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Gallai’s path decomposition conjecture

for graphs of small maximum degree

Marthe Bonamy∗ and Thomas J. Perrett†

Gallai’s path decomposition conjecturefor graphs of small maximum degree

Abstract

Gallai’s path decomposition conjecture states that the edges of any connected graph on n

vertices can be decomposed into at most n+1
2

paths. We confirm that conjecture for all graphs

with maximum degree at most five.

1 Introduction

A decomposition D of a graph G is a collection of subgraphs of G such that each edge belongs to

precisely one graph in D. A path decomposition is a decomposition D such that every subgraph

in D is a path. If G has a path decomposition D such that |D| = k, then we say that G can be

decomposed into k paths. In answer to a question of Erdős, Gallai conjectured the following, see [4].

Conjecture 1.1. [4] Every connected graph on n vertices can be decomposed into dn2 e paths.

Gallai’s conjecture is easily seen to be sharp: If G is a graph in which every vertex has odd

degree, then in any path decomposition of G each vertex must be the endpoint of some path, and so

at least dn2 e paths are required. Lovász [4] proved that every graph on n vertices has a decomposition

D consisting of paths and cycles, and such that |D| = bn2 c:::::::::
|D| ≤ bn2 c. By an argument similar to the

above, it follows that in a graph with at most one vertex of even degree, such a decomposition must

be a path decomposition. Thus, Gallai’s conjecture holds for all graphs with at most one vertex of

even degree.

Let GE denote the subgraph of G induced by the vertices of even degree. Building on Lovász’s

result, Conjecture 1.1 has been proved for several classes of graphs defined by imposing some

structure on GE . The first result of this kind was obtained by Pyber
:::
[1].

Theorem 1.1. [1] If G is a graph on n vertices such that GE is a forest, then G can be decomposed

into bn2 c paths.

Later, Theorem 1.1 was strengthened by Fan
:::
[2], who proved the following.

Theorem 1.2. [2] If G is a graph on n vertices such that each block of GE is a triangle free

::::::::::
triangle-free

:
graph of maximum degree at most 3, then G can be decomposed into bn2 c paths.
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Gallai’s conjecture is also known to hold for a variety of other graph classes. In 1988, Favaron

and Koudier [6] proved that the conjecture holds for graphs where the degree of every vertex is either

2 or 4. More recently, Botler and Jiménez [3] proved that the conjecture holds for 2k-regular graphs

of large girth and admitting a pair of disjoint perfect matchings. Jiménez and Wakabayashi [7]

showed that the conjecture holds for a subclass of planar, triangle-free graphs satisfying a distance

condition on the vertices of odd degree. Finally, it was shown by Geng, Fang and Li [5], that the

conjecture holds for maximal outerplanar graphs. In this article, we prove that Gallai’s conjecture

holds for the class of graphs with maximum degree at most 5.

Theorem 1.3. Let G be a connected graph on n vertices. If ∆(G) ≤ 5, then G admits a path

decomposition into dn2 e paths.

To prove Theorem 1.3, we show that if G is a smallest counterexample, then G cannot contain

one
:::
any

:
of 5 configurations

:::::
given

:::::::::::::
configurations

::::::::
(Lemma

::::
3.1). This restriction is enough to show

that GE is a forest
:::::::
(Lemma

::::
3.2), whence the result follows by Theorem 1.1. It seems that proving

Theorem 1.3 for graphs of maximum degree 6 will require some new ideas. However, we think

the approach of considering graphs of bounded maximum degree allows step-by-step improvements

which could
::::
may eventually lead to a general solution.

In proving special cases of Conjecture 1.1, the presence of a ceiling in the bound brings with it

a number of technical complications. It is therefore tempting to explore ways of proving a stronger,

ceiling-free version except in a few special cases. We say a graph is an odd semi-clique if it is obtained

from a clique on 2k + 1 vertices by deleting at most k − 1 edges. By a simple counting argument,

we can see that an odd semi-clique on 2k + 1 vertices does not admit a path decomposition into k

paths. It is natural to ask if these are the only obstructions:

Question 1.1. Does every connected graph G that is not an odd semi-clique admit a path decom-

position into b |V (G)|
2 c paths?

2 Definitions and notation
:::::::::::::::::
Background

All graphs in this article are finite and simple, that is,
:
they contain no loops or multiple edges. We

say that a path decomposition D of a graph G is good if |D| ≤ d |V (G)|
2 e.

