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Abstract

Thermococcus gammatolerans is anaerobic euryarchaeon which grows optimally 

at 88oC and its genome encodes a Family B DNA polymerase (Tga PolB). Herein, we 

cloned the gene of Tga PolB, expressed and purified the gene product, and 

characterized the enzyme biochemically. The recombinant Tga PolB can efficiently 

synthesize DNA at high temperature, and retain 93% activity after heated at 95oC for 

1.0 hr, suggesting that the enzyme is thermostable. Furthermore, the optimal pH for 

the enzyme activity was measured to be 7.0-9.0. Tga PolB activity is dependent on a 

divalent cation, among which magnesium ion is optimal. NaCl at low concentration 

stimulates the enzyme activity but at high concentration inhibits enzyme activity. 

Interestingly, Tga PolB is able to efficiently bypass uracil in DNA, which is distinct 

from other archaeal Family B DNA pols. By contrast, Tga PolB is halted by an AP 

site in DNA, as observed in other archaeal Family B DNA polymerases. Furthermore, 

Tga PolB extends the mismatched ends with reduced efficiencies. The enzyme 

possesses 3′-5′exonuclease activity and this activity is inhibited by dNTPs. The DNA 

binding assays showed that Tga PolB can efficiently bind to ssDNA and primed DNA, 

and have a marked preference for primed DNA. Last, Tga PolB can be used in routine 

PCR.

Keywords: Archaea; DNA polymerase; DNA replication; Routine PCR
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Introduction

DNA polymerase (pol) is a ubiquitous enzyme that replicates DNA in all living 

cells. Since the first DNA pol was discovered and characterized from Escherichia coli 

in the 1950s by Arthur Kornberg, a large number of DNA pols have been 

biochemically and structurally characterized from diverse organisms. Currently, DNA 

pols have been grouped into six families: A, B, C, D, X, and Y, based on amino acid 

sequence similarities [1]. In addition, reverse transcriptase has been proposed as the 

seventh family since it can synthesize DNA [2]. Family B DNA pols have been found 

in bacteria, archaea, eukarya, and viruses/phages. A typical characteristic of most of 

Family B DNA pols is that they possess 3′-5′ exonuclease activity in addition to 

polymerase activity [3; 4], which can remove a misincorporated nucleotide opposite a 

template strand, thus enhancing fidelity approximately 100-fold. 

As the third life, Archaea are a simplified version of eukarya with respect to 

DNA metabolism [5; 6; 7]. Currently, DNA pols of Family B, D, and Y have been 

found in Archaea [8]. Family B DNA pols are ubiquitous in both Euryarchaeota and 

Crenarchaeota, which are two major branches of Archaea. In addition to possessing 

five conserved motifs, archaeal Family B DNA pols have a unique uracil binding 

motif [9; 10], which can recognize uracil and hypoxanthine bases derived from 

deamination in template DNA. Replication of uracil and hypoxanthine before repair 

leads to GC to AT mutation and AT to GC mutation, respectively. However, 

replication by archaeal Family B DNA pols would be stalled if deaminated base is 

encountered with these pols [11; 12]. Such an error avoidance mechanism would be 

expected to be evolutionary favorable for hyperthermophilic Archaea thriving in high-
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temperature environments where the rates of deamination are increased. Hence, the 

recognition of these pro-mutagenic lesions and the following replication stop 

observed in archaeal Family B DNA pols might be a specific adaptation of 

hyperthermophilic Archaea to their hostile environments.

As an important branch of euryarchaea, Thermococcus thrives in high-

temperature environments, including deep-sea hydrothermal vents and hot springs. 

Increasing numbers of Thermococcus species have been isolated and identified [13]. 

