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Introduction

A decomposition D of a graph G is a collection of subgraphs of G such that each edge belongs to precisely one graph in D. A path decomposition is a decomposition D such that every subgraph in D is a path. If G has a path decomposition D such that |D| = k, then we say that G can be decomposed into k paths. In answer to a question of Erdős, Gallai conjectured the following, see [START_REF] Lovász | On covering of graphs[END_REF].

Conjecture 1.1. [START_REF] Lovász | On covering of graphs[END_REF] Every connected graph on n vertices can be decomposed into n 2 paths.

Gallai's conjecture is easily seen to be sharp: If G is a graph in which every vertex has odd degree, then in any path decomposition of G each vertex must be the endpoint of some path, and so at least n 2 paths are required. Lovász [START_REF] Lovász | On covering of graphs[END_REF] proved that every graph on n vertices has a decomposition D consisting of paths and cycles, and such that |D| = n 2 ::::::::: |D| ≤ n 2 . By an argument similar to the above, it follows that in a graph with at most one vertex of even degree, such a decomposition must be a path decomposition. Thus, Gallai's conjecture holds for all graphs with at most one vertex of even degree.

Let G E denote the subgraph of G induced by the vertices of even degree. Building on Lovász's result, Conjecture 1.1 has been proved for several classes of graphs defined by imposing some structure on G E . The first result of this kind was obtained by Pyber ::: [START_REF] Pyber | Covering the edges of a connected graph by paths[END_REF].

Theorem 1.1. [START_REF] Pyber | Covering the edges of a connected graph by paths[END_REF] If G is a graph on n vertices such that G E is a forest, then G can be decomposed into n 2 paths.

Later, Theorem 1.1 was strengthened by Fan ::: [START_REF] Fan | Path decompositions and Gallai's conjecture[END_REF], who proved the following.

Theorem 1.2. [START_REF] Fan | Path decompositions and Gallai's conjecture[END_REF] If G is a graph on n vertices such that each block of G E is a triangle free ::::::::::

triangle-free : graph of maximum degree at most 3, then G can be decomposed into n 2 paths.

Gallai's conjecture is also known to hold for a variety of other graph classes. In 1988, Favaron

and Koudier [START_REF] Favaron | Path partitions and cycle partitions of Eulerian graphs of maximum degree 4[END_REF] proved that the conjecture holds for graphs where the degree of every vertex is either 2 or 4. More recently, Botler and Jiménez [START_REF] Botler | On path decompositions of 2k-regular graphs[END_REF] proved that the conjecture holds for 2k-regular graphs of large girth and admitting a pair of disjoint perfect matchings. Jiménez and Wakabayashi [START_REF] Jiménez | On path-cycle decompositions of triangle-free graphs[END_REF] showed that the conjecture holds for a subclass of planar, triangle-free graphs satisfying a distance condition on the vertices of odd degree. Finally, it was shown by Geng, Fang and Li [START_REF] Geng | Gallai's conjecture for outerplanar graphs[END_REF], that the conjecture holds for maximal outerplanar graphs. In this article, we prove that Gallai's conjecture holds for the class of graphs with maximum degree at most 5.

Theorem 1.3. Let G be a connected graph on n vertices. If ∆(G) ≤ 5, then G admits a path decomposition into n 2 paths.

To prove Theorem 1.3, we show that if G is a smallest counterexample, then G cannot contain one ::: any : of 5 configurations ::::: given ::::::::::::: configurations :::::::: (Lemma :::: 3.1). This restriction is enough to show that G E is a forest ::::::: (Lemma :::: 3.2), whence the result follows by Theorem 1.1. It seems that proving Theorem 1.3 for graphs of maximum degree 6 will require some new ideas. However, we think the approach of considering graphs of bounded maximum degree allows step-by-step improvements which could :::: may eventually lead to a general solution.

