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REGULARITY OF OPTIMAL SETS FOR SOME FUNCTIONAL INVOLVING EIGENVALUES OF AN OPERATOR IN DIVERGENCE FORM

In this paper we consider minimizers of the functional min λ1(Ω) + • • • + λ k (Ω) + Λ|Ω|, : Ω ⊂ D open where D ⊂ R d is a bounded open set and where 0 < λ1(Ω) ≤ • • • ≤ λ k (Ω) are the first k eigenvalues on Ω of an operator in divergence form with Dirichlet boundary condition and with Hölder continuous coefficients. We prove that the optimal sets Ω * have finite perimeter and that their free boundary ∂Ω * ∩ D is composed of a regular part, which is locally the graph of a C 1,α -regular function, and a singular part, which is empty if d < d * , discrete if d = d * and of Hausdorff dimension at most dd * if d > d * , for some d * ∈ {5, 6, 7}.

where D ⊂ R d is a bounded open set (a box), Λ is a positive constant and 0 < λ 1 (Ω) ≤ • • • ≤ λ k (Ω) stand for the first k eigenvalues (counted with the due multiplicity) of an operator in divergence form. More precisely, we consider the operator -b(x) -1 div(A x ∇•), where the matrixvalued function A : D → Sym + d is uniformly elliptic with Hölder continuous coefficients, and b ∈ W 1,∞ (D) is a positive Lipschitz continuous function bounded away from 0. This means that for every eigenvalue λ i (Ω) there exists an eigenfunction u i ∈ H 1 0 (Ω) such that div(A∇u i ) = λ i (Ω) b u i in Ω u i = 0 on ∂Ω.

(1.2)

We now state in the following theorem the main result of this present paper. (1) Reg(∂Ω * ∩ D) is locally the graph of a C 1,α -regular function. If, moreover, a i,j ∈ C k,δ (D) and b ∈ C k-1,δ (D) for some δ ∈ (0, 1) and k ≥ 1, then Reg(∂Ω * ∩ D) is locally the graph of a C k+1,α -regular function.

(2) for a universal constant d * ∈ {5, 6, 7} (see Definition 4.19), Sing(∂Ω * ∩ D) is:

• empty if d < d * ; • discrete if d = d * ; • of Hausdorff dimension at most (d -d * ) if d > d * .
The problem (1.1) can also be considered in the class of the quasi-open sets, but we stress out that it is the same thing. Indeed, preliminary results, inspired by the work of David and Toro in [START_REF] David | Regularity of almost minimizers with free boundary[END_REF] (see also [START_REF] David | Regularity for almost-minimizers of variable coefficient Bernoulli-type functionals[END_REF]), have already been obtained in [START_REF] Trey | Lipschitz continuity of the eigenfunctions on optimal sets for functionals with variable coefficients[END_REF] in view to prove the regularity of the minimizers to (1.1). The main results of the paper are stated in theorem 1.2, where the author shows that if a quasi-open set Ω * is solution, among the class of quasi-open sets, to the problem (1.1), then the first k eigenfunctions on Ω * are locally Lipschitz continuous, and hence Ω * is an open set.

One of the main interest and difficulty of this paper is to consider an operator with variable coefficients. This case is more involved than the case of the Laplacian and has been studied only recently. We notice that our result is quite general and applies, for instance, to an operator with drift -∆ + ∇Φ • ∇ or in the case of a manifold.

The first result concerning the regularity of the free boundary of optimal sets (for spectral functionals) was established by Briançon and Lamboley in [START_REF] Briançon | Regularity of the optimal shape for the first eigenvalue of the Laplacian with volume and inclusion constraints[END_REF], where they consider the minimization problem of the first eigenvalue of the Dirichlet Laplacian with inclusion and volume constraints. More precisely, using the strategy developed by Alt and Caffarelli in [START_REF] Alt | Existence and regularity for a minimum problem with free boundary[END_REF], they prove that the optimal sets for the problem

min λ 1 (Ω) : Ω ⊂ D open, |Ω| ≤ m (1.3)
have C ∞ -regular boundary (inside D) up to a singular set whose (d-1)-Hausdorff measure is zero (provided that the box is bounded and connected). In [START_REF] Mazzoleni | Regularity of the optimal sets for some spectral functionals[END_REF], Mazzoleni, Terracini and Velichkov study the regularity properties of sets that minimize the sum of the first k eigenvalues of the Dirichlet Laplacian among all sets of fixed volume, that is, minimizers of

min λ 1 (Ω) + • • • + λ k (Ω) : Ω ⊂ R d open, |Ω| = 1 . (1.4)
They prove that the regular part of the boundary of an optimal set is C ∞ -regular and, thanks to a dimension's reduction argument due to Weiss (see [START_REF] Weiss | Partial regularity for a minimum problem with free boundary[END_REF]), that the singular set is of dimension at most dd * , hence improving the smallness estimate of the singular set. Meanwhile, Kriventsov and Lin consider in [START_REF] Kriventsov | Regularity for shape optimizers: the nondegenerate case[END_REF] a more general functional and prove that minimizers of min F (λ

1 (Ω), • • • , λ k (Ω)) + |Ω| : Ω ⊂ R d open .
are C ∞ -regular up to a singular set of dimension at most d -3. Here, F : R k → R is a function of class C 1 which is strictly increasing in each variable (∂ i F ≥ c > 0). In [START_REF] Kriventsov | Regularity for shape optimizers: the degenerate case[END_REF], they also obtain a regularity result in the case where the functional F is non-decreasing in its parameters, which hence apply to minimizers of min

F (λ k 1 (Ω), • • • , λ kn (Ω)) + |Ω| : Ω ⊂ R d quasi-open ,
where the first eigenvalue is not necessary involved. Notice that in these problems, the main difficulty is to deal with higher eigenvalues since they have a min-max variational characterization. On the other hand, regularity problems involving different operators have been studied only recently. In [START_REF] Russ | Existence and regularity of optimal shapes for elliptic operators with drift[END_REF], the authors prove the regularity of the minimizers to (1.3) where λ 1 now stands for the first eigenvalue of a drifted operator -∆ + ∇Φ • ∇ with Dirichlet boundary condition (for some Φ ∈ W 1,∞ (D, R d )), and therefore extend the result of Briançon and Lamboley. We highlight that the operator considered in this paper (see (1.2)) is more general than the operator with drift -∆ + ∇Φ • ∇ which corresponds to the special case where A = e -Φ Id and b = e -Φ . Recently, Lamboley and Sicbaldi successfully treated the minimization problem (1.3) in the manifold setting with the Laplace-Beltrami operator (see [START_REF] Lamboley | Existence and regularity of Faber Krahn minimizers in a Riemannian manifold[END_REF]). They prove the existence of an optimal set among quasi-open set provided that the manifold M is compact and that optimal sets are C ∞ -regular if M is connected (and C ∞ ) up to (dd * )-dimensional singular set.

Let us also mention that some regularity results have also been established in the context of multiphase shape optimization problems involving eigenvalues (see, for instance, [START_REF] Conti | An optimal partition problem related to nonlinear eigenvalues[END_REF], [START_REF] Caffarelli | An optimal partition problem for eigenvalues[END_REF], [START_REF] Ramos | Extremality conditions and regularity of solutions to optimal partition problems involving Laplacian eigenvalues[END_REF], [START_REF] Spolaor | Free boundary regularity for a multiphase shape optimization problem[END_REF])

We notice that we deal with a penalized functional and that it is natural to expect that a similar result also holds with a volume constraint as in (1.3), but we will not address this question in this paper since our main motivation is to treat the case of an operator with variable coefficients.

