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Abstract. In this paper we consider minimizers of the functional

min
{

λ1(Ω) + · · ·+ λk(Ω) + Λ|Ω|, : Ω ⊂ D open
}

where D ⊂ Rd is a bounded open set and where 0 < λ1(Ω) ≤ · · · ≤ λk(Ω) are the first k

eigenvalues on Ω of an operator in divergence form with Dirichlet boundary condition and with
Hölder continuous coefficients. We prove that the optimal sets Ω∗ have finite perimeter and
that their free boundary ∂Ω∗ ∩ D is composed of a regular part, which is locally the graph of a
C1,α-regular function, and a singular part, which is empty if d < d∗, discrete if d = d∗ and of
Hausdorff dimension at most d− d∗ if d > d∗, for some d∗ ∈ {5, 6, 7}.
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1. Introduction

This paper is dedicated to the regularity properties of the minimizers to the problem

min
{

λ1(Ω) + · · · + λk(Ω) + Λ|Ω| : Ω ⊂ D open
}

(1.1)

where D ⊂ Rd is a bounded open set (a box), Λ is a positive constant and 0 < λ1(Ω) ≤ · · · ≤
λk(Ω) stand for the first k eigenvalues (counted with the due multiplicity) of an operator in
divergence form. More precisely, we consider the operator −b(x)−1 div(Ax∇·), where the matrix-
valued function A : D → Sym+

d is uniformly elliptic with Hölder continuous coefficients, and
b ∈W 1,∞(D) is a positive Lipschitz continuous function bounded away from 0. This means that
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for every eigenvalue λi(Ω) there exists an eigenfunction ui ∈ H1
0 (Ω) such that

{− div(A∇ui) = λi(Ω) b ui in Ω

ui = 0 on ∂Ω.
(1.2)

We now state in the following theorem the main result of this present paper.

Theorem 1.1. Let D ⊂ Rd be a bounded open set and let A : D → Sym+
d , b ∈ W 1,∞(D)

satisfying (1.5), (1.6) and (1.7) (see below). Then every solution Ω∗ to the problem (1.1) has
finite perimeter. Moreover, the free boundary ∂Ω∗ ∩D can be decomposed into the disjoint union
of a regular part Reg(∂Ω∗ ∩D) and a singular part Sing(∂Ω∗ ∩D), where:

(1) Reg(∂Ω∗ ∩D) is locally the graph of a C1,α-regular function.
If, moreover, ai,j ∈ Ck,δ(D) and b ∈ Ck−1,δ(D) for some δ ∈ (0, 1) and k ≥ 1, then

Reg(∂Ω∗ ∩D) is locally the graph of a Ck+1,α-regular function.
(2) for a universal constant d∗ ∈ {5, 6, 7} (see Definition 4.19), Sing(∂Ω∗ ∩D) is:

• empty if d < d∗;
• discrete if d = d∗;
• of Hausdorff dimension at most (d− d∗) if d > d∗.

The problem (1.1) can also be considered in the class of the quasi-open sets, but we stress
out that it is the same thing. Indeed, preliminary results, inspired by the work of David and
Toro in [8] (see also [7]), have already been obtained in [29] in view to prove the regularity of the
minimizers to (1.1). The main results of the paper are stated in theorem 1.2, where the author
shows that if a quasi-open set Ω∗ is solution, among the class of quasi-open sets, to the problem
(1.1), then the first k eigenfunctions on Ω∗ are locally Lipschitz continuous, and hence Ω∗ is an
open set.

One of the main interest and difficulty of this paper is to consider an operator with variable
coefficients. This case is more involved than the case of the Laplacian and has been studied only
recently. We notice that our result is quite general and applies, for instance, to an operator with
drift −∆+∇Φ · ∇ or in the case of a manifold.

The first result concerning the regularity of the free boundary of optimal sets (for spectral func-
tionals) was established by Briançon and Lamboley in [3], where they consider the minimization
problem of the first eigenvalue of the Dirichlet Laplacian with inclusion and volume constraints.
More precisely, using the strategy developed by Alt and Caffarelli in [1], they prove that the
optimal sets for the problem

min
{

λ1(Ω) : Ω ⊂ D open, |Ω| ≤ m
}

(1.3)

have C∞-regular boundary (inside D) up to a singular set whose (d−1)-Hausdorff measure is zero
(provided that the box is bounded and connected). In [24], Mazzoleni, Terracini and Velichkov
study the regularity properties of sets that minimize the sum of the first k eigenvalues of the
Dirichlet Laplacian among all sets of fixed volume, that is, minimizers of

min
{

λ1(Ω) + · · ·+ λk(Ω) : Ω ⊂ Rd open, |Ω| = 1
}

. (1.4)

They prove that the regular part of the boundary of an optimal set is C∞-regular and, thanks to
a dimension’s reduction argument due to Weiss (see [30]), that the singular set is of dimension at
most d− d∗, hence improving the smallness estimate of the singular set. Meanwhile, Kriventsov
and Lin consider in [20] a more general functional and prove that minimizers of

min
{

F (λ1(Ω), · · · , λk(Ω)) + |Ω| : Ω ⊂ Rd open
}

.

are C∞-regular up to a singular set of dimension at most d− 3. Here, F : Rk → R is a function
of class C1 which is strictly increasing in each variable (∂iF ≥ c > 0). In [21], they also obtain
a regularity result in the case where the functional F is non-decreasing in its parameters, which
hence apply to minimizers of

min
{

F (λk1(Ω), · · · , λkn(Ω)) + |Ω| : Ω ⊂ Rd quasi-open
}

,
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where the first eigenvalue is not necessary involved. Notice that in these problems, the main
difficulty is to deal with higher eigenvalues since they have a min-max variational characterization.

On the other hand, regularity problems involving different operators have been studied only
recently. In [27], the authors prove the regularity of the minimizers to (1.3) where λ1 now stands
for the first eigenvalue of a drifted operator −∆+∇Φ · ∇ with Dirichlet boundary condition (for
some Φ ∈W 1,∞(D,Rd)), and therefore extend the result of Briançon and Lamboley. We highlight
that the operator considered in this paper (see (1.2)) is more general than the operator with drift
−∆ + ∇Φ · ∇ which corresponds to the special case where A = e−ΦId and b = e−Φ. Recently,
Lamboley and Sicbaldi successfully treated the minimization problem (1.3) in the manifold setting
with the Laplace-Beltrami operator (see [22]). They prove the existence of an optimal set among
quasi-open set provided that the manifold M is compact and that optimal sets are C∞-regular if
M is connected (and C∞) up to (d− d∗)-dimensional singular set.

Let us also mention that some regularity results have also been established in the context of
multiphase shape optimization problems involving eigenvalues (see, for instance, [6], [5], [26], [28])

We notice that we deal with a penalized functional and that it is natural to expect that a similar
result also holds with a volume constraint as in (1.3), but we will not address this question in
this paper since our main motivation is to treat the case of an operator with variable coefficients.

1.1. Preliminaries and notations. We will use the following notations throughout this paper.
We fix a matrix-valued function A = (aij)ij : D → Sym+

d , where Sym+
d denotes the family of

the real positive symmetric d× d matrices, which is uniformly elliptic and has Hölder continuous
coefficients. Precisely, there exist positive constants δA, cA > 0 and λA ≥ 1 such that

|aij(x)− aij(y)| ≤ cA|x− y|δA , for every i, j and x, y ∈ D ; (1.5)

1

λ2
A

|ξ|2 ≤ ξ · Ax ξ =

d
∑

i,j=1

aij(x)ξiξj ≤ λ2
A
|ξ|2, for every x ∈ D and ξ ∈ Rd. (1.6)

We also fix a Lipschitz continuous function b ∈ W 1,∞(D) which we assume to be positive and
bounded away from zero: there exists cb > 0 such that

c−1
b ≤ b(x) ≤ cb for almost every x ∈ D. (1.7)

We set m = b dx and we define, for any an open set Ω ⊂ D, the spaces L2(Ω;m) = L2(Ω) and
H1

0 (Ω;m) = H1
0 (Ω) endowed respectively with the norms

‖u‖L2(Ω;m) =

(
∫

Ω
u2 dm

)1/2

and ‖u‖H1(Ω;m) = ‖u‖L2(Ω;m) + ‖∇u‖L2(Ω).

By the Lax-Milgram theorem and the Poincaré inequality, for every f ∈ L2(Ω,m) there exists a
unique solution u ∈ H1

0 (Ω,m) to the problem

− div(A∇u) = fb in Ω, u ∈ H1
0 (Ω,m).

The resolvent operator RΩ : f ∈ L2(Ω;m) → H1
0 (Ω;m) ⊂ L2(Ω;m) defined as RΩ(f) = u

is continuous, self-adjoint, positive and compact (since H1
0 (Ω;m) is compactly embedded into

L2(Ω;m), because b ≥ cb > 0). Therefore, the operator −b−1 div(A∇·) in Ω has a discrete
spectrum which consists in real and positive eigenvalues denoted by

0 < λ1(Ω) ≤ λ2(Ω) ≤ · · · ≤ λk(Ω) ≤ · · ·
For every λi(Ω) there exists an eigenfunction ui ∈ H1

0 (Ω;m) satisfying

− div(A∇ui) = λi(Ω) b ui in Ω,

where the PDE is intended in the weak sense, that is
∫

Ω
A∇ui · ∇ϕdx = λi(Ω)

∫

Ω
uiϕdm for every ϕ ∈ H1

0 (Ω).
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Moreover, the eigenfunctions (ui)i∈N (on an open set Ω ⊂ D) will always be normalized with
respect to the norm ‖ · ‖L2(Ω;m) and form an orthonormal system in L2(Ω;m), that is

∫

Ω
uiuj dm = δij :=

{

1 if i = j,

0 if i 6= j.

We denote by H1
0 (Ω,R

k) the space of all vector-valued function U = (u1, . . . , uk) : Ω → Rk

such that ui ∈ H1
0 (Ω), endowed with the norm

‖U‖H1(Ω) = ‖U‖L2(Ω) + ‖∇U‖L2(Ω) =

k
∑

i=1

(

‖ui‖L2(Ω) + ‖∇ui‖L2(Ω)

)

.

Similarly, we will also need the following norms for U = (u1, . . . , uk) : Ω → Rk

‖U‖L1(Ω) =

k
∑

i=1

‖ui‖L1(Ω) and ‖U‖L∞(Ω) =
k

sup
i=1

‖ui‖L∞(Ω).

Moreover, for U = (u1, . . . , uk) : Ω → Rk we set |U | = u21+ · · ·+u2k, |∇U |2 = |∇u1|2+ · · ·+ |∇uk|2
and A∇U · ∇U = A∇u1 · ∇u1 + · · · + A∇uk · ∇uk. Finally, for f = (f1, . . . , fk) ∈ L2(Ω,Rk) we
say that U = (u1, . . . , uk) ∈ H1

0 (Ω,R
k) is solution to the equation

− div(A∇U) = f in Ω, U ∈ H1
0 (Ω,R

k)

if, for every i = 1, . . . , k, the component ui is solution to the equation

− div(A∇ui) = fi in Ω, ui ∈ H1
0 (Ω).

We summarize in the following theorem the main results obtained in [29].

Theorem 1.2. Let D ⊂ Rd be a bounded open set and let A : D → Sym+
d , b ∈ L∞(D) satisfying

(1.5), (1.6) and (1.7). Then the minimum

min
{

λ1(Ω) + · · · + λk(Ω) + Λ|Ω| : Ω ⊂ D quasi-open
}

(1.8)

is achieved. Moreover, the vector U = (u1, . . . , uk) ∈ H1
0 (Ω

∗,Rk) of the first k normalized eigen-
functions on any optimal set Ω∗ for (1.8) satisfies:

(1) U ∈ L∞(D) and is a locally Lipschitz continuous function in D. In particular, Ω∗ is an
open set.

(2) U satisfies the following quasi-minimality property: for every C1 > 0 there exist constants
ε ∈ (0, 1) and C > 0, depending only on d, k, C1, ‖U‖L∞ and |D|, such that

∫

D
A∇U · ∇U dx+ Λ|{|U | > 0}| ≤

(

1 + C‖U − Ũ‖L1

)

∫

D
A∇Ũ · ∇Ũ dx+ Λ|{|Ũ | > 0}|, (1.9)

for every Ũ ∈ H1
0 (D,R

k) such that ‖U − Ũ‖L1 ≤ ε and ‖Ũ‖L∞ ≤ C1.

1.2. General strategy and main points of the proof. Throughout this paper we will always
denote by Ω∗ an optimal set to the problem (1.1). In section 2, we reduce to the case where
A = Id and prove that the vector U = (u1, . . . , uk) of the first k eigenfunctions on Ω∗ is, in some
new set of coordinates, a quasi-minimizer of the Dirichlet energy in small balls centered at the
origin (Proposition 2.2). We notice that we perform a change of coordinates near every point
x ∈ ∂Ω∗ and hence that one of the main issue is to deal with functions Ux = U ◦Fx which depends
on the point x (see (2.3) for the definition of Fx). We adapt the strategy developed by David
and Toro in [8] to prove that Ux is non-degenerate (Proposition 2.3). Using an idea of Kriventsov
and Lin in [20], we show that the first eigenfunction u1 is non degenerate in Ω∗

1 (Proposition 2.6),
where Ω∗

1 denotes any connected component of Ω∗ where u1 is positive. From this result we then
deduce a uniform growth of u1 near the boundary ∂Ω∗

1 and a density estimate for Ω∗
1.

We notice that, unlike in [24], the optimal set Ω∗ may not be connected. Indeed, the geometrical
constraint imposed by the box D and the presence of variable coefficients do not allow to translate
the connected components of Ω∗ and hence to prove as in [24] that Ω∗ is connected. However, we
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prove in Proposition 3.7 that the connected components of Ω∗ cannot meet inside D. Therefore,
in order to prove Theorem 1.1 it is enough to prove only the regularity of Ω∗

1 (see also remark 1.3
below). This result comes from the structure of the blow-up limits studied in section 3, where
we in particular prove that the blow-up limits are one-homogeneous functions and solution of the
Alt-Caffarelli functional.

Section 4 is then dedicated to the regularity of Ω∗
1. Since we work with the first k eigenfunctions

in a new set of coordinates, namely with Ux, we define the regular part of Ω
∗
1 in a different way than

in [24] (see Definition 4.4). Then, we show as in [24] that we can reduce to a one-phase problem,
for which the regularity of the free boundary was proved by De Silva (see [9] and [28, Appendix
A]). To this aim, we prove that Ω∗

1 is a non-tangentially accessible (NTA) domain near the regular
points and we prove a boundary Harnack principle for the eigenfunctions U = (u1, . . . , uk) on Ω∗

1.
More precisely, we prove that for every x0 on the regular part of the boundary ∂Ω∗

1, the limits

gi(x0) = limx→x0

ui(x)
u1(x)

exist and define Hölder continuous functions gi : ∂Ω
∗
1 ∩ Br(x0) → R. We

notice that one difficulty comes from the presence of the function b and that it is the only point
in the paper where the Lipschitz continuity assumption on b is needed. As a consequence, we
deduce that u1 satisfies the following optimality condition

∣

∣A
1/2
x [∇u1(x)]

∣

∣ = g(x)
√
Λ for every x ∈ ∂Ω∗

1 ∩Br(x0),

where g is an Hölder continuous function depending on the functions gi (see (4.16)). In subsection
4.5 we provide an estimation of the singular set by proving that we can apply the strategy
developed by Weiss in [30] to the case of an operator in divergence form (see Lemmas 4.21 and
4.22).

Remark 1.3 (On the connected components of the optimal sets). We highlight that it is enough
to prove the regularity of any connected component of Ω∗ where the first eigenfunction is positive.
Indeed, if Ω∗

0 is a connected component of Ω∗, then there exists k0 > 0 such that λi(Ω
∗
0) ∈

{λ1(Ω∗), . . . , λk(Ω∗)} for any i ∈ {1, . . . , k0} and λi(Ω
∗
0) /∈ {λ1(Ω∗), . . . , λk(Ω∗)} for any i > k0.