Since the first archaeal Family B DNA pol was reported from Thermococcus litoralis 

[14], a dozen of archaeal Family B DNA pols have been biochemically characterized 

from Thermococcus species: Thermococcus 9°N-7 [15], Thermococcuscelericrescens 

[16], Thermococcus fumicolans [17], Thermococcus sp. NA1 [18], Thermococcus 

peptonophilus [19], Thermococcus zilligii [20], Thermococcus aggregans [21], 

Thermococcus celer [22], Thermococcus marinus [23], Thermococcus pacificus [24], 

Thermococcus thioreducens [25], Thermococcuswaiotapuensis [26], and 

Thermococcus barophilus Ch5 [27]. All these DNA pols have been proven to be used 

efficiently in routine PCR. 

The euryarchaeon Thermococcus gammatolerans was isolated from a 

hydrothermal vent located in the Gulf of California [28]. This euryarchaeon is a 

hyperthermophilic archaeon with an optimal growth temperature of 88°C which can 

fully withstand a 5.0 kGy dose of gamma irradiation without loss of viability [29], and 

thus is the most radioresistant archaeon to date. In reason of its extreme tolerance of 

extreme temperatures and irradiation, it was very interesting to test whether the DNA 
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polymerases of T. gammatolerans has any specific features in comparison to other 

DNA pols from this family. The genome of T. gammatolerans encodes two DNA pols, 

a Family B DNA pol (Tga PolB) and Family D DNA pol [29]. In this work, we 

cloned the Tga PolB gene, expressed its product and characterized its biochemical 

characteristics. The recombinant Tga PolB was found capable of bypassing uracil in a 

template DNA, which is distinct from other Family B archaeal DNA pols. 

Furthermore, biochemical characterization of Tga PolB is discussed. 

Materials and methods

2.1. Materials

Materials were purchased from the following companies: pET-30a (+), Novagen 

(Merck, Darmstadt, Germany); Plasmid Extraction Kit, PCR Cycle Pure Kit, and Gel 

Extraction Kit, Omega (Guangzhou, China); Escherichia coliDH5α cells, Transgene 

(Beijing, China); dNTPs, T4 DNA ligase, NdeI, XhoI, and Pfu DNA pol, Thermo 

Fisher Scientific (Waltham, MA); Chemicals, Amresco (WA, USA).

2.2. DNA substrates

All the oligonucleotides used were synthesized by Sangon Company (Shanghai, 

China) and their sequences are listed in Table 1. Primed DNA substrates were 

prepared by annealing the Cy3-labeled oligonucleotide with its complementary 

oligonucleotides in an annealing buffer containing 20 mM Tris-Cl pH 8.0 and 100 

mM NaCl. The annealing reactions were performed at 100oC for 5 min and cooled 

slowly to room temperature at least 4 hours. 

2.3. Cloning of the Tga PolB encoding gene
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The TGAM_RS07365 gene encoding a Family BDNA pol of T. gammatolerans 

was amplified by Pfu DNA pol using the genomic DNA as the template in the 

presence of the forward primer (5′-GGG AAT TCC ATA TGC 

ATTCTCGATACCGACTACATC-3′, the italic nucleotides represent NdeI restriction 

site) and the reverse primer (5′- CCG CTC GAG  TCA CTT CTT CCC TTT CAC 

CTT CAG-3′, the italic nucleotides represent XhoI restriction site).The PCR product 

was extracted and cleaved by NdeI and XhoI, and cloned into a pET-30a (+) vector. 

The sequence of the recombinant plasmid was verified by sequencing, and the 

confirmed plasmid was transformed into E. coli BL21 (DE3) RIL cells for expressing 

Tga PolB protein with a 6 x His-tag in its C-terminal.

2.4. Overexpression and purification of Tga PolB

For Tga PolB protein expression, the transformant was cultured at37oC in LB 

medium containing 10 μg/mL kanamycin and 17 μg/mL chloramphenicol until the 

OD600 reached 0.6.Then, isopropyl thiogalactoside (IPTG) was added at a final 

concentration of 0.8 mM for 12 hours at room temperature to induce the expression 

from the recombinant plasmid. 

