
p
cp

= n(1)
cp

n
(0)
cp

= 1 + rF/P ≈ 5.36,

n(2)
cp

n
(1)
cp

= n(2)
cp

n
(3)
cp

= n(1)
me + n(2)

me

n
(0)
me + n

(1)
me

= rF/P + rW1/P

1 + rF/P
≈ 2.07.

For d = 6,

nf
cp

n
p
cp

= n(1)
cp

n
(0)
cp

= 1 + rF/P ≈ 6.67,

n(2)
cp

n
(1)
cp

= n(3)
cp

n
(4)
cp

= n(1)
me + n(2)

me

n
(0)
me + n

(1)
me

= rF/P + rW1/P

1 + rF/P
≈ 2.64,

n(3)
cp

n
(2)
cp

= 1.

Note that in the previous expressions, we have used the following
substitutions np

cp ≡ n(d)
cp and nf

cp ≡ n(d−1)
cp and the fact that n(d)

cp = n(0)
cp

and n(d−1)
cp = n(1)

cp Given that Codis et al. (2018) provide an asymptotic
limit for the global connectivity κ ≡ 2nf

cp/n
p
cp, we can re-express it

in terms of the ratio of critical events as

nf
cp

n
p
cp

= n(1)
cp

n
(0)
cp

= 1 + rF/P ∼ d + 1

2
((2d − 4)/7)7/4 , (A42)

which, in the large d limit, asymptotes approximately to

rF/P
d→∞∼ 1

2

(
2

7

)7/4

d7/4 ≈ 1

17
d7/4 . (A43)

A8 Testing the link between critical points and events counts

From equation (A40) and because for a Gaussian filter, we have

dσ 2
i

dR2
= −σ 2

i+1,

one can easily derive

dn(i)
cp

dR
= −n(i)

cp × d
R

R2
�

1 − γ̃ 2

γ̃ 2
. (A44)

which, in d = 3 for peaks, reads

− dnp
cp

dR
= 3np

cp

R

R2
�

1 − γ̃ 2

γ̃ 2
(A45)

= 3R

R3
� R̃

2
(1 − γ̃ 2)

29
√

15 − 18
√

10

1800π2
, (A46)

which is equal to the net merger rate of peak type from equation (21)
with Ceven and C3, odd given by equations (24) and (25), respectively.

A P P E N D I X B: R ATE O F C H A N G E W I T H
S M O OT H I N G

Let us show how the 3 + 1D number density of critical events is
related to the rate of change of the 3D density of critical points with
R, dncp/dR. The 3D density of critical points is defined as

ncp(R) ≡
〈∑

cp

δD(r − rcp)

〉
, (B1)

where the sum runs over the solutions rcp of the equation ∇δ = 0, H
is the Hessian determinant, and brackets designate spatial averages
on a 3D slice, 〈 . . . 〉 ≡ 1

V

∫
V

. . . d3r . Critical points of a given kind
(peak, saddle, or minimum) can be defined by further imposing the
signs of the eigenvalues of the Hessian.

Outside the critical events, the trajectory of each critical point in
the extended 3 + 1D space obtained by stacking spatial slices at
different smoothing scales can be parametrized by R to yield the
3 + 1D coordinates (rcp(R), R). The equation for rcp(R) is obtained
by requiring that the field gradient ∇δ(r = rcp(R), R) be constant,
which gives

drcp

dR
= −∂R∇δ · H−1

∣∣
r=rcp

. (B2)

If one considers a single critical point, its contribution to
the integral count is seemingly preserved along the track at 1,∫

d3rδD(r − rcp) = 1. Thus, if this was valid for all trajectories at
every R, we would obtain a puzzling and incorrect conclusion that
the number of critical points is conserved with varying smoothing.
However, only trajectories that do not encounter a critical event can
be continuously parametrized with R everywhere. At the critical
event, a 3 + 1D geometrical line tracking the critical point turns
around and continues back in reverse direction in R with a change
of sign in H, and the R parametrization breaks. Equivalently, the
lines of two critical points of different types with opposite signs of H
(now both taken in the same R direction) meet and terminate. It can
be shown that the merging of two branches is smooth to first order,
but when parametrized in R, drcp/dR diverges at the critical event
and has opposite signs on the two branches (see Appendix D). This
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Critical event theory in a multiscale landscape 4815

clearly demonstrates why it is the critical events that are responsible
for critical point number changes with smoothing.