In proving special cases of Conjecture 1. 2 Definitions and notation ::::::::::::::::: Background All graphs in this article are finite and simple, that is, : they contain no loops or multiple edges. We

say that a path decomposition D of a graph G is good if |D| ≤ |V (G)| 2 .
In figures we make use of the following conventions: Solid black circles denote vertices for which all incident edges are depicted. White hollow circles denote vertices which may have other, undepicted incident edges. Vertices containing a number indicate a vertex of that specific degree.

A dotted line between two vertices indicates that those vertices are non-adjacent. ::

We :::::: often ::: use ::::::::: component :: as : a :::::::: shortcut ::: for :::::::::: connected :::::::::: component. :

We will often modify a path decomposition of a graph G to give a path decomposition of another graph G . To describe these modifications we use a number of fixed expressions, which we formally define here. Let D be a path decomposition of G. Let P ∈ D be a path and Q be a subpath of P .

If R is a path in G with the same end vertices as P :: Q, we say that we replace Q with R to mean that we define a new path P = P -Q + R and redefine D to be the collection D -P + P . If R is a path in G with an endpoint in common with P , we say that we extend P with R to mean that we define a new path P = P + R and redefine D to be the collection D -P + P . For a vertex u on P , we say that we split P at u to mean that we define paths P 1 and P 2 such that P 1 ∪ P 2 = P and P 1 ∩ P 2 = u, and redefine D to be the collection D -P + P 1 + P 2 . Finally, for a path R in G , we say that we add the path R to mean that we redefine D to be the collection D + R. ::::: Given :: a ::::: graph ::

G ::: and :::: two ::::::: disjoint :::: sets ::: A :::: and :: B :: of ::::::: vertices ::: of ::: G, ::: we :::::: denote ::: by :::::::: E(A, B) ::: the ::: set ::: of ::::: edges ::::: with ::: one , then D is a good path decomposition of G.

Let |V (G)| = n. We have |D| ≤ |D | + 1 ≤ n-2 2 + 1 = n 2 .
Thus D is a good path decomposition of G. Let G, G 1 and G 2 have n, n 1 and n 2 vertices respectively. We have

|D| ≤ |D 1 | + |D 2 | -1 ≤ n1 2 + n2 2 -1 ≤ n 2 . Thus D is a good path decomposition of G. Proposition 2.3. Let G, G 1 and G 2 be three graphs such that |V (G)| ≥ |V (G 1 )| + |V (G 2 )| + 1,
and let D be a path decomposition of G. If there are good path decompositions D 1 and D 2 of G 1 and

G 2 (respectively) and |D| ≤ |D 1 | + |D 2 |, then D is a good path decomposition of G.
Let G, G 1 and G 2 have n, n 1 and n 2 vertices respectively. We have

|D| ≤ |D 1 | + |D 2 | ≤ n1 2 + n2 2 ≤ n 2 .
Thus D is a good path decomposition of G.

Main Result

Let G be a graph with ∆(G) ≤ k. We first prove that a number of configurations are reducible in G, if . :::::: That ::: is, :: if :: G :::::::: contains :::: one :: of :::::: them :::: and Gallai's conjecture holds for all smaller graphs of maximum degree k, ::::: then ::::::: Gallai's :::::::::: conjecture ::::: holds ::: for :: G. the three other neighbors ::::::::: neighbours : of u (resp. v), the pairs t 1 t 2 and w 1 w 2 are not edges and Proof.

d(u) = d(v) = 4. C 4 : An edge uv such that d(u) = d(v) = 4,
t 3 = w 3 .
Claim 1. G does not contain the configuration C 1 .

Proof. Suppose that the claim is false. Let u be the vertex of degree 2 with N (u) = {v, w}, and let G be the graph G -u + vw. Since v and w are non-adjacent :: in :: G, G is a simple graph. By the minimality of G, we have that G admits a good path decomposition D . By Proposition 2.3, we obtain a good path decomposition of G by replacing the edge vw with the path vuw (see Figure 2). Proof. Suppose that the claim is false. Let :: uv ::: be :::: the :::: edge :::::: stated ::: in ::::::::::::: Configuration ::: C 3 , :::: and ::: let : x and y be the :::: two common neighbours of u and v. Since d(u) = d(v) = 4, both u and v both : u :::: and : v have precisely one other neighbour. Let these vertices be :::: more :::::::::: neighbour, ::: say : u and v respectively.