The induced cells were harvested by centrifugation and resuspended in a Ni 

column buffer A containing 20 mM Tris-HCl pH 8.0, 1 mM dithiothreitol (DTT), 500 

mM NaCl, 50 mM imidazole and 10% glycerol. The cells were immediately disrupted 

by ultrasonication at 4oC. After removing cell debris by centrifugation (16,000 g) at 

4oC, the supernatant was heated at 70oC for 20 min. The supernatant was then 

collected after centrifugation (16,000 g) at 4oC and was loaded onto a HisTrap FF 
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column (GE Healthcare, Uppsala, Sweden). The column was eluted with NCGTM 

Chromatography System (Bio-Rad, Hercules, CA, USA) using a linear gradient of 

50–500 mM imidazole with a Ni column buffer B containing 20 mM Tris-HCl (pH 

8.0), 1 mM DTT, 500 mM NaCl, 500 mM imidazole and 10% glycerol. Fractions 

containing the His-tagged Tga PolB protein were collected and analyzed by migration 

on a 10% SDS-PAGE. The purified Tga PolB protein fractions were dialyzed against 

a storage buffer containing 50 mM Tris-HCl (pH 8.0), 1 mM DTT, 50% glycerol and 

50 mM NaCl, and stored at -80oC. The Tga PolB protein concentration was 

quantitated by measuring the absorbance at 280 nm. The theoretical molar extinction 

coefficient of the enzyme protein is predicted to be 122,300M-1 cm-1.

2.5. Polymerase assays

The standard reaction mixture (10μL) contained 50 nM Tga PolB, 200 nM Cy3-

labeled primed DNA substrate (p22/t59), 20 mM Tris–HCl pH8.0, 2 mM DTT, 100 

μg/mL BSA,2 mM MgCl2, and 200 μM dNTPs. The polymerization reactions were 

performed for 15 min at 65oC. The polymerized product was analyzed by 

electrophoresis in a 15% polyacrylamide gel containing 8 M urea. The gel was 

visualized with a Molecular Image analyzer (Bio-Rad). ImageQuant software was 

used for quantitative analysis. All polymerase experiments were repeated three times.

2.6. 3′–5′exonuclease assays

The standard reaction mixture (10 μL) contained an indicated amount of Tga 

PolB, 200 nM Cy3-labeledssDNA, 20 mM Tris–HCl pH 8.0, 2 mM DTT, 100 μg/mL 

BSA, and 2 mM MgCl2.Reactions were carried out for 15 min at 65oC. The cleaved 
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products were subjected to electrophoresis in a polyacrylamide urea gel as described 

above. The gel was visualized with a Molecular Image analyzer (Bio-Rad). 

ImageQuant software was used for quantitative analysis. All exonuclease experiments 

were repeated three times.

2.7. Electrophoretic mobility shift assays (EMSA)

200 nM Cy3-labeled ssDNA or primed DNA were incubated with Tga PolB with 

varied concentrations in 20 mM Tris-HCl pH 8.0, 1 mM DTT and 8% glycerol at 

room temperature for 10 min. The retarded product was analyzed by electrophoresis 

in a 4% native polyacrylamide gel in 0.1 x TBE buffer and visualized with a 

Molecular Image analyzer (Bio-Rad). ImageQuant software was used for quantitative 

analysis. All DNA-binding experiments were repeated three times.

2.8. PCR amplification assays

To determine whether Tga PolB can be used in routine PCR, we performed PCR 

reactions containing 50 mM Tris-Cl pH8.0, 0.1 mg/ml BSA, 5 mM Mg2+, 50 mM 

NaCl and 130 nM Tga PolB to amplify the gene TBCH5v1_0629 (744 bp) using the 

genomic DNA of Thermococcus barophilus Ch5 as a template and PCR primers 

described in our previous publication [30]. The cycling of PCR reactions was 

performed as follows: one initial denaturation at 98oC for 5 min followed by 30cycles 

of 95oC for 30s, 50 oC 30s and 72 oC1min, and the final step was 72 oC 10 min. PCR 

products were resolved by electrophoresisin a 0.8% standard agarose gel.