1.1. Preliminaries and notations. We will use the following notations throughout this paper. We fix a matrix-valued function A = (a ij ) ij : D → Sym + d , where Sym + d denotes the family of the real positive symmetric d × d matrices, which is uniformly elliptic and has Hölder continuous coefficients. Precisely, there exist positive constants δ A , c A > 0 and λ A ≥ 1 such that

|a ij (x) -a ij (y)| ≤ c A |x -y| δ A ,
for every i, j and x, y ∈ D ;

(1.5)

1 λ 2 A |ξ| 2 ≤ ξ • A x ξ = d i,j=1 a ij (x)ξ i ξ j ≤ λ 2 A |ξ| 2 , for every x ∈ D and ξ ∈ R d . (1.6) 
We also fix a Lipschitz continuous function b ∈ W 1,∞ (D) which we assume to be positive and bounded away from zero: there exists c b > 0 such that

c -1 b ≤ b(x) ≤ c b for almost every x ∈ D. (1.7) 
We set m = b dx and we define, for any an open set Ω ⊂ D, the spaces L 2 (Ω; m) = L 2 (Ω) and H 1 0 (Ω; m) = H 1 0 (Ω) endowed respectively with the norms

u L 2 (Ω;m) = Ω u 2 dm 1/2 and u H 1 (Ω;m) = u L 2 (Ω;m) + ∇u L 2 (Ω) .
By the Lax-Milgram theorem and the Poincaré inequality, for every

f ∈ L 2 (Ω, m) there exists a unique solution u ∈ H 1 0 (Ω, m) to the problem -div(A∇u) = f b in Ω, u ∈ H 1 0 (Ω, m). The resolvent operator R Ω : f ∈ L 2 (Ω; m) → H 1 0 (Ω; m) ⊂ L 2 (Ω; m) defined as R Ω (f ) = u is continuous, self-adjoint, positive and compact (since H 1 0 (Ω; m) is compactly embedded into L 2 (Ω; m), because b ≥ c b > 0)
. Therefore, the operator -b -1 div(A∇•) in Ω has a discrete spectrum which consists in real and positive eigenvalues denoted by

0 < λ 1 (Ω) ≤ λ 2 (Ω) ≤ • • • ≤ λ k (Ω) ≤ • • •
For every λ i (Ω) there exists an eigenfunction

u i ∈ H 1 0 (Ω; m) satisfying -div(A∇u i ) = λ i (Ω) b u i in Ω,
where the PDE is intended in the weak sense, that is

Ω A∇u i • ∇ϕ dx = λ i (Ω) Ω u i ϕ dm for every ϕ ∈ H 1 0 (Ω).
Moreover, the eigenfunctions (u i ) i∈N (on an open set Ω ⊂ D) will always be normalized with respect to the norm • L 2 (Ω;m) and form an orthonormal system in L 2 (Ω; m), that is

Ω u i u j dm = δ ij := 1 if i = j, 0 if i = j.
We denote by H 1 0 (Ω, R k ) the space of all vector-valued function U = (u 1 , . . . , u k ) : Ω → R k such that u i ∈ H 1 0 (Ω), endowed with the norm

U H 1 (Ω) = U L 2 (Ω) + ∇U L 2 (Ω) = k i=1 u i L 2 (Ω) + ∇u i L 2 (Ω) .
Similarly, we will also need the following norms for

U = (u 1 , . . . , u k ) : Ω → R k U L 1 (Ω) = k i=1 u i L 1 (Ω) and U L ∞ (Ω) = k sup i=1 u i L ∞ (Ω) . Moreover, for U = (u 1 , . . . , u k ) : Ω → R k we set |U | = u 2 1 + • • • + u 2 k , |∇U | 2 = |∇u 1 | 2 + • • • + |∇u k | 2 and A∇U • ∇U = A∇u 1 • ∇u 1 + • • • + A∇u k • ∇u k . Finally, for f = (f 1 , . . . , f k ) ∈ L 2 (Ω, R k ) we say that U = (u 1 , . . . , u k ) ∈ H 1 0 (Ω, R k ) is solution to the equation -div(A∇U ) = f in Ω, U ∈ H 1 0 (Ω, R k ) if, for every i = 1, . . . , k, the component u i is solution to the equation -div(A∇u i ) = f i in Ω, u i ∈ H 1 0 (Ω).
We summarize in the following theorem the main results obtained in [START_REF] Trey | Lipschitz continuity of the eigenfunctions on optimal sets for functionals with variable coefficients[END_REF]. (1.6) and (1.7). Then the minimum

Theorem 1.2. Let D ⊂ R d be a bounded open set and let A : D → Sym + d , b ∈ L ∞ (D) satisfying (1.5),
min λ 1 (Ω) + • • • + λ k (Ω) + Λ|Ω| : Ω ⊂ D quasi-open (1.8)
is achieved. Moreover, the vector U = (u 1 , . . . , u k ) ∈ H 1 0 (Ω * , R k ) of the first k normalized eigenfunctions on any optimal set Ω * for (1.8) satisfies:

(1) U ∈ L ∞ (D) and is a locally Lipschitz continuous function in D. In particular, Ω * is an open set. (2) U satisfies the following quasi-minimality property: for every C 1 > 0 there exist constants ε ∈ (0, 1) and C > 0, depending only on d, k, C 1 , U L ∞ and |D|, such that

D A∇U • ∇U dx + Λ|{|U | > 0}| ≤ 1 + C U -Ũ L 1 D A∇ Ũ • ∇ Ũ dx + Λ|{| Ũ | > 0}|, (1.9) for every Ũ ∈ H 1 0 (D, R k ) such that U -Ũ L 1 ≤ ε and Ũ L ∞ ≤ C 1 . 1.2.
General strategy and main points of the proof. Throughout this paper we will always denote by Ω * an optimal set to the problem (1.1). In section 2, we reduce to the case where A = Id and prove that the vector U = (u 1 , . . . , u k ) of the first k eigenfunctions on Ω * is, in some new set of coordinates, a quasi-minimizer of the Dirichlet energy in small balls centered at the origin (Proposition 2.2). We notice that we perform a change of coordinates near every point x ∈ ∂Ω * and hence that one of the main issue is to deal with functions U x = U •F x which depends on the point x (see (2.3) for the definition of F x ). We adapt the strategy developed by David and Toro in [START_REF] David | Regularity of almost minimizers with free boundary[END_REF] to prove that U x is non-degenerate (Proposition 2.3). Using an idea of Kriventsov and Lin in [START_REF] Kriventsov | Regularity for shape optimizers: the nondegenerate case[END_REF], we show that the first eigenfunction u 1 is non degenerate in Ω * 1 (Proposition 2.6), where Ω * 1 denotes any connected component of Ω * where u 1 is positive. From this result we then deduce a uniform growth of u 1 near the boundary ∂Ω * 1 and a density estimate for Ω * 1 . We notice that, unlike in [START_REF] Mazzoleni | Regularity of the optimal sets for some spectral functionals[END_REF], the optimal set Ω * may not be connected. Indeed, the geometrical constraint imposed by the box D and the presence of variable coefficients do not allow to translate the connected components of Ω * and hence to prove as in [START_REF] Mazzoleni | Regularity of the optimal sets for some spectral functionals[END_REF] that Ω * is connected. However, we prove in Proposition 3.7 that the connected components of Ω * cannot meet inside D. Therefore, in order to prove Theorem 1.1 it is enough to prove only the regularity of Ω * 1 (see also remark 1.3 below). This result comes from the structure of the blow-up limits studied in section 3, where we in particular prove that the blow-up limits are one-homogeneous functions and solution of the Alt-Caffarelli functional.