Using that σ(Ω∗) = σ(Ω∗
0) ∪ σ(Ω∗ \ Ω∗

0), it is straightforward to check that Ω∗
0 is solution to the

problem (1.1) with k = k0 and D = D \ (Ω∗ \Ω∗
0). Notice also that the connected components of

Ω∗ cannot meet inside D (see Proposition 3.7).
Moreover, we notice that Ω∗ has at most k connected components. Indeed, denote by Ω∗

i
a connected component of Ω∗ such that λi(Ω

∗) ∈ σ(Ω∗
i ). Then, it turns out that the first k

eigenvalues on Ω∗ coincide with the first k eigenvalues on ∪k
i=1Ω

∗
i and therefore we have |∪k

i=1Ω
∗
i | =

|Ω∗| (since otherwise the optimality of Ω∗ gives a contradiction).

2. General properties

In this section we study some properties of the optimal sets Ω∗ to the problem (1.1) and of its
first normalized eigenfunctions U = (u1, . . . , uk). We first prove that the optimal sets have finite
perimeter and that the vector U is non degenerate. We then prove that the first eigenfunction u1
is non degenerate on any connected component Ω∗

1 of Ω∗ where u1 is positive. As a consequence,
we show that Ω∗

1 satisfies a density estimate. We conclude the section with an almost Weiss type
formula for U .

2.1. Finiteness of the perimeter. We prove that the De Giorgi perimeter of any optimal set to
the problem (1.1) is finite. We follow the strategy introduced by Bucur in [4] for the eigenvalues of
the Dirichlet Laplacian (see also [25] and [27]). Together with a density estimate for the optimal
sets Ω∗ (Proposition 2.9), this provides a kind of smallness of the singular set of Ω∗ (see section
4.5). The proof of this result will also be used to obtain a non-degeneracy property of the first
eigenfunction u1 on Ω∗

1 (Lemma 2.4).

Proposition 2.1. Let Ω∗ ⊂ D be an optimal set for the problem (1.1). Then Ω∗ is a set finite
perimeter in Rd.



6 BAPTISTE TREY

Proof. Let U = (u1, . . . , uk) ∈ H1
0 (Ω

∗,Rk) be the vector of normalized eigenfunctions on Ω∗. We
prove that {|ui| > 0} is a set of locally finite perimeter in D for every i ∈ {1, . . . , k}. This then
implies that the optimal set Ω∗ = {|U | > 0} has finite perimeter. Let x ∈ ∂{|ui| > 0} ∩D and
assume for simplicity that x = 0. Let r > 0 be small, t ∈ (0, 1) and η ∈ C∞

c (Br) be such that
0 ≤ η ≤ 1, {η = 1} = Br/2 and ‖∇η‖L∞ ≤ C/r. We set

ui,t = η(ui − t)+ − η(ui + t)− + (1− η)ui =







ui − tη if ui ≥ t,
(1− η)ui if |ui| < t,
ui + tη if ui ≤ t,

and Ut = (u1, . . . , ui,t, . . . , uk) ∈ H1
0 (D,R

k), where ui,t stands at the i-th position. Notice that

we have U −Ut ∈ H1
0 (Br,Rk) and ‖U −Ut‖L1 ≤ t|Br|. We denote by C any constant which does

not depend on x or t. By the quasi-minimality property of the function U in Theorem 1.2 we
have
∫

Br

(

A∇ui · ∇ui −A∇ui,t · ∇ui,t
)

+ Λ
(

|{|U | > 0} ∩Br| − |{|Ut| > 0} ∩Br|
)

≤ C‖U − Ut‖L1

∫

D
A∇Ut · ∇Ut ≤ Ct. (2.1)

Since η = 1 in Br/2 we have ∇ui,t = ∇ui1{|ui|≥t} in Br/2 and hence
∫

Br/2

(

A∇ui · ∇ui −A∇ui,t · ∇ui,t
)

=

∫

{0<|ui|<t}∩Br/2

A∇ui · ∇ui.

On the other hand, with an easy computation we get
∫

Br\Br/2

(

A∇ui · ∇ui −A∇ui,t · ∇ui,t
)

=

∫

{ui≥t}∩(Br\Br/2)

(

2tA∇ui · ∇η − t2A∇η · ∇η
)

+

∫

{|ui|<t}∩(Br\Br/2)

(

η(2− η)A∇ui · ∇ui − u2iA∇η · ∇η + 2(1 − η)uiA∇ui · ∇η
)

+

∫

{ui≥−t}∩(Br\Br/2)

(

− 2tA∇ui · ∇η − t2A∇η · ∇η
)

≥ −Ct.

Moreover, since η 6= 1 in Br\Br/2 and by definition of ui,t we have

|{|U | > 0} ∩Br| − |{|Ut| > 0} ∩Br| = |{|U | > 0} ∩Br/2| − |{|Ut| > 0} ∩Br/2|
= |{0 ≤ |ui| ≤ t} ∩ {|U | > 0} ∩Br/2| ≥ |{0 < |ui| < t} ∩Br/2|.

Then, we now get from (2.1) that
∫

{0<|ui|<t}∩Br/2

A∇ui · ∇ui + Λ|{0 < |ui| < t} ∩Br/2| ≤ Ct (2.2)

and therefore we have
∫

{0<|ui|<t}∩Br/2

|∇ui| ≤
∫

{0<|ui|<t}∩Br/2

(

|∇ui|2 + 1
)

≤ max{λ2
A
,Λ−1}

(
∫

{0<|ui|<t}∩Br/2

A∇ui · ∇ui + Λ|{0 < |ui| < t} ∩Br/2|
)

≤ Ct.

We now use the co-area formula to rewrite the above inequality as

1

t

∫ t

0
Per
(

{|ui| > s};Br/2

)

ds ≤ C.

Therefore, there exists a sequence tn ↓ 0 such that Per
(

{|ui| > tn};Br/2

)

≤ C. Passing to the

limit we get that Per
(

{|ui| > 0};Br/2

)

≤ C, which concludes the proof. �
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2.2. Freezing of the coefficients and non-degeneracy of the eigenfunctions. The prop-
erties of the eigenfunctions on optimal sets in the case where A = Id have already been studied
in [24]. Thus, we perform a change of variables in order to reduce to this case. We prove in
the spirit of [28, Lemma 3.2] (see also [29, Proposition 2.4]) that the vector of the first k eigen-
functions is a local quasi-minimizer at the origin of the Alt-Caffarelli functional. We then prove
a non-degeneracy property for the vector of the first k eigenfunctions at the boundary of the
optimal set.

We start with some notations which will be used throughout this paper. For U ∈ H1(Rd,Rk)
and r > 0 we set

J(U, r) =

∫

Br

|∇U |2 + Λ|{|U | > 0} ∩Br|.

For x ∈ D we define the function Fx : Rd → Rd by

Fx(ξ) := x+A
1/2
x [ξ], ξ ∈ Rd, (2.3)

where A
1/2
x ∈ Sym+

d denotes the square root matrix of Ax (notice that, by assumption, the matrix

Ax is positive definite). Moreover, for U = (u1, . . . , uk) ∈ H1(Rd,Rk) we set Ux = U ◦ Fx and
ux,i = ui ◦ Fx, i = 1, . . . , k.

Proposition 2.2. Let U ∈ H1
0 (D,R

k) be the vector of the first k normalized eigenfunctions
on Ω∗. There exist constants r0 ∈ (0, 1) and C > 0 such that, if x ∈ D and r ≤ r0 satisfy
BλAr(x) ⊂ D, then

J(Ux, r) ≤ (1 + CrδA)J(Ũ , r) + C‖Ux − Ũ‖L1 (2.4)

for every Ũ ∈ H1(Rd,Rk) such that Ux − Ũ ∈ H1
0 (Br,Rk) and ‖Ũ‖L∞ ≤ ‖Ux‖L∞.

Proof. Let V ∈ H1
0 (D,R

k) be such that Ũ = V ◦ Fx and set ρ = λAr. Observe that U − V ∈
H1

0 (Fx(Br)) and use V as a test function in (1.9) to get
∫

Fx(Br)
A∇U · ∇U + Λ|{|U | > 0} ∩ Fx(Br)| ≤ (1 + Crd)

∫

Fx(Br)
A∇V · ∇V

+ Λ|{|V | > 0} ∩ Fx(Br)|+ C‖U − V ‖L1 . (2.5)

Moreover, since A has Hölder continuous coefficients and is uniformly elliptic, we have

J(Ux, r) ≤ det(A−1/2
x )

[

(1 + dcAλ
2
A
ρδA)

∫

Fx(Br)
A∇U · ∇U + Λ|{|U | > 0} ∩ Fx(Br)|

]

. (2.6)

Similarly, we have the estimate from below

J(Ũ , r) ≥ det(A−1/2
x )

[

(1− dcAλ
2
A
ρδA)

∫

Fx(Br)
A∇V · ∇V + Λ|{|V | > 0} ∩ Fx(Br)|

]

. (2.7)

Combining (2.6), (2.5) and (2.7) we get

J(Ux, r) ≤ (1 + dcAλ
2
A
ρδA)

[

1 + Crd

1− dcAλ2Aρ
δA
J(Ũ , r) + C‖Ux − Ũ‖L1

]

which gives (2.4). �

We now prove a non-degeneracy property of the function Ux = U ◦ Fx using the approach of
David an Toro in [8] which is a variant of the result in [1].

Proposition 2.3 (Non-degeneracy of Ux). Let U = (u1, . . . , uk) be the vector of the k first
eigenfunctions on Ω∗. Let K ⊂ Ω∗ be a compact set. There exist constants η = ηK > 0 and
rK > 0 such that for every x ∈ K and r ≤ rK we have

k
∑

i=1

−
∫

∂Br

|ux,i| ≤ ηr =⇒ U = 0 in Br/4λA
(x).
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We will need the following Lemma which, loosely speaking, provides an estimate of the non-
subharmonicity of Ux.

Lemma 2.4. Let U = (u1, . . . , uk) be the vector of the k first eigenfunctions on Ω∗. Let K ⊂ Ω∗

be a compact set. There exists constants CK > 0 and rK > 0 such that for every x ∈ K and
r ≤ rK we have

k
∑

i=1

−
∫

Br

[

(ux,i − hr,i)
+
]2 ≤ CKr

2+δA , (2.8)

where hx,i denotes the harmonic extension of the trace of ux,i to ∂Br.

Proof. We define the vector Ũ = (ũ1, . . . , ũk) ∈ H1(Rd,Rk) by

ũi =

{

min(ux,i, hx,i) in Br

ux,i in D\Br.

Then, using Ũ as a test function in Proposition 2.2 we get (since Ux is locally Lipschitz continuous

in D and because we have the inclusion {|Ũ | > 0} ⊂ {|Ux| > 0} since ũi ≤ ux,i)
∫

Br

|∇Ux|2 ≤ (1 + CrδA)

∫

Br

|∇Ũ |2 + CrδA |{|Ũ | > 0} ∩Br|+ C‖Ux − Ũ‖L1(Br)

≤ (1 + CrδA)

∫

Br

|∇Ũ |2 + Crd+δA . (2.9)

We now set Vi = {hr,i < ux,i} for every i = 1, . . . , k, so that by (2.9) we have

k
∑

i=1

∫

Vi

(|∇ux,i|2 − |∇hr,i|2) ≤ CrδA
∫

Br

|∇Ũ |2 + Crd+δA . (2.10)

Moreover, we have the following equalities
∫

Br

(|∇ũi|2 − |∇ux,i|2) =
∫

Vi

(|∇hx,i|2 − |∇ux,i|2) = −
∫

Vi

|∇(ux,i − hr,i)|2. (2.11)

Indeed, the first equality follows from the definition of Vi. For the second one, we set vi =
max(ux,i, hr,i) in Br and vi = ux,i elsewhere, so that by harmonicity of hr,i we have

0 =

∫

Br

∇hr,i · ∇(vi − hr,i) =

∫

Vi

∇ux,i · ∇(vi − hr,i) =

∫

Vi

∇hr,i · ∇ux,i −
∫

Vi

|∇hr,i|2,

which gives (2.11). Finally, combining Poincaré inequality, (2.11), (2.10) and using that Ux is
Lipschitz continuous we get

k
∑

i=1

−
∫

Br

[

(ux,i − hr,i)
+
]2 ≤ Cr2

k
∑

i=1

−
∫

Br

|∇(ux,i − hr,i)
+|2 = Cr2−d

k
∑

i=1

∫

Vi

|∇(ux,i − hr,i)|2

= Cr2−d
k
∑

i=1

∫

Vi

(|∇ux,i|2 − |∇hr,i|2) ≤ Cr2−d

(

CrδA
∫

Br

|∇Ũ |2 + Crd+δA

)

= Cr2+δA

(

−
∫

Br

|∇Ũ |2 + 1

)

≤ Cr2+δA

(

−
∫

Br

|∇Ux|2 + 1

)

≤ Cr2+δA .

�

Proof of Proposition 2.3. Let η > 0 be small and assume that

k
∑

i=1

−
∫

∂Br

|ux,i| ≤ ηr. (2.12)
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We first claim that for every i ∈ {1, . . . , k} we have |ux,i| < 4d+1ηr in Br/2. Suppose by contradic-

tion that there exists ξ0 ∈ Br/2 such that |ux,i(ξ0)| ≥ 4d+1ηr. Since ux,i is L-Lipschitz continuous
(with L depending on K), we have for every ξ ∈ Bηr/L(ξ0)

|ux,i(ξ)| ≥ |ux,i(ξ0)| − |ux,i(ξ)− ux,i(ξ0)| ≥ (4d+1 − 1)ηr. (2.13)

Moreover, if η ≤ L/4, by Poisson formula we have for every ξ ∈ Bηr/L(ξ0) ⊂ B3r/4

|hr,i(ξ)| =
r2 − |ξ|2
dωdr

∣

∣

∣

∣

∫

∂Br

ux,i(ξ̃)

|ξ − ξ̃|d
dHd−1(ξ̃)

∣

∣

∣

∣

≤ r

dωd

(4

r

)d
∫

∂Br

|ux,i| ≤ 4dηr. (2.14)

Therefore, using (2.13) and (2.14) it follows that

−
∫

Br

[

(ux,i − hr,i)
+
]2

≥
( η

L

)d
−
∫

Bηr/L(ξ0)
(ux,i − hr,i)

2 ≥
( η

L

)d
−
∫

Bηr/L(ξ0)
(|ux,i| − |hr,i|)2

≥
( η

L

)d[

(4d+1 − 1− 4d)ηr
]2

≥ ηd+2

Ld
r2,

which is in contradiction with (2.8) if r is small enough.
Now, let ϕ ∈ C∞(Br) be a smooth function such that 0 ≤ ϕ ≤ 1, ϕ = 1 in Br/2, ϕ = 0 in

Br\B3r/4 and |∇ϕ| ≤ Cr. We set for i = 1, . . . , k

ũi =

{

(ux,i − 4d+1ηrϕ)+ − (ux,i + 4d+1ηrϕ)− in Br

ux,i in D\Br,

and Ũ = (ũ1, . . . , ũk) ∈ H1(Rd,Rk). Notice that we have Ux − Ũ ∈ H1(Br,Rk). Moreover, by

the preceding claim we have the inclusion {|Ũ | > 0} ∩ Br ⊂ {|Ux| > 0} ∩ (Br\Br/2). Therefore,

Proposition 2.2 applied to the vector Ũ gives

Λ|{|Ux| > 0} ∩Br/2| ≤
∫

Br

(|∇Ũ |2 − |∇Ux|2) + CrδAJ(Ũ , r) + C‖Ux − Ũ‖L1(Br). (2.15)

By the definition of Ũ and since Ux is L-Lipschitz continuous, we have in the ball Br

|∇Ũ |2 ≤ |∇Ux|2 + 2.4d+1kηrL|∇ϕ|+ 42(d+1)η2r2|∇ϕ|2 ≤ |∇Ux|2 + Cη in Br.