Results

3.1. Cloning, expression and purification of Tga PolB protein
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The genome of T. gammatolerans encodes a Family B DNA polymerase. To 

characterize Tga PolB biochemically, its gene was cloned into a pET30a (+) 

expression vector, and overexpressed in E.coli. The recombinant Tga PolB protein 

was purified to near homogeneity after Ni-column affinity purification (Fig. 1A). The 

purified protein displayed an approximate MW of 90 kDa (Fig. 1A), which correlates 

with the deduced amino acid sequences. 

Using the primed DNA (p22/t59), we determined the polymerase activity of the 

purified Tga PolB protein using concentrations ranging from 1 to 500 nM. As shown 

in Fig.1B, the full length product was gradually created with increasing Tga PolB 

concentrations at 65oC, and maximal activity (>90 polymerization percentage) was 

obtained at ≥20 nM, suggesting that the enzyme is able to efficiently synthesize DNA 

at high temperature. 

The genome of E.coli encodes five DNA pols that can synthesize DNA, which 

might interfere with our above observations [31]. To rule out this possibility, we 

prepared the E.coli cell extract with the empty pET-30a (+) plasmid as described for 

preparation of the recombinant pET30a (+) plasmid with the Tga PolB gene. We used 

the cell extract to perform above DNA synthesis reactions, and found that no 

synthesized product was observed (data not shown). Thus, the possibility of 

contamination of E.coli DNA pols was removed, thereby indirectly confirming that 

Tga PolB can synthesize DNA at high temperature.

3.2. Biochemical characterization of Tga PolB

The biochemical characteristics of DNA synthesis by Tga PolB, which includes 
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thermostability, the optimal pH, divalent cation availability, salt adaptation and 

dNTPs availability, were investigated using the primed DNA described above as the 

substrate. Considering the instability of primed duplex used in this work at >65oC, we 

performed DNA synthesis reaction of Tga PolB at <65oC. As shown in Fig. S1, the 

enzyme is capable of synthesizing DNA at increasing temperatures ranging from 25oC 

to 65oC with varied efficiencies High synthesis efficiency (99%) was observed from 

45oC to 65oC, further confirming that Tga PolB can replicate DNA at high 

temperature.

To investigate its thermo-tolerance, 500 nM Tga PolB was heated at varying 

temperatures for different times, and the heated enzyme (50 nM) was used to perform 

DNA synthesis reactions at 65oC. Our results showed that the enzyme is able to fully 

withstand 95oC for at least 1.0 hr, retaining a 93 ± 2.6% activity (Fig. 2A). After 2 

hours at 95°C, the enzyme retained ca. 20 ± 2.1% activity. Thus, these observations 

confirm that, as expected from DNA pols from other Thermococcus, Tga PolB is a 

thermostable DNA pol.

To investigate the effect of pH on Tga PolB activity, we reduced enzyme 

concentrations to be 15 nM in DNA synthesis. As shown in Fig. 2B, the enzyme could 

synthesize DNA in a broad pH range from 5.0 to 10.0, at which the activity begins to 

be altered. No product is synthesized at pH=11. The maximal synthesis activity was 

observed between pH 7.0 and 9.0, but our test did not allow having more precision on 

the effective optimum.

It is well-known that DNA pols utilize a divalent cation to synthesize DNA. To 
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investigate the effect of a divalent cation on Tga PolB activity, we reduced enzyme 

concentrations to be 15 nM in DNA synthesis. As expected, no product was observed 

in DNA synthesis by Tga PolB without a divalent cation or with EDTA (Fig. 2C). 

Only two divalent ions, Mg2+ and Mn2+, could restore DNA pol activity to the enzyme. 

The polymerization percentage of Tga PolB was estimated to be 72 ± 5.7% and 33 ± 

7.1% in the presence of Mg2+ and Mn2+, respectively, demonstrating that similarly to 

other Thermococcus DNA PolB, DNA synthesis activity of Tga PolB is dependent on 

a divalent cation. Thus, Mg2+ is the preferred ion for polymerization activity of Tga 

PolB.