Since u and v have precisely two common neighbours, we have that , :::::::::::: respectively, ::::: where : u = v .

Suppose first that at most one of the edges xu , u y, yv , v x ::: xu , :::: u y, :::: yv , :::: In this decomposition, replace xy by xuy and replace yz by yvz. Finally, add a new path xvuz (see Figure 4). This gives a good path decomposition of G, a contradiction. We may thus assume that u and v have at most one common neighbour.

v x : is present in G, say xu . If G -u -v is connected, then let G be the graph G -u -v + u y + v x. Otherwise, let G = G -u -v + u y + v x + xy. Note that G is connected,
We now consider three cases depending on the structure of G -{u, v}. In each case we assume the previous ones do not apply (up to symmetry). Let G be the graph obtained from G -{u, v} by adding the edges t 1 t 2 and w 1 w 2 . By the argument above, G is connected, and so by the minimality of G, there is a good path decomposition of G . We obtain a path decomposition of G by replacing t 1 t 2 with t 1 ut 2 and w 1 w 2 with w 1 vw 2 , and adding the path t 3 uvw 3 . Note that since t 3 = w 3 the latter is really a path. By Proposition 2.1, and since we add ::::: added : at most one new path, this yields a good path decomposition of G. We consider three cases. 2. Assume that one of the edges ux 1 , ux 2 , vy 1 , vy 2 , wz 1 , wz 2 :::: ux 1 , :::: ux 2 , ::::: vy 1 , :::: vy 2 , ::::: wz 1 , :::: wz 2 is not a cut-edge. Assume without loss of generality that ux 1 is such an edge. Let G be the graph obtained from G -u by contracting the edge vw to a vertex s, and adding the edge sx 2 . Note that G is connected and |V (G )| = |V (G)| -2, so by the minimality of G, there is a good path decomposition D of G .

t 1 u v w 2 t 3 t 2 w 3 w 1 t 1 w 2 t 3 t 2 w 3 w 1 P Q t 1 u v w 2 t 3 t 2 w 3 w 1 P P Q Q R R R
We obtain a path decomposition of G as follows. We first replace any subpath of the form ysz, y ∈ {y 1 , y 2 }, z ∈ {z 1 , z 2 } with yvwz (preferably) or with yvuwz (if there are two such subpaths). We then replace any subpath of the form x 2 st, t ∈ {y 1 , y 2 , z 1 , z 2 }, with x 2 urt where r is the vertex of {v, w} adjacent to t. We replace any remaining edge of the form ts, t ∈ {x 2 , y 1 , y 2 , z 1 , z 2 } with tr, where r is the vertex of {u, v, w} adjacent to t. Let D be the resulting collection of disjoint paths in G. Note that since d(s) = 5, there is a path P in D that ends in s, thus a path P in D that ends in r ∈ {u, v, w}. We consider the set of edges of G that do not belong to a path in D . If that set does not induce a path, then we extend P to wu or wv. Note that this guarantees the only remaining edges induce a path Q, which we add to the path collection. By Proposition 2.1, and since we added at most one new path, this yields a good path decomposition of G. w) is adjacent to no other triangle and some edge in E({u, v, w}, {x 1 , x 2 , y 1 , y 2 , z 1 , z 2 }) is not a cut-edge.

x 1 y 1 , x 2 y 2 and z 1 z 2 . Note that G has precisely three connected components G 1 , G 2 , and G 3 . By the minimality of G, there are good path decompositions of G 1 , G 2 and G 3 . We obtain a path decomposition of G by replacing x 1 y 1 with the path x 1 uvy 1 , replacing x 2 y 2 with x 2 uwvy 2 , and replacing z 1 z 2 with the path z 1 wz 2 (see Figure 11). These paths are all distinct since the edges x 1 y 1 , x 2 y 2 and z 1 z 2 belong to different components of G . Note that the total number of paths involved in the resulting path decomposition of G is at most

|V (G1)|+1 2 + |V (G2)|+1 2 + |V (G3)|+1 2 = |V (G)| 2
, thus it is a good path decomposition. 