To resolve this difficulty, we shall consider counting only half
of the critical points, e.g. the ones with positive H (i.e. minima and
filamentary saddle points in 3D). The other half, with negative H, has
the same average number density due to the null Euler characteristic
of the space, so that the total density is twice that of critical points
with H > 0. Since the two sides of each merging pair of tracks have
opposite H signs, this leaves us with only one of the two branches
terminating at any critical event. So we have tracks that go forever,
and tracks that terminate at critical events, but along all of them, R
is a suitable parameter, since there is no backwinding.

Thus, we can compute the change with R of the density of critical
points as

dncp

dR
= 2

d

dR

〈∑
cp

δ
(3)
D (r − rcp)�H(H (rcp, R))

〉
, (B3)

and differentiating under the averaging operation, we find

dncp

dR
= 2

〈∑
cp

δ
(3)
D (r − rcp)

d

dR
�H

(
H (rcp, R)

)〉
. (B4)

Note that the contribution from Dirac’s delta function vanishes, since
dδ

(3)
D (r − rcp)/dR = −drcp/dR · ∇rδ

(3)
D (r − rcp), and there is no r

dependence left for the gradient to act on after integrating by parts.
Next we express the full derivative dH (rcp(R), R)/dR via

field variables using equation (B2), and use the representation∑
cp δ

(3)
D (r − rcp) = |H |δD(∇δ) on a fixed R slice, to obtain

dncp

dR
= 2

〈
|H |(∂RH −∂R∇δ · H−1 · ∇H )δ(3)

D (∇δ)δD(H )
〉

,

having replaced volume averaging by ensemble averaging over the
field distribution. Here the expression is understood as the H → 0+

limit, i.e. approaching the critical events along the positive H tracks.
This allows us to replace the absolute value |H| by H itself.19 In
the term H (∂RH − ∂R∇δ · H−1 · ∇H ), we recognize the 3 + 1D
Jacobian of equation (10), and finally obtain

dncp

dR
= 2

〈
J δ

(3)
D (∇δ)δD(H )

〉
. (B5)

In this expression, the factor of 2 reflects the fact that each critical
event affects two critical points; the appearance of J, rather than its
absolute value |J|, and the fact that different critical events change
the number of critical points according to the sign of J. Critical points
are created at a critical event if J is positive, and destroyed if J is
negative. Averaging over all J’s in equation (B5) counts the balance
of sources and sinks.

It is interesting to notice the analogy of equation (B5) with the
Press–Schechter expression for the crossing rate of random walks
through a threshold. Here the threshold is H = 0 rather than δ =
δc, and the random walks follow the critical point lines, but the
crossing rate is still the total derivative of the probability of being
above threshold, as in equation (B3), and it equals the expectation
value of the derivative dH/dR at H = 0 over all possible trajectories,
i.e. n3D

ce . The upcrossing probability (a better approximation to the
first crossing rate, where up is meant towards smaller scales) is, on
the other hand, the expectation value over trajectories with negative
derivative only, and is therefore analogous to n3D

ce,−.

19Using tracks with negative H would lead to the same result due
to the minus sign after differentiating �H(−H) and confirming that
limH→0− (−|H |H−1) = limH→0+ |H |H−1 = limH→0 HH−1.

APPENDI X C : D UA LI TY I N EVENTS RANK ING

In this paper and unless stated otherwise, the physical interpretation
of critical events was done from the perspective of the densest
structure. From this point of view, P,F ,W critical events are
interpreted as peak (proto-halo) mergers, filament, and wall mergers,
respectively. It is however also possible to interpret critical events
from the perspective of the least dense structure, in which case
P,F ,W critical events are interpreted as filament, wall, and void
mergers, respectively. In order to illustrate this, let us focus on the
central panel of Fig. C1, which illustrates an F critical event. Before
the critical event, the topology of the field is described, from the left-
to right-hand side, by a wall-type saddle point (W1), a filament-type
saddle point (F1), a wall-type saddle point (W2), and a filament-type
saddle point (F2). The critical event records the merger of F1 with W2.
Now, in order to interpret the critical event in astrophysical terms, one
is left with a choice of associating the merger to the surviving wall
(W1) or the surviving filament (F2). In the former case, the merger is
interpreted as a wall merger, while in the latter, it is interpreted as a
filament merger. Note that if one interprets the critical event from the
perspective of the disappearing structures instead, e.g. to compute
disappearing rates (as is done in Section 5.1), one faces the same
dual interpretation as the critical event records the merging of two
critical events of different kinds (here, F1 and W2).