We investigated the salt tolerance of the enzyme from 0 to 600 mM by using 15 

nM enzyme in DNA synthesis reactions. In absence of NaCl, Tga PolB displayed 67 ± 

2.2% polymerization activity (Fig. 2D). From 50 to 200 mM NaCl, the activity was 

higher than 90%, but it was significant reduced at NaCl concentrations above 400mM. 

Thus, NaCl is required for optimal Tga PolB activity. But, enzyme activity was 

inhibited by 400 mM NaCl, and no synthesis was observed at 600 mM NaCl.

3.3. Effect of dNTPs on the balance of the polymerase and exonuclease activity of 

Tga PolB 

Most of Family B DNA pols, including the members from Archaea, possess 3′-5′ 

exonuclease activity in addition to 5′-3′ polymerase activity. To examine whether Tga 

PolB has exonuclease activity, we used ssDNA as a substrate. As expected, we found 

that Tga PolB started to degrade DNA when adding 5 nM enzyme to the exonuclease 

reaction, and exonuclease activity increased with increasing enzyme concentration 
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(Fig. 3A). Maximal exonuclease efficiency (>90%) was obtained when for 

concentrations of 15 nM Tga PolB and higher. Furthermore, DNA products with 

various sizes were created in the presences of varied concentrations of Tga PolB. 

Next, we investigated the effect of dNTPs on the balance of the polymerase 

activity and exonuclease activity of Tga PolB. We designated Exo/Pol as the effect of 

dNTPs concentration on the balance of exonuclease activity and polymerase activity. 

As the the dNTPs concentrations increased, the values of Exo/Pol decreased, 

suggesting that dNTPs concentrations are favor in polymerase activity. At 4.0 μM 

dNTPs, the values of Exo/Pol reached 0.07 (Fig. 3B), indicating that Tga PolB 

exhibits extremely weak exonuclease activity in the presence of 4.0 μM dNTPs. Thus, 

dNTPs stimulates Tga PolB to synthesize DNA rather than degrade DNA. 

3.4. Mismatch extension of Tga PolB

We determined mismatch the extension efficiency of Tga PolB by using primed 

DNA with a match end (C/G) and primed DNA with a mismatch end (C/A, A/G and 

T/G) as substrates. As shown in Fig. 4, no matter what concentration of Tga PolB was 

used in polymerase reactions, >95% polymerization percentage was observed during 

DNA synthesis by Tga PolB when using the primed DNA with a match as the 

substrate. However, Tga PolB displayed only about 18 ± 1.5%, 15 ± 2.8% and 14 ± 

4.3% activity for extending A/G, G/G and T/G mismatch at 20 nM, respectively. 

Furthermore, at 50 nM, the efficiencies of the enzyme were still lower than for 

matched DNA, with 83 ± 5.7%, 72 ± 7.8% and 77 ± 0.8% for extending A/G, G/G 

and T/G mismatch at 50 nM, respectively. Only at 200 nM the enzyme displayed full 
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efficiency for extending mismatched DNA. Overall, these results suggested that Tga 

PolB has a low efficiency to extend mismatched DNA, although capable to extend it 

at high DNA/protein ratios.

3.5. Bypass activity of uracil and AP in DNA by Tga PolB 

Archaeal Family B DNA pols can recognize uracil in DNA, which results in 

polymerization arrest. Using uracil-containing primed DNA as the substrate, we tested 

this ability in Tga PolB. Note that the full length template DNA is 59 mer and uracil 

in the template DNA is located at 42 mer described in Table 1. As shown in Fig. 5, 

the full length product was observed at 200 nM Tga PolB in the control reaction using 

the normal primed DNA as the substrate. Compared with the control reaction, two 

products corresponding to 42 mer (partial length) and 59 mer (full length) were 

synthesized by 200 nM Tga PolB using the uracil-containing primed DNA as the 

substrate. Furthermore, more synthesized full length product than partial length 

product was created by Tga PolB, suggesting that this pol can bypass the uracil of the 

DNA template, which is a distinct feature from typical archaeal Family B DNA pols.