In figures we make use of the following conventions: Solid black circles denote vertices for

which all incident edges are depicted. White hollow circles denote vertices which may have other,

undepicted incident edges. Vertices containing a number indicate a vertex of that specific degree.

A dotted line between two vertices indicates that those vertices are non-adjacent.
::
We

::::::
often

:::
use

:::::::::
component

::
as

:
a
::::::::
shortcut

:::
for

::::::::::
connected

::::::::::
component.

:

We will often modify a path decomposition of a graph G to give a path decomposition of another

graph G′. To describe these modifications we use a number of fixed expressions, which we formally

define here. Let D be a path decomposition of G. Let P ∈ D be a path and Q be a subpath of P .

If R is a path in G′ with the same end vertices as P
::
Q, we say that we replace Q with R to mean

that we define a new path P ′ = P −Q + R and redefine D to be the collection D − P + P ′. If R is

a path in G′ with an endpoint in common with P , we say that we extend P with R to mean that

we define a new path P ′ = P +R and redefine D to be the collection D−P +P ′. For a vertex u on
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P , we say that we split P at u to mean that we define paths P1 and P2 such that P1 ∪ P2 = P and

P1 ∩ P2 = u, and redefine D to be the collection D − P + P1 + P2. Finally, for a path R in G′, we

say that we add the path R to mean that we redefine D to be the collection D+ R.
:::::
Given

::
a

:::::
graph

::
G

:::
and

::::
two

:::::::
disjoint

::::
sets

:::
A

::::
and

::
B

::
of

:::::::
vertices

:::
of

:::
G,

:::
we

::::::
denote

:::
by

::::::::
E(A,B)

:::
the

:::
set

:::
of

:::::
edges

:::::
with

:::
one

::::::::
endpoint

::
in

::
A

::::
and

::::
the

:::::
other

::
in

:::
B.

:

::
By

:::::::
simple

::::::::::
arithmetic,

:::
we

::::
can

::::::
obtain

:::
the

:::::
three

::::::::::::
propositions

::::::
below.

:

Proposition 2.1. Let G and G′ be two graphs such that |V (G)| ≥ |V (G′)|+ 2, and let D be a path

decomposition of G. If there is a good path decomposition D′ of G′ and |D| ≤ |D′|+ 1
:
, then D is a

good path decomposition of G.

Let |V (G)| = n. We have |D| ≤ |D′|+ 1 ≤ dn−22 e+ 1 = dn2 e. ThusD is a good path decomposition

of G.

Proposition 2.2. Let G, G1 and G2 be three graphs such that |V (G)| ≥ |V (G1)| + |V (G2)|, and

let D be a path decomposition of G. If there are good path decompositions D1 and D2 of G1 and G2

(respectively) and |D| ≤ |D1|+ |D2| − 1, then D is a good path decomposition of G.

Let G,G1 and G2 have n, n1 and n2 vertices respectively. We have |D| ≤ |D1|+ |D2| − 1 ≤ dn1

2 e+ dn2

2 e − 1 ≤ dn2 e.
Thus D is a good path decomposition of G.

Proposition 2.3. Let G, G1 and G2 be three graphs such that |V (G)| ≥ |V (G1)| + |V (G2)| + 1,

and let D be a path decomposition of G. If there are good path decompositions D1 and D2 of G1 and

G2 (respectively) and |D| ≤ |D1|+ |D2|, then D is a good path decomposition of G.

Let G,G1 and G2 have n, n1 and n2 vertices respectively. We have |D| ≤ |D1|+ |D2| ≤ dn1

2 e+ dn2

2 e ≤ d
n
2 e.

Thus D is a good path decomposition of G.

3 Main Result

Let G be a graph with ∆(G) ≤ k. We first prove that a number of configurations are reducible in

G, if .
::::::

That
:::
is,

::
if

::
G

::::::::
contains

::::
one

::
of

::::::
them

::::
and Gallai’s conjecture holds for all smaller graphs of

maximum degree k,
:::::
then

:::::::
Gallai’s

::::::::::
conjecture

:::::
holds

:::
for

::
G.

Lemma 3.1. Let k ∈ N. Let G be a connected graph with maximum degree ∆(G) ≤ k, and suppose

that G does not admit a good path decomposition. If G is vertex minimal with these properties, then

G does not contain any of the following configurations (see Figure 1):

C1: A vertex of degree 2 whose neighbours are not adjacent.