Wall critical events (W) share a similar dual interpretation. From
the point of view of the densest structures – the disappearing wall or
the surviving one – the critical event is interpreted as a wall merger,
where the void between two walls is crushed. This is illustrated by the
red arrow; see the bottom panel of Fig. C1. Conversely, the critical
event can be interpreted from the point of view of the least dense
structure, i.e. the two voids. In this interpretation, the critical event
records a void merger where the surviving void (green arrow) is the

Figure C1. Same as Fig. 4 but interpreted from the point of view of the
least massive structure. � symbols are peaks, × symbols are filament-type
saddle points (filament centres), ⊗ symbols are wall-type saddle points
(wall centres), and � symbols are minima (void centres). Each critical
event can be interpreted as the destruction of a pair of critical points (grey
arrows) with a surviving structure. In the Fig. 4 description, the merger
is associated with the densest surviving structure (peak, filament, and wall
mergers; red arrows), while in a dual description, the merger is associated to
the least dense surviving structure (filament, wall, and void mergers; green
arrows).
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4816 C. Cadiou et al.

result of the central wall being ‘swallowed’ into the disappearing
void (grey arrow).

It is worth noting that this duality follows from self-consistency
relations between critical events with connectivity. Indeed, after a
critical event, the densest surviving structure (e.g. F2, or a peak after
a P critical event) becomes connected to the least dense surviving
structure on the other side of the critical event (e.g. W1 or a filament
after a P critical event), each of these two structures being equally
valid candidates as the ‘astrophysical outcome’ of the merger.

Finally, the dual interpretation also reflects the fact that, apart from
extrema, all critical points have two channels of destruction. They
can merge with a critical point of either the next or the previous
kind. For example, a filament can be destroyed in a P critical event
(where a filament between two peaks disappears) or in a F critical
event (where a filament between two walls disappears). This can
be mathematically expressed by relating the rate of change of the
number density of critical points of a given kind to the number
density of critical events (see Appendix A7).

A P P E N D I X D : LO C A L A NA LY S I S O F
N U C L E AT I O N

Let us consider the problem of merging or nucleation of a pair
of critical points near the critical event ∇δ = 0, H = 0, as one
changes the smoothing radius R by �R (either positive in case of a
nucleation or negative in case of a merger). Smoothing is assumed to
be Gaussian. Calculations are done in 2D but are easily generalized
to higher dimensions. The 1D case is a special case, with separate
conclusions as discussed briefly at the end of this section.

D1 Probing local vicinity of critical events

The idea is to start with a particular, but sufficiently general
configuration of the field at smoothing R and see how it changes
with smoothing. We take the field at smoothing R to be described by
the form

δR =δ0+ δyy

2
y2+ δxxx

6
x3+ δyyx

2
y2x+ δxxy

2
x2y+ δyyy

6
y3, (D1)

where δR is the field at smoothing R, position x, y, and δ0 is the
field at smoothing R at the origin. Here we have used the short-hand
notation δx = ∂δ/∂x (and similarly for higher derivatives). This can
be viewed as one specific realization of the random field, or as the
terms of Taylor expansion up to cubic order near the critical point
x = 0, y = 0, where, with our choice of coordinates,

δx = δy = 0, δxx = 0 . (D2)

We want to find out under which conditions the shift by �R out
of a critical event will create two critical points. This can be done by
solving the problem perturbatively in �R, to the lowest order in �R.
For this purpose, the terms used in the expression (D1) are sufficient,
higher order terms do not modify the result. Given our choice of
filtering, the evolution of the field with R is given by the diffusion
equation (12). Hence, to first order in �R,

δR+�R ∼ δR + R�R∇2δR , (D3)

with the Laplacian,

∇2δR = δyy + (δxxx + δyyx)x + (δyyy + δxxy)y , (D4)

which is to be substituted in equation (D3) for the final form of the
field configuration at the shifted smoothing. The shifted field will
have extrema where the gradient is zero:

∂δR+�R

∂x
= 1

2
δxxxx

2 + δxxyxy + 1

2
δyyxy

2

+ R�R(δxxx + δyyx) = 0, (D5)

∂δR+�R

∂y
= δyyy + 1

2
δxxyx

2 + δyyxxy + 1

2
δyyyy

2

+ R�R(δxxy + δyyy) = 0. (D6)

Since we are looking for appearance of critical points near the critical
event, i.e. at position x, y close to 0 as �R → 0, we should solve the
system of equations (D5) and D6) perturbatively in �R.