Since Tga PolB could bypass U bases in its DNA template, we tested whether it 

could also bypass AP sites in DNA. Like uracil-containing DNA, the AP site in the 

full length template DNA (59mer) is also located in 42 mer position. By using AP-

containing primed DNA as a substrate, we conducted DNA synthesis by Tga PolB. As 

shown in Fig. 5, only one band corresponding to 42 mer product was observed by Tga 

PolB, which is sharply inconsistent with the observation of the replication of uracil 

containing DNA by this pol. In contrast, no full length product was synthesized by 
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Tga PolB, suggesting that this pol cannot bypass AP sites, as observed in other 

archaeal Family B DNA Pols.

3.6. DNA Binding by Tga PolB

Since Tga PolB can degrade ssDNA and extend primed DNA with both matched 

and mismatched ends, we employed the EMSA to determine whether Tga PolB is able 

to bind DNA. We incubated ssDNA, primed DNA and primed DNA with a mismatch 

(T/G) with Tga PolB at varying concentrations, respectively. As shown in Fig. 6A, the 

binding of free ssDNA substrate increased gradually with increasing Tga PolB 

concentrations. No ssDNA binding was observed at 100 nM and maximal binding 

was observed at 500 nM. 

dsDNA binding also increased as Tga PolB concentration increased, from 49 ± 

5.0%, 80 ± 4.8%, and 86 ± 3.6% at 100 nM, 200 nM and 300 nM enzyme (Fig. 6B). 

At higher concentrations (>400 nM), the binding percentages reached >90% and 

reached its maximum (~97%) at 500 nM. Thus, Tga PolB has a slightly higher affinity 

for primed DNA binding than for ssDNA binding. Tga PolB binding to primed DNA 

is not affected by the presence of mismatches (Fig. 6C).   

3.7. PCR amplification of Tga PolB

Last, we investigated whether or not Tga PolB can be used for routine PCR to 

amplify DNA. Using the genomic DNA of T. barophilus Ch5 as a template, we 

performed the PCR reaction to amplify the UDG247 gene with Tga PolB. As shown 

in Fig. 7, the PCR product was clearly created by Tga PolB, corresponding to 744 bp, 

thus suggesting that this Pol can be employed in routine PCR. 
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Discussion

In this work, we characterized biochemically the Family B DNA pol from the 

hyperthermophilic and radioresistant euryarchaeon T. gammatolerans, and revealed 

that Tga PolB can replicate DNA at high temperature. Consistent with other 

Thermococcus DNA pol homologues, Tga PolB displays similar biochemical 

characteristics for DNA synthesis. As expected, Tga PolB can be used to amplify 

DNA by routine PCR reaction, suggesting that this Pol also resembles other 

Thermococcus DNA pols. Interestingly, Tga PolB has extraordinary properties that 

are distinct from other archaeal Family B DNA pols.

Crystal structures of archaeal Family B DNA pols demonstrate that they possess 

uracil recognition pocket [9; 32], thus allowing the replication to be stopped when 

these DNA pols encounter a uracil in DNA template. Biochemical data provide strong 

support for the ‘read-ahead’ mechanism. Archaeal B family DNA polymerases, such 

as Pfu DNA pol, can recognize uracil in DNA template strand during DNA synthesis 

and will be stalled 4 bp upstream of a template uracil. Thereby preventing G:C→A:T 

mutation [33]. Although this PolB can bypass uracil in DNA template with low 

efficiency, the hyperthermoacidophilic crenarchaeon Sulfolobus solfataricus DNA 

polB1 (Sso PolB1) also has similar read-ahead behavior [34]. Furthermore, Pfu PolB 

displays much weaker ability to bypass uracil in DNA template than Sso PolB1 [34] . 