Section 4 is then dedicated to the regularity of Ω * 1 . Since we work with the first k eigenfunctions in a new set of coordinates, namely with U x , we define the regular part of Ω * 1 in a different way than in [START_REF] Mazzoleni | Regularity of the optimal sets for some spectral functionals[END_REF] (see Definition 4.4). Then, we show as in [START_REF] Mazzoleni | Regularity of the optimal sets for some spectral functionals[END_REF] that we can reduce to a one-phase problem, for which the regularity of the free boundary was proved by De Silva (see [START_REF] Silva | Free boundary regularity for a problem with right hand side[END_REF] and [START_REF] Spolaor | Free boundary regularity for a multiphase shape optimization problem[END_REF]Appendix A]). To this aim, we prove that Ω * 1 is a non-tangentially accessible (NTA) domain near the regular points and we prove a boundary Harnack principle for the eigenfunctions U = (u 1 , . . . , u k ) on Ω * 1 . More precisely, we prove that for every x 0 on the regular part of the boundary ∂Ω * 1 , the limits

g i (x 0 ) = lim x→x 0 u i (x)
u 1 (x) exist and define Hölder continuous functions g i : ∂Ω * 1 ∩ B r (x 0 ) → R. We notice that one difficulty comes from the presence of the function b and that it is the only point in the paper where the Lipschitz continuity assumption on b is needed. As a consequence, we deduce that u 1 satisfies the following optimality condition

A 1 /2 x [∇u 1 (x)] = g(x) √ Λ for every x ∈ ∂Ω * 1 ∩ B r (x 0 )
, where g is an Hölder continuous function depending on the functions g i (see (4.16)). In subsection 4.5 we provide an estimation of the singular set by proving that we can apply the strategy developed by Weiss in [START_REF] Weiss | Partial regularity for a minimum problem with free boundary[END_REF] to the case of an operator in divergence form (see Lemmas 4.21 and 4.22).

Remark 1.3 (On the connected components of the optimal sets). We highlight that it is enough to prove the regularity of any connected component of Ω * where the first eigenfunction is positive. Indeed, if Ω * 0 is a connected component of Ω * , then there exists k 0 > 0 such that λ i (Ω * 0 ) ∈ {λ 1 (Ω * ), . . . , λ k (Ω * )} for any i ∈ {1, . . . , k 0 } and λ i (Ω * 0 ) / ∈ {λ 1 (Ω * ), . . . , λ k (Ω * )} for any i > k 0 . Using that σ(Ω * ) = σ(Ω * 0 ) ∪ σ(Ω * \ Ω * 0 ), it is straightforward to check that Ω * 0 is solution to the problem (1.1) with k = k 0 and D = D \ (Ω * \ Ω * 0 ). Notice also that the connected components of Ω * cannot meet inside D (see Proposition 3.7).

Moreover, we notice that Ω * has at most k connected components. Indeed, denote by Ω * i a connected component of Ω * such that λ i (Ω * ) ∈ σ(Ω * i ). Then, it turns out that the first k eigenvalues on Ω * coincide with the first k eigenvalues on ∪ k i=1 Ω * i and therefore we have |∪ k i=1 Ω * i | = |Ω * | (since otherwise the optimality of Ω * gives a contradiction).

General properties

In this section we study some properties of the optimal sets Ω * to the problem (1.1) and of its first normalized eigenfunctions U = (u 1 , . . . , u k ). We first prove that the optimal sets have finite perimeter and that the vector U is non degenerate. We then prove that the first eigenfunction u 1 is non degenerate on any connected component Ω * 1 of Ω * where u 1 is positive. As a consequence, we show that Ω * 1 satisfies a density estimate. We conclude the section with an almost Weiss type formula for U .

2.1. Finiteness of the perimeter. We prove that the De Giorgi perimeter of any optimal set to the problem (1.1) is finite. We follow the strategy introduced by Bucur in [START_REF] Bucur | Minimization of the k-th eigenvalue of the Dirichlet Laplacian[END_REF] for the eigenvalues of the Dirichlet Laplacian (see also [START_REF] Mazzoleni | Regularity of the free boundary for the vectorial Bernoulli problem[END_REF] and [START_REF] Russ | Existence and regularity of optimal shapes for elliptic operators with drift[END_REF]). Together with a density estimate for the optimal sets Ω * (Proposition 2.9), this provides a kind of smallness of the singular set of Ω * (see section 4.5). The proof of this result will also be used to obtain a non-degeneracy property of the first eigenfunction u 1 on Ω * 1 (Lemma 2.4).

Proposition 2.1. Let Ω * ⊂ D be an optimal set for the problem (1.1). Then Ω * is a set finite perimeter in R d .

Proof. Let U = (u 1 , . . . , u k ) ∈ H 1 0 (Ω * , R k ) be the vector of normalized eigenfunctions on Ω * . We prove that {|u i | > 0} is a set of locally finite perimeter in D for every i ∈ {1, . . . , k}. This then implies that the optimal set Ω * = {|U | > 0} has finite perimeter. Let x ∈ ∂{|u i | > 0} ∩ D and assume for simplicity that x = 0. Let r > 0 be small, t ∈ (0, 1) and η ∈ C ∞ c (B r ) be such that 0 ≤ η ≤ 1, {η = 1} = B r/2 and ∇η L ∞ ≤ C/r. We set

u i,t = η(u i -t) + -η(u i + t) -+ (1 -η)u i =    u i -tη if u i ≥ t, (1 -η)u i if |u i | < t, u i + tη if u i ≤ t,
and U t = (u 1 , . . . , u i,t , . . . , u k ) ∈ H 1 0 (D, R k ), where u i,t stands at the i-th position. Notice that we have U -

U t ∈ H 1 0 (B r , R k ) and U -U t L 1 ≤ t|B r |.
We denote by C any constant which does not depend on x or t. By the quasi-minimality property of the function U in Theorem 1.2 we have

Br A∇u i • ∇u i -A∇u i,t • ∇u i,t + Λ |{|U | > 0} ∩ B r | -|{|U t | > 0} ∩ B r | ≤ C U -U t L 1 D A∇U t • ∇U t ≤ Ct. (2.1) Since η = 1 in B r/2 we have ∇u i,t = ∇u i ½ {|u i |≥t} in B r/2 and hence B r/2 A∇u i • ∇u i -A∇u i,t • ∇u i,t = {0<|u i |<t}∩B r/2 A∇u i • ∇u i .
On the other hand, with an easy computation we get

Br\B r/2 A∇u i • ∇u i -A∇u i,t • ∇u i,t = {u i ≥t}∩(Br \B r/2 ) 2tA∇u i • ∇η -t 2 A∇η • ∇η + {|u i |<t}∩(Br \B r/2 ) η(2 -η)A∇u i • ∇u i -u 2 i A∇η • ∇η + 2(1 -η)u i A∇u i • ∇η + {u i ≥-t}∩(Br \B r/2 ) -2tA∇u i • ∇η -t 2 A∇η • ∇η ≥ -Ct.
Moreover, since η = 1 in B r \B r/2 and by definition of u i,t we have

|{|U | > 0} ∩ B r | -|{|U t | > 0} ∩ B r | = |{|U | > 0} ∩ B r/2 | -|{|U t | > 0} ∩ B r/2 | = |{0 ≤ |u i | ≤ t} ∩ {|U | > 0} ∩ B r/2 | ≥ |{0 < |u i | < t} ∩ B r/2 |.
Then, we now get from (2.1) that