Since once again Ux is Lipschitz continuous, (2.15) now gives

Λ|{|Ux| > 0} ∩Br/2| ≤ Cηrd + CrδA
(

(L2 + Cη)rd + Λωdr
d
)

+ CLrd+1 ≤ C(η + rδA)rd. (2.16)

Then, using once again the claim, we deduce that

k
∑

i=1

∫

Br/2

|ux,i| =
k
∑

i=1

∫

Br/2∩{|Ux|>0}
|ux,i| ≤ 4d+1kηr|{|Ux| > 0}∩Br/2| ≤ C(η+rδA)ηrd+1. (2.17)

Let y ∈ Br/4λA
(x). We will find by induction a sequence of radii rj such that the estimate (2.12)

holds with the radius rj and at the point y. Let us choose r1 ∈ ( r
8λ2

A

, r
4λ2

A

) such that

∫

∂Br1

k
∑

i=1

|uy,i| ≤
8λ2

A

r

∫ r/4λ2
A

r/8λ2
A

ds

∫

∂Bs

k
∑

i=1

|uy,i|
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Then, by (2.17) (and since F−1
y ◦ Fx(Br/4λ2

A
) ⊂ Br/2) we get

k
∑

i=1

−
∫

∂Br1

|uy,i| ≤ Cr1−d
k
∑

i=1

∫

∂Br1

|uy,i| ≤ Cr−d
k
∑

i=1

∫ r/4λ2
A

r/8λ2
A

ds

∫

∂Bs

|uy,i|

≤ Cr−d
k
∑

i=1

∫

B
r/4λ2

A

|uy,i| = Cr−d
k
∑

i=1

∫

F−1
x ◦Fy(Br/4λ2

A

)
|ux,i| |det(F−1

y ◦ Fx)|

≤ Cr−d
k
∑

i=1

∫

Br/2

|ux,i| ≤ C(η + rδA)ηr1 ≤ ηr1,

where the last inequality holds if η and r are small enough. Therefore, by the same above
argument we use to get (2.16) and (2.17) we now deduce that

|{|Uy | > 0} ∩Br1/2| ≤ C(η + r
δA
1 )rd1

and
k
∑

i=1

∫

Br1/2

|uy,i| ≤ C(η + r
δA
1 )ηrd+1

1 .

We now choose r2 ∈ ( r14 ,
r1
2 ) such that

k
∑

i=1

−
∫

∂Br2

|uy,i| ≤ Cr−d
1

k
∑

i=1

∫ r1/2

r1/4
ds

∫

∂Bs

|uy,i| ≤ Cr−d
1

k
∑

i=1

∫

Br1/2

|uy,i| ≤ C(η + r
δA
1 )ηr1 ≤ ηr1,

provided that η and r are small enough. By induction it follows that there exists a sequence of
radii (rj)j such that rj ∈ (

rj
4 ,

rj
2 ) and

|{|Uy| > 0} ∩Brj/2| ≤ C(η + r
δA
j )ηrj . (2.18)

Now, if |Uy|(0) > 0, then |Uy| > 0 in a neighborhood of 0 since Uy is continuous, which is in
contradiction with (2.18) for η small enough and j big enough. Hence |U |(y) = |Uy|(0) = 0 for
every y ∈ Br/4λA

(x), that is, U = 0 in Br/4λA
(x). �

Remark 2.5 (L∞ non-degeneracy of U). A consequence of Proposition 2.3 is that U also enjoys
the following non-degeneracy property: there exist η = ηK > 0 and rK > 0 such that for every
x ∈ K and r ≤ rK we have

‖U‖L∞(Bλ
A

r(x)) ≤ ηr =⇒ U = 0 in Br/4λA
(x).

2.3. Non-degeneracy of the first eigenfunction and density estimate. We prove that
the first eigenfunction u1 on an optimal set Ω∗ to (1.1) is non degenerate at every point of the
boundary of Ω∗

1, where Ω∗
1 denotes any connected component of Ω∗ where u1 is positive. The

proof follows an idea of Kriventsov and Lin taken from [20]. As a consequence, we obtain that u1
behaves like the distance function to the boundary and also a density estimate for the optimals
sets. Obviously, these properties only hold in Ω∗

1, that is, where u1 is positive. However, as
pointed out in Remark 1.3, it is enough to restrict ourselves to this case in order to get the
regularity of the whole optimal set Ω∗.

Proposition 2.6 (Non-degeneracy of u1). There exists a constant C1 > 0 such that C1u1 ≥ |U |
in Ω∗

1.

We first recall the following standard result which is a consequence of [29, Lemma 2.1].

Lemma 2.7. Let Ω ⊂ D be a (non-empty) quasi-open set, f ∈ L∞(D), f ≥ 0, and u ∈ H1(D)
be such that u ≥ 0 on ∂Ω and

div(A∇u) ≤ f in Ω.

Then, there exists a constant C > 0, depending only on d and λA, such that

‖u−‖L∞(Ω) ≤ C|{u < 0} ∩ Ω|2/d‖f‖L∞(Ω).
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Proof. Set Ω− = {u < 0} ∩ Ω and notice that u ∈ H1
0 (Ω

−) Let v ∈ H1
0 (Ω

−) be the solution of
div(A∇v) = f in Ω−. By the weak maximum principle we have v ≤ 0 in Ω− (since f ≥ 0) and
v ≤ u in Ω−; in particular, u− ≤ v− = −v in Ω−. The proof now follows from Lemma 2.1 in [29]
(applied to −v). �

Proof of Proposition 2.6. We first claim that div(A∇|U |) ≥ −C|U | in Ω∗. Let ϕ ∈ H1
0 (Ω

∗),
ϕ ≥ 0. We use an approximation by mollifiers Aε = (aεij) where a

ε
ij = aij ∗ ρε, and we compute

〈div(Aε∇|U |), ϕ〉 = −
∑

i,j

∫

aεij∂i|U |∂jϕ = −
∑

i,j,l

∫

aεij∂iul
ul
|U |∂jϕ

=
∑

i,j,l

∫

∂j(a
ε
ij∂iul)

ul
|U |ϕ+

∑

i,j,l

∫

aεij∂iul∂j

(

ul
|U |

)

ϕ

= −
∑

i,j,l

∫

aεij∂iul∂j

(

ul
|U |ϕ

)

+
∑

i,j,l,p

∫

aεij∂iul

(

∂jul
|U | − ulup

|U |3 ∂jup
)

ϕ.

Therefore, passing to the limit as ε→ 0 we get

〈div(A∇|U |), ϕ〉 ≥
∑

l

∫

div(A∇ul)
ul
|U |ϕ+

∑

l,p

∫

1

|U |3
(

u2lA∇ul · ∇ul − ulupA∇ul · ∇up
)

ϕ

≥ −
∑

l

λl(Ω
∗)
∫

b
u2l
|U |ϕ ≥ −λk(Ω∗)cb

∫

|U |ϕ, (2.19)

which proves the claim.
Let r0 > 0 be small (to be chosen soon) and set Ωr = {x ∈ Ω∗

1 : |U(x)| < r} for every r > 0.
Since u1 > 0 in Ω∗

1 we have m := inf{u1(x) : x ∈ Ω∗
1, |U(x)| = r0} > 0. We set M0 = m−1r0 and

v0 = M0u1 − |U |. The claim implies that div(A∇v0) ≤ C|U | in Ωr0 . Moreover, by construction
of v0 we have v0 ≥ 0 on ∂Ωr0 . Therefore, by Lemma 2.7 we get

− inf
Ωr0

v0 = ‖v−0 ‖L∞(Ωr0 )
≤ C|{v0 < 0} ∩ Ωr0 |

2/d‖U‖L∞(Ωr0 )
.

Then, from (2.2) (and a compactness argument) we have |Ωr0 | ≤ Cr0 so that we deduce from

the above inequality that − infΩr0
v0 ≤ Cr

1+2/d
0 for some C > 0 independent of r0. Therefore, in

Ωr0\Ωr0/2 we have

M0u1 = |U |+ v0 ≥ |U | − Cr
1+2/d
0 ≥

(

1− 2Cr
2/d
0

)

|U | in Ωr0\Ωr0/2.

We now choose r0 small enough so that 4Cr
2/d
0 ≤ 1 and set M1 =

[

1 − 2Cr
2/d
0

]−1
M0 and v1 =

M1u1 − |U |. It follows that v1 ≥ 0 in Ωr0\Ωr0/2; in particular we have v1 ≥ 0 on ∂Ωr0/2 and
hence the above argument now applies to v1 in Ωr0/2. Therefore, an induction gives that vk ≥ 0

in Ωrk−1
\Ωrk for every k ≥ 1, where we have set vk = Mku1 − |U |, Mk =

[

1 − 2Cr
2/d
k−1

]−1
Mk−1

and rk = 2−kr0. Moreover, we have

log(Mk) = log(M0)−
k
∑

i=1

log
[

1− 2Cr
2/d
i−1

]

≤ log(M0) + C

k
∑

i=1

2−2i/d ≤ C + log(M0)

and hence Mk ≤ CM0. It follows that |U | ≤ Mku1 ≤ CM0u1 in Ωrk−1
\Ωrk for every k ≥ 0

and therefore that |U | ≤ CM0u1 in Ωr0 . On the other hand, since infΩ∗

1\Ωr0
u1 > 0, there exists

M > 0 such that |U | ≤Mu1 in Ω∗
1\Ωr0 . This completes the proof. �

We now prove that the first eigenfunction on an optimal set has the same growth than the
distance function near the boundary. This property will be useful to prove that the boundaries
of blow-up sets Hausdorff convergence to the boundary of the blow-up limit set.
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Proposition 2.8 (Uniform growth of u1 at the boundary). Let K ⊂ D be a compact set. There
exist constants cK > 0 and rK > 0 such that the following growth condition holds

u1(x) ≥ cK dist(x, ∂Ω∗
1) for every x ∈ Ω∗

1 ∩K such that dist(x, ∂Ω∗
1) ≤ rK .

Proof. We set r = (2λA)
−1dist(x, ∂Ω∗

1) and we denote by hx,1 the harmonic extension of the trace
of ux,1 to ∂Br. By non degeneracy of u1 (Propositions 2.6 and 2.3) we have (and because hx,1 is
harmonic)

hx,1(0) = −
∫

∂Br

hx,1 = −
∫

∂Br

ux,1 ≥
1

C1
−
∫

∂Br

|Ux| ≥
η√
kC1

r =: η1r. (2.20)

Therefore, with the triangle inequality we get

u1(x) = ux,1(0) ≥ hx,1(0)− |ux,1(0)− hx,1(0)| ≥ η1r − |ux,1(0) − hx,1(0)|. (2.21)

We now want to estimate |ux,1(0) − hx,1(0)| is terms of r. We apply Proposition 2.2 to the test

function Ũ = (hx,1, ux,2, . . . , ux,k) and get (since ux,1 is Lipschitz continuous and that |ux,1| > 0
in Br)

∫

Br

|∇(ux,1 − hx,1)|2 =
∫

Br

(

|∇ux,1|2 − |∇hx,1|2
)

≤ Crd+δA . (2.22)

Now, let τ > 0 be small to be chosen soon. Since ux,1 and hx,1 are Lipschitz continuous, we have
for every ξ ∈ Bτr

|ux,1(0) − hx,1(0)| ≤ |ux,1(0) − ux,1(ξ)|+ |ux,1(ξ)− hx,1(ξ)|+ |hx,1(ξ)− hx,1(0)|
≤ Cτr + |ux,1(ξ)− hx,1(ξ)|.

Moreover, using Poincaré inequality to the function ux,1 − hx,1 and the estimate (2.22), we have

|ux,1(0)− hx,1(0)| ≤ Cτr +−
∫

Bτr

|ux,1(ξ)− hx,1(ξ)| ≤ Cτr + τ−d−
∫

Br

|ux,1(ξ)− hx,1(ξ)|

≤ Cτr + Cτ−dr−
∫

Br

|∇(ux,1(ξ)− hx,1(ξ))|

≤ Cτr + Cτ−dr

(

−
∫

Br

|∇(ux,1(ξ)− hx,1(ξ))|2
)1/2

≤
(

Cτ + Cτ−drδA/2
)

r ≤ η1
2
r,

where the last inequality holds by choosing first τ small enough and then rK (depending on τ)
small enough. In view of (2.21), Proposition 2.6 now follows. �

Proposition 2.9 (Density estimate for Ω∗
1). Let U be the vector of the first k normalized eigen-

functions on Ω∗ and let K ⊂ D be a compact set. There exist constants rK > 0 and cK ∈ (0, 1)
such that for every x0 ∈ ∂Ω∗

1 ∩K and r ≤ rK we have

cK |Br| ≤ |Ω∗
1 ∩Br(x0)| ≤ (1− cK)|Br|.

Proof. We first prove that we have

c|Br| ≤ |{|Ux0 | > 0} ∩Br| ≤ (1− c)|Br|. (2.23)

The first inequality follows from the non-degeneracy of Ux0 (Proposition (2.3)) since it implies

that there exists ξ ∈ ∂Br/2 such that
∑k

i=1 |ux0,i(ξ)| ≥ ηr
2 , and hence, using that Ux0 is L-Lipschitz

continuous, that

|Ux0 | ≥
1√
k

k
∑

i=1

|ux0,i| ≥
ηr

4
√
k

in B ηr
4L
(ξ).

For the second estimate, consider the test function Ũ = (hr,1, ux0,2, . . . , ux0,k) ∈ H1(Rd,Rk),
where hr,1 denotes as usual the harmonic extension of ux0,1 to ∂Br, and note that by the strong
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maximum principle we have hr,1 > 0 in Br since ux0,1 is non-negative. Then, by Proposition 2.2

applied to Ũ , and since ux0,1 is L-Lipschitz continuous, we get
∫

Br

(

|∇ux0,1|2 − |∇hr,1|2
)

≤ Λ|{|Ux0 | = 0} ∩Br|+ CrδAJ(Ũ , r) + C‖ux0,1 − hr,1‖L1

≤ Λ|{|Ux0 | = 0} ∩Br|+ Crd+δA . (2.24)

Moreover, by Proposition 2.6 and the harmonicity of hr,1 (and also because ux0,1(0) = 0), we
have

|ux0,1(0)− hr,1(0)| = hr,1(0) = −
∫

∂Br

hr,1 = −
∫

∂Br

ux0,1 ≥ η1r, (2.25)

where η1 is defined as in (2.20). Now, let τ > 0 be small. Since hr,1 is 2L-Lipschitz continuous
we have for every ξ ∈ Bτr

|ux0,1(0) − hr,1(0)| ≤ |ux0,1(0)− ux0,1(ξ)|+ |ux0,1(ξ)− hr,1(ξ)|+ |hr,1(ξ)− hr,1(0)|
≤ 3Lτr + |ux0,1(ξ)− hr,1(ξ)|.

Then, averaging over Bτr and using (2.25) leads to

η1r ≤ |ux0,1(0)− hr,1(0)| ≤ 3Lτr +−
∫

Bτr

|ux0,1 − hr,1|. (2.26)

Moreover, by Poincaré inequality and Cauchy-Schwarz inequality we have

−
∫

Bτr

|ux0,1 − hr,1| ≤ τ−d−
∫

Br

|ux0,1 − hr,1| ≤ τ−dr−
∫

Br

|∇(ux0,1 − hr,1)|

≤ τ−dr1−
d
2

(
∫

Br

|∇(ux0,1 − hr,1)|2
)1/2

= τ−dr1−
d
2

(
∫

Br

|∇ux0,1|2 − |∇hr,1|2
)1/2

which combined with (2.24) and (2.26), and after some rearrangements, gives

2Λr−d|{|Ux0 | = 0} ∩Br| ≥ η21τ
2d − Cτ2d+2 − CrδA.

Then choose τ , depending only on η1 and C, small enough so that Cτ2d+2 ≤ η21τ
2d/2 and then

choose r, depending only on η1, τ and C, such that CrδA ≤ η21τ
2d/4 to conclude the proof.

Now, by a change of variables, the density estimate in (2.23) gives

c|A1/2
x0
[Br]| ≤ |{|U | > 0} ∩A1/2

x0
[Br]| ≤ (1− c)|A1/2

x0
[Br]|.

Then set cK = λ−2d
A

c so that (because we have the inclusions Bλ−1
A r ⊂ A

1/2
x0 [Br] ⊂ BλAr)

cK |BλAr| = c|Bλ−1
A r| ≤ c|A1/2

x0
[Br]| ≤ |{|U | > 0} ∩A1/2

x0
[Br]| ≤ |{|U | > 0} ∩BλAr|.