However, we demonstrated that Tga PolB can efficiently synthesize DNA despite 

encountering uracil in DNA template, which differs from other Thermococcales 

enzymes such as Pfu PolB, and Sso PolB1. Consistent with Sso PolB1, Tga PolB 
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cannot continue to replicate DNA when encountering an AP lesion in DNA template, 

consistent with other archaeal Family B DNA pols [34; 35].

As DNA polymerase substrate, deoxynucleotide triphosphates affect the 

exonuclease/polymerase balance of a DNA polymerase. It has been reported that 

dNTPs stimulate polymerase activity of a DNA polymerase and suppress its 

exonuclease activity. However, different DNA polymerases display distinct sensitivity 

to the dNTP inhibition. In this study, we demonstrate that Tga PolB is capable of 

extending primer at a low level (2 μM) of dNTPs, which is consistent with Sso polB1 

[36]. In contrast to Sso PolB1, which retains its exonuclease activity up to 600 μM 

dNTPs, Tga PolB already lacks an exonuclease activity at 5 μM dNTPs [36]. 

A replicative DNA polymerase has polymerase activity and 3′-5′ exonuclease 

activity, and is in favor of exonuclease activity when encountering a mismatched 

primer end to ensure high fidelity of DNA replication. In this study, we show that Tga 

PolB is able to efficiently extend primer with a correct pair end at 20 nM. However, 

Tga PolB displays significantly reduced extension efficiencies for primers with 

incorrected pair ends at 20 nM, which may be caused by the exonuclease activity of 

Tga PolB that can remove the mismatched 3’ nucleotide to generate a match base pair. 

Thus, Tga PolB might be in favorable for the exonuclease activity for removing 

incorrected nucleotide when encountering a mismatched pair end and then start to 

synthesize DNA after proofreading. 

Last, we also show that Tga PolB displays higher affinity for binding primed 

DNA than for binding ssDNA at <300 nM. Furthermore, two bands corresponding to 
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primed DNA binding appeared while only band corresponding to ssDNA binding of 

was observed at both 200 nM and 300 nM Tga PolB. We proposed that one primed 

DNA molecular would be bound with two Tga PolB molecular whereas one Tga PolB 

molecular might bind one ssDNA molecular. Overall, Tga PolB has distinct binding 

patterns for primed DNA and ssDNA. 

Conclusion

In summary, we present the biochemical characteristics of the Family B DNA 

pol from the hyperthermophilic and radioresistant T. gammatolerans. We demonstrate 

that the recombinant Tga PolB possesses polymerase activity for DNA synthesis and 

exonuclease activity for removing misincorporated nucleotide. Surprisingly, Tga PolB 

can replicate DNA when encountering uracil in DNA template, which is sharply 

contrasted with other archaeal Family B DNA pols. However, this pol can be stalled 

by an AP site in DNA. Furthermore, dNTPs stimulate the polymerase activity and 

inhibit the exonuclease activity of Tga PolB. Tga PolB can bind to primed DNA with 

higher efficiencies than to ssDNA at low concentration, and also display distinct 

binding patterns for primed DNA and ssDNA. Last, Tga PolB can be used in routine 

PCR.
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Figure legends

Fig. 1. Tga PolB is able to synthesize DNA at 65oC. A. the overexpression and 

purification of the recombinant Tga PolB protein. B. DNA synthesis of Tga PolB at 

65oC. The DNA synthesis reactions were performed by Tga PolB at 65oC in the 

presence of varied concentrations. The synthesized DNA products were analyzed by 

running a denaturing polyacrylamide gel. CK: the reaction without the enzyme.