{0<|u i |<t}∩B r/2 A∇u i • ∇u i + Λ|{0 < |u i | < t} ∩ B r/2 | ≤ Ct (2.2)
and therefore we have

{0<|u i |<t}∩B r/2 |∇u i | ≤ {0<|u i |<t}∩B r/2 |∇u i | 2 + 1 ≤ max{λ 2 A , Λ -1 } {0<|u i |<t}∩B r/2 A∇u i • ∇u i + Λ|{0 < |u i | < t} ∩ B r/2 | ≤ Ct.
We now use the co-area formula to rewrite the above inequality as

1 t t 0 Per {|u i | > s}; B r/2 ds ≤ C.
Therefore, there exists a sequence t n ↓ 0 such that Per {|u i | > t n }; B r/2 ≤ C. Passing to the limit we get that Per {|u i | > 0}; B r/2 ≤ C, which concludes the proof.

2.2.

Freezing of the coefficients and non-degeneracy of the eigenfunctions. The properties of the eigenfunctions on optimal sets in the case where A = Id have already been studied in [START_REF] Mazzoleni | Regularity of the optimal sets for some spectral functionals[END_REF]. Thus, we perform a change of variables in order to reduce to this case. We prove in the spirit of [START_REF] Spolaor | Free boundary regularity for a multiphase shape optimization problem[END_REF]Lemma 3.2] (see also [START_REF] Trey | Lipschitz continuity of the eigenfunctions on optimal sets for functionals with variable coefficients[END_REF]Proposition 2.4]) that the vector of the first k eigenfunctions is a local quasi-minimizer at the origin of the Alt-Caffarelli functional. We then prove a non-degeneracy property for the vector of the first k eigenfunctions at the boundary of the optimal set. We start with some notations which will be used throughout this paper. For U ∈ H 1 (R d , R k ) and r > 0 we set

J(U, r) = Br |∇U | 2 + Λ|{|U | > 0} ∩ B r |.
For x ∈ D we define the function

F x : R d → R d by F x (ξ) := x + A 1 /2 x [ξ], ξ ∈ R d , (2.3) 
where A

1 /2

x ∈ Sym + d denotes the square root matrix of A x (notice that, by assumption, the matrix

A x is positive definite). Moreover, for U = (u 1 , . . . , u k ) ∈ H 1 (R d , R k ) we set U x = U • F x and u x,i = u i • F x , i = 1, . . . , k. Proposition 2.2. Let U ∈ H 1 0 (D, R k
) be the vector of the first k normalized eigenfunctions on Ω * . There exist constants r 0 ∈ (0, 1) and C > 0 such that, if x ∈ D and r ≤ r 0 satisfy

B λ A r (x) ⊂ D, then J(U x , r) ≤ (1 + Cr δ A )J( Ũ , r) + C U x -Ũ L 1 (2.4) for every Ũ ∈ H 1 (R d , R k ) such that U x -Ũ ∈ H 1 0 (B r , R k ) and Ũ L ∞ ≤ U x L ∞ . Proof. Let V ∈ H 1 0 (D, R k ) be such that Ũ = V • F x and set ρ = λ A r. Observe that U -V ∈ H 1 0 (F x (B r
)) and use V as a test function in (1.9) to get

Fx(Br ) A∇U • ∇U + Λ|{|U | > 0} ∩ F x (B r )| ≤ (1 + Cr d ) Fx(Br) A∇V • ∇V + Λ|{|V | > 0} ∩ F x (B r )| + C U -V L 1 . (2.5)
Moreover, since A has Hölder continuous coefficients and is uniformly elliptic, we have

J(U x , r) ≤ det(A -1 /2 x ) (1 + dc A λ 2 A ρ δ A ) Fx(Br ) A∇U • ∇U + Λ|{|U | > 0} ∩ F x (B r )| . (2.6) 
Similarly, we have the estimate from below

J( Ũ , r) ≥ det(A -1 /2 x ) (1 -dc A λ 2 A ρ δ A ) Fx(Br ) A∇V • ∇V + Λ|{|V | > 0} ∩ F x (B r )| . (2.7)
Combining (2.6), (2.5) and (2.7) we get

J(U x , r) ≤ (1 + dc A λ 2 A ρ δ A ) 1 + Cr d 1 -dc A λ 2 A ρ δ A J( Ũ , r) + C U x -Ũ L 1
which gives (2.4).

We now prove a non-degeneracy property of the function U x = U • F x using the approach of David an Toro in [START_REF] David | Regularity of almost minimizers with free boundary[END_REF] which is a variant of the result in [START_REF] Alt | Existence and regularity for a minimum problem with free boundary[END_REF].

Proposition 2.3 (Non-degeneracy of U x ). Let U = (u 1 , . . . , u k ) be the vector of the k first eigenfunctions on Ω * . Let K ⊂ Ω * be a compact set. There exist constants η = η K > 0 and r K > 0 such that for every x ∈ K and r ≤ r K we have

k i=1 - ∂Br |u x,i | ≤ ηr =⇒ U = 0 in B r/4λ A (x).
We will need the following Lemma which, loosely speaking, provides an estimate of the nonsubharmonicity of U x . Lemma 2.4. Let U = (u 1 , . . . , u k ) be the vector of the k first eigenfunctions on Ω * . Let K ⊂ Ω * be a compact set. There exists constants C K > 0 and r K > 0 such that for every x ∈ K and r ≤ r K we have

k i=1 - Br (u x,i -h r,i ) + 2 ≤ C K r 2+δ A , (2.8) 
where h x,i denotes the harmonic extension of the trace of u x,i to ∂B r .

Proof. We define the vector Ũ = (ũ 1 , . . . , ũk )

∈ H 1 (R d , R k ) by ũi = min(u x,i , h x,i ) in B r u x,i in D\B r .
Then, using Ũ as a test function in Proposition 2.2 we get (since U x is locally Lipschitz continuous in D and because we have the inclusion

{| Ũ | > 0} ⊂ {|U x | > 0} since ũi ≤ u x,i ) Br |∇U x | 2 ≤ (1 + Cr δ A ) Br |∇ Ũ | 2 + Cr δ A |{| Ũ | > 0} ∩ B r | + C U x -Ũ L 1 (Br) ≤ (1 + Cr δ A ) Br |∇ Ũ | 2 + Cr d+δ A .
(2.9)

We now set V i = {h r,i < u x,i } for every i = 1, . . . , k, so that by (2.9) we have

k i=1 V i (|∇u x,i | 2 -|∇h r,i | 2 ) ≤ Cr δ A Br |∇ Ũ | 2 + Cr d+δ A . (2.10) 
Moreover, we have the following equalities

Br (|∇ũ i | 2 -|∇u x,i | 2 ) = V i (|∇h x,i | 2 -|∇u x,i | 2 ) = - V i |∇(u x,i -h r,i )| 2 . (2.11)
Indeed, the first equality follows from the definition of V i . For the second one, we set v i = max(u x,i , h r,i ) in B r and v i = u x,i elsewhere, so that by harmonicity of h r,i we have