C2: A cut-edge uv such that d(u) and d(v) are even.

C3: An edge uv such that
:::::::::::::::
d(u) = d(v) = 4,

::::
and u and v have precisely 2 common neighbours, and

d(u) = d(v) = 4.

C4: An edge uv such that d(u) = d(v) = 4, and for t1, t2, t3 ::
t1,

:::
t2,

::
t3:(resp. w1, w2, w3:::

w1,
:::
w2,

::::
w3)

the three other neighbors
:::::::::
neighbours

:
of u (resp. v), the pairs t1t2 and w1w2 are not edges and

t3 6= w3.
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4
v

:::::

t1
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w2

t3

t2

w3

w1

6=
4

2|4

2|4

Figure 1: Configurations C1, C3, C4 and C5 from Lemma 3.1.

C5: A triangle uvw such that d(u) = 4 and d(v), d(w) ∈ {2, 4}
::::
d(v),

::::::::::::
d(w) ∈ {2, 4}.

Proof.

Claim 1. G does not contain the configuration C1.

Proof. Suppose that the claim is false. Let u be the vertex of degree 2 with N(u) = {v, w}, and let

G′ be the graph G − u + vw. Since v and w are non-adjacent
::
in

::
G, G′ is a simple graph. By the

minimality of G, we have that G′ admits a good path decomposition D′. By Proposition 2.3, we

obtain a good path decomposition of G by replacing the edge vw with the path vuw (see Figure 2).

v

u

w

 

v w

P
 

v

u

w

P P

Figure 2: The reduction of C1.

This contradicts the assumption that G has no such decomposition. ♦

Claim 2. G does not contain the configuration C2.

Proof. Suppose that the claim is false. Deleting uv
::::
from

::
G

:
results in two connected graphs G1 and

G2, containing u and v respectively. By the minimality of G, both G1 and G2 admit good path

decompositions D1 and D2. To obtain a path decomposition of G, note that, since u has odd degree

in G1, there is a path Pu ∈ D1 ending at u. Similarly, there is a path Pv ∈ D2 ending at v. Now

let D be the path decomposition of G formed by taking the union D1 ∪ D2, deleting Pu and Pv,

and adding a new path P = Pu + uv + Pv (see Figure 3). By Proposition 2.2, D is a good path

decomposition of G, a contradiction.

u v
 

u v

Pu

Pv

 
u v

P
P

P

Figure 3: The reduction of C2.
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♦

Claim 3. G does not contain the configuration C3.

Proof. Suppose that the claim is false. Let
::
uv

:::
be

::::
the

::::
edge

::::::
stated

:::
in

:::::::::::::
Configuration

:::
C3,

::::
and

:::
let

:
x

and y be the
::::
two common neighbours of u and v. Since d(u) = d(v) = 4, both u and v both

:
u

::::
and

:
v

have precisely one other neighbour. Let these vertices be
::::
more

::::::::::
neighbour,

:::
say

:
u′ and v′respectively.

Since u and v have precisely two common neighbours, we have that ,
::::::::::::
respectively,

:::::
where

:
u′ 6= v′.

Suppose first that at most one of the edges xu′, u′y, yv′, v′x
:::
xu′,

::::
u′y,

::::
yv′,

::::
v′x

:
is present in G,

say xu′. If G − u − v is connected, then let G′ be the graph G − u − v + u′y + v′x. Otherwise,

let G′ = G − u − v + u′y + v′x + xy. Note that G′ is connected, and so by the minimality of

G, it admits a good path decomposition. Now, replace v′x by xvv′
::::
v′vx

:
and replace u′y by u′uy.

Furthermore, if xy ∈ E(G′) \ E(G), then replace xy by xuvy. Otherwise,
:
add a new path xuvy to

the decomposition. By Proposition 2.1, and since we add
:::::
added

:
at most one new path, the resulting

decomposition is a good path decomposition of G. This contradicts the assumption that G has no

such decomposition.

Next, suppose that xu′, u′y, yv′, v′x ∈ E(G)
:::
xu′,

::::
u′y,

::::
yv′,

:::::::::::
v′x ∈ E(G), so the graph G′ = G −

u − v is connected. By the minimality of G, the graph G′ has a good path decomposition. Now

replace the edge xu′ with the path xvuu′, and add a new path u′xuyvv′ to the decomposition. By

Proposition 2.1, and since we add
:::::
added

:
at most one new path, the resulting decomposition is a

good path decomposition of G, contradicting the assumption.