Fig. 2. Biochemical characterization of Tga PolB. A. the thermo-tolerance of the 

enzyme; B. the optimal pH of the enzyme activity; C. the effects of divalent cations 

on the enzyme activity; D. the effect of NaCl on the enzyme activity. The DNA 

synthesis reactions were performed at 65oC. The synthesized DNA products were 

1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062



19

analyzed by a denaturing polyacrylamide gel. CK in panels A, B and D, and CK1 in 

panels C: the reaction without the enzyme; CK2 in panel C: the reaction without a 

divalent cation.

Fig. 3. Inhibition of exonuclease activity of Tga PolB by dNTPs substrate. A. the 

exonuclease activity of Tga PolB. Tga PolB with varied concentrations was employed 

to perform exonuclease reactions by using the ssDNA as the substrate at 65oC. The 

cleaved DNA products were analyzed by a denaturing polyacrylamide gel. B. the 

effect of dNTPs substrate on the polymerase and exonuclease activities of Tga PolB. 

The coupled polymerase and exonuclease activities of Tga PolB were performed at 

65oC in the presence of dNTPs with varied concentrations. The reaction products 

were analyzed by a denaturing polyacrylamide gel. CK: the reaction without the 

enzyme.

Fig. 4. Mismatch extension by Tga PolB. The match DNA (C:G) and mismatch DNA 

(A:G, G:G and T:G) were employed as the substrates in the DNA synthesis reactions 

catalyzed by Tga PolB (20, 50 and 200 nM) at 65oC. The synthesized DNA products 

were analyzed by running a denaturing polyacrylamide gel. CK: the reaction without 

the enzyme.

Fig. 5. Bypass analysis of uracil and AP in DNA by Tga PolB. The uracil- and AP- 

containing primed DNA were employed as the substrates in the DNA synthesis 

reactions catalyzed by 200 nM Tga PolB at 65oC. The synthesized DNA products 

were analyzed by running a denaturing polyacrylamide gel. CK: the reaction without 

the enzyme.
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Fig. 6. DNA binding assays of Tga PolB. 200 nM ssDNA and primed DNA were 

incubated with Tga PolB with varied concentrations at room temperature, respectively. 

The retarded DNA products were analyzed by a native polyacrylamide gel. A. binding 

ssDNA; B. binding normal primed DNA; C. binding primed DNA with a mismatch 

(T/G). CK: the binding reaction without the enzyme.

Fig. 7. PCR amplification of Tga PolB. M: DNA marker; CK: the PCR reaction 

without enzyme.
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Table 1 Sequences of the oligonucleotides used in this work

Name Sequence (5′-3′)

p22C* CAG TGA ATT CGA GCT CGG TAC C

p22A* CAG TGA ATT CGA GCT CGG TAC A

p22G* CAG TGA ATT CGA GCT CGG TAC G

p22T* CAG TGA ATT CGA GCT CGG TAC T

t59 GCT TGC ATG CCT GCA GGT CGA CTC TAG AGG ATC CCC 

GGG TAC CGA GCT CGA ATT CAC TG

t59U GC TTG CAT GCC TGC AGG UCGA CTC TAG AGG ATC CCC 

GGG TAC CGA GCT CGA ATT CAC TG

t59AP GCT TGC ATG CCT GCA GGAPCGA CTC TAG AGG ATC CCC 

GGG TAC CGA GCT CGA ATT CAC TG

*indicates the Cy3-labeling at 5′ end of primers (p22C, p22A, p22G and p22T). 

The underlined base is used to prepare uracil (U)- and AP (Apurinc/apyrimidinic)- 

containing dsDNA.
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Supplemental Data

Fig. s1. DNA synthesis of Tga PolB at different temperatures. The DNA synthesis 

reactions were performed by 50 nM Tga PolB at different temperatures. The 

synthesized DNA products were analyzed by running a denaturing polyacrylamide gel. 

CK: the reaction without the enzyme.
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Fig. s1. DNA synthesis of Tga PolB atdifferent temperatures. The DNA synthesis 

reactions were performed by 50 nM Tga PolB at different temperatures. The 

synthesizedDNA products were analyzed by running a denaturing polyacrylamide gel. 

CK: the reaction without the enzyme.