0 = Br ∇h r,i • ∇(v i -h r,i ) = V i ∇u x,i • ∇(v i -h r,i ) = V i ∇h r,i • ∇u x,i - V i |∇h r,i | 2 ,
which gives (2.11). Finally, combining Poincaré inequality, (2.11), (2.10) and using that U x is Lipschitz continuous we get

k i=1 - Br (u x,i -h r,i ) + 2 ≤ Cr 2 k i=1 - Br |∇(u x,i -h r,i ) + | 2 = Cr 2-d k i=1 V i |∇(u x,i -h r,i )| 2 = Cr 2-d k i=1 V i (|∇u x,i | 2 -|∇h r,i | 2 ) ≤ Cr 2-d Cr δ A Br |∇ Ũ | 2 + Cr d+δ A = Cr 2+δ A - Br |∇ Ũ | 2 + 1 ≤ Cr 2+δ A - Br |∇U x | 2 + 1 ≤ Cr 2+δ A .
Proof of Proposition 2.3. Let η > 0 be small and assume that

k i=1 - ∂Br |u x,i | ≤ ηr. (2.12)
We first claim that for every i ∈ {1, . . . , k} we have |u x,i | < 4 d+1 ηr in B r/2 . Suppose by contradiction that there exists ξ 0 ∈ B r/2 such that |u x,i (ξ 0 )| ≥ 4 d+1 ηr. Since u x,i is L-Lipschitz continuous (with L depending on K), we have for every ξ ∈ B ηr/L (ξ 0 )

|u x,i (ξ)| ≥ |u x,i (ξ 0 )| -|u x,i (ξ) -u x,i (ξ 0 )| ≥ (4 d+1 -1)ηr. (2.13) Moreover, if η ≤ L/4, by Poisson formula we have for every ξ ∈ B ηr/L (ξ 0 ) ⊂ B 3r/4 |h r,i (ξ)| = r 2 -|ξ| 2 dω d r ∂Br u x,i ( ξ) |ξ -ξ| d dH d-1 ( ξ) ≤ r dω d 4 r d ∂Br |u x,i | ≤ 4 d ηr. (2.14)
Therefore, using (2.13) and (2.14) it follows that

- Br (u x,i -h r,i ) + 2 ≥ η L d - B ηr/L (ξ 0 ) (u x,i -h r,i ) 2 ≥ η L d - B ηr/L (ξ 0 ) (|u x,i | -|h r,i |) 2 ≥ η L d (4 d+1 -1 -4 d )ηr 2 ≥ η d+2 L d r 2 , which is in contradiction with (2.8) if r is small enough. Now, let ϕ ∈ C ∞ (B r ) be a smooth function such that 0 ≤ ϕ ≤ 1, ϕ = 1 in B r/2 , ϕ = 0 in B r \B 3r/4 and |∇ϕ| ≤ Cr. We set for i = 1, . . . , k ũi = (u x,i -4 d+1 ηrϕ) + -(u x,i + 4 d+1 ηrϕ) - in B r u x,i in D\B r , and Ũ = (ũ 1 , . . . , ũk ) ∈ H 1 (R d , R k ). Notice that we have U x -Ũ ∈ H 1 (B r , R k ).
Moreover, by the preceding claim we have the inclusion

{| Ũ | > 0} ∩ B r ⊂ {|U x | > 0} ∩ (B r \B r/2
). Therefore, Proposition 2.2 applied to the vector Ũ gives

Λ|{|U x | > 0} ∩ B r/2 | ≤ Br (|∇ Ũ | 2 -|∇U x | 2 ) + Cr δ A J( Ũ , r) + C U x -Ũ L 1 (Br) . (2.15) 
By the definition of Ũ and since

U x is L-Lipschitz continuous, we have in the ball B r |∇ Ũ | 2 ≤ |∇U x | 2 + 2.4 d+1 kηrL|∇ϕ| + 4 2(d+1) η 2 r 2 |∇ϕ| 2 ≤ |∇U x | 2 + Cη in B r .
Since once again U x is Lipschitz continuous, (2.15) now gives

Λ|{|U x | > 0} ∩ B r/2 | ≤ Cηr d + Cr δ A (L 2 + Cη)r d + Λω d r d + CLr d+1 ≤ C(η + r δ A )r d . (2.16)
Then, using once again the claim, we deduce that

k i=1 B r/2 |u x,i | = k i=1 B r/2 ∩{|Ux|>0} |u x,i | ≤ 4 d+1 kηr|{|U x | > 0}∩B r/2 | ≤ C(η+r δ A )ηr d+1 . (2.17)
Let y ∈ B r/4λ A (x). We will find by induction a sequence of radii r j such that the estimate (2.12) holds with the radius r j and at the point y. Let us choose r 1 ∈ ( r

8λ 2 A , r 4λ 2 A 
) such that

∂Br 1 k i=1 |u y,i | ≤ 8λ 2 A r r/4λ 2 A r/8λ 2 A ds ∂Bs k i=1 |u y,i |
Then, by (2.17) (and since

F -1 y • F x (B r/4λ 2 A ) ⊂ B r/2 ) we get k i=1 - ∂Br 1 |u y,i | ≤ Cr 1-d k i=1 ∂Br 1 |u y,i | ≤ Cr -d k i=1 r/4λ 2 A r/8λ 2 A ds ∂Bs |u y,i | ≤ Cr -d k i=1 B r/4λ 2 A |u y,i | = Cr -d k i=1 F -1 x •Fy(B r/4λ 2 A ) |u x,i | | det(F -1 y • F x )| ≤ Cr -d k i=1 B r/2 |u x,i | ≤ C(η + r δ A )ηr 1 ≤ ηr 1 ,
where the last inequality holds if η and r are small enough. Therefore, by the same above argument we use to get (2.16) and (2.17) we now deduce that

|{|U y | > 0} ∩ B r 1 /2 | ≤ C(η + r δ A 1 )r d 1 and k i=1 B r 1 /2 |u y,i | ≤ C(η + r δ A 1 )ηr d+1 1 .
We now choose

r 2 ∈ ( r 1 4 , r 1 2 ) such that k i=1 - ∂Br 2 |u y,i | ≤ Cr -d 1 k i=1 r 1 /2 r 1 /4 ds ∂Bs |u y,i | ≤ Cr -d 1 k i=1 B r 1 /2 |u y,i | ≤ C(η + r δ A 1 )ηr 1 ≤ ηr 1 ,
provided that η and r are small enough. By induction it follows that there exists a sequence of radii (r j ) j such that r j ∈ (

r j 4 , r j 
2 ) and

|{|U y | > 0} ∩ B r j /2 | ≤ C(η + r δ A j )ηr j . (2.18) 
Now, if |U y |(0) > 0, then |U y | > 0 in a neighborhood of 0 since U y is continuous, which is in contradiction with (2.18) for η small enough and j big enough. Hence |U |(y) = |U y |(0) = 0 for every y ∈ B r/4λ A (x), that is, U = 0 in B r/4λ A (x).