Finally, suppose that precisely two or three of the edges xu′, u′y, yv′, v′x
:::
xu′,

::::
u′y,

::::
yv′,

::::
v′x

:
are

present in G. As a consequence, from the set {xu′, u′y, yv′, v′x} \ E(G), we may choose an edge,

xu′ say, such that the graph G′ = G − u − v + xu′ is connected. By the minimality of G, the

graph G′ has a good path decomposition. Now replace xu′ by xvuu′, and add a new path xuyvv′

to the decomposition. Again, by Proposition 2.1, and since we add
::::::
added at most one new path,

the resulting decomposition is a good path decomposition of G, contradicting the assumption.

♦

Claim 4. G does not contain the configuration C4.

Proof. Suppose that the claim is false. Since G does not contain Configuration C3, the vertices u

and v do not have precisely two common neighbours. First suppose that u and v have 3 common

neighbours x, y and z. In this case, since there is a pair of non-adjacent vertices amongst N(u)\{v},
we may assume xy 6∈ E(G). Furthermore, by the definition of Configuration C4, the third vertex z

is non-adjacent to at least one of x or y. We conclude that there are two non-edges amongst x, y

and z, say these are xy and yz;
::::
say

:::::::::
yz 6∈ E(G). Let G′ be the graph G− u− v + xy + yz. It is easy

to see that G′ is connected. By the minimality of G, the graph G′ has a good path decomposition.

In this decomposition, replace xy by xuy and replace yz by yvz. Finally, add a new path xvuz (see

Figure 4). This gives a good path decomposition of G, a contradiction. We may thus assume that

u and v have at most one common neighbour.

We now consider three cases depending on the structure of G− {u, v}. In each case we assume

the previous ones do not apply (up to symmetry).
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u

x

v

z

y

 

x

z

y

 u

x

v

z

y

Figure 4: The reduction of C4 in the case where u and v have three common neighbors
::::::::::
neighbours.

1. Assume that G−u has at least three connected components. Because uv is not a cut-edge, the

component of G − u containing v contains at least one other neighbor
:::::::::
neighbour

:
of u. Thus

G− u has precisely three components, and t1 and t2 lie in different components of G− u. Let

G′ be the graph formed from G − u by adding the edge t1t2. Thus G′ has two components

G1 and G2, and by the minimality of G, both have good path decompositions D1 and D2.

Without loss of generality we suppose G2 contains v. Let P ∈ D1 be the path containing the

edge t1t2. Furthermore, let P1 and P2 be the possibly empty subpaths of P − t1t2 containing

t1 and t2 respectively. Note that since v has degree 3 in G′, there is some path Q ∈ D2 which

ends at v. We construct a path decomposition of G by taking the union D1∪D2 and replacing

P and Q with the paths P1 + t1uv + Q and P2 + t2ut3. By Proposition 2.3, and since we

introduced no new
:::
did

:::
not

::::::::
increase

:::
the

:::::::
number

:::
of paths, the resulting path decomposition is

good, a contradiction.

2. Assume that G − {u, v} has at least four connected components. Since both G − u and G −
v have at most two connected components, there are precisely four connected components

C1, C2, C3 and C4:::
H1,

::::
H2,

:::
H3::::

and
:::
H4. Furthermore, two of these components contain both

a neighbour of u and a neighbour of v, one component contains only a neighbour of u, and

one component contains only a neighbour of v. Relabeling if necessary, we may suppose that

t1, w1 ∈ C1, t2, w2 ∈ C2, t3 ∈ C3 and w3 ∈ C4 ::
t1,

::::::::
w1 ∈ H1,

:::
t2,

:::::::::
w2 ∈ H2,

:::::::
t3 ∈ H3::::

and
::::::::
w3 ∈ H4.

This relabelling preserves the fact that t1t2, w1w2 6∈ E(G)
::::
t1t2,

:::::::::::::
w1w2 6∈ E(G)

:
and t3 6= w3.

