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Abstract

Let G be a graph with maximum degree ∆ and k be an integer. The k-recolouring
graph of G is the graph whose vertices are proper k-colourings of G and where
two colourings are adjacent iff they differ on exactly one vertex. Feghali, Johnson
and Paulusma showed that the (∆ + 1)-recolouring graph is composed by a unique
connected component and (possibly many) isolated vertices, also known as frozen
colourings of G.

Motivated by its applications to sampling, we study the proportion of frozen
colourings of connected graphs. Our main result is that the probability a proper
colouring is frozen is exponentially small on the order of the graph. The obtained



bound is tight up to a logarithmic factor on ∆ in the exponent. We briefly discuss
the implications of our result on the study of the Glauber dynamics on (∆ + 1)-
colourings. Additionally, we show that frozen colourings may exist even for graphs
with arbitrary large girth. Finally, we show that typical ∆-regular graphs have no
frozen colourings.

Keywords: Graph colourings, Recolouring graph, Random colourings, Glauber
dynamics.

1 Introduction

We denote by G = (V,E) a graph on the set of vertices [n] = {1, . . . , n}
and by ∆ = ∆(G) its maximum degree. A proper k-colouring of G is a
function σ : V (G) → [k] such that, for every edge xy ∈ E, we have σ(x) 6=
σ(y). Throughout this paper, all the colourings will be proper. The chromatic
number χ(G) of a graph G is the smallest integer k such that G admits a
k-colouring.

The recolouring framework consists in finding step-by-step transformations
between two proper colourings such that all intermediate states are also proper
colourings. The k-recolouring graph of G, denoted by Ck(G) and defined for
any k ≥ χ(G), is the graph whose vertices are k-colourings of G and where
two k-colourings are adjacent if and only if they differ on exactly one vertex.

In the last few years, the structural properties of reconfiguration graphs
have received quite a lot of attention. Other frameworks in which reconfigu-
ration problems have also been studied are boolean satisfiability [2,7], inde-
pendent sets [8], dominating sets [1,12], list edge-colouring, Kempe chains [5]
and many others (see [13] for a survey).

2 Glauber dynamics and frozen colourings

The study of the recolouring graph was initially motivated by problems arising
from statistical physics in the context of Glauber dynamics. Glauber dynamics
is a Markov chain over configurations of spin systems of graphs. This is a very
general framework and “k-colourings of a graph” is a particular case known
as the “antiferromagnetic Potts Model at zero temperature”. For every graph

1 Email: marthe.bonamy@labri.fr
2 Email: nicolas.bousquet@grenoble-inp.fr
3 Email: g.perarnau@bham.ac.uk



G = (V,E) with V = [n] and k ∈ N, the Glauber dynamics for k-colourings of
G is a chain with state space the set of k-colourings of G. If Xt is a k-colouring
of G, then the chain transitions are defined as

1) choose v ∈ [n] and c ∈ [k] uniformly at random;

2) for every u 6= v, set Xt+1(u) = Xt(u);

3) if c /∈ Xt(N(v)), then set Xt+1(v) = c; otherwise set Xt+1(v) = Xt(v).

The Glauber dynamics for k-colourings is ergodic if and only if Ck(G) is con-
nected. It is easy to check that Ck(G) is connected for every k ≥ ∆ + 2. If
the chain is ergodic, then the stationary distribution is uniform over the set of
k-colourings of G. In this case, the corresponding Markov Chain Monte Carlo
(MCMC) algorithm gives a valid method to sample k-colourings of G.

The mixing time of an ergodic Markov chain is the number of steps needed
to be “close” to its stationary distribution. A chain is rapidly mixing if its
mixing time is polylogarithmic on its size. As the number of colourings of
G is typically exponential on n, Glauber dynamics is rapidly mixing if its
mixing time is polynomial in n. In such a case, it provides a Fully Polynomial
Randomized Approximation Scheme (FPRAS) to approximately compute the
number of k-colourings of G. For a survey on that topic, we refer the interested
reader to [10].

A well-known conjecture in the area is that Glauber dynamics mixes in
O(n log n) steps provided that k ≥ ∆ + 2. Jerrum [9] and independently Salas
and Sokal [11], showed that the Glauber dynamics for k-colourings is rapidly
mixing for every k ≥ 2∆. This result was improved by Vigoda [14] to every
k ≥ 11∆/6 using a path coupling argument on the flip dynamics, a Markov
chain on k-colourings based on Kempe recolourings. See [6] for a survey on
the topic.