Remark 2.5 (L ∞ non-degeneracy of U ). A consequence of Proposition 2.3 is that U also enjoys the following non-degeneracy property: there exist η = η K > 0 and r K > 0 such that for every x ∈ K and r ≤ r K we have

U L ∞ (B λ A r (x)) ≤ ηr =⇒ U = 0 in B r/4λ A (x).
2.3. Non-degeneracy of the first eigenfunction and density estimate. We prove that the first eigenfunction u 1 on an optimal set Ω * to (1.1) is non degenerate at every point of the boundary of Ω * 1 , where Ω * 1 denotes any connected component of Ω * where u 1 is positive. The proof follows an idea of Kriventsov and Lin taken from [START_REF] Kriventsov | Regularity for shape optimizers: the nondegenerate case[END_REF]. As a consequence, we obtain that u 1 behaves like the distance function to the boundary and also a density estimate for the optimals sets. Obviously, these properties only hold in Ω * 1 , that is, where u 1 is positive. However, as pointed out in Remark 1.3, it is enough to restrict ourselves to this case in order to get the regularity of the whole optimal set Ω * . Proposition 2.6 (Non-degeneracy of u 1 ). There exists a constant

C 1 > 0 such that C 1 u 1 ≥ |U | in Ω * 1 .
We first recall the following standard result which is a consequence of [29, Lemma 2.1].

Lemma 2.7. Let Ω ⊂ D be a (non-empty) quasi-open set, f ∈ L ∞ (D), f ≥ 0, and u ∈ H 1 (D) be such that u ≥ 0 on ∂Ω and div(A∇u) ≤ f in Ω. Then, there exists a constant C > 0, depending only on d and λ A , such that

u - L ∞ (Ω) ≤ C|{u < 0} ∩ Ω| 2 /d f L ∞ (Ω) . Proof. Set Ω -= {u < 0} ∩ Ω and notice that u ∈ H 1 0 (Ω -) Let v ∈ H 1 0 (Ω -) be the solution of div(A∇v) = f in Ω -. By the weak maximum principle we have v ≤ 0 in Ω -(since f ≥ 0) and v ≤ u in Ω -; in particular, u -≤ v -= -v in Ω -.
The proof now follows from Lemma 2.1 in [START_REF] Trey | Lipschitz continuity of the eigenfunctions on optimal sets for functionals with variable coefficients[END_REF] (applied to -v).

Proof of Proposition 2.6. We first claim that div(A∇|U |) ≥ -C|U | in Ω * . Let ϕ ∈ H 1 0 (Ω * ), ϕ ≥ 0. We use an approximation by mollifiers A ε = (a ε ij ) where a ε ij = a ij * ρ ε , and we compute

div(A ε ∇|U |), ϕ = - i,j a ε ij ∂ i |U |∂ j ϕ = - i,j,l a ε ij ∂ i u l u l |U | ∂ j ϕ = i,j,l ∂ j (a ε ij ∂ i u l ) u l |U | ϕ + i,j,l a ε ij ∂ i u l ∂ j u l |U | ϕ = - i,j,l a ε ij ∂ i u l ∂ j u l |U | ϕ + i,j,l,p a ε ij ∂ i u l ∂ j u l |U | - u l u p |U | 3 ∂ j u p ϕ.
Therefore, passing to the limit as ε → 0 we get

div(A∇|U |), ϕ ≥ l div(A∇u l ) u l |U | ϕ + l,p 1 |U | 3 u 2 l A∇u l • ∇u l -u l u p A∇u l • ∇u p ϕ ≥ - l λ l (Ω * ) b u 2 l |U | ϕ ≥ -λ k (Ω * )c b |U |ϕ, (2.19) 
which proves the claim. Let r 0 > 0 be small (to be chosen soon) and set

Ω r = {x ∈ Ω * 1 : |U (x)| < r} for every r > 0. Since u 1 > 0 in Ω * 1 we have m := inf{u 1 (x) : x ∈ Ω * 1 , |U (x)| = r 0 } > 0. We set M 0 = m -1 r 0 and v 0 = M 0 u 1 -|U |.
The claim implies that div(A∇v 0 ) ≤ C|U | in Ω r 0 . Moreover, by construction of v 0 we have v 0 ≥ 0 on ∂Ω r 0 . Therefore, by Lemma 2.7 we get

-inf Ωr 0 v 0 = v - 0 L ∞ (Ωr 0 ) ≤ C|{v 0 < 0} ∩ Ω r 0 | 2 /d U L ∞ (Ωr 0 ) .
Then, from (2.2) (and a compactness argument) we have |Ω r 0 | ≤ Cr 0 so that we deduce from the above inequality thatinf Ωr 0 v 0 ≤ Cr

1+ 2 /d 0
for some C > 0 independent of r 0 . Therefore, in Ω r 0 \Ω r 0 /2 we have

M 0 u 1 = |U | + v 0 ≥ |U | -Cr 1+ 2 /d 0 ≥ 1 -2Cr 2 /d 0 |U | in Ω r 0 \Ω r 0 /2 .
We now choose r 0 small enough so that 4Cr

2 /d 0 ≤ 1 and set M 1 = 1 -2Cr 2 /d 0 -1 M 0 and v 1 = M 1 u 1 -|U |. It follows that v 1 ≥ 0 in Ω r 0 \Ω
r 0 /2 ; in particular we have v 1 ≥ 0 on ∂Ω r 0 /2 and hence the above argument now applies to v 1 in Ω r 0 /2 . Therefore, an induction gives that

v k ≥ 0 in Ω r k-1 \Ω r k for every k ≥ 1, where we have set v k = M k u 1 -|U |, M k = 1 -2Cr 2 /d k-1 -1 M k-1 and r k = 2 -k r 0 . Moreover, we have log(M k ) = log(M 0 ) - k i=1 log 1 -2Cr 2 /d i-1 ≤ log(M 0 ) + C k i=1 2 -2i/d ≤ C + log(M 0 ) and hence M k ≤ CM 0 . It follows that |U | ≤ M k u 1 ≤ CM 0 u 1 in Ω r k-1 \Ω r k for every k ≥ 0 and therefore that |U | ≤ CM 0 u 1 in Ω r 0 . On the other hand, since inf Ω * 1 \Ωr 0 u 1 > 0, there exists M > 0 such that |U | ≤ M u 1 in Ω *
1 \Ω r 0 . This completes the proof.

We now prove that the first eigenfunction on an optimal set has the same growth than the distance function near the boundary. This property will be useful to prove that the boundaries of blow-up sets Hausdorff convergence to the boundary of the blow-up limit set. Proposition 2.8 (Uniform growth of u 1 at the boundary). Let K ⊂ D be a compact set. There exist constants c K > 0 and r K > 0 such that the following growth condition holds

u 1 (x) ≥ c K dist(x, ∂Ω * 1 ) for every x ∈ Ω * 1 ∩ K such that dist(x, ∂Ω * 1 ) ≤ r K . Proof. We set r = (2λ A ) -1 dist(x, ∂Ω *
1 ) and we denote by h x,1 the harmonic extension of the trace of u x,1 to ∂B r . By non degeneracy of u 1 (Propositions 2.6 and 2.3) we have (and because h x,1 is harmonic)

h x,1 (0) = - ∂Br h x,1 = - ∂Br u x,1 ≥ 1 C 1 - ∂Br |U x | ≥ η √ kC 1 r =: η 1 r. (2.20)
Therefore, with the triangle inequality we get

u 1 (x) = u x,1 (0) ≥ h x,1 (0) -|u x,1 (0) -h x,1 (0)| ≥ η 1 r -|u x,1 (0) -h x,1 (0)|. (2.21)
We now want to estimate |u x,1 (0)h x,1 (0)| is terms of r. We apply Proposition 2.2 to the test function Ũ = (h x,1 , u x,2 , . . . , u x,k ) and get (since u x,1 is Lipschitz continuous and that