Consider the graph G1 obtained from C1 and C2 ::
H1::::

and
::::
H2 by adding the edges t1t2 and

w1w2. Similarly, consider the graph G2 obtained from C3 and C4 ::
H3::::

and
:::
H4:

by adding the

edge t3w3. By the minimality of G, we obtain good path decompositions of G1 and G2, which

we merge in the obvious way. The edge t1t2 is replaced with t1ut2, w1w2 with w1vw3, and

t3w3 with t3uvw3) to obtain a path decomposition of G. By Proposition 2.3, this yields a

good path decomposition of G.

3. Now G − {u, v} has at most three connected components, and each of G − u and G − v has

at most two connected components. Let T = {t1, t2, t3} and W = {w1, w2, w3}. We claim

that we can relabel the vertices in T and W such that the graph G − u − v + t1t2 + w1w2

is connected and the properties that t1t2, w1w2 6∈ E(G)
::::
t1t2,

::::::::::::
w1w2 6∈ E(G)

:
and t3 6= w3 are

preserved. Indeed if u and v have a common neighbour, let t ∈ T and w ∈ W be such

that t = w. Otherwise
:
,
:
let t = t1 and w = w1. Suppose first that t and w lie in the same

component of G − u − v. Since G − u − v has at most 3 components, and G − u and G − v

have at most 2 components, there are non edges tt′ and ww′ for some t′ ∈ T and w′ ∈ W

6



such that G−u− v+ tt′+ww′ is connected. Furthermore, since t and w are the only possible

common neighbours of u and v, we have that the single vertices in T \ {t, t′} and W \ {w,w′}
are not equal. Thus, letting t1 = t, t2 = t′, w1 = w, w2 = w′ and setting t3 and w3 to be the

remaining vertices gives the desired relabeling.

Suppose now that t and w lie in different components of G− u− v. In particular this implies

that T ∩W = ∅. Again, since G − u − v has at most 3 components, and G − u and G − v

have at most 2 components, there are non-edges eT and eW amongst the vertices of T and W

respectively, such that G− u− v + eT + eW is connected. We relabel the vertices in T and W

such that t1 and t2 are the endpoints of eT , w1 and w2 are the endpoints of eW , and t3 and

w3 are the remaining vertices. Since T ∩W = ∅, we have that t3 6= w3 are
:
as

:
required.

Let G′ be the graph obtained from G − {u, v} by adding the edges t1t2 and w1w2. By

the argument above, G′ is connected, and so by the minimality of G, there is a good path

decomposition of G′. We obtain a path decomposition of G by replacing t1t2 with t1ut2 and

w1w2 with w1vw2, and adding the path t3uvw3. Note that since t3 6= w3 the latter is really a

path. By Proposition 2.1, and since we add
:::::
added

:
at most one new path, this yields a good

path decomposition of G.

t1

u v

w2

t3

t2

w3

w1

 t1 w2

t3

t2

w3

w1

P Q
 t1

u v

w2

t3

t2

w3

w1

P
P

Q
Q

R
R

R

Figure 5: The reduction of C4 in the connected case.

♦

Claim 5. G does not contain the configuration C5.

Proof. We first consider the case where a pair in {u, v, w}, say {u, v}, has three common neighbors
::::::::::
neighbours.

Let x and y be the two neighbors
:::::::::
neighbours

:
of {u, v} besides w. We argue that wxy induces a

triangle. Indeed, first assume there are at least two edges missing, say xw,wy 6∈ E(G). Consider

the graph G′′ = G + xw + wy
::::::::::::::::::::::::
G′′ = G− u− v + xw + wy, note that it is connected, and consider a

good path decomposition of it. We obtain a path decomposition of G by replacing the edge xw with

xuw, replacing the edge wy with wvy, and adding the path xvuy, see Figure 6. By Proposition 2.1,

this yields a good path decomposition of G.

Assume now that there is precisely one edge missing, say the edge xy. Consider G′, the graph

obtained from G− {u, v} by adding the edge xy. If G′ is connected, then by the minimality of G,

it has a good path decomposition. From this, we obtain a path decomposition of G by replacing

the edge xy with xuvy and adding the path xvwuy, see Figure 7. By Proposition 2.1, this yields a

good path decomposition of G.
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x w y

vu

 

x w y

P Q
 

x w y

vu

P Q

R

Figure 6: The reduction of C5 when u and v have three common neighbors
::::::::::
neighbours that induce

at least two non-edges.

x y w

vu

 

x y w

P
 

x y w

vu

P Q

Figure 7: The reduction of C5 when u and v have three common neighbors
::::::::::
neighbours that induce

precisely one non-edge.