For k = ∆ + 1, the chain is non-necessarily ergodic on ∆-regular graphs
(e.g. on cliques). An obvious obstruction is the existence of frozen (∆ +
1)-colourings; that is, colourings where every colour appears in the closed
neighbourhood of every vertex. Frozen colourings correspond to fixed points in
the dynamics, and thus, their existence makes the chain non-ergodic. Feghali
et al. [5] showed that if k = ∆+1 and ∆ ≥ 3, frozen colourings are actually the
only obstruction for the ergodicity of the chain. That is, the recolouring graph
is composed by a unique component containing all non-frozen colourings and
(possibly many) frozen colourings.

This raises the following natural questions: (1) what is the size of the non-
frozen component and, (2) given it is non-empty, does the Glauber dynamics
rapidly mixes there.



3 Results of the paper

The main result of this paper is that frozen colourings are rare among proper
colourings.

Theorem 3.1 Let ∆, n ∈ N, with 3 ≤ ∆ ≤ n − 2 and let G be a connected
graph on n vertices and maximum degree ∆. Let σ be a colouring chosen
uniformly at random among all proper (∆ + 1)-colourings of G. Then

P(σ is frozen) ≤ (6/7)
n

∆+1 .

The proof of this theorem is based on a careful counting of the frozen
and non-frozen extensions of partial colourings of G. Note that the condition
∆ ≤ n − 2 is necessary since every (∆ + 1)-colouring of a (∆ + 1)-clique is
frozen.

In the light of the result of Feghali et al. [5] and as n→∞, Theorem 3.1 im-
plies that the size of the non-frozen component of C∆+1(G) is always exponen-
tially larger than the number of frozen (∆ + 1)-colourings. Thus, the Glauber
dynamics for (∆ + 1)-colourings is extremely likely to start in the non-frozen
component, and while non-ergodic, the chain will converge to the uniform
distribution on it. This motivates the question of whether the O(n log n) mix-
ing time conjecture can be extended to the Glauber dynamics for non-frozen
(∆ + 1)-colourings. Next result answers it in the negative.

Proposition 3.2 Let ∆, k ∈ N with ∆ ≥ 3 and k ≥ 5. Then, there exists
a ∆-regular graph G on n = 2k(∆ + 1) vertices that satisfies the following.
Let H denote the graph induced by the non-frozen (∆ + 1)-colourings of G
in C∆+1(G). Then, the lazy random walk on H converges to the uniform
distribution on V (H) and

tmix(H) ≥ n2

8(∆ + 1)
.

Analogously, the proposition states that the Glauber dynamics on the set
of non-frozen (∆ + 1)-colourings of G mixes in time Ω(n2), in contrast to the
conjecture for k ≥ ∆ + 2. Nevertheless, it seems reasonable to believe that
the chain will mix in polynomial time .

Our result assumes that ∆ ≥ 3. For ∆ = 2, Dyer, Goldberg and Jerrum [4]
proved that the Glauber dynamics for 3-colourings of a path Pn of length n
has mixing time Θ(n3 log n). One can check that the recolouring graph C3(Pn)
has diameter Ω(n2). Up to our knowledge, for ∆ ≥ 3, no ∆-regular graph



G is known whose diameter of the non-frozen component in C∆+1(G) has
superlinear order.

We believe that the dependence on ∆ in Theorem 3.1 is not best possible.
However, we can construct graphs where the probability of being frozen is
only a factor log ∆ in the exponent off from our upper bound.

Proposition 3.3 For every n0,∆ ≥ 3 there exist n ≥ n0 and a connected
∆-regular graph G on n vertices such that if σ is chosen uniformly at random
among all proper (∆ + 1)-colourings of G, then

P(σ is frozen) ≥ e−
3 log(∆)

∆
·n .

The graph in Proposition 3.3 contains many cliques of size ∆. Our next re-
sult shows the existence of locally sparse ∆-regular graphs with frozen colour-
ings.

Proposition 3.4 For every ∆, g ≥ 3 there exists a connected ∆-regular graph
G with girth at least g that has frozen colourings.

To prove this proposition we use a randomised construction based on ran-
dom lifts of the (∆ + 1)-clique.

We conclude the paper by showing that typical ∆-regular graphs do not
admit frozen colourings.

Proposition 3.5 Let n,∆ ≥ 3 and let Gn,∆ be a graph chosen uniformly at
random among all simple ∆-regular graphs with vertex set [n]. Then there
exists c(∆) > 0 such that, as n→∞, we have

P(Gn,∆ has a frozen colouring) ≤ e−c(∆)n .
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