|u x,1 | > 0 in B r ) Br |∇(u x,1 -h x,1 )| 2 = Br |∇u x,1 | 2 -|∇h x,1 | 2 ≤ Cr d+δ A . (2.22)
Now, let τ > 0 be small to be chosen soon. Since u x,1 and h x,1 are Lipschitz continuous, we have for every ξ ∈ B τ r

|u x,1 (0) -h x,1 (0)| ≤ |u x,1 (0) -u x,1 (ξ)| + |u x,1 (ξ) -h x,1 (ξ)| + |h x,1 (ξ) -h x,1 (0)| ≤ Cτ r + |u x,1 (ξ) -h x,1 (ξ)|.
Moreover, using Poincaré inequality to the function u x,1h x,1 and the estimate (2.22), we have

|u x,1 (0) -h x,1 (0)| ≤ Cτ r + - Bτr |u x,1 (ξ) -h x,1 (ξ)| ≤ Cτ r + τ -d - Br |u x,1 (ξ) -h x,1 (ξ)| ≤ Cτ r + Cτ -d r- Br |∇(u x,1 (ξ) -h x,1 (ξ))| ≤ Cτ r + Cτ -d r - Br |∇(u x,1 (ξ) -h x,1 (ξ))| 2 1/2 ≤ Cτ + Cτ -d r δ A /2 r ≤ η 1 2 r,
where the last inequality holds by choosing first τ small enough and then r K (depending on τ ) small enough. In view of (2.21), Proposition 2.6 now follows.

Proposition 2.9 (Density estimate for Ω * 1 ). Let U be the vector of the first k normalized eigenfunctions on Ω * and let K ⊂ D be a compact set. There exist constants r K > 0 and c K ∈ (0, 1) such that for every

x 0 ∈ ∂Ω * 1 ∩ K and r ≤ r K we have c K |B r | ≤ |Ω * 1 ∩ B r (x 0 )| ≤ (1 -c K )|B r |. Proof.
We first prove that we have

c|B r | ≤ |{|U x 0 | > 0} ∩ B r | ≤ (1 -c)|B r |.
(2.23)

The first inequality follows from the non-degeneracy of U x 0 (Proposition (2.3)) since it implies that there exists ξ ∈ ∂B r/2 such that k i=1 |u x 0 ,i (ξ)| ≥ ηr 2 , and hence, using that U x 0 is L-Lipschitz continuous, that

|U x 0 | ≥ 1 √ k k i=1 |u x 0 ,i | ≥ ηr 4 √ k in B ηr 4L (ξ).
For the second estimate, consider the test function Ũ = (h r,1 , u x 0 ,2 , . . . , u

x 0 ,k ) ∈ H 1 (R d , R k ),
where h r,1 denotes as usual the harmonic extension of u x 0 ,1 to ∂B r , and note that by the strong maximum principle we have h r,1 > 0 in B r since u x 0 ,1 is non-negative. Then, by Proposition 2.2 applied to Ũ, and since u x 0 ,1 is L-Lipschitz continuous, we get

Br |∇u x 0 ,1 | 2 -|∇h r,1 | 2 ≤ Λ|{|U x 0 | = 0} ∩ B r | + Cr δ A J( Ũ , r) + C u x 0 ,1 -h r,1 L 1 ≤ Λ|{|U x 0 | = 0} ∩ B r | + Cr d+δ A . (2.24)
Moreover, by Proposition 2.6 and the harmonicity of h r,1 (and also because u x 0 ,1 (0) = 0), we have

|u x 0 ,1 (0) -h r,1 (0)| = h r,1 (0) = - ∂Br h r,1 = - ∂Br u x 0 ,1 ≥ η 1 r, (2.25) 
where η 1 is defined as in (2.20). Now, let τ > 0 be small. Since h r,1 is 2L-Lipschitz continuous we have for every ξ ∈ B τ r

|u x 0 ,1 (0) -h r,1 (0)| ≤ |u x 0 ,1 (0) -u x 0 ,1 (ξ)| + |u x 0 ,1 (ξ) -h r,1 (ξ)| + |h r,1 (ξ) -h r,1 (0)| ≤ 3Lτ r + |u x 0 ,1 (ξ) -h r,1 (ξ)|.
Then, averaging over B τ r and using (2.25) leads to

η 1 r ≤ |u x 0 ,1 (0) -h r,1 (0)| ≤ 3Lτ r + - Bτr |u x 0 ,1 -h r,1 |. (2.26)
Moreover, by Poincaré inequality and Cauchy-Schwarz inequality we have

- Bτr |u x 0 ,1 -h r,1 | ≤ τ -d - Br |u x 0 ,1 -h r,1 | ≤ τ -d r- Br |∇(u x 0 ,1 -h r,1 )| ≤ τ -d r 1-d 2 Br |∇(u x 0 ,1 -h r,1 )| 2 1/2 = τ -d r 1-d 2 Br |∇u x 0 ,1 | 2 -|∇h r,1 | 2 1/2
which combined with (2.24) and (2.26), and after some rearrangements, gives

2Λr -d |{|U x 0 | = 0} ∩ B r | ≥ η 2 1 τ 2d -Cτ 2d+2 -Cr δ A .
Then choose τ , depending only on η 1 and C, small enough so that Cτ 2d+2 ≤ η 2 1 τ 2d /2 and then choose r, depending only on η 1 , τ and C, such that Cr δ A ≤ η 2 1 τ 2d /4 to conclude the proof. Now, by a change of variables, the density estimate in (2.23) gives

c|A 1 /2 x 0 [B r ]| ≤ |{|U | > 0} ∩ A 1 /2 x 0 [B r ]| ≤ (1 -c)|A 1 /2 x 0 [B r ]|. Then set c K = λ -2d
A c so that (because we have the inclusions

B λ -1 A r ⊂ A 1 /2 x 0 [B r ] ⊂ B λ A r ) c K |B λ A r | = c|B λ -1 A r | ≤ c|A 1 /2 x 0 [B r ]| ≤ |{|U | > 0} ∩ A 1 /2 x 0 [B r ]| ≤ |{|U | > 0} ∩ B λ A r |.
Similarly we have

|{|U | = 0} ∩ B λ A r | ≥ |{|U | = 0} ∩ A 1 /2 x 0 [B r ]| = |A 1 /2 x 0 [B r ]| -|{|U | > 0} ∩ A 1 /2 x 0 [B r ]| ≥ c|A 1 /2 x 0 [B r ]| ≥ c|B λ -1 A r | = c K |B λ A r |, which concludes the proof.
2.4. Weiss monotonicity formula. We prove a monotonicity formula for the vector of the first k eigenfunctions on an optimal set Ω * . The proof follows the idea of [30, Theorem 1.2] (see also [START_REF] Mazzoleni | Regularity of the optimal sets for some spectral functionals[END_REF]Proposition 3.1]). For every U ∈ H 1 (R d , R k ) and r > 0 we define

W (U, r) = 1 r d J(U, r) - 1 r d+1 ∂Br |U | 2 .
Proposition 2.10. Let U = (u 1 , . . . , u k ) be the vector of the first k normalized eigenfunctions on Ω * and let K ⊂ D be a compact set. Then there exist constants r K > 0 and C K > 0 such that for every x 0 ∈ ∂Ω * ∩ K and every r ≤ r K the function

U x 0 = U • F x 0 = (u x 0 ,1 , . . . , u x 0 ,k ) satisfies d dr W (U x 0 , r) ≥ 1 r d+2 k i=1 ∂Br |x • ∇u x 0 ,i -u x 0 ,i | 2 dx -C K r δ A -1 .
(2.27)

Moreover, the limit lim r→0 + W (U x 0 , r) exists and is finite.