We start with the y-derivative, equation (D6). At leading order in
y, the terms y2 and xy can be dropped, leaving us with the following
relation:

δyyy + 1

2
δxxyx

2 ∼ −R�R(δxxy + δyyy). (D7)

There are two viable possibilities. Either y ∼ �R, or y ∼ x2. Let us
now check equation (D5) for these possibilities. If y ∼ �R, we see
that the xy and y2 terms are subdominant with respect to the linear
R�R term, but if y ∼ x2, these same terms are subdominant to x2.
Thus, the xy and y2 terms can be always neglected, and we find that

1

2
δxxxx

2 ∼ −R�R(δxxx + δyyx), (D8)

i.e. we always have a parabolic x ∼ �R1/2 and y ∼ �R behaviour
(see Fig. 5). Note that it is not possible to have y subdominant to x2

or �R, since in this case, equations (D7) and (D8) will be in general
inconsistent. The solutions to equations (D7) and (D8) are two points
(x+, y) and (x−, y), where

x± =±
√

−2R�R(δxxx + δyyx)

δxxx

, (D9)

y =−R�R
δyyxδxxy + δyyyδxxx

δxxxδyy

. (D10)

For dimensions higher than two, this standard linear dependence
appears for all regular directions in which the second derivative of
the field at the critical point does not vanish. The only condition for
the existence of a pair of extrema near the critical event now arises
from requiring that the square root argument in the expression for x±
be positive:

− 2R�R
δxxx + δyyx

δxxx

> 0 . (D11)

The type of critical points created or merged at a critical event is
determined by the signs of the eigenvalues of the Hessian at the
critical point locations. The Hessian of the smoothed field is given
by

∂2δR+�R

∂x2
= δxxxx + δxxyy, (D12)

∂2δR+�R

∂y2
= δyy + δyyxx + δyyyy, (D13)

∂2δR+�R

∂x∂y
= δxxyx + δyyxy. (D14)

Conversely, it is easy to show that to leading order in �R, the
eigenvalues of the Hessian at the critical points are

λ1 = δxxxx± = ±
√

−2R�R
(δxxx+δyyx )

δxxx
, (D15)

λ2 = δyy . (D16)
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Critical event theory in a multiscale landscape 4817

Figure D1. Multiple 1D slices of the conditional mean density field in 3 + 1D
at different smoothing scales (from R

′ = 0.56 to 1.80R0, equally spaced)
around a nucleation critical event (red

⊗
symbol), defined at scale R0, with

peaks (red � symbols) and filaments (green × symbols) of the 1D slice.
The nucleation critical event creates a pair of peak filament that is either
shortly destroyed (top panel) or long-lived (bottom panel). The fate of the
pair depends on the particular values taken by the field and its derivatives at
the critical event.

This explicitly demonstrates that two merging or created critical
points in a pair differ in nature with the sign of one eigenvalue. If
δyy < 0 (as well as the rest of the eigenvalues in higher dimensional
case), the process describes interaction of one maximum and one
filamentary saddle. If δyy > 0, the process describes the interaction
of a minimum and a saddle. In the multidimensional case, it is the
set of signs of all non-zero eigenvalues that determine the type of
interaction. In 3D, we have three cases: When both eigenvalues are
negative, δyy < 0, δzz < 0, it describes maxima and filamentary saddle
coalescence; when one is negative and one positive, δyy < 0, δzz > 0,
it corresponds to filamentary and wall-like saddles interacting; and
when both are positive, δyy > 0, δzz > 0, it corresponds to a wall and
a void coalescence. Note that in this discussion, we do not consider
eigenvalues as sorted, so the first (degenerate) direction is arbitrary.

D2 Discussion of the existence condition

The merging of a critical point pair corresponds to the situation when
two critical points disappeared as smoothing reached R. Thus, two
critical points existed for �R < 0. This happens when

δxxx + δyyx

δxxx

> 0. (D17)

Conversely, if the solution exists for �R > 0, then two critical points
appear out of a critical event as smoothing increases from R value.
We see that this happens when

δxxx + δyyx

δxxx

< 0. (D18)

This analysis thus proves that the nucleation process is in general
possible – even for Gaussian smoothing – if the number of dimensions
exceeds one.

The condition on merging or nucleation that we have derived by
this local analysis is equivalent to the condition on the sign of the
Jacobian defined in equation (10) presented in the main text (J >

0 for nucleation and J < 0 for merging events), since in our local
coordinate representation, the sign-dependent part of this Jacobian
is exactly J ∝ − δxxx

∑
iδiix. Thus, we conclude that the regions in

the space of third derivatives with negative Jacobian describe the
merging (disappearance) of peak/saddle pairs, while regions with
positive Jacobian describe the creation of peak/saddle pairs.