Similarly we have

|{|U | = 0} ∩BλAr| ≥ |{|U | = 0} ∩A1/2
x0
[Br]| = |A1/2

x0
[Br]| − |{|U | > 0} ∩A1/2

x0
[Br]|

≥ c|A1/2
x0
[Br]| ≥ c|Bλ−1

A r| = cK |BλAr|,

which concludes the proof. �

2.4. Weiss monotonicity formula. We prove a monotonicity formula for the vector of the first
k eigenfunctions on an optimal set Ω∗. The proof follows the idea of [30, Theorem 1.2] (see also
[24, Proposition 3.1]). For every U ∈ H1(Rd,Rk) and r > 0 we define

W (U, r) =
1

rd
J(U, r)− 1

rd+1

∫

∂Br

|U |2.
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Proposition 2.10. Let U = (u1, . . . , uk) be the vector of the first k normalized eigenfunctions
on Ω∗ and let K ⊂ D be a compact set. Then there exist constants rK > 0 and CK > 0 such that
for every x0 ∈ ∂Ω∗ ∩K and every r ≤ rK the function Ux0 = U ◦Fx0 = (ux0,1, . . . , ux0,k) satisfies

d

dr
W (Ux0 , r) ≥

1

rd+2

k
∑

i=1

∫

∂Br

|x · ∇ux0,i − ux0,i|2 dx− CKr
δA−1. (2.27)

Moreover, the limit limr→0+ W (Ux0 , r) exists and is finite.

Proof. We first compare Ux0 with its one-homogeneous extension in the ball Br, namely the

one-homogeneous function Ũ = (ũ1, . . . , ũk) : Br → Rk defined by Ũ(ξ) = |ξ|
r Ux0

(

r
|ξ|ξ
)

. We have

∫

Br

|∇Ũ |2 =
∫

Br

[

|∇θUx0 |2 +
|Ux0 |2
r2

](

r

|ξ|ξ
)

dξ =
r

d

∫

∂Br

[

|∇θUx0 |2 +
|Ux0 |2
r2

]

and for the measure term

|{|Ũ | > 0} ∩Br| =
r

d
Hd−1({|U | > 0} ∩ ∂Br).

Then, we use Ũ as a test function in (2.4) which gives

J(Ux0 , r) ≤ J(Ũ , r) + C
(

rδAJ(Ũ , r) + ‖Ux0 − Ũ‖L1

)

≤ r

d

∫

∂Br

[

|∇θUx0 |2 +
|Ux0 |2
r2

]

+ Λ
r

d
Hd−1({|U | > 0} ∩ ∂Br) + C0r

d+δA (2.28)

for some C0 ≥ C(2ωd‖∇Ux0‖2L∞ +Λωd+2ωd‖∇Ux0‖L∞) where the constant C is given by Propo-
sition 2.2. We now compute the derivative of W (Ux0 , r) and use (2.28) to obtain

d

dr
W (Ux0 , r) =

1

rd

(
∫

∂Br

|∇Ux0 |2 + ΛHd−1({|Ux0 | > 0} ∩ ∂Br)

)

− d

rd+1
J(Ux0 , r)

+
2

rd+2

∫

∂Br

|Ux0 |2 −
1

rd+1

k
∑

i=1

∫

∂Br

2ux0,i
∂ux0,i

∂ν

≥ 1

rd

∫

∂Br

∣

∣

∣

∣

∂Ux0

∂ν

∣

∣

∣

∣

2

+
1

rd+2

∫

∂Br

|Ux0 |2 −
1

rd+1

k
∑

i=1

∫

∂Br

2ux0,i
∂ux0,i

∂ν
− dC0r

δA−1

=
1

rd+2

k
∑

i=1

∫

∂Br

[

r2
∣

∣

∣

∣

∂ux0,i

∂ν

∣

∣

∣

∣

2

+ u2x0,i − 2rux0,i
∂ux0,i

∂ν

]

− dC0r
δA−1

=
1

rd+2

k
∑

i=1

∫

∂Br

|x · ∇ux0,i − ux0,i|2 − dC0r
δA−1,

which is (2.27). This also proves that the function r 7→ W (Ux0 , r) +
d
δA
C0r

δA is non-decreasing

and hence that the limit of W (Ux0 , r) as r tend to 0 exists. Moreover, this limit is finite since we
have the bound

W (Ux0 , r) ≥ − 1

rd+1

∫

∂Br

|Ux0 |2 ≥ −dωd‖∇Ux0‖2L∞ for every r > 0.

�

As a consequence of the previous result, we get a monotonicity formula for global minimizers
of the Alt-Caffarelli functional.

Definition 2.11. We say that U ∈ H1(Rd,Rk) is a global minimizer of the (vectorial) Alt-
Caffarelli functional

J(U) =

∫

Rd

|∇U |2 + Λ|{|U | > 0}|
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if J(U, r) ≤ J(Ũ , r) for every r > 0 and every Ũ ∈ H1(Rd,Rk) ∩ L∞(Rd,Rk) such that U − Ũ ∈
H1

0 (Br,Rk).

Proposition 2.12. Let U = (u1, . . . , uk) ∈ H1(Rd,Rk) be a global minimizer of the Alt-Caffarelli
functional J such that U(0) = 0. Then we have

d

dr
W (U, r) ≥ 1

rd+2

k
∑

i=1

∫

∂Br

|x · ∇ui − ui|2.

In particular, if r 7→W (U, r) is constant in (0,+∞), then U is a one-homogeneous function.

Proof. Since U is a global minimizer of J , it satisfies (2.4) with C = 0 and hence the computations
in the proof of Proposition 2.10 hold with C0 = 0. The last claim of the proposition follows from
the fact that x · ∇ui = ui in Rd implies that ui is one-homogeneous. �

3. Blow-ups

In this section we study the blow-ups limits (at the origin) of the functions Ux0 = U ◦ Fx0 ,
where x0 ∈ ∂Ω∗∩D. Throughout this section, U will denote the first k normalized eigenfunctions
on the optimal set Ω∗ = {|U | > 0}. We prove that the blow-up limits are one-homogeneous
and global minimizers of the Alt-Caffarelli functional. As a consequence, we also prove that the
boundaries of two connected components of Ω∗ have an empty intersection in D.

Let (xn)n∈N be a sequence of points on ∂Ω∗ ∩ D converging to some x0 ∈ ∂Ω∗ ∩ D and let
(rn)n∈N be a sequence of positive radii tending to 0. Since U is Lipschitz continuous, up to
extracting a subsequence, the sequence defined by

Bxn,rn(ξ) =
1

rn
U(xn + rnξ), ξ ∈ Rd,

converges locally uniformly to a Lipschitz continuous function B0 ∈ H1
loc(R

d,Rk). We will often
set Bn = Bxn,rn and deal with this sequence in a new set of coordinates, that is, we will consider

the sequence B̃n defined by

B̃n(ξ) = Bn ◦A1/2
xn
(ξ) =

1

rn
Uxn(rnξ), ξ ∈ Rd.

Definition 3.1. If Bxn,rn converges locally uniformly in Rd to some B0, we say that Bxn,rn is a
blow-up sequence (with fixed center if xn = x0 for every n ≥ 1). If the center is fixed, we say
that B0 is a blow-up limit at x0. We denote by BUU(x0) the space of all blow-up limits at x0.

We start with a standard result on the convergence of the blow-up sequences and we give
the details of the proofs for convenience of the reader. Recall that Ω∗

1 stands for any connected
component of Ω∗ where the first eigenfunction u1 is positive.

Proposition 3.2 (Convergence of the blow-up sequences). Let (xn)n∈N ⊂ ∂Ω∗∩D be a sequence
converging to some x0 ∈ ∂Ω∗ ∩D, rn → 0 and assume that the blow-up sequence Bn := Bxn,rn

converges locally uniformly to B0 ∈ H1
loc
(Rd,Rk). Then, up to a subsequence, we have

(1) The sequence Bn converges to B0 strongly in H1
loc
(Rd,Rk).

(2) The sequences of characteristic functions 1Ωn converges in L1
loc
(Rd) to the characteristic

function 1Ω0, where we have set Ωn = {|Bn| > 0} and Ω0 = {|B0| > 0}.
(3) The function B0 is non-degenerate: there exits a constant η0 > 0 such that for every every

y ∈ Ω0 we have

‖B0‖L∞(Br(y)) ≥ η0r for every r > 0.

(4) If x0 ∈ ∂Ω∗
1 ∩D, then the sequences of closed sets Ωn and Ωc

n converge locally Hausdorff
to Ω0 and Ωc

0 respectively.



16 BAPTISTE TREY

Proof. Notice that it is enough to prove that the sequence B̃n = Bn ◦ A1/2
xn strongly converges to

B̃0 := B0 ◦A
1/2
x0 in H1

loc(R
d,Rk) and that 1{|B̃n|>0} converges to 1{|B̃0|>0} in L1

loc(R
d) to prove the

parts (1) and (2) of Proposition 3.2.

Since B̃n is uniformly Lipschitz, B̃n converges, up to a subsequence, weakly in H1
loc(R

d,Rk)

and strongly in L2
loc(R

d,Rk) to B̃0. Moreover, the local uniform convergence of |B̃n| to |B̃0|
implies that 1{|B̃0|>0} ≤ lim infn→∞ 1{|B̃n|>0}. Therefore, it is sufficient to prove that for every

ball Br ⊂ Rd we have

lim sup
n→+∞

(
∫

Br

|∇B̃n|2 + Λ|{|B̃n| > 0} ∩Br|
)

≤
∫

Br

|∇B̃0|2 + Λ|{|B̃0| > 0} ∩Br|. (3.1)

Let ϕ ∈ C∞
c (Rd) be a smooth function such that 0 ≤ ϕ ≤ 1, {ϕ = 1} = Br and ϕ = 0 outside

B2r. We set Ũn = ϕB̃0 + (1− ϕ)B̃n ∈ H1(Rd,Rk) and notice that we have

Ux0 − Ũ rn
n ∈ H1

0 (B2rrn ,R
k) where Ũ rn

n (ξ) = rnŨn

( 1

rn
ξ
)

, ξ ∈ Rd.

Then, using Ũ rn
n as a test function in Proposition 2.2 and by a change of variables we get

∫

B2r

|∇B̃n|2 + Λ|{|B̃n| > 0} ∩B2r| ≤ (1 + C(rrn)
δA)

(
∫

B2r

|∇Ũn|2 + Λ|{|Ũn| > 0} ∩B2r|
)

+ rnC‖ϕ(B̃0 − B̃n)‖L1 . (3.2)

Since we have Ũn = B̃n in {ϕ = 0} and Ũn = B̃0 in {ϕ = 1}, it follows that
|{|Ũn| > 0} ∩B2r| ≤ |{|B̃n| > 0} ∩ {ϕ = 0} ∩B2r|+ |{|B̃0| > 0} ∩ {ϕ = 1}|+ |{0 < ϕ < 1}|,

so that (3.2) now gives
∫

{ϕ>0}

(

|∇B̃n|2−|∇Ũn|2
)

+Λ
(

|{|B̃n > 0}∩{ϕ > 0}|−|{B̃0| > 0}∩{ϕ = 1}|
)

≤ Λ|{0 < ϕ < 1}|

+ C(rrn)
δA

(
∫

B2r

|∇Ũn|2 + Λ|{|Ũn| > 0} ∩B2r|
)

+ rnC‖ϕ(B̃0 − B̃n)‖L1 . (3.3)

Now, since B̃n converges strongly in L2(B2r) we have that

lim sup
n→+∞

∫

{ϕ>0}

(

|∇B̃n|2 − |∇Ũn|2
)

= lim sup
n→+∞

∫

{ϕ>0}

(

|∇B̃n|2 − |∇(ϕB̃0 + (1− ϕ)B̃n)|2
)

= lim sup
n→+∞

∫

{ϕ>0}

(

|∇B̃n|2 − |(B̃0 − B̃n)∇ϕ+ (1− ϕ)∇B̃n + ϕ∇B̃0|2
)

= lim sup
n→+∞

∫

{ϕ>0}

(

(1− (1− ϕ)2)|∇B̃n|2 − 2ϕ(1 − ϕ)∇B̃n · ∇B̃0 − ϕ2|∇B̃0|2
)

(3.4)

= lim sup
n→+∞

∫

{ϕ>0}
(1− (1− ϕ)2)

(

|∇B̃n|2 − |∇B̃0|2
)

,

and since ∇B̃n converges weakly in L2({0 < ϕ < 1}) to B̃0 we have that
∫

{0<ϕ<1}
(1− (1− ϕ)2)|∇B̃0|2 ≤ lim sup

n→+∞

∫

{0<ϕ<1}
(1− (1− ϕ)2)|∇B̃n|2. (3.5)

Therefore, (3.5) and (3.4) now entail that

lim sup
n→+∞

∫

{ϕ=1}

(

|∇B̃n|2 − |∇B̃0|2
)

≤ lim sup
n→+∞

∫

{ϕ>0}
(1− (1− ϕ)2)

(

|∇B̃n|2 − |∇B̃0|2
)

≤ lim sup
n→+∞

∫

{ϕ>0}

(

|∇B̃n|2 − |∇Ũn|2
)

. (3.6)
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Finally, combining (3.6) and (3.3) we get

lim sup
n→+∞

(
∫

{ϕ=1}

(

|∇B̃n|2 − |∇B̃0|2
)

+Λ
(

|{|B̃n| > 0} ∩ {ϕ = 1}| − |{|B̃0| > 0} ∩ {ϕ = 1}|
)

)

≤ lim sup
n→+∞

(
∫

{ϕ>0}

(

|∇B̃n|2 − |∇Ũn|2
)

+ Λ
(

|{|B̃n| > 0} ∩ {ϕ > 0}| − |{|B̃0| > 0} ∩ {ϕ = 1}|
)

)

≤ Λ|{0 < ϕ < 1}|.
Since we can choose ϕ so that |{0 < ϕ < 1}| is arbitrary small, this proves (3.1) and concludes
the proof of parts (1) and (2) of Proposition 3.2.

We now prove part (3). Let y ∈ Ω0 and r > 0. There exists z ∈ Br(y) such that |B0|(z) > 0,
and hence such that |Bn|(z) > 0 for n large enough. Therefore, U 6= 0 in Brrn(xn + rnz) and
hence, by the non-degeneracy of U (Remark 2.5), we get that

rn‖Bn‖L∞(B
4λ2

A
r
(z)) = ‖U‖L∞(B

4λ2
A

rrn
(xn+rnz)) ≥ 4λAηrrn.

In particular, there exists zn ∈ B4λ2
A
r(z) such that |Bn|(zn) ≥ 4λAηr. Up to a subsequence, zn

converges to some z∞ ∈ B4λ2
A
r(z) and, since Bn uniformly converges to B0, we have that

‖B0‖L∞(B
(4λ2

A
+1)r

(y)) ≥ ‖B0‖L∞(B
4λ2

A
r
(z)) ≥ |B0|(z∞) = lim

n→+∞
|Bn|(zn) ≥ 4λAηr,

which gives (3). The proof of the Hausdorff convergence of the free boundaries is standard and
follows from the non-degeneracy of U and B0, and the growth property of U near the boundary
of Ω∗

1 (see Proposition 2.8). �

Lemma 3.3 (Optimality of the blow-up limits). Let (xn)n∈N ⊂ ∂Ω∗∩D be a sequence converging
to some x0 ∈ ∂Ω∗ ∩ D, rn → 0 and assume that the blow-up sequence Bn := Bxn,rn converges

to some B0 ∈ H1
loc
(Rd,Rk) in the sense of Proposition 3.2. Then B̃0 := B0 ◦ A1/2

x0 is a global
minimizer of the Alt-Caffarelli functional J (see definition 2.11).