:Proposition 2 . 1 .

 21 ::::::: endpoint :: in :: A :::: and :::: the ::::: other :: in ::: B. : :: By ::::::: simple :::::::::: arithmetic, ::: we :::: can :::::: obtain ::: the ::::: three :::::::::::: propositions :::::: below. : Let G and G be two graphs such that |V (G)| ≥ |V (G )| + 2, and let D be a path decomposition of G. If there is a good path decomposition D of G and |D| ≤ |D | + 1 :

Proposition 2 . 2 .

 22 Let G, G 1 and G 2 be three graphs such that |V (G)| ≥ |V (G 1 )| + |V (G 2 )|, and let D be a path decomposition of G. If there are good path decompositions D 1 and D 2 of G 1 and G 2 (respectively) and |D| ≤ |D 1 | + |D 2 | -1, then D is a good path decomposition of G.

Lemma 3 . 1 .

 31 Let k ∈ N. Let G be a connected graph with maximum degree ∆(G) ≤ k, and suppose that G does not admit a good path decomposition. If G is vertex minimal with these properties, then G does not contain any of the following configurations (see Figure1): C 1 : A vertex of degree 2 whose neighbours are not adjacent.

C 2 :

 2 A cut-edge uv such that d(u) and d(v) are even.

C 3 :

 3 An edge uv such that ::::::::::::::: d(u) = d(v) = 4, :::: and u and v have precisely 2 common neighbours, and

Figure 1 :C 5 :

 15 Figure 1: Configurations C 1 , C 3 , C 4 and C 5 from Lemma 3.1.

Figure 2 :Figure 3 :

 23 Figure 2: The reduction of C 1 .

  and so by the minimality of G, it admits a good path decomposition. Now, replace v x by xvv :::: v vx : and replace u y by u uy. Furthermore, if xy ∈ E(G ) \ E(G), then replace xy by xuvy. Otherwise, : add a new path xuvy to the decomposition. By Proposition 2.1, and since we add ::::: added : at most one new path, the resulting decomposition is a good path decomposition of G. This contradicts the assumption that G has no such decomposition. Next, suppose that xu , u y, yv , v x ∈ E(G) ::: xu , :::: u y, :::: yv , ::::::::::: v x ∈ E(G), so the graph G = Gu -v is connected. By the minimality of G, the graph G has a good path decomposition. Now replace the edge xu with the path xvuu , and add a new path u xuyvv to the decomposition. By Proposition 2.1, and since we add ::::: added : at most one new path, the resulting decomposition is a good path decomposition of G, contradicting the assumption. Finally, suppose that precisely two or three of the edges xu , u y, yv , v x ::: xu , :::: u y, :::: yv , :::: v x : are present in G. As a consequence, from the set {xu , u y, yv , v x} \ E(G), we may choose an edge, xu say, such that the graph G = G -u -v + xu is connected. By the minimality of G, the graph G has a good path decomposition. Now replace xu by xvuu , and add a new path xuyvv to the decomposition. Again, by Proposition 2.1, and since we add :::::: added at most one new path, the resulting decomposition is a good path decomposition of G, contradicting the assumption. ♦ Claim 4. G does not contain the configuration C 4 . Proof. Suppose that the claim is false. Since G does not contain Configuration C 3 , the vertices u and v do not have precisely two common neighbours. First suppose that u and v have 3 common neighbours x, y and z. In this case, since there is a pair of non-adjacent vertices amongst N (u)\{v}, we may assume xy ∈ E(G). Furthermore, by the definition of Configuration C 4 , the third vertex z is non-adjacent to at least one of x or y. We conclude that there are two non-edges amongst x, y and z, say these are xy and yz; :::: say ::::::::: yz ∈ E(G). Let G be the graph G -u -v + xy + yz. It is easy to see that G is connected. By the minimality of G, the graph G has a good path decomposition.