Note finally that in 1D, we do not have y- or higher directions,
so all mixed derivatives vanish. A solution for finding extrema pair
requires simply x2

± = −2R�R > 0. This solution exists therefore
only for negative �R, so in 1D, extrema pairs can only merge and
never be created at a critical event if the field is smoothed with
Gaussian filters.

Two examples of nucleation are presented on Fig. D1, which shows
successive slices of the density field around a nucleation critical event
at different smoothing scales. For both plots, the value of the density,
its Hessian and third derivative are drawn from a Gaussian PDF until
a P nucleation critical event is found in direction x. These values
are then used to constrain the density field at a finite distance and
different smoothing scale. The slice direction is oriented parallel
to the critical event, so that peaks and minima in each 1D slice
coincide at first order with peaks and filaments of the 3D density
field.20 The figure illustrates that pairs of critical points emerging
from a nucleation critical event are either long- or short-lived, and an
investigation using multiple constrained field showed that the latter is
the most common type. Interestingly, it seems that pairs created from
a nucleation critical event are very unlikely to annihilate, at least in
this somehow contrived setup. A likely astrophysical counterpart to
peak nucleation event may be splashback haloes (i.e. the temporary
reappearance of a subhalo that as only recently been accreted;
Aubert & Pichon 2007; More, Diemer & Kravtsov 2015, and for
filament nucleation, the temporary re-appearance of an enclosed wall
as two filaments merge, etc.). More work will however be required to
astrophysically interpret them and study their properties in the initial
density field.

A P P E N D I X E: EV E N T G E N E R AT I O N
A L G O R I T H M

E1 Constrained field – peak constraint

We have used CONSTRFIELD coupled with MPGRAFIC from Prunet
et al. (2008) to generate constrained realizations of a Gaussian
random field. We generate an unsmoothed Gaussian random field,
constrained to have a filament-type saddle point of height δ = 1 (ν =
1.17) at smoothing scale R = 5 Mpc h−1. The eigenvalues of the
Hessian are constrained to be {λ1, λ2, λ3} = σ 2{−1/2, −1/2, −1}
with eigenvectors {x̂, ŷ, ẑ}. Fig. E1 shows the mean density profiles

20As critical points, mostly slide along ridges of the skeleton.
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4818 C. Cadiou et al.

as well as one realization. As expected, the density is locally entirely
set by the constraints and has a parabola-like shape. At larger scales,
the field decouples from the constraints resulting in large fluctuations
around the mean value.

E2 Constrained field – higher order constraints

We developed a code that is able to numerically compute the
covariance matrix between any derivative of the field up to third
order or any antiderivative of the field up to second order (potential),
smoothed by any filter function and at any separation. The code relies
on the numerical integration of the correlation function between any
two functionals of the field. Formally, let us define a linear functional
F and its Fourier representation:

F̃ [δ](k) =
∫

d3re−ik·rF [δ](r). (E1)

Functionals that can be written as a convolution with a distribution,
which includes notably derivation operators and smoothing opera-
tors, can be further simplified as F̃ [δ](k) = δ(k)F̃ (k), where F̃ is
now a function of k only. Common operators take a simple form in
Fourier space; for example, the third derivative operator in direction
i, j, k reads (−i)3kikjkl, the shift operator (that shifts the field by
�x) reads exp(ik · �x), and the Gaussian filter has its usual form
exp (−k2R2/2). The covariance between two linear functionals of the
field then simply reads

〈F [δ]G[δ]〉 = 1

(2π)3

∫
d3kPk(k)F̃ (k)G̃�(k), (E2)

where the star symbol denotes here the complex conjugate. As a
worked example, the covariance between the field smoothed by a
Gaussian filter at scale R1 at the origin and the field smoothed by a
Gaussian filter at scale R2, position r is given by equation (E2) with
F̃ (k) = exp(−k2R2

1/2), and G̃(k) = exp(−k2R2
2/2 + ik · r).

Let us write X = {X1, X2}, where X1 is the density field sampled
at p different locations and X2 contains the q values (the field and/or
its (anti)derivatives) that will later be constrained to the value a.

Figure E1. Density profile of a random field constrained to a density δ = 1,
null gradient, and a Hessian with eigenvalues σ 2/2, −σ 2/2, −σ 2 in directions
x, y, z at the centre of the box, assuming periodic boundary conditions. The
expectation of the field is shown in dashed lines and the value of the field in
one realization is shown in solid lines. Dotted lines show the second-order
Taylor series of the field around the constrained point. The inset shows a
zoom on the constrained zone. For the sake of clarity, each curve have been
shifted by 0.02. At small distances from the constraint, the field resembles its
mean and its Taylor expansion.