Proof. Let r > 0 and Ũ ∈ H1
loc(R

d,Rk) ∩ L∞(Rd,Rk) be such that B̃0 − Ũ ∈ H1
0 (Br,Rk). Let

η ∈ C∞
c (Br) be such that 0 ≤ η ≤ 1 and set B̃n = Bn ◦ A1/2

xn and V n = Ũ + (1 − η)(B̃n − B̃0).
Consider the test function Vn ∈ H1(Rd,Rk) defined by Vn(ξ) = rnV n(r

−1
n ξ) and note that Ux0 −

Vn ∈ H1
0 (Brrn ,R

k) (since we have B̃n −V n ∈ H1
0 (Br,Rk)). By Proposition 2.2 applied to Vn and

a change of variables it follows that
∫

Br

|∇B̃n|2 + Λ|{|B̃n| > 0} ∩Br| ≤ (1 + C(rrn)
δA)

(
∫

Br

|∇V n|2 + Λ|{|V n| > 0} ∩Br|
)

+ Crn‖B̃n − V n‖L1(Br). (3.7)

Note that from (1) and (2) of Proposition 3.2 we deduce that V n converges strongly in H1
loc to

Ũ and that 1{|V n|>0} converges strongly in L1
loc to 1{|Ũ |>0}. Moreover, since V n = Ũ in {η = 1},

we have the estimate

|{|V n| > 0} ∩Br| ≤ |{|Ũ | > 0} ∩Br|+ |{η 6= 1} ∩Br|.
Therefore, passing to the limit as n→ ∞ in (3.7) we get

∫

Br

|∇B̃0|2 + Λ|{|B̃0| > 0} ∩Br| ≤
∫

Br

|∇Ũ |2 + Λ
(

|{|Ũ | > 0} ∩Br|+ |{η 6= 1} ∩Br|
)

.

Since we can choose η such that that |{η 6= 1} ∩Br| is arbitrary small, this gives that J(B̃0, r) ≤
J(Ũ , r) and concludes the proof. �

As a consequence of the Weiss almost-monotonicity formula we get that the blow-up sequences
with fixed center converge to a one-homogeneous function.
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Lemma 3.4 (Homogeneity of the blow-up limits). For every x0 ∈ ∂Ω∗ ∩D, the blow-up limits
B0 ∈ BUU (x0) are one-homogeneous functions.

Proof. Let Bn = Bx0,rn converging (in the sense of Proposition 3.2) to B0. In particular, B̃n

converges strongly in H1
loc and in L1

loc to B̃0 which implies that limn→+∞W (B̃n, r) = W (B̃0, r).
Moreover, by Proposition 2.10 the limit lims→0+ W (Ux0 , s) exists and is finite. Therefore, we have
for every r > 0

W (B̃0, r) = lim
n→+∞

W (B̃n, r) = lim
n→+∞

W (Ux0 , rrn) = lim
s→0+

W (Ux0 , s), (3.8)

which says that the function r 7→W (B̃0, r) is constant on (0,+∞). Then, it follows from Lemma

3.3 and Proposition 2.12 that B̃0, and hence B0, is one-homogeneous. �

We now reduce to the scalar case. More precisely, we prove that for any blow-up limit B0 ∈
BUU (x0), the function |B̃0| = |B0◦A

1/2
x0 | is a global minimizer of the scalar Alt-Caffarelli functional

H1
loc(R

d) ∋ u→
∫

Rd

|∇u|2 + Λ|{u > 0}|. (3.9)

Lemma 3.5. Let x0 ∈ ∂Ω∗ ∩D, B0 ∈ BUU (x0) and set B̃0 = B0 ◦A
1/2
x0 . Then there exists a unit

vector ξ ∈ ∂B1 ⊂ Rk such that B̃0 = |B̃0|ξ.

Proof. Set S = ∂B1 ∩ {|B̃0| > 0}. By Lemma 3.4, the components of B̃0 = (b1, . . . , bk) are one-

homogeneous functions and by Lemma 3.3, they are harmonic on the cone {|B̃0| > 0}. Therefore,
in polar coordinates we have bi(r, θ) = rϕi(r) where ϕi is solution of the equation

−∆Sd−1ϕi = (d− 1)ϕi in S, ϕi = 0 on ∂S,

where ∆Sd−1 stands for the Laplace-Beltrami operator. By Proposition 2.9, the components of B̃0

are not all zero. Therefore, at least one ϕi is non-zero and hence d− 1 is an eigenvalue of −∆Sd−1

on S. Since the functions ϕi are non-negative, it follows that λ1(S) = d− 1, where λ1(S) denotes
the first eigenvalue on S. Moreover, by Lemma 3.3 we have |S| < |∂B1| and by [24, Remark
4.8] it follows that the first eigenvalue λ1(S) is simple. Then, there exists non-negative constants
α1, . . . , αk, not all zero, such that ϕi = αiϕ where ϕ stands for the normalized eigenfunction of
−∆Sd−1 on S. Now set α = (α1, . . . , αk) so that we have B̃0 = ϕα on ∂B1. Since |α| 6= 0, setting

ξ = |α|−1α we have B̃0 = |B̃0|ξ on ∂B1 and hence on Rd by one-homogeneity. �

Lemma 3.6. Let x0 ∈ ∂Ω∗ ∩D, B0 ∈ BUU (x0) and set B̃0 = B0 ◦ A
1/2
x0 . Then the function |B̃0|

is a global minimizer of the (scalar) Alt-Caffarelli functional defined in (3.9).

Proof. Let r > 0 and ũ ∈ H1
loc(R

d) ∩ L∞(Rd) be such that |B̃0| − ũ ∈ H1
0 (Br). Since B̃0 = |B̃0|ξ

by Lemma 3.5, we have that B̃0 − ũ ξ = (|B̃0| − ũ) ξ ∈ H1
0 (Br,Rk) and hence, by optimality of

B̃0 (see Lemma 3.3) we have
∫

Br

|∇|B̃0||2 + Λ|{|B̃0| > 0} ∩Br| = J(B̃0, r) ≤ J(ũ ξ, r) =

∫

Br

|∇ũ|2 + Λ|{|ũ| > 0} ∩Br|.

�

We conclude this section with a consequence of the one-homogeneity and the optimality of |B̃0|
which states that two connected components of an optimal set cannot meet inside D. It is then
enough to prove the regularity of one connected component Ω∗

1 of Ω∗ and hence to reduce to a
one-phase free boundary problem (see Proposition 4.17).

Proposition 3.7. Denote by (Ω∗
i )

l
i=1 the l ≤ k connected componenents of an optimal set Ω∗ for

(1.1). Then, we have ∂Ω∗
i ∩ ∂Ω∗

j ∩D = ∅ for every i, j ∈ {1, . . . , l}, i 6= j.
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Proof. Let x0 ∈ ∂Ω∗
i ∩ ∂Ω∗

j ∩ D. Since σ(Ω∗
i ) ⊂ σ(Ω∗), there exists ki ∈ {1, . . . , k − 1} such

that λs(Ω
∗
i ) ∈ {λ1(Ω∗), . . . , λk(Ω∗)} for every s = 1, . . . , ki and λs(Ω

∗
i ) /∈ {λ1(Ω∗), . . . , λk(Ω∗)} for

every s > ki. It follows that Ω
∗
i is solution of the problem (1.1) with k = ki and D = D\(Ω∗ \Ω∗

i ).
Similarly, for some kj ∈ {1, . . . , k − 1}, Ω∗

j is solution of (1.1) with k = kj . Then, we denote

by V = (v1, . . . , vki) and W = (w1, . . . , wkj ) the eigenfunctions on Ω∗
i and Ω∗

j respectively. Let
rn → 0 and define the blow-up sequences

Bn(ξ) =
1

rn
U(x0 + rnξ), BV

n (ξ) =
1

rn
V (x0 + rnξ), BW

n (ξ) =
1

rn
W (x0 + rnξ), ξ ∈ Rd.

Up to a subsequence, Bn, B
V
n and BW

n converge to some blow-up limits B0 ∈ BUU (x0), B
V
0 ∈

BUV (x0) and BW
0 ∈ BUW (x0). By Lemmas 3.4 and 3.6, |B̃V

0 | and |B̃W
0 | are non-trivial, one-

homogeneous and global solutions of the Alt-Caffarelli functional. Therefore, the density at the
origin of each set {|B̃V

0 | > 0} and {|B̃W
0 | > 0} is at least 1/2 (see [24, Lemma 5]) and, since all

the components of B̃V
0 and B̃W

0 are among the ones of B̃0, it follows that |{|B̃0| > 0}∩B1| = |B1|.
Hence, |B̃0| is harmonic in B1 since it minimizes the Alt-Caffarelli functional. And since |B̃0| is
also a non-trivial and non-negative function which vanishes at 0, this gives a contradiction (by
the maximum principle). �

4. Regularity of the free boundary

This section is devoted to the proof of Theorem 1.1. Recall that we denote by Ω∗ a solution
to the problem (1.1) and that Ω∗

1 stands for any connected component of Ω∗ where the first
eigenfunction is positive.

4.1. The optimality condition on the free boundary. We prove that the vector U of the
first k eigenfunctions on Ω∗ satisfies an optimality condition on the boundary ∂Ω∗ ∩ D in the
sense of the viscosity.

Definition 4.1. Let D ⊂ Rd be an open set and U : D ⊂ Rd → Rk be a continuous function.
• We say that ϕ ∈ C(D) touches |U | by below (resp. by above) at x0 ∈ D if ϕ(x0) = |U(x0)|

and ϕ ≤ |U | (resp. ϕ ≥ |U |) in a neighborhood of x0.
• Let Ω ⊂ D be an open set and let g : D → R be continuous and non-negative function. We

say that U satisfies the boundary condition

|A1/2[∇|U |]| = g on ∂Ω ∩D (4.1)

in the viscosity sense if, for every x0 ∈ ∂Ω ∩D and every ϕ ∈ C2(D) such that ϕ+ := max(ϕ, 0)
touches |U | by below (resp. by above) at x0 we have

|A1/2
x0
[∇ϕ(x0)]| ≤ g(x0)

(

resp. |A1/2
x0
[∇ϕ(x0)]| ≥ g(x0)

)

.

• Let, moreover, λ = (λ1, . . . , λk) ∈ Rk be a vector of positive coordinates. We say that the
function U = (u1, . . . , uk) is a viscosity solution of the problem

− div(A∇U) = λbU in Ω, U = 0 on ∂Ω ∩D, |A1/2[∇|U |]| = g on ∂Ω ∩D,
if for every i = 1, . . . , k the component ui is a solution of the PDE

− div(A∇ui) = −λibui in Ω, ui = 0 on ∂Ω ∩D,
and if the boundary condition (4.1) holds in the viscosity sense.

Remark 4.2. Another equivalent definition of the boundary condition is to say that (4.1) holds
if for every x0 ∈ ∂Ω ∩ D and every ψ ∈ C2(Rd) such that ψ+ touches |Ux0 | by below (resp. by
above) at 0 we have |∇ψ(0)| ≤ g(x0) (resp. |∇ψ(0)| ≥ g(x0)). Indeed, if we set ψ = ϕ ◦ Fx0 then

we have |∇ψ(0)| = |A1/2
x0 [∇ϕ(0)]| (see also [28, Appendix A]).
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Lemma 4.3 (Optimality condition on the free boundary). Let U = (u1, . . . , uk) be the vector
of the first k normalized eigenfunctions on Ω∗ and set λ = (λ1(Ω

∗), . . . , λk(Ω∗)). Then U is a
viscosity solution of the problem

−div(A∇U) = λbU in Ω∗, U = 0 on ∂Ω∗∩D, |A1/2[∇|U |]| =
√
Λ on ∂Ω∗∩D. (4.2)

Proof. Since U is Lipschitz continuous, we only have to prove that the boundary condition holds
in the viscosity sense. Let x0 ∈ ∂Ω∗∩D and let ψ ∈ C2(Rd) be a function touching |Ux0 | by below
at 0 (see Remark 4.2). We fix an infinitesimal sequence rn and set for every ξ ∈ Rd

B̃n(ξ) =
1

rn
Ux0(rnξ) and ψn(ξ) =

1

rn
ψ(rnξ).

Up to a subsequence, the blow-up sequences (B̃n)n∈N and (ψn)n∈N converge locally uniformly

in Rd to some B̃0 ∈ H1
loc(R

d,Rk) and to ψ0(ξ) := ξ · ∇ψ(0) respectively. We can assume that
∇ψ(0) = |∇ψ(0)|ed (by a change of variables) and that |∇ψ(0)| 6= 0, since otherwise |∇ψ(0)| ≤
√

Λ(x0) obviously holds. We have ψ ≤ |Ux0 | near 0 an hence ψ0 ≤ |B̃0| in Rd which gives that

|B̃0| > 0 in the half-space {xd > 0}. Since |B̃0| is a one-homogeneous (Lemma 3.4) and non-

degenerate (Proposition 3.2) function, it follows that {B̃0 > 0} = {xd > 0} (see [27, Lemma

5.30]). Moreover, |B̃0| is a local minimizer of the Alt-Caffarelli functional (Lemma 3.6) and hence
satisfies the optimality condition

|∇|B̃0|| =
√
Λ on {xd = 0}.

Therefore we have |B̃0(ξ)| =
√
Λ ξ+d and hence ψ0(ξ) = |∇ψ(0)| ξd ≤ |B̃0(ξ)| =

√
Λ ξ+d , which

completes the proof when ψ touches by below. The case when ψ touches by above is similar. �

4.2. Regular and singular parts of the optimal sets. In this section we prove that the
regular part of an optimal set Ω∗ (see Definition 4.4) is relatively open in ∂Ω∗.

For any set Ω ⊂ Rd we define the blow-ups sets Ωx,r of Ω by

Ωx,r =
Ω− x

r
, x ∈ Rd, r > 0.

Given Lebesgue measurable sets (Ωn)n∈N and Ω in Rd, we say that Ωn locally converges to Ω,

and we write Ωn
loc−−→ Ω, if the sequence of characteristics functions 1Ωn converges in L1

loc to 1Ω.

Definition 4.4. Let Ω ⊂ D be an open set. We define the regular part of Ω in D by

Reg(∂Ω ∩D) =
{

x0 ∈ ∂Ω ∩D : ∃νx0 ∈ ∂B1 ⊂ Rd, Ωx0,r
loc−−→ {y ∈ Rd : y · νx0 ≤ 0} as r → 0+

}

.

The singular part of Ω in D is then define by Sing(∂Ω ∩D) =
(

∂Ω ∩D
)

\Reg(∂Ω ∩D).

Lemma 4.5. Let U = (u1, . . . , uk) be the vector of the first k normalized eigenfunctions on Ω∗.
Then,

(1) For every x0 ∈ ∂Ω∗ ∩D the limit

ΘUx0
(0) := lim

r→0+

|{|Ux0 | > 0} ∩Br|
|Br|

(4.3)

exists and we have

ΘUx0
(0) =

1

Λωd
lim
r→0+

W (Ux0 , r). (4.4)

(2) There exists δ > 0 such that, for every x0 ∈ ∂Ω∗ ∩D we have ΘUx0
(0) ∈

{

1
2

}

∪
[

1
2 + δ, 1

[

.

Proof. Let (rn)n∈N be an infinitesimal sequence and set B̃n(ξ) =
1
rn
Ux0(rnξ). Up to a subsequence,

B̃n converges to some B̃0 (in the sense of Proposition 3.2). Since B̃0 is one homogeneous (Lemma

3.4) and harmonic in {|B̃0| > 0} (Lemma 3.3) we have
∫

Br

|∇B̃0|2 =
1

r

∫

∂Br

|B̃0|2,
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and hence, for every r > 0, we get that

W (B̃0, r) =
1

rd

∫

Br

|∇B̃0|2 +
Λ

rd
|{|B̃0| > 0} ∩Br| −

1

rd+1

∫

∂Br

|B̃0|2

= Λωd
|{|B̃0| > 0} ∩Br|

|Br|
. (4.5)

On the other hand, by (3.8) we have that W (B̃0, r) = lims→0+ W (Ux0 , s) for every r > 0 and
therefore

1

Λωd
lim
s→0+

W (Ux0 , s) =
|{|B̃0| > 0} ∩Br|

|Br|
for every r > 0. (4.6)

Then, using that B̃n converges to B̃0 in L1
loc(R

d), it follows that

1

Λωd
lim
s→0+

W (Ux0 , s) =
|{|B̃0| > 0} ∩B1|

|B1|
= lim

n→∞
|{|B̃n| > 0} ∩B1|

|B1|
= lim

n→∞
|{|Ux0 | > 0} ∩Brn |

|Brn |
.

This proves part (1) of the Lemma since the above equalities hold for any sequence rn ↓ 0.

From (4.6) and (4.4) it follows that the density of the cone {|B̃0| > 0} at 0 is given by

lim
r→0+

|{|B̃0| > 0} ∩Br|
|Br|

= ΘUx0
(0) ∈ [0, 1].