Therefore x, y and w induce a triangle. Let G′ = G − {u, v}, and note that G′ is connected.

Thus, by the minimality of G, the graph G′ admits a good path decomposition D′. We obtain

a path decomposition of G as follows: First assume without loss of generality that xy and wy

do not belong to the same path of D′. Let Q′ be the path of D′ containing the edge xw, and

Q = Q′ − xw + xu. We consider D′′ = D′ −Q′ + Q. Let P ′ be the path of D′′ containing the edge

xy. We write P ′ = P ′1 + xy + P ′2, where P ′1 and P ′2 may be empty paths. Set P1 = P ′1 + xyvw and

P2 = P ′2 + yuvxw. Note that P1 and P2 are paths even if P ′1 also contains the edge xu or in other

words P ′1 = Q. Finally, let R′ be the path of D′′ containing the edge yw
:::
wy, and set R = R′ + wu.

:::::::::
Remember

:::::
that

:::
we

::::::::
assumed

::::::::
P ′ 6= R′.

::
We note that D = D′′ − P ′ − R′ + P1 + P2 + R is a path

decomposition of G, with precisely one more path than D′, see Figure 8. Thus D is a good path

decomposition by Proposition 2.1, a contradiction. Therefore no pair in {u, v, w} has three common

neighbors
::::::::::
neighbours.

x y

w

vu
 

P ′

Q′ R′

 

P1

Q

P2 R

Figure 8: The reduction of C5 when u and v have three common neighbors
::::::::::
neighbours that induce

a triangle. We assume P ′ and R′ are distinct, though Q′ might be the same as R′ or P ′ or be
altogether distinct from both.

Now, since d(u), d(v), d(w) ≤ 4
::::
d(u),

:::::
d(v),

:::::::::
d(w) ≤ 4 and by Claim 3, we conclude that no pair

of vertices in {u, v, w} has a common neighbor
:::::::::
neighbour other than the third vertex. If they exist,

let {x1, x2}, {y1, y2} and {z1, z2} be the two other neighbors
::::::::::
neighbours of u, v and w respectively.

We consider three cases.

8



1. Assume first that one of v and w has degree 2, say d(v) = 2. Let G′ be the graph obtained

from G− v by contracting the edge uw. Note that G′ is connected and |V (G′)| = |V (G)| − 2.

By the minimality of G, there is a good path decomposition D′ of G′. To obtain a path

decomposition of G, we consider two cases depending on whether ux1 and ux2 belong to the

same path in D′, see Figures 9 and 10. If they do not, then replace ux1 with the path wux1,

and replace ux2 with the path wvux2. However, if ux1 and ux2 belong to the same path

P ∈ D′, then split P at u into two paths P1 and P2. Extend P1 with the edge uw and extend

P2 with the path uvw. Note that no edge incident to w is in P1 or P2. By Proposition 2.1,

and since we created at most one new path, this yields a good path decomposition of G.

u w

v

x1

x2

w
x1

x2

P

 u w

v

x1

x2

P1

P2

w
x1

x2

P

Q

 u w

v

x1

x2

P

Q

Figure 9: The reduction of C5 when u and w have precisely one common neighbor
::::::::
neighbour

:
and

d(v) = 2.

2. Assume that one of the edges ux1, ux2, vy1, vy2, wz1, wz2 ::::
ux1,

::::
ux2,

:::::
vy1,

::::
vy2,

:::::
wz1,

::::
wz2 is not

a cut-edge. Assume without loss of generality that ux1 is such an edge. Let G′ be the graph

obtained from G−u by contracting the edge vw to a vertex s, and adding the edge sx2. Note

that G′ is connected and |V (G′)| = |V (G)| − 2, so by the minimality of G, there is a good

path decomposition D′ of G′.

We obtain a path decomposition of G as follows. We first replace any subpath of the form

ysz, y ∈ {y1, y2}, z ∈ {z1, z2} with yvwz (preferably) or with yvuwz (if there are two such

subpaths). We then replace any subpath of the form x2st, t ∈ {y1, y2, z1, z2}, with x2urt

where r is the vertex of {v, w} adjacent to t. We replace any remaining edge of the form ts,

t ∈ {x2, y1, y2, z1, z2} with tr, where r is the vertex of {u, v, w} adjacent to t. Let D′′ be the

resulting collection of disjoint paths in G. Note that since d(s) = 5, there is a path P in D′

that ends in s, thus a path P ′ in D′′ that ends in r ∈ {u, v, w}. We consider the set of edges

of G that do not belong to a path in D′′. If that set does not induce a path, then we extend

P ′ to wu or wv. Note that this guarantees the only remaining edges induce a path Q, which

we add to the path collection. By Proposition 2.1, and since we added at most one new path,

this yields a good path decomposition of G.