For example, a critical event constraint (at fixed scale) could be
represented by X2 = {x, x1, x2, x3, x11, x111, x221, x331} subject to
the constraint a = {ν, 0, 0, 0, 0, α1, α2, α3}. The conditional mean
μ̄ and covariance C̄ of the field are then obtained from the full mean
μ = 〈X〉 and covarianceC = 〈XT X〉, computed using equation (E2),
by simple arithmetic

μ̄ = μ1 + C12C
−1
22 (a − μ2), C̄ = C11 − C12C

−1
22 C

T
12, (E3)

where we assumed here that the covariance is decomposed as C =(
C11 C12

CT
12 C22

)
, with sizes p × p, p × q, and q × q for C11, C12, and C22,

respectively, and similarly for the mean. One can then easily draw
samples from the conditional multivariate distribution using μ̄, C̄.

APPENDI X F: PAI R D ESTRUCTI ON AND
C R E AT I O N C O U N T S

Three different definitions of the number count have been discussed
in the text and presented in equations (11), (13), and (15). In this
section, we present the results obtained in three dimensions for a
Gaussian random field using these three definitions. For a Gaussian
random field, the expectation of the even derivatives is left unchanged
but the odd part is modified.

Using the total merger density definition of equation (11), the odd
part reads

Cce
odd = 1

5

(
3

2π

)3/2

(1 − γ̃ 2)

× 2

π

(
2√

21(1 − γ̃ 2)
+ tan−1

√
21(1 − γ̃ 2)

2

)
. (F1)

Using the pair destruction and pair creation definition of equation
(13), the odd part reads

C
ce,−
odd = 1

5

(
3

2π

)3/2

(1 − γ̃ 2)

× 1

π

(
2√

21(1 − γ̃ 2)
+ π

2
+ tan−1

√
21(1 − γ̃ 2)

2

)
, (F2)

Figure F1. Codd as a function of γ̃ when the definition for the total or
the net merger density is used. The difference between the two curves is at
the per cent level, at least for relatively small values of of γ̃ . At higher γ̃

(typically above 0.8, i.e for a spectral index above −1), both nucleations and
destructions become rarer and their ratio tend towards unity.
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C
ce,+
odd = 1

5

(
3

2π

)3/2

(1 − γ̃ 2)

× 1

π

(
2√

21(1 − γ̃ 2)
− π

2
+ tan−1

√
21(1 − γ̃ 2)

2

)
, (F3)

respectively. For the sake of completeness, let us reproduce here the
result, already presented in equation (23), using the net merger rate
definition of equation (15):

Codd = 1

5

(
3

2π

)3/2

(1 − γ̃ 2) . (F4)

A comparison of Codd between total and net merger density is
given in Fig. F1 and is shown to be at a few per cent level only.
For γ̃ above 0.8 (i.e. for a spectral index above −1), there are at
least 30 times fewer nucleations than destructions (this ratio is an
increasing function of γ̃ ).

APPENDIX G : J OINT PDFS

Let us present here the PDF of the field and its (up to third) derivative,
which will allow us to compute the expectations involved in the main
text.

G1 One-point PDFs

Since the odd and even-order derivatives of Gaussian random fields
do not correlate, let us write the joint PDF as PG = P0(x, xkl)P1(xi,
xijk). The expression for P0(x, xkl) for the Gaussian field was first
given by Bardeen et al. (1986). Introducing the variables

u ≡ −∇2x = −(x11 + x22 + x33) , (G1)

w ≡ 1

2
(x11 − x33) , (G2)

v ≡ 1

2
(2x22 − x11 − x33) , (G3)

in place of diagonal elements of the Hessian (x11, x22, x33), one finds
that u, v, w, x12, x13, and x23 are uncorrelated. Importantly, the field,
x is only correlated with u and

〈xu〉 = γ, 〈xv〉 = 0, 〈xw〉 = 0, 〈xxkl〉 = 0, k �= l,

where γ is the same quantity as in equation (5). The full expression
of P0(x, xkl) is then

P0(x, xkl) = 51/2152

(2π)7/2(1 − γ 2)1/2
exp

[
−Q0 + Q2

2

]
, (G4)

with the quadratic forms Q0 and Q2 given by

Q0 = x2 + (u − γ x)2

(1 − γ 2)
,

Q2 = 5v2 + 15(w2 + x2
12 + x2

13 + x2
23)