Moreover, |B̃0| is a non-trivial (part (3) of Proposition 3.2), one-homogeneous (Lemma 3.4) and

harmonic function in {|B̃0| > 0} (Lemma 3.6). Therefore, the density of {|B̃0| > 0} at 0 cannot

be strictly less than 1
2 (otherwise, setting S = {|B̃0| > 0}∩∂B1, the two first parts of [24, Remark

4.8] respectively give λ1(S) ≤ d − 1 and λ1(S) > d − 1)), cannot belong to
(

1
2 ,

1
2 + δ) for some

universal constant δ > 0 (see [24, Lemma 5.3]) and is less than 1− c by Proposition 2.9. �

We will also need the following characterization of the regular part.

Lemma 4.6. We have

Reg(∂Ω∗ ∩D) =

{

x0 ∈ ∂Ω∗ ∩D : ΘUx0
(0) =

1

2

}

,

where ΘUx0
(0) is define in (4.3).

Proof. Let x0 ∈ ∂Ω∗ ∩D, rn ↓ 0 and Bn = Bx0,rn be a blow-up sequence converging (in the sense
of Proposition 3.2) to some B0; in particular, Ω∗

x0,rn = {|Bn| > 0} locally converges to {|B0| > 0}.
By (4.4), (4.6) and a change of variables (because B̃0 = B0 ◦ A

1/2
x0 ) we have

ΘUx0
(0) =

|{|B̃0| > 0} ∩B1|
|B1|

=
|{|B0| > 0} ∩A1/2

x0 [B1]|
|A1/2

x0 [B1]|
. (4.7)

If x0 ∈ Reg(∂Ω∗∩D), then {|B0| > 0} is an half-space and it follows by (4.7) that ΘUx0
(0) = 1/2.

Reciprocally, assume that ΘUx0
(0) = 1/2. It is enough to prove that {|B̃0| > 0} is an half-

space, since then {|B0| > 0} is also an half-space. Set S = {|B̃0| > 0} ∩ ∂B1 and notice that

Hd−1(S) = dωd/2 since |B̃0| is one homogeneous. Assume by contradiction that S = S0 ⊔ S1
is the disjoint union of two sets S0, S1 ⊂ ∂B1. Since |B̃0| is one homogeneous and harmonic on

{|B̃0| > 0} it follows that ϕ = |B̃0||∂B1
is solution of

−∆Sd−1ϕ = (d− 1)ϕ in S0, ϕ = 0 on ∂S0,

which implies that λ1(S0) ≤ d − 1. On the other hand, since Hd−1(S0) < dωd/2, we also have
that λ1(S0) > d − 1 (see [24, Remark 4.8]), which is a contradiction. Therefore, S is connected
and hence λ1(S) = d− 1. This implies that S is, up to a rotation, the half-sphere ∂B1 ∩{xd > 0}
and hence that {|B̃0| > 0} is the half-space {xd > 0}. �

Proposition 4.7. The regular set Reg(∂Ω∗ ∩D) is an open subset of ∂Ω∗.
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Proof. Let x0 ∈ Reg(∂Ω∗ ∩D) and assume by contradiction that there exists a sequence (xn)n∈N
of points in Sing(∂Ω∗ ∩D) = (∂Ω∗ ∩D)\Reg(∂Ω∗ ∩D) converging to x0. By Lemmas 4.5 and 4.6
we have ΘUx0

(0) = 1/2 and ΘUxn
(0) ≥ 1/2 + δ. Since the function ϕn(r) = W (Uxn , r) + CrδA is

non-decreasing by Proposition 2.10, we have for every r > 0

1

2
+ δ ≤ ΘUxn

(0) =
1

Λωd
lim
s→0+

W (Uxn , s) =
1

Λωd
lim
s→0+

ϕn(s) ≤
1

Λωd
ϕn(r).

Passing to the limit as n→ ∞ and using that limn→∞W (Uxn , r) =W (Ux0 , r), it follows that for
every r > 0

1

2
+ δ ≤ 1

Λωd
lim
n→∞

ϕn(r) =
1

Λωd

[

W (Ux0 , r) + CrδA
]

.

But the right hand side converges to ΘUx0
(0) = 1/2 as r → 0 which is a contradiction �

4.3. The regular part is Reifenberg flat. We prove that the regular part of Ω∗
1 is locally

Reifenberg flat. Recall that by Proposition 4.7, Reg(∂Ω∗
1 ∩D) is relatively open in ∂Ω∗

1. Roughly
speaking, a domain is said to be Reifenberg flat if its boundary can be well approximated by
hyperplanes. We give here a precise definition.

Definition 4.8. Let Ω ⊂ Rd be an open set and let δ,R > 0. We say that Ω is a (δ,R)-Reifenberg
flat domain if:

(1) For every x ∈ ∂Ω there exist an hyperplane H = Hx,R containing x and a unit vector

ν = νx,R ∈ ∂B1 ⊂ Rd orthogonal to H such that

{y + tν ∈ BR(x) : y ∈ H, t ≥ 2δR} ⊂ Ω,

{y − tν ∈ BR(x) : y ∈ H, t ≥ 2δR} ⊂ Rd\Ω.
(2) For every x ∈ ∂Ω and every r ∈ (0, R] there exists an hyperplane H = Hx,r containing x

such that
distH(∂Ω ∩Br(x),H ∩Br(x)) < δr.

Proposition 4.9. Let δ > 0. Then, for every x0 ∈ Reg(∂Ω∗
1 ∩ D) there exists R = R(x0) > 0

such that Ω∗
1 is (δ,R)-Reifenberg flat in a neighborhood of x0.

Proof. Assume by contradiction that there exists δ > 0 and x0 ∈ Reg(∂Ω∗
1 ∩ D) such that, for

every R > 0, Ω∗
1 is not (δ,R)-Reifenberg flat in any neighborhood of x0. Then, there exist

sequences xn → x0, xn ∈ ∂Ω∗
1, and rn ↓ 0 such that one of the following assertion holds

i) For every hyperplane H containing xn and every ν ∈ ∂B1 we have either

{y+tν ∈ Brn(xn) : y ∈ H, t ≥ 2δrn} * Ω∗
1 or {y−tν ∈ Brn(xn) : y ∈ H, t ≥ 2δrn} * Rd\Ω∗

1.

ii) For every hyperplane containing xn we have

distH(∂Ω
∗
1 ∩Brn(xn),H ∩Brn(xn)) ≥ δrn.

We consider the blow-up sequence Bn(ξ) =
1
rn
U(xn + rnξ) and set Ωn = {|Bn| > 0}. Then the

above assumptions can be equivalently reformulated as

i’) For every hyperplane H containing 0 and every ν ∈ ∂B1 we have either

{y + tν ∈ B1 : y ∈ H, t ≥ 2δ} * Ωn or {y − tν ∈ B1 : y ∈ H, t ≥ 2δ} * Rd\Ωn.

ii’) For every hyperplane containing 0 we have

distH(∂Ωn ∩B1,H ∩B1) ≥ δ.

Notice that xn ∈ Reg(∂Ω∗
1 ∩ D) for n large enough since Reg(∂Ω∗

1 ∩ D) is an open subset of

∂Ω∗
1 (Proposition 4.7). Up to a subsequence, Bn and B̃n = Bn ◦ A1/2

xn converge (in the sense of

Proposition 3.2) to B0 and B̃0 = B0 ◦ A
1/2
x0 respectively.

We first prove that

W (B̃0, r) =
Λωd

2
for every r > 0. (4.8)
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By Proposition 2.10, ϕn(r) := W (Uxn , rrn) + C(rrn)
δA is a non-decreasing function. Moreover,

by Lemma 4.5 and since we have ΘUxn
(0) = 1/2 (Lemma 4.6), it follows that

lim
r→0+

ϕn(r) = lim
r→0+

W (Uxn , r) = ΛωdΘUxn
(0) =

Λωd

2
.

We now fix r > 0 and ε > 0. Since lims→0+ W (Ux0 , s) = ΛωdΘUx0
(0) = Λωd

2 there exists r > 0
such that

W (Ux0 , r) + CrδA ≤ Λωd

2
+ ε.

Moreover, since limn→∞W (Uxn , r) =W (Ux0 , r), we have for n large enough that

W (Uxn , r) ≤W (Ux0 , r) + ε.

Therefore, choosing n large enough so that rrn ≤ r, we get that

Λωd

2
≤ ϕn(r) ≤ ϕn

(

r

rn

)

=W (Uxn , r) + CrδA ≤W (Ux0 , r) + ε+ CrδA +
Λωd

2
+ 2ε,

which proves that

lim
n→∞

ϕn(r) =
Λωd

2
for every r > 0.

Since B̃n converges strongly in H1
loc to B̃0 and 1Ω̃n

converges in L1
loc to 1Ω̃0

we have that

limn→∞W (B̃n, r) =W (B̃0, r). Hence we get for every r > 0

Λωd

2
= lim

n→∞
ϕn(r) = lim

n→∞
W (Uxn , rrn) = lim

n→∞
W (B̃n, r) =W (B̃0, r).

Now, since B̃0 is solution of the Alt-Caffarelli functional (Proposition 3.3) and since W (B̃0, r)

is constant by (4.8), it follows from Proposition 2.12 that B̃0 is one-homogeneous, and hence by
(4.5) that

1

2
=

1

Λωd
W (B̃0, r) =

|{|B̃0| > 0} ∩Br|
|Br|

.

Then, as in the proof of Lemma 4.6, we get that Ω0 = {|B0| > 0} is an half-space and hence
that ∂Ω0 = ∂{|B0| > 0} is an hyperplane (containing 0). This is in contradiction with both
assumptions i’) and ii’) since Ωn and Ωc

n converge locally Hausdorff to Ω0 and Ωc
0 respectively

(Proposition 3.2). This concludes the proof. �

4.4. The regular part is C1,α. We prove that the regular part of Ω∗
1 is C1,α-regular and that

it is C∞-regular provided that aij , b ∈ C∞ (see Proposition 4.10). Using a boundary Harnak
principle for non-tangentially accessible (NTA) domains proved by Jerison and Kenig in [16], we
prove that the first eigenfunction satisfies an optimality condition on Ω∗

1. The proof then follows
from the regularity result of De Silva for the one-phase free boundaries (see [9]).

Proposition 4.10. The regular part Reg(∂Ω∗
1 ∩D) is locally the graph of a C1,α function. More-

over, if ai,j ∈ Ck,δ(D) and b ∈ Ck−1,δ(D), for some δ ∈ (0, 1) and k ≥ 1, then Reg(∂Ω∗
1 ∩D) is

locally the graph of a Ck+1,α function. In particular, if ai,j, b ∈ C∞(D), then Reg(∂Ω∗
1 ∩ D) is

locally the graph of a C∞ function.

Definition 4.11. A bounded open set Ω ⊂ Rd is NTA with constants M > 1 and r0 > 0 if the
following conditions hold:

• (Corkscrew condition) For every x ∈ ∂Ω and r ∈ (0, r0) there exists zr(x) ∈ Ω such that

M−1r < d(zr(x), ∂Ω) < |x− zr(x)| < r,

• Rd\Ω satisfies the corkscrew condition,
• (Harnack chain condition) If ε > 0, x1, x2 ∈ Ω, d(xi, ∂Ω) > ε, |x1 − x2| < kε, then there
exists a sequence of Mk overlapping balls included in Ω of radius ε/M such that, the first
one is centered at x1 and the last one at x2, and such that the center of two consecutive
balls are at most ε/(2M) apart.
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We now recall that any (δ,R)-Reifenberg flat set is NTA, provided that δ > 0 is small enough.
This result is due to Kenig and Toro, see [18, Theorem 3.1].

Theorem 4.12 (Reifenberg flat implies NTA). There exists δ0 > 0 such that if Ω ⊂ Rd is a
(δ,R)-Reifenberg flat domain for some R > 0 and some δ ≤ δ0, then Ω is an NTA domain.

In the following theorem we state the Boundary Harnack Principle for NTA domains and for
solutions of uniformly elliptic equations in divergence form with bounded, measurable coefficients.
We refer to [17, Corollary 1.3.7] or [16, Lemma 4.10] for a proof (see also [12] for operator in
non-divergence form).

Theorem 4.13 (Boundary Harnack principle). Let Ω ⊂ Rd be an NTA domain and 2r ∈ (0, r0).

Let Ã : Rd → Sym+
d be uniformly elliptic (i.e. ∃λ > 0, λ−1|ξ|2 ≤ ξ · Ãx ξ ≤ λ|ξ|2 ∀x, ξ ∈ Rd) with

bounded measurable coefficients. Let x0 ∈ ∂Ω and let u, v ∈ H1(Ω∩B2r(x0))∩C(Ω∩B2r(x0)) be
such that u, v = 0 on ∂Ω ∩B2r(x0), v > 0 in Ω ∩B2r(x0) and

div(Ã∇u) = div(Ã∇v) = 0 in Ω ∩B2r(x0).

Then there exists C > 0, depending only on d and λ and the NTA constants, such that

C−1u(zr(x0))

v(zr(x0))
≤ u(x)

v(x)
≤ C

u(zr(x0))

v(zr(x0))
for every x ∈ Ω ∩Br(x0). (4.9)

Since the estimate (4.9) holds for every harmonic functions with a uniform constant, it is
standard to deduce that the quotient of two harmonics functions on an NTA domain is Hölder
continuous up to the boundary. We refer to [17, Corollary 1.3.9] or [16, Theorem 7.9] (see also
[2, Corollary 1]).

Corollary 4.14. Let Ω, Ã, x0, r and u, v be as in Theorem 4.13. Then there exist constants
α ∈ (0, 1) and C > 0, depending only on d and λ and the NTA constants, such that

∣

∣

∣

∣

u(x)

v(x)
− u(y)

v(y)

∣

∣

∣

∣

≤ C
u(zr(x0))

v(zr(x0))

( |x− y|
r

)α

for every x, y ∈ Ω ∩Br(x0).

In particular, for every x ∈ ∂Ω ∩ Br(x0) the limit limΩ∋y→x
u(y)
v(y) exists and u

v : Ω ∩ Br(x0) → R
is α-Hölder continuous.

We now prove the analogous boundary Harnack theorem for the eigenfunctions on an optimal
set Ω∗ to the problem (1.1). We notice that in the proof it is essential that the first eigenfunction
u1 is positive and non-degenerate (Proposition 2.6). The case of the eigenfunctions for the Lapla-
cian is already treated in [26, Appendix A]. We extend this result to the case of the operator
−b−1 div(A∇·). We highlight that one of the difficulty comes from the presence of the Lipschitz
function b.

Theorem 4.15 (Boundary Harnack principle for eigenvalues). Let U = (u1, . . . , uk) be the first
k normalized eigenfunctions on Ω∗ and let x0 ∈ Reg(∂Ω∗

1 ∩D). Then Ω∗
1 is NTA in Br(x0) for

some r = r(x0) > 0 and there exists α ∈ (0, 1), depending only on d, λA and the NTA constants
of Ω∗

1, such that for every i = 2, . . . , k

ui
u1

is α-Hölder continuous in Ω∗
1 ∩Br(x0).

We will need the following Lemma.

Lemma 4.16. Let Ω ⊂ D be a quasi-open set, u ∈ H1
0 (Ω) and λ > 0. Then, for every x0 ∈ ∂Ω∩D

there exists r0 > 0 depending only on d, λA, cb and λ, such that for every r ≤ r0 with Br(x0) ⊂ D,
there exists a unique solution v ∈ H1

0 (D) of
{

− div(A∇v) = λbv in Ω ∩Br(x0)
v = u, on ∂(Ω ∩Br(x0)).

(4.10)
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If, moreover, u ∈ L∞(D), then v ∈ L∞(D) and we have the estimate

‖v‖L∞(Ω∩Br(x0)) ≤ C
(

r‖u‖H1(Ω;m) + ‖u‖L∞(∂Br(x0))

)

(4.11)

where the constant C > 0 depends only on d, λA, cb and λ.