Figure 4 :

 4 Figure 4: The reduction of C 4 in the case where u and v have three common neighbors :::::::::: neighbours.

1 .

 1 Suppose first that t and w lie in the same component of G -u -v. Since G -u -v has at most 3 components, and G -u and G -v have at most 2 components, there are non edges tt and ww for some t ∈ T and w ∈ W such that G -u -v + tt + ww is connected. Furthermore, since t and w are the only possible common neighbours of u and v, we have that the single vertices in T \ {t, t } and W \ {w, w } are not equal. Thus, letting t 1 = t, t 2 = t , w 1 = w, w 2 = w and setting t 3 and w 3 to be the remaining vertices gives the desired relabeling.Suppose now that t and w lie in different components of G -u -v. In particular this implies that T ∩ W = ∅. Again, since G -u -v has at most 3 components, and G -u and G -v have at most 2 components, there are non-edges e T and e W amongst the vertices of T and W respectively, such that G -u -v + e T + e W is connected. We relabel the vertices in T and W such that t 1 and t 2 are the endpoints of e T , w 1 and w 2 are the endpoints of e W , and t 3 and w 3 are the remaining vertices. Since T ∩ W = ∅, we have that t 3 = w 3 are : as : required.

Figure 5 :Figure 6 :Figure 7 :Figure 8 :

 5678 Figure 5: The reduction of C 4 in the connected case.

Figure 9 :

 9 Figure 9: The reduction of C 5 when u and w have precisely one common neighbor :::::::: neighbour : and d(v) = 2.

3 .Figure 10 :

 310 Figure 10: An example of the reduction of C 5 when d(u) = d(v) = d(w) = 4, the triangle (u, v, w) is adjacent to no other triangle and some edge in E({u, v, w}, {x 1 , x 2 , y 1 , y 2 , z 1 , z 2 }) is not a cut-edge.

1 Figure 11 :Lemma 3 . 2 .

 11132 Figure 11: The reduction of C 5 when d(u) = d(v) = d(w) = 4, the triangle (u, v, w) is adjacent to no other triangle and every edge in E({u, v, w}, {x 1 , x 2 , y 1 , y 2 , z 1 , z 2 }) is a cut-edge.

  and for t 1 , t 2 , t 3 ::

t 1 , ::: t 2 , :: t 3 : (resp. w 1 , w 2 , w 3 ::: w 1 , ::: w 2 , :::: w 3 )

1 .

 1 Assume that G -u has at least three connected components. Because uv is not a cut-edge, the component of G -u containing v contains at least one other neighbor ::::::::: neighbour : of u. Thus G -u has precisely three components, and t 1 and t 2 lie in different components of G -u. Let G be the graph formed from G -u by adding the edge t 1 t 2 . Thus G has two components G 1 and G 2 , and by the minimality of G, both have good path decompositions D 1 and D 2 . The edge t 1 t 2 is replaced with t 1 ut 2 , w 1 w 2 with w 1 vw 3 , and t 3 w 3 with t 3 uvw 3 ) to obtain a path decomposition of G. By Proposition 2.3, this yields a good path decomposition of G.3. Now G -{u, v} has at most three connected components, and each of G -u and G -v has at most two connected components. Let T = {t 1 , t 2 , t 3 } and W = {w 1 , w 2 , w 3 }. We claim that we can relabel the vertices in T and W such that the graph G -u -v + t 1 t 2 + w 1 w 2 is connected and the properties that t 1 t 2 , w 1 w 2 ∈ E(G)