= 15

2
xabxab , (G5)

where the last identity is demonstrated in Pogosyan et al. (2009b)
and involves the detraced tensors:

t ij = tij − 1

3
taaδij , (G6)

t ijk = tijk − 3

5
taa(j δkl) , (G7)

with an implicit summation over repeated indices and symmetriza-
tion between parenthesized indices (e.g. taa(jδkl) = [taajδkl + taakδlj

+ taalδjk]/3 and so on). Equation (G5) depends only on a single
correlation parameter, γ . A similar procedure can be performed
for the joint probability of the first and third derivatives of the
fields, P1(xi, xijk) by defining the following nine parameters (see
also Hanami 2001):

ui ≡ ∇iu, vi ≡ 12

ε

ijk

∇i

(∇j∇j − ∇k∇k

)
x, with j < k ,

wi ≡
√

5

12
∇i

(
∇i∇i − 3

5
∇2

)
x, (G8)

and replacing the variables (xi11, xi22, xi33) with (ui, vi, wj). In that
case, the only cross-correlations in the vector (x1, x2, x3, u1, v1, w1,
u2, v2, w2, u3, v3, w3, x123) that do not vanish are between the same
components of the gradient and the gradient of the Laplacian of the
field:

〈xiui〉 = γ̃ /3, i = 1, 2, 3, (G9)

where γ̃ was defined in equation (5). This allows us to write

P1(xi, xijk)= 1057/233

(2π )13/2(1 − γ̃ 2)3/2
exp

[
−Q1 + Q3

2

]
, (G10)

with the quadratic forms

Q1 = 3
∑

i

(
(ui − γ̃ xi)2

(1 − γ̃ 2)
+ x2

i

)
,

Q3 = 105

(
x2

123 +
3∑

i=1

(v2
i + w2

i )

)
,

= 35

2
xijkxijk . (G11)

G2 Two-point PDFs

Calling x = (x, xi, xij , xijk) and y = (y, yi, yij , yijk), the joint PDF
reads

P2(x, y) =
exp

[
−1

2

(
x
y

)T

· C−1 ·
(

x
y

)]
det|C|1/2 (2π)15 , (G12)

where C is the covariance matrix that depends on the separation
vectors only because of homogeneity :

C =
(
Cxx Cx y

CT
x y Cyy

)
. (G13)

Note that xT · C−1
xx · x is given by Q0(x) + Q2(x) + Q1(x) + Q3(x),

where the Qi are given by equation (G5) and (G11). The cross terms
will involve correlations of all components of x and y:

Cx y = 〈x · yT〉 . (G14)

The correlation length of the various components of Cx y differs, as
higher derivatives decorrelate faster. Note that the separations are
measured in units of R, whereas the Qi are independent of R.

A P P E N D I X H : D E T E C T I O N A L G O R I T H M S

The source code of the implementation is available upon request. It
is based on PYTHON and the SCIPY stack (Virtanen et al. 2020).
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H1 Critical points detection

This section presents the algorithm used to find the critical points in
an N-dimensional field. Let F, Fi, and Fij be a field evaluated on a
grid, its derivative, and its Hessian. For any point x on the grid, we
have the following relation:

Fj (x) = Fj (xc) + (xi − xc,i)Fij (x) + O(�x2
i ). (H1)

Critical points are found where F ′
j = 0 by solving the linear system

of equation:

�xiFij = −Fj , (H2)

where �x = x − xc. The algorithm works as follows:

(i) Solve equation (H2) for each cell on the grid. We then get a set
of points (xi

c, xi), where the former is the cell centre and the latter
the closest critical point.

(ii) Remove all critical points found at |xi
c, xi |∞ ≥ �x, where �x

is the grid spacing.
(iii) For all critical point, compute the value of the Hessian

by interpolating linearly from the 2N (four in 2D, six in 3D)
neighbouring cells.

(iv) Compute the eigenvalues of the Hessians and the type of the
critical point (maximum, saddle point(s), or minimum).

(v) Merge all critical points of the same kind closer than �x. To
do this, we first build a KD-Tree of the critical points and find all the
pairs located at a distance dij = |xi − xj |∞ ≤ �x. For each pair, we
keep only the point that is the closest to its associated cell.

H2 Critical event detection

The algorithm is based on the idea that each critical event has two
predecessors at the previous smaller smoothing scale (two critical
points). Conversely, each critical point has either a critical point
successor of the same kind at the next (larger) smoothing scale or
a critical event. Therefore, a way to detect critical events is to find
critical points that do not have a successor. These points will be
referred to as ‘heads’ as they are the tip of a continuous line of
critical points in the smoothing scale direction. Critical events are
then found between pairs of heads of kind k and k + 1 (e.g. a peak
and a filament).