Proof. Observe that any minimizer in A := {ϕ ∈ H1
0 (D) : u − ϕ ∈ H1

0 (Ω ∩ Br(x0))} of the
functional

J̃(ϕ) =

∫

D
A∇ϕ · ∇ϕ− λ

∫

D
ϕ2b

is solution of (4.10). Therefore, it is enough to prove that {ϕ ∈ A : J̃(ϕ) ≤ C} is weakly
compact in H1

0 (D) to prove the existence of a function v solution of (4.10). We first compute
∫

D
ϕ2b ≤ 2

∫

Ω∩Br(x0)
(ϕ− u)2b+ 2

∫

D
u2b

≤ 2

λ1(Ω ∩Br(x0))

∫

Ω∩Br(x0)
A∇(ϕ− u) · ∇(ϕ− u) + 2

∫

D
u2b

≤ 4λ2
A

λ1(Br0(x0))

∫

D

(

|∇ϕ|2 + |∇u|2
)

+ 2

∫

D
u2b.

Then, for r0 small enough (such that 4λ4
A
λ ≤ λ−∆

1 (B1)/(2λ
2
A
cbr

2
0) where λ

−∆
1 (B1) stands for the

first eigenvalue of the Dirichlet Laplacian on B1) we have
∫

D
|∇ϕ|2 ≤ λ2

A
J̃(ϕ) + λ2

A
λ

∫

D
ϕ2b ≤ λ2

A
J̃(ϕ) +

1

2

∫

D

(

|∇ϕ|2 + |∇u|2
)

+ 2λ2
A
λ

∫

D
u2b,

which gives that
∫

D
|∇ϕ|2 ≤ 2λ2

A
J̃(ϕ) +

∫

D
|∇u|2 + 4λ2

A
λ

∫

D
u2b ≤ 2λ2

A
J̃(ϕ) + (1 + 4λ2

A
λ)‖u‖H1(Ω;m).

This proves the existence of v, and the uniqueness easily follows provided that λ ≤ λ1(Ω∩Br(x0)).
We now prove the L∞-estimate. We consider the functions defined by

{

div(A∇h) = 0, − div(A∇w) = λbv in Ω ∩Br(x0)
h = u, w = 0 on ∂(Ω ∩Br(x0)).

Reasoning as above this functions exist and are unique, and we have v = h+w. Let R = RΩ∩Br(x0)

be the resolvent of −b−1 div(A∇·) in Ω∩Br(x0). We have the estimates ‖R‖L(L2,L2∗) ≤ Cd where

2∗ = 2d
d−2 and ‖R‖L(Ld,L∞) ≤ Cr by [29, Lemma 2.1], where the constant C depends only on d, λA

and cb. Notice also that we have

v = λnRn(v) +
n−1
∑

i=0

λiRi(h),

and that ‖h‖L∞(Ω∩Br(x0)) ≤ ‖u‖L∞(∂Br(x0)) by the maximum principle. Therefore, with an inter-
polation argument, there exists a dimensional constant n ≥ 1 such that we have the estimate

‖v‖L∞(Ω∩Br(x0)) ≤ C
(

r‖v‖L2(D;m) + ‖u‖L∞(∂Br(x0))

)

,

where now C also depends on λ. Hence, it remains only to estimate ‖v‖L2(D;m) to complete the
proof. Then, for r0 small enough, we have

∫

D
v2b ≤ 2

∫

Ω∩Br(x0)
(v − u)2b+ 2

∫

D
u2b ≤ 4

λ1(Br0(x0))

∫

D

(

|∇v|2 + |∇u|2
)

+ 2

∫

D
u2b

≤ 1

2λ
J̃(v) +

1

2

∫

D
v2b+

1

2λ2
A
λ

∫

D
|∇u|2 + 2

∫

D
u2b,

which implies that (since J̃(v) ≤ J̃(u))
∫

D
v2b ≤ 1

λ
J̃(u) +

1

λ2
A
λ

∫

D
|∇u|2 + 4

∫

D
u2b ≤

(2λ2
A

λ
+ 4
)

‖u‖H1(D;m).
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�

Proof of Theorem 4.15. By Proposition 4.9 and Theorem 4.12, Ω∗
1 is an NTA domain near x0.

Let α be the constant given by Corollary 4.14 and set β = α
1+α . Let x, y ∈ Br(x0) and set

r = |x− y|β , dx = d(x, ∂Ω∗
1), dy = d(y, ∂Ω∗

1). We divide the proof in three steps.
Step 1. Assume that dx, dy ≥ 2r. By a change of variables, it follows that ũ(z) = r−1u1(x+rz)

is solution of
− div(Ã∇ũ) = r2λ1(Ω

∗)b̃ũ in B2,

where we have set Ãz = Ax+rz and b̃(z) = b(x + rz). By standard Schauder estimates (see [13,
Theorem 8.8]) we have

‖ũ‖C1,δ
A (B1)

≤ C
(

‖ũ‖L∞(B2) + r2λ1(Ω
∗)‖b̃ũ‖L∞(B2)

)

,

where C depends only on d, cA and λA. In particular,

‖u1‖C1(Br(x)) ≤ ‖ũ‖C1(B1) ≤ ‖ũ‖C1,δ
A (B1)

≤ C‖ũ‖L∞(B2) ≤
C

r
.

Similarly, we have ‖ui‖C1(Br(x)) ≤ C/r. On the other hand, by non-degeneracy of u1 we have
u1(x) ≥ cdx and u1(y) ≥ cdy for some constant c > 0. Therefore, since ui is L-Lipschitz continuous
(and because y ∈ Br(x)), we get

∣

∣

∣

∣

ui(x)

u1(x)
− ui(y)

u1(y)

∣

∣

∣

∣

≤ |ui(x)− ui(y)|
u1(x)

+
|u1(x)− u1(y)| |ui(y)|

u1(x)u1(y)
≤ C

r
|x− y|

( 1

cdx
+

Ldy
c2dxdy

)

≤ C

r2
|x− y| = C|x− y|1−2β ≤ C|x− y|β ,

where the last inequality holds provided that β ≤ 1/3.
Step 2. Assume that dx ≤ 2r. Let x ∈ ∂Ω∗

1 such that dx = |x − x|. We write for simplicity
λ1 = λ1(Ω

∗), λi = λi(Ω
∗) and B = B6r(x). Since ui may change its sign, we consider the functions

{

− div(A∇vi) = λibvi, − div(A∇wi) = λibwi in Ω∗
1 ∩B

vi = u+i , wi = u−i on ∂(Ω∗
1 ∩B).

These functions exist thanks to Lemma 4.16 and we have ui = vi − wi. We now set m =
minz∈B b(z) and M = maxz∈B b(z) and I = (−1, 1). Moreover, for (z, zd+1) ∈ (Ω∗

1 ∩ B) × I we
define the functions

u1,m(z, zd+1) = e−
√
λ1mzd+1u1(z) u1,M (z, zd+1) = e−

√
λ1Mzd+1u1(z)

ui,m(z, zd+1) = e−
√
λimzd+1vi(z) ui,M (z, zd+1) = e−

√
λiMzd+1vi(z).

We define the matrix-valued function Ã : (Ω∗
1 ∩B)× I ⊂ Rd+1 → Sym+

d+1 by

Ã(z,zd+1) =

(

Az 0
0 1

)

for every (z, zd+1) ∈ (Ω∗
1 ∩B)× I.

Moreover, we define the harmonic extensions of the above functions as follows
{

div(Ã∇h1,m) = div(Ã∇h1,M ) = div(Ã∇hi,m) = div(Ã∇hi,M ) = 0 in (Ω∗
1 ∩B)× I

h1,m = u1,m, h1,M = u1,M , hi,m = ui,m, hi,M = ui,M on ∂
[

(Ω∗
1 ∩B)× I

]

Now, we get with an easy computation that

div(Ã∇(u1,m − h1,m)) = λ1e
−
√
λ1mxd+1(m− b(x))u1(x) ≤ 0 in (Ω∗

1 ∩B)× I,

which, by the weak maximum principle, implies that h1,m ≤ u1,m in (Ω∗
1 ∩ B)× I. Similarly we

have (since the functions ui,m, ui,M are positive)

h1,m ≤ u1,m, u1,M ≤ h1,M , hi,m ≤ ui,m, ui,M ≤ hi,M in (Ω∗
1 ∩B)× I. (4.12)

Moreover, using again the maximum principle, we have the following inequalities

e
√
λ1m

e
√
λ1M

h1,m ≤ h1,M ≤ e
√
λ1M

e
√
λ1m

h1,m, in (Ω∗
1 ∩B)× I, (4.13)
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and similarly we have

e
√
λim

e
√
λiM

hi,m ≤ hi,M ≤ e
√
λiM

e
√
λim

hi,m, in (Ω∗
1 ∩B)× I. (4.14)

Now, since x, y ∈ B3r(x) ⊂ B, we can use (4.12), (4.13) and (4.14) to estimate

vi(x)

u1(x)
− vi(y)

u1(y)
=
ui,M(x, 0)

u1,m(x, 0)
− ui,m(y, 0)

u1,M (y, 0)
≤ hi,M (x, 0)

h1,m(x, 0)
− hi,m(y, 0)

h1,M (y, 0)

≤ e
√
λiM

e
√
λim

hi,m(x, 0)

h1,m(x, 0)
− e

√
λ1m

e
√
λ1M

hi,m(y, 0)

h1,m(y, 0)

≤ hi,m(x, 0)

h1,m(x, 0)
− hi,m(y, 0)

h1,m(y, 0)
+ Cr

hi,m(x, 0)

h1,m(x, 0)
+ Cr

hi,m(y, 0)

h1,m(y, 0)

where the last inequality follows from the definitions of m,M and the fact that b is a Lipschitz
continuous function. Now, observe that Ω∗

1 × I ⊂ Rd+1 is an NTA domain near (x, 0) with the
same constants than Ω∗

1. By Corollary 4.14, setting z0 = z3r(x, 0) ∈ Rd+1, we have (notice also
that x, y ∈ B3r(x))

hi,m(x, 0)

h1,m(x, 0)
− hi,m(y, 0)

h1,m(y, 0)
≤ C

hi,m(z0)

h1,m(z0)

( |x− y|
3r

)α

= Cr
hi,m(z0)

h1,m(z0)
,

where in the last equality we have used that r = |x− y|β with β = α
1+α . Moreover, by Theorem

4.13 we have
hi,m(x, 0)

h1,m(x, 0)
≤ C

hi,m(z0)

h1,m(z0)
,

hi,m(y, 0)

h1,m(y, 0)
≤ C

hi,m(z0)

h1,m(z0)
,

which finally gives
vi(x)

u1(x)
− vi(y)

u1(y)
≤ Cr

hi,m(z0)

h1,m(z0)
. (4.15)

Then, using (4.13) and (4.12) we have the following estimate

h1,m(z0) ≥
e
√
λ1m

e
√
λ1M

h1,M (z0) ≥
e
√
λ1m

e
√
λ1M

u1,M (z0) ≥
(

e
√
λ1m

e
√
λ1M

)2

u1,m(z0) ≥ Cu1,m(z0).

Now, in view of the definition of z0 = z3r(x, 0) ∈ Rd+1 we have d(z0, ∂(Ω
∗
1 × I)) > 3rM−1 and

by non-degeneracy of u1 (Proposition 2.6) it follows that u1,m(z0) ≥ Cr. Moreover, by (4.11), it
follows that ‖vi‖L∞(B) ≤ Cr since ui is Lipschitz continuous. Therefore we have

vi(x)

u1(x)
− vi(y)

u1(y)
≤ Cr

ui,m(z0)

u1,m(z0)
≤ Cr

‖vi‖L∞(B)

u1,m(z0)
≤ Cr = C|x− y|β.

This concludes the proof since the same estimate also holds for wi and that we have ui/u1 =
vi/u1 − wi/u1. �

As a consequence of the optimality condition of U (Lemma 4.3) and of the boundary Harnack
principle (Theorem 4.15), it follows that the first eigenfunction is solution of a one-phase free
boundary problem on Ω∗

1.

Lemma 4.17. For every x0 ∈ Reg(∂Ω∗
1 ∩D) there exist r = r(x0) > 0, c ∈ (0, 1) and a Hölder

continuous function g : ∂Ω∗
1 ∩Br(x0) → [c, 1] such that u1 is a viscosity solution to the problem

− div(A∇u1) = λ1(Ω
∗)bu1 in Ω∗

1, u1 = 0 on ∂Ω∗
1, |A1/2[∇u1]| = g

√
Λ on ∂Ω∗

1 ∩Br(x0).

Proof. Let U = (u1, . . . , uk) be the first k eigenfunctions on Ω∗. By Theorem 4.15 the functions
gi :=

ui
u1

: ∂Ω∗ ∩ Br(x0) → R, for i = 2, . . . , k, are Hölder continuous. Therefore, the function

g : ∂Ω∗
1 ∩Br(x0) → [0, 1] defined by

g =
1

√

1 + g22 + · · · + g2k
. (4.16)
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is also Hölder continuous. Since u1 = g|U |, it follows from the non-degeneracy of u1 that g ≥
c := C−1

1 where C1 is the constant from Proposition 2.6. Now, let y ∈ ∂Ω∗
1 ∩ Br(x0) and let

ϕ ∈ C2(D) be a function touching u1 by below at the point y. Since 1/g is β-Hölder continuous
for some β ∈ (0, 1), there exists C > 0 such that for ρ > 0 small enough we have

1

g(x)
≥ 1

g(y)
− C|x− y|β ≥ 0 for every x ∈ Ω∗

1 ∩Bρ(y).

Therefore, the function ψ(x) = ϕ(x)
(

1
g(y) − C|x− y|β

)

is such that ψ(y) = |U(y)| and satisfies

ψ(x) ≤ u1(x)

(

1

g(x0)
− C|x− y|β

)

≤ |U(x)| for every x ∈ Ω∗
1 ∩Bρ(y). (4.17)

This proves that ψ touches |U | by below at the point y. On the other hand, ψ is differentiable
at y and we have ∇ψ(y) = 1

g(y)∇ϕ(y). Therefore, using that U is a viscosity solution of (4.2), it

follows that √
Λ ≥ |A1/2

y [∇ψ(y)]| ≥ 1

g(y)
|A1/2

y [∇ϕ(y)]|.

The case when ϕ touches u1 by above is similar. �

Theorem 4.18 (Higher boundary Harnack principle for eigenvalues). Let k ≥ 1 and assume
that Ω∗

1 is Ck,α-regular near x0 ∈ ∂Ω∗
1 ∩D for some α ∈ (0, 1). If k ≥ 2, suppose moreover that

aij , b ∈ Ck−1,α(D). Then there exists r > 0 such that for every i = 2, . . . , k

ui
u1

is of class Ck,α in Ω∗
1 ∩Br(x0).

Proof. Let R > 0 such that there exists ϕ ∈ H1
0 (BR(x0)) satisfying ϕ > 0 in BR(x0) and solution

of the equation

− div(A∇ϕ) = λ1(Ω
∗)bϕ in BR(x0).

(More precisely, we extend ai,j and b to bounded functions in Rd with b ≥ cb, and we choose

R > 0 such that λ1(BR) = λ1(Ω
∗)). Let 2r < R be such that Ω∗

1 is Ck,α-regular in the ball
B2r(x0) ⊂ D. Then we have

div

(

ϕ2A∇
(u1
ϕ

)

)

= div
(

ϕA∇u1 − u1A∇ϕ
)

= ϕdiv(A∇u1) +∇ϕA∇u1 −∇u1A∇ϕ− u1 div(A∇ϕ) = 0 in Ω∗
1 ∩B2r(x0),

and similarly

div

(

ϕ2A∇
(ui
ϕ

)

)

= (λ1(Ω
∗)− λi(Ω

∗))buiϕ in Ω∗
1 ∩B2r(x0).

Now, the proof follows by [11, Theorem 2.4] for k = 1 and by [11, Theorem 3.1] for k ≥ 2, which
say that u1/ϕ, ui/ϕ ∈ Ck,α(Ω∗

1 ∩Br(x0)). �

Proof of Proposition 4.10. We prove the regularity by a finite induction on l ∈ {1, . . . , k}. For
l = 1, by [9, Theorem 1.1] and Lemma 4.17 it follows that Reg(∂Ω∗

1 ∩D) is locally C1,α-regular.
Now, if Reg(∂Ω∗

1∩D) is C l,α-regular, l ≤ k, by Theorem 4.18 and the definition of g in (4.16), we
have that g is a C l,α function on Reg(∂Ω∗

1 ∩D). Therefore, in view of Lemma 4.17 and by [19,
Theorem 2] it follows that Reg(∂Ω∗

1 ∩D) is locally C l+1,α-regular. This completes the proof. �

4.5. Dimension of the singular set. We prove in this last subsection some kind of smallness
of the singular set. We recall that Ω∗ denotes an optimal set to (1.1) and that Ω∗

1 stands for any
connected component of Ω∗ at which the first eigenfunction is positive.