Without loss of generality we suppose G 2 contains v. Let P ∈ D 1 be the path containing the edge t 1 t 2 . Furthermore, let P 1 and P 2 be the possibly empty subpaths of P -t 1 t 2 containing t 1 and t 2 respectively. Note that since v has degree 3 in G , there is some path Q ∈ D 2 which ends at v. We construct a path decomposition of G by taking the union D 1 ∪ D 2 and replacing P and Q with the paths P 1 + t 1 uv + Q and P 2 + t 2 ut 3 . By Proposition 2.3, and since we introduced no new ::: did ::: not :::::::: increase ::: the ::::::: number ::: of paths, the resulting path decomposition is good, a contradiction. 2. Assume that G -{u, v} has at least four connected components. Since both G -u and Gv have at most two connected components, there are precisely four connected components C 1 , C 2 , C 3 and C 4 ::: H 1 , :::: H 2 , ::: H 3 :::: and ::: H 4 . Furthermore, two of these components contain both a neighbour of u and a neighbour of v, one component contains only a neighbour of u, and one component contains only a neighbour of v. Relabeling if necessary, we may suppose that t 1 , w 1 ∈ C 1 , t 2 , w 2 ∈ C 2 , t 3 ∈ C 3 and w 3 ∈ C 4 :: t 1 , :::::::: w 1 ∈ H 1 , ::: t 2 , ::::::::: w 2 ∈ H 2 , ::::::: t 3 ∈ H 3 :::: and :::::::: w 3 ∈ H 4 . This relabelling preserves the fact that t 1 t 2 , w 1 w 2 ∈ E(G) :::: t 1 t 2 , ::::::::::::: w 1 w 2 ∈ E(G) : and t 3 = w 3 . Consider the graph G 1 obtained from C 1 and C 2 :: H 1 :::: and :::: H 2 by adding the edges t 1 t 2 and w 1 w 2 . Similarly, consider the graph G 2 obtained from C 3 and C 4 :: H 3 :::: and ::: H 4 : by adding the edge t 3 w 3 . By the minimality of G, we obtain good path decompositions of G 1 and G 2 , which we merge in the obvious way. :::: t 1 t 2 , :::::::::::: w 1 w 2 ∈ E(G) : and t 3 = w 3 are preserved. Indeed if u and v have a common neighbour, let t ∈ T and w ∈ W be such that t = w. Otherwise : , : let t = t 1 and w = w

1 .

 1 Assume first that one of v and w has degree 2, say d(v) = 2. Let G be the graph obtained from G -v by contracting the edge uw. Note that G is connected and|V (G )| = |V (G)| -2.By the minimality of G, there is a good path decomposition D of G . To obtain a path decomposition of G, we consider two cases depending on whether ux 1 and ux 2 belong to the same path in D , see Figures9 and 10. If they do not, then replace ux 1 with the path wux 1 , and replace ux 2 with the path wvux 2 . However, if ux 1 and ux 2 belong to the same path P ∈ D , then split P at u into two paths P 1 and P 2 . Extend P 1 with the edge uw and extend P 2 with the path uvw. Note that no edge incident to w is in P 1 or P 2 . By Proposition 2.1, and since we created at most one new path, this yields a good path decomposition of G.

						v
		x 1	P	w	x 1	P 1
	v					u	w
		x 2			x 2	2
	x 1				
	u	w			
	x 2	x 1		w	

Let uv be an edge of C. Let t 1 , t 2 , t 3 :: t 1 , :::: t 2 , :: t 3 : be the neighbours of u apart from v and let w 1 , w 2 , w 3 ::: w 1 , ::: w 2 , :::: w 3 : be the neighbours of v apart from u. Note that, since uv is an edge of C, at least one of t 1 , t It follows that ::: By ::::::::: symmetry, ::: we :::::: obtain ::::: that ::::::::::: {w 1 , w 2 , w 3 } ::::: does ::: not ::::::: induce : a ::::::: clique.

:::::::

Suppose :::: now ::::: that ::::::::::: t 1 t 2 ∈ E(G). By :::::::::: symmetry, : all of the edges t 1 t 2 , t 1 t 3 , w 1 w 2 , w 1 w 3 ∈ E(G) ::: t 1 t 2 , ::::: t 1 t 3 , :::::: w 1 w 2 , :::::::::::: w 1 w 3 ∈ E(G). As a consequence, t 1 = w 1 , otherwise this vertex would have degree 6, which is larger than ∆(G). Thus 
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