Following this idea, the algorithm can be decomposed in two
steps: Compute the heads of each kind, and then find pairs of heads
to detect critical events. In the rest of the section, let us call R0

(respectively, R1) the smallest (respectively, largest) scale at which
the field is smoothed. Let CR,k = {r i , R}i=1,...,N be the set of the N
critical points of kind k at scale R. The whole detection algorithm
reads

1: procedure FindCritEvents(CR, k, α)
2: E ← {} � All critical events
3: for k in 1, . . . , d do � Find heads of critical points
4: Hk ← BuildHeads(k, �log R)
5: end for
6: R ← R0

7: while R ≤ R1 do � Find pairs of heads (crit. events)
8: �R ← R × �log R �
9: E ← E + FindHeadPairs(H1, . . . , Hd, R, α�R)
10: R ← R + �R
11: end while
12:
13: return E
14: end procedure

The parameter α controls how far heads can be in the smoothing
scale direction, in units of log R. A value of 1 looks for pairs of heads
at the same scale, and a value of 2 looks for pairs of heads at scales
R, R + �R.

The first step (line 4) of the algorithm builds the set of heads Hk.
It works as follows:

1: procedure BuildHeads(k, �log R)� Build heads of kind k
2: Hk ← CR1,k � Initialise heads
3: Pk ← Hk � Initialise progenitors
4: R ← R1

5: while R ≥ R0 do
6: P ′

k ← {}� Initialise new progenitors at R
7: for p, c, d in SortedPairs(Pk, CR, k, R) do
8: if c �∈ P ′

k then
9: P ′

k ← P ′
k + {p, c} � Found new progenitor

10: end if
11: end for
12: Pk ← P ′

k

13: for c in CR, k do � Loop over crit. points
14: if c �∈ P ′

k then � Keep only unpaired ones...
15: Hk ← Hk + {c} � ... and add them to heads
16: Pk ← Pk + {c}
17: end if
18: end for
19: R ← R(1 − �log R)
20: end while
21:
22: return Hk � Heads are points with no successors at larger R
23: end procedure

Here, SortedPairs(X, Y, Rmax) returns (x, y, d), where x, y are
points in X, Y and d ≤ Rmax is their relative distance (in (�r, R) space).
The tuples are sorted by increasing distance. This can be efficiently
implemented using a KD-tree with periodic boundary conditions.
BuildHeads builds all heads by using a watershed approach. Starting
from the largest smoothing scales, it finds and discards all critical
events that are progenitors of a head at any larger scale. The remaining
points have no successor (they are the progenitor of nothing) and are
hence heads.

Once the heads have been computed, the second step of the
algorithm pairs them (line 9):

1: procedure FindHeadPairs(H1, . . . , Hd, R, �R) � Find pairs of
heads (crit. events)

2: HR, k ← {c ∈ Hk | R ≤ c.R < R + �R} � Keep heads at scale
R

3: P ← {} � Head pair list
4: for k in 1, . . . , d − 1 do
5: P ← P + SortedPairs(HR, k, HR, k + 1, R)
6: P ← P + SortedPairs(HR, k + 1, HR, k, R)
7: end for
8: P ← SortByDistance(P)
9: P

′ ← {} � Pairs with no double counts
10: for c1, c2, d in P do
11: if c1 �∈ P ′ and c2 �∈ P ′ then
12: P

′ ← P
′ + {c1, c2}

13: end if
14: end for
15: E ← {} � Critical events
16: for c1, c2 in P

′
do

17: E ← E + CritEventData(c1, c2)
18: end for
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19:
20: return E
21: end procedure

Lines 5 and 6 ensure that the detection method is invariant by
permutation of k ← d − k + 1. CritEventData(c1, c2) computes
the properties (position, kind, gradient, etc.) of the critical events
given by two critical points. FindHeadPairs works as follows. It first
finds all pairs of heads separated by less than a smoothing scale. It
then loops over all pairs (sorted by increasing distance) and greedily
consumes heads. Each head can only be paired once, to its closest not-

yet-paired head of either the previous or next kind. This prevents,
for example, F critical points from being paired to a P and a W
critical point, which would result in a double count. Note that this
procedure may leave some heads unpaired (e.g. critical points at
the largest smoothing scale do not merge but have no successor). In
practice, the unpaired heads typically account for less than a per cent
(0.5 per cent for �R = αR�log R with α = 2) of the total number of
heads.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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