3. Now d(u) = d(v) = d(w) = 4 and every edge with precisely one endpoint in {u, v, w} is

a cut-edge. Consider the graph G′ obtained from G − {u, v, w} by adding the three edges

9



v u

w

y2

y1 x1

x2

z2z1

s

P ′

Q

P ′

Q

Figure 10: An example of the reduction of C5 when d(u) = d(v) = d(w) = 4, the triangle (u, v, w) is
adjacent to no other triangle and some edge in E({u, v, w}, {x1, x2, y1, y2, z1, z2}) is not a cut-edge.

x1y1, x2y2 and z1z2. Note that G′ has precisely three connected components G1, G2, and

G3. By the minimality of G, there are good path decompositions of G1, G2 and G3. We

obtain a path decomposition of G by replacing x1y1 with the path x1uvy1, replacing x2y2

with x2uwvy2, and replacing z1z2 with the path z1wz2 (see Figure 11). These paths are

all distinct since the edges x1y1, x2y2 and z1z2 belong to different components of G′. Note

that the total number of paths involved in the resulting path decomposition of G is at most
|V (G1)|+1

2 + |V (G2)|+1
2 + |V (G3)|+1

2 = |V (G)|
2 , thus it is a good path decomposition.

u w

v

x1

x2 z1

z2

y2y1

Figure 11: The reduction of C5 when d(u) = d(v) = d(w) = 4, the triangle (u, v, w) is adjacent to
no other triangle and every edge in E({u, v, w}, {x1, x2, y1, y2, z1, z2}) is a cut-edge.

♦

By Claims 1, 2, 3, 4 and 5, the lemma statement holds
:::::
proof

::
of

:::::::
Lemma

:::
3.1

::
is
:::::::::
complete.

Recall that GE denotes the graph induced on
::
by the vertices of even degree in G.

Lemma 3.2. Let G be a connected graph such that G 6∈ {K3,K5}. If ∆(G) ≤ 5 and G does not

contain configurations
:::::::::::::
Configurations C1, . . . , C5, then the graph GE is a forest.

Proof. Let H = GE and suppose for a contradiction that H contains a cycle C. Suppose further that

there is v ∈ V (C) with d(v) = 2
::::::::
dG(v) = 2, and let N(v) = {u,w}. Since C is a cycle in H, we have

that d(u), d(w) ∈ {2, 4}
::::::
dG(u),

:::::::::::::
dG(w) ∈ {2, 4}. Furthermore, since G does not contain configuration

::::::::::::
Configuration

:
C1, we have that uw ∈ E(G). Now G 6= K3, so at least one of u and w has degree 4

::
in

::
G. It follows that u, v

::
u,

:
v
:
and w form configuration

::::::::::::
Configuration C5, a contradiction. Thus, if

C is a cycle in H, then dG(v) = 4 for all vertices v ∈ V (C). Since G does not contain configuration

::::::::::::
Configuration

:
C5, it immediately follows that |C| > 3.
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Let uv be an edge of C. Let t1, t2, t3 ::
t1,

::::
t2,

::
t3: be the neighbours of u apart from v and

let w1, w2, w3 :::
w1,

:::
w2,

::::
w3 :

be the neighbours of v apart from u. Note that, since uv is an edge

of C, at least one of t1, t2, t3 ::
t1,

:::
t2,

:::
t3 :

has degree 4. Similarly, at least one of w1, w2, w3 :::
w1,

:::
w2,

:::
w3:

has degree 4. Now, u and v do not have 3 common neighbours, since otherwise G con-

tains configuration
::::::::::::
Configuration

:
C5, a contradiction. Furthermore, since G does not contain

configuration
::::::::::::
Configuration

:
C3, the vertices u and v have at most one common neighbour. Thus,

in what follows, we allow the possibility that t1 = w1, but always assume that t2, t3 6∈ {w1, w2, w3}
and w2, w3 6∈ {t1, t2, t3} ::

t2,
:::::::::::::::
t3 6∈ {w1, w2, w3}::::

and
::::
w2,

::::::::::::::
w3 6∈ {t1, t2, t3}.