An estimate of the dimension of the singular set can be obtain as a consequence of the Federer’s
Theorem. Indeed, since Ω∗

1 is a set of finite perimeter (Proposition 2.1) and in view of the density
estimate (Proposition 2.9), it follows from the Federer’s Theorem (see, for instance, [23, Theorem
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16.2]) that Hd−1(Sing(∂Ω∗
1 ∩ D)) = 0. In Proposition 4.20 below we provide a more precise

estimate of the dimension of the singular set.

Definition 4.19. We define d∗ as the smallest dimension which admits a one-homogeneous global
minimizer of the Alt-Caffarelli functional with exactly one singularity at zero.

The exact value of the critical dimension d∗ is still unknown but we know that d∗ ∈ {5, 6, 7}
(see [15] for d∗ ≥ 5 and [10] for d∗ ≤ 7). The following result on the smallness of the singular set
is standard and was first proved in the framework of the minimal surfaces (for which the critical
dimension is exactly 8, see for example [14, Chapter 11]). Later, in [30], Weiss adapted this
strategy for minimizers of the Alt-Caffarelli functional by introducing a monotonicity formula.
In [24], the authors prove this result in the vectorial setting. In this section we follow the same
approach and we extend this result to the case of variable coefficients.

Proposition 4.20 (On the dimension of the singular set). The singular part Sing(∂Ω∗
1 ∩D) is:

(1) empty if d < d∗,
(2) a discrete (locally finite) set if d = d∗,
(3) of Hausdorff dimension at most (d − d∗) if d > d∗, that is, Hd−d∗+s(Sing(∂Ω∗

1 ∩D)) = 0
for every s > 0.

We first prove two preliminary Lemmas and to this aim we extend the definition of the Weiss
functional for any ball. Let U ∈ H1(Rd,Rk), x ∈ Rd and r > 0. We set

J(U, x, r) =

∫

Br(x)
|∇U |2 + Λ|{|U | > 0} ∩Br(x)|

and

W (U, x, r) =
1

rd
J(U, x, r) − 1

rd+1

∫

∂Br(x)
|U |2.

Obviously we have J(U, r) = J(U, 0, r) and W (U, r) =W (U, 0, r).

Lemma 4.21. Let (xn)n∈N ⊂ ∂Ω∗
1 ∩ D be a sequence converging to x0 ∈ ∂Ω∗

1 ∩ D and let

Bn = Bx0,rn be a blow-up sequence with fixed center. We set B̃n = Bn◦A
1/2
x0 and Ω̃n = {|B̃n| > 0}.

Then, up to a subsequence, the sequence yn = A
−1/2
x0

[

xn−x0
rn

]

∈ ∂Ω̃n converges to some y0 and, for

every small r > 0, there exists n0 such that for every n ≥ n0 we have

W (Uxn , rrn) ≤W (B̃n, y0, r) +C|x0 − xn|δA/2 + C
|y0 − yn|

r
, (4.18)

where the constant C > 0 depends only on d, cA, λA,Λ and the Lipschitz constant L = ‖∇U‖L∞(K)

of U in some compact neighborhood K ⊂ D of x0.

Proof. We first compare J(Uxn , rrn) and J(B̃n, y0, r). Since Uxn = U ◦ Fxn by definition, we
compute

J(Uxn , rrn) =

∫

Brrn

(

|∇Uxn(ξ)|2 + Λ1{|Uxn(ξ)|>0}
)

dξ

=

∫

Brrn

(

Axn∇U · ∇U +Λ1{|U |>0}
)

◦ Fxn(ξ) dξ

≤
∫

Brrn

(

Ax0∇U · ∇U + Λ1{|U |>0}
)

◦ Fxn(ξ) dξ + ωd(rrn)
dL2cA|x0 − xn|δA ,

where in the last inequality we have used that the coefficients aij are δA-Hölder continuous, that

is ‖Ax0 −Axn‖ ≤ cA|x0 −xn|δA . We perform the change of variables ξ̃ = r−1
n F−1

x0
◦Fxn(ξ) and set

B = yn +A
−1/2
x0 A

1/2
xn

[

Br

]

to get

1

(rrn)d
J(Uxn , rrn) ≤

1

rd

∫

B

(

|∇B̃n|2+Λ1{|B̃n|>0}
) ∣

∣det(A−1/2
xn

A
1/2
x0
)
∣

∣ dξ̃+ωdL
2cA|x0−xn|δA . (4.19)
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Moreover, since the coefficients of A
1/2 are δA

2 -Hölder continuous, we have the estimate of the

determinant |det(A−1/2
xn A

1/2
x0 )
∣

∣ ≤ 1 + cA|x0 − xn|δA/2 and the following estimate of the symmetric
difference

|B△Br(yn)| = |A−1/2
x0

A
1/2
xn

[

Br

]

△Br| ≤ ωdr
d
[

(

1 + cA|x0 − xn|δA/2
)d −

(

1− cA|x0 − xn|δA/2
)d
]

≤ ωdr
d
[

(

1 + d2dcd
A
|x0 − xn|δA/2

)

−
(

1− d2dcd
A
|x0 − xn|δA/2

)

]

≤ rdC|x0 − xn|δA/2.

Similarly, for n big enough so that |y0 − yn| ≤ r/2, we have

|Br(y0)△Br(yn)| ≤ ωdr
d

[(

1 +
|y0 − yn|

r

)d

−
(

1− |y0 − yn|
r

)d]

≤ rdC
|y0 − yn|

r
.

Combining all these estimates (4.19) now gives (because B̃n is λAL-Lipschitz continuous)

1

(rrn)d
J(Uxn , rrn) ≤

1

rd
J(B̃n, y0, r) + ωdL

2cA|x0 − xn|δA +
λ2
A
L2 + Λ

rd
|B|cA|x0 − xn|δA/2+

+
λ2
A
L2 + Λ

rd

[

|B△Br(yn)|+ |Br(y0)△Br(yn)|+ |B|cA|x0 − xn|δA/2
]

(4.20)

≤ 1

rd
J(B̃n, y0, r) + C|x0 − xn|δA/2 + C

|y0 − yn|
r

.

We now compare the boundary integral terms. Since Uxn(ξ) = rnB̃n(yn + r−1
n A

−1/2
x0 A

1/2
xn (ξ)) and

by the change of variables ξ̃ = r−1
n ξ + y0 we have

∫

∂Brrn

|Uxn |2(ξ) dHd−1(ξ) =

∫

∂Brrn

r2n|B̃n|2(yn + r−1
n A−1/2

x0
A

1/2
xn
(ξ)) dHd−1(ξ)

= rd+1
n

∫

∂Br(y0)
|B̃n|2(yn +A−1/2

x0
A

1/2
xn
(ξ̃ − y0)) dHd−1(ξ̃).

Therefore, using that B̃n is λAL-Lipschitz continuous, B̃n(yn) = 0 and that |y0 − yn| ≤ r/2, we
get that

1

rd+1

∫

∂Br(y0)
|B̃n|2(ξ) dHd−1(ξ)− 1

(rrn)d+1

∫

∂Brrn

|Uxn |2(ξ) dHd−1(ξ) =

=
1

rd+1

∫

∂Br(y0)

(

|B̃n|2(ξ)− |B̃n|2(yn +A−1/2
x0

A
1/2
xn
(ξ − y0))

)

dHd−1(ξ)

≤ λ2
A
L2

rd+1

∫

∂Br(y0)

∣

∣A−1/2
x0

(A
1/2
x0

−A
1/2
xn
)(ξ − y0) + y0 − yn

∣

∣

(

|ξ − yn|+ λ2
A
r
)

dHd−1(ξ)

≤ C|x0 − xn|δA/2 + C
|y0 − yn|

r
.

Now, in view of (4.20) we get (4.18). This completes the proof. �

In the following Lemma we prove that if B̃n is a blow-up sequence with fixed center converging
to B̃0, then locally the singular set of {|B̃n| > 0} must lie close to the singular set of {|B̃0| > 0}
(see [30, Lemma 4.2] and [24, Lemma 5.20]).

Lemma 4.22. Let x0 ∈ ∂Ω∗
1 ∩ D and let Bn = Bx0,rn be a blow-up sequence converging in the

sense of Proposition 3.2 to some B0 ∈ BUU(x0). We set B̃n = Bn ◦ A1/2
x0 , B̃0 = B0 ◦ A1/2

x0 ,

Ω̃n = {|B̃n| > 0} and Ω̃0 = {|B̃0| > 0}. Then, for every compact set K ⊂ Rd and every open set

O ⊂ Rd such that Sing(∂Ω̃0) ∩K ⊂ O, we have Sing(∂Ω̃n) ∩K ⊂ O for n large enough.

Proof. Arguing by contradiction there exist a compact set K ⊂ Rd and an open set O ⊂ Rd such
that Sing(∂Ω̃0) ∩ K ⊂ O and a sequence (yn)n∈N ⊂ Sing(∂Ω̃n) ∩ K \ O. Up to a subsequence,

yn converges to some y0 ∈ K \ O. Since ∂Ω̃n locally Hausdorff converges to ∂Ω̃0 by Proposition

3.2, it follows that y0 ∈ ∂Ω̃0 and, since Sing(∂Ω̃0) ∩K ⊂ O, we have that y0 is a regular point of
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∂Ω̃0, that is y0 ∈ Reg(∂Ω̃0). Since, moreover, B̃0 is solution of the Alt-Caffarelli functional and

is one-homogeneous, it follows that 1
Λωd

limr→0+ W (B̃0, y0, r) =
1
2 (see [24, Lemma 5.4]). We now

fix r > 0 such that
1

Λωd
W (B̃0, y0, r) ≤

1

2
+
δ

4
,

where δ is the constant from Lemma 4.5. Now, since limn→∞W (B̃n, y0, r) = W (B̃0, y0, r), it
follows that for every n large enough we have

1

Λωd
W (B̃n, y0, r) ≤

1

Λωd
W (B̃0, y0, r) +

δ

4
≤ 1

2
+
δ

3
. (4.21)

Set xn = x0 + rnA
1/2
x0 (yn) ∈ ∂Ω∗

1 ∩ D and notice that xn converges to x0. By Lemma 4.21 and
(4.21) we get that for every n large enough

1

Λωd
W (Uxn , rrn) ≤

1

2
+
δ

3
+ C|x0 − xn|δA/2 + C

|y0 − yn|
r

.

On the other hand, by Proposition 2.10, the function ϕn(s) =W (Uxn , s)+Cs
δA is non-decreasing

and hence

ΘUxn
(0) =

1

Λωd
lim
s→0+

W (Uxn , s) =
1

Λωd
lim
s→0+

ϕn(s) ≤
1

Λωd
ϕn(rrn) =

1

Λωd
W (Uxn , rrn) +C(rrn)

δA

≤ 1

2
+
δ

3
+ C|x0 − xn|δA/2 +C

|y0 − yn|
r

+ C(rrn)
δA <

1

2
+
δ

2
,

where the last inequality holds for n large enough. It follows from Lemmas 4.5 and 4.6 that xn

is a regular point of Ω∗
1, in contradiction with the fact that yn = A

−1/2
x0

[

xn−x0
rn

]

∈ Sing(∂Ω̃n). �

We are now in position to prove Proposition 4.20.

Proof of Proposition 4.20. (1) Let x0 ∈ ∂Ω∗
1 ∩D and B0 ∈ BUU (x0) and set B̃0 = B0 ◦ A

1/2
x0 and

Ω̃0 = {|B̃0| > 0}. By Lemma 3.6, |B̃0| is a local minimizer of the scalar Alt-Caffarelli functional

and since d < d∗, it follows that ∂Ω̃0 is the graph of a C1,α function near 0 (see [30, Section 3]).

In particular, the density of Ω̃0 at 0 is 1/2 and hence ΘUx0
(0) = 1/2 by (4.6). In view of Lemma

4.6 we get that x0 ∈ Reg(∂Ω∗
1 ∩D).

(2) Assume by contradiction that there exists a sequence (xn)n∈N ⊂ Sing(∂Ω∗
1 ∩D) converging

to some x0 ∈ ∂Ω∗
1 ∩D. Set rn = |x0−xn| and let Bn := Bx0,rn be a blow-up sequence converging

(in the sense of Proposition 3.2) to some blow-up limit B0 ∈ BUU (x0). We consider two cases:

Case 1: Sing(∂Ω̃0)\{0} 6= ∅. By a rotation we may assume that ed ∈ Rd is a singular point

of ∂Ω0. Notice that u0 = |B̃0| is solution of the scalar Alt-Caffarelli functional and is one-
homogeneous. Consider a blow-up limit u00 of u0 at ed. By [30, Lemma 3.1], {u00 > 0} is a
minimal cone with vertex 0 such that the whole line ted, t ∈ R, consists of singular points. Then,
by [30, Lemma 3.2], denoting the restriction u = u00|Rd−1 , we have that {u > 0} is a minimal cone

of dimension (d− 1) which is singular at 0. Now, either 0 is the only singular point and we have
a contradiction with the definition of d∗, or we can repeat this procedure and get a contradiction
since there are no three-dimensional singular minimal cones.

Case 2: Sing(∂Ω̃0)\{0} = ∅. Let r > 0 to be chosen later. By Lemma 4.21, we have for every
n large enough

W (Uxn , rrn) ≤W (B̃n, y0, r) +C
|y0 − yn|

r
+ C|x0 − xn|δA/2.

Now, by Proposition 2.10, the function ϕn(s) = W (Uxn , s) + CsδA is non-decreasing and, since
xn ∈ Sing(∂Ω∗

1 ∩ D), by Lemmas 4.6 and 4.5 we have that 1
Λωd

lims→0+ W (Uxn , s) ≥ 1
2 + δ.
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Therefore, we have

1

2
+ δ ≤ 1

Λωd
lim
s→0+

W (Uxn , s) =
1

Λωd
lim
s→0+

ϕn(s) ≤ ϕn(rrn) =
1

Λωd
W (Uxn , rrn) +C(rrn)

δA

≤ 1

Λωd
W (B̃n, y0, r) +C

|y0 − yn|
r

+ C|x0 − xn|δA/2 + C(rrn)
δA . (4.22)

Now, since y0 ∈ ∂Ω̃0\{0} is a regular point of ∂Ω̃0 (and also because B̃0 is solution of the Alt-

Caffarelli functional and is one-homogeneous), it follows that 1
Λωd

limr→0+ W (B̃0, y0, r) =
1
2 (see

[24, Lemma 5.4]). Using also that limn→∞W (B̃n, y0, r) = W (B̃0, y0, r), it follows that we can
choose r > 0 small enough such that for every n large enough we have

1

Λωd
W (B̃n, y0, r) ≤

1

Λωd
W (B̃0, y0, r) +

δ

4
≤ 1

2
+
δ

2
.

Therefore, passing to the limit n→ ∞ in the equation (4.22) gives a contradiction.
(3) Assume by contradiction that Hd−d∗+s(Sing(∂Ω∗

1∩D)) > 0 for some s > 0. By Lemma 4.22
and [30, Lemmas 4.3 and 4.4] there exists x0 ∈ ∂Ω∗

1 ∩D and a blow-up limit B0 ∈ BUU (x0) such

that Hd−d∗+s(Sing(∂Ω̃0)) > 0, where we have set B̃0 = B0 ◦A
1/2
x0 and Ω̃0 = {|B̃0| > 0}. Since |B̃0|

is a minimizer of the Alt-Caffarelli functional and is one-homogeneous, the dimension reduction
procedure in [30, Lemma 4.5] applies and yields to a minimizer u : Rd∗ → R of the Alt-Caffarelli
functional such that Hs(Sing(∂{u > 0})) > 0, in contradiction with [30, Lemma 4.1]. �
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