Suppose first that t1t2 6∈ E(G). Since
:::
We

::::
first

::::::
argue

::::
that

:::::::::
{t1, t2, t3}:::::

does
::::
not

::::::
induce

::
a
::::::
clique.

:::::::
Assume

:::
by

::::::::::::
contradiction

::::
that

::::::::::
{t1, t2, t3}:::::::

induces
::
a
::::::
clique.

:::::
One

:::
of

:::::
them

::::
has

::::::
degree

::
4.

::::::
Note

::::
that

::::
since

:
G does not contain configuration C4, we must have that w1w2, w2w3, w1w3 ∈ E(G). Otherwise,

since t3 6∈ {w1, w2, w3}, we have that G contains configuration C4, a contradiction. But now the

vertices w1, w2, w3 form a clique, and at least one of them has
::::::::::::
Configuration

:::
C5,

:::
we

::::
can

:::::::
assume

:::::::
without

::::
loss

::
of

:::::::::
generality

::::
that

:::::::::::
dG(t2) = 4.

:::::
Note

::::
that

::
t2::::

and
::
u
:::::
form

::::
two

::::::::
adjacent

:::::::
vertices

::
of

:
degree

4 . It follows
::::
with

:::::::
exactly

::::
two

::::::::
common

::::::::::
neighbors,

:::::
since

::
u

::
is

::::::::
adjacent

:::
to

:
v
::::

and
:::
t2 ::

is
::::
not.

:::::
This

::
is

::
in

::::::::::::
contradiction

:::::
with

:::
the

::::
fact

:
that G contains configuration

:::
does

::::
not

:::::::
contain

:::::::::::::
Configuration

:
C3, a

contradiction.

It follows that
:::
By

:::::::::
symmetry,

:::
we

::::::
obtain

:::::
that

:::::::::::
{w1, w2, w3}:::::

does
:::
not

:::::::
induce

:
a
:::::::
clique.

:::::::
Suppose

::::
now

:::::
that

:::::::::::
t1t2 6∈ E(G).

::::::
Since

::
G

:::::
does

:::
not

:::::::
contain

:::::::::::::
Configuration

:::
C4,

:::
we

:::::
must

:::::
have

::::
that

:::::
w1w2,

::::::
w2w3,

:::::::::::::
w1w3 ∈ E(G).

:::::
This

::::::::::
contradicts

::::
the

::::
fact

::::
that

:::::::::::
{w1, w2, w3}:::::

does
:::
not

:::::::
induce

:
a
:::::::
clique.

:

::
By

::::::::::
symmetry,

:
all of the edges t1t2, t1t3, w1w2, w1w3 ∈ E(G)

:::
t1t2,

:::::
t1t3,

::::::
w1w2,

::::::::::::
w1w3 ∈ E(G). As

a consequence, t1 6= w1, otherwise this vertex would have degree 6, which is larger than ∆(G). Thus

{t1, t2, t3}∩{w1, w2, w3} = ∅. With this extra information,
::
we

::::
can

::::::
repeat

:
the argument above shows

that, in fact, if any edge amongst t1, t2, t3 is not in E(G), then w1, w2, w3 induce
::::
pair

::
of

:::::::
vertices

:::::::
amongst

:::
t1,

:::
t2,

:::
t3 ::

is
:::
not

::::::::
adjacent

:::
in

:::
G,

::::
then

::::::::::::
{w1, w2, w3}:::::::

induces
:
a clique. Thus

::::::::
Therefore, either

{t1, t2, t3} or {w1, w2, w3} induce
::::::
induces

:
a clique, which again gives a contradictionsince G does

not contain configuration C3.

:
a
:::::::::::::
contradiction.

:

The proof of Theorem 1.3 now follows easily.

Proof of Theorem 1.3. Let G be a smallest counterexample to the theorem. By Lemma 3.1, the

graph G does not contain configurations
:::::::::::::
Configurations

:
C1, . . . , C5. Thus, by Lemma 3.2, the graph

GE is a forest. But now G admits a good path decomposition by Theorem 1.1, a contradiction.
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[7] A. Jiménez and Y. Wakabayashi, On path-cycle decompositions of triangle-free graphs.

Preprint.

12