Proof. We first compare U x 0 with its one-homogeneous extension in the ball B r , namely the one-homogeneous function Ũ = (ũ 1 , . . . , ũk ) :

B r → R k defined by Ũ (ξ) = |ξ| r U x 0 r |ξ| ξ . We have Br |∇ Ũ | 2 = Br |∇ θ U x 0 | 2 + |U x 0 | 2 r 2 r |ξ| ξ dξ = r d ∂Br |∇ θ U x 0 | 2 + |U x 0 | 2 r 2
and for the measure term

|{| Ũ | > 0} ∩ B r | = r d H d-1 ({|U | > 0} ∩ ∂B r ).
Then, we use Ũ as a test function in (2.4) which gives

J(U x 0 , r) ≤ J( Ũ , r) + C r δ A J( Ũ , r) + U x 0 -Ũ L 1 ≤ r d ∂Br |∇ θ U x 0 | 2 + |U x 0 | 2 r 2 + Λ r d H d-1 ({|U | > 0} ∩ ∂B r ) + C 0 r d+δ A (2.28) for some C 0 ≥ C(2ω d ∇U x 0 2 L ∞ + Λω d + 2ω d ∇U x 0 L ∞ )
where the constant C is given by Proposition 2.2. We now compute the derivative of W (U x 0 , r) and use (2.28) to obtain

d dr W (U x 0 , r) = 1 r d ∂Br |∇U x 0 | 2 + ΛH d-1 ({|U x 0 | > 0} ∩ ∂B r ) - d r d+1 J(U x 0 , r) + 2 r d+2 ∂Br |U x 0 | 2 - 1 r d+1 k i=1 ∂Br 2u x 0 ,i ∂u x 0 ,i ∂ν ≥ 1 r d ∂Br ∂U x 0 ∂ν 2 + 1 r d+2 ∂Br |U x 0 | 2 - 1 r d+1 k i=1 ∂Br 2u x 0 ,i ∂u x 0 ,i ∂ν -dC 0 r δ A -1 = 1 r d+2 k i=1 ∂Br r 2 ∂u x 0 ,i ∂ν 2 + u 2 x 0 ,i -2ru x 0 ,i ∂u x 0 ,i ∂ν -dC 0 r δ A -1 = 1 r d+2 k i=1 ∂Br |x • ∇u x 0 ,i -u x 0 ,i | 2 -dC 0 r δ A -1 ,
which is (2.27). This also proves that the function r → W (U x 0 , r) + d δ A C 0 r δ A is non-decreasing and hence that the limit of W (U x 0 , r) as r tend to 0 exists. Moreover, this limit is finite since we have the bound

W (U x 0 , r) ≥ - 1 r d+1 ∂Br |U x 0 | 2 ≥ -dω d ∇U x 0 2 L ∞
for every r > 0.

As a consequence of the previous result, we get a monotonicity formula for global minimizers of the Alt-Caffarelli functional. Definition 2.11. We say that

U ∈ H 1 (R d , R k ) is a global minimizer of the (vectorial) Alt- Caffarelli functional J(U ) = R d |∇U | 2 + Λ|{|U | > 0}| if J(U, r) ≤ J( Ũ , r) for every r > 0 and every Ũ ∈ H 1 (R d , R k ) ∩ L ∞ (R d , R k ) such that U -Ũ ∈ H 1 0 (B r , R k ).
Proposition 2.12. Let U = (u 1 , . . . , u k ) ∈ H 1 (R d , R k ) be a global minimizer of the Alt-Caffarelli functional J such that U (0) = 0. Then we have

d dr W (U, r) ≥ 1 r d+2 k i=1 ∂Br |x • ∇u i -u i | 2 .
In particular, if r → W (U, r) is constant in (0, +∞), then U is a one-homogeneous function.

Proof. Since U is a global minimizer of J, it satisfies (2.4) with C = 0 and hence the computations in the proof of Proposition 2.10 hold with C 0 = 0. The last claim of the proposition follows from the fact that x • ∇u i = u i in R d implies that u i is one-homogeneous.

Blow-ups

In this section we study the blow-ups limits (at the origin) of the functions U x 0 = U • F x 0 , where x 0 ∈ ∂Ω * ∩ D. Throughout this section, U will denote the first k normalized eigenfunctions on the optimal set Ω * = {|U | > 0}. We prove that the blow-up limits are one-homogeneous and global minimizers of the Alt-Caffarelli functional. As a consequence, we also prove that the boundaries of two connected components of Ω * have an empty intersection in D.

Let (x n ) n∈N be a sequence of points on ∂Ω * ∩ D converging to some x 0 ∈ ∂Ω * ∩ D and let (r n ) n∈N be a sequence of positive radii tending to 0. Since U is Lipschitz continuous, up to extracting a subsequence, the sequence defined by

B xn,rn (ξ) = 1 r n U (x n + r n ξ), ξ ∈ R d ,
converges locally uniformly to a Lipschitz continuous function B 0 ∈ H 1 loc (R d , R k ). We will often set B n = B xn,rn and deal with this sequence in a new set of coordinates, that is, we will consider the sequence Bn defined by

Bn (ξ) = B n • A 1 /2 xn (ξ) = 1 r n U xn (r n ξ), ξ ∈ R d .
Definition 3.1. If B xn,rn converges locally uniformly in R d to some B 0 , we say that B xn,rn is a blow-up sequence (with fixed center if x n = x 0 for every n ≥ 1). If the center is fixed, we say that B 0 is a blow-up limit at x 0 . We denote by BU U (x 0 ) the space of all blow-up limits at x 0 .

We start with a standard result on the convergence of the blow-up sequences and we give the details of the proofs for convenience of the reader. Recall that Ω * 1 stands for any connected component of Ω * where the first eigenfunction u 1 is positive. Proposition 3.2 (Convergence of the blow-up sequences). Let (x n ) n∈N ⊂ ∂Ω * ∩ D be a sequence converging to some x 0 ∈ ∂Ω * ∩ D, r n → 0 and assume that the blow-up sequence B n := B xn,rn converges locally uniformly to

B 0 ∈ H 1 loc (R d , R k ).
Then, up to a subsequence, we have (1) The sequence B n converges to B 0 strongly in

H 1 loc (R d , R k ).
(2) The sequences of characteristic functions ½ Ωn converges in L 1 loc (R d ) to the characteristic function ½ Ω 0 , where we have set

Ω n = {|B n | > 0} and Ω 0 = {|B 0 | > 0}.
(3) The function B 0 is non-degenerate: there exits a constant η 0 > 0 such that for every every y ∈ Ω 0 we have B 0 L ∞ (Br (y)) ≥ η 0 r for every r > 0.

(4) If x 0 ∈ ∂Ω * 1 ∩ D, then the sequences of closed sets Ω n and Ω c n converge locally Hausdorff to Ω 0 and Ω c 0 respectively.

Proof. Notice that it is enough to prove that the sequence Bn = 

B n • A 1 /2 xn strongly converges to B0 := B 0 • A 1 /2 x 0 in H 1 loc (R d , R k ) and that ½ {| Bn|>0} converges to ½ {| B0 |>0} in L 1 loc (R d )
|∇ Bn | 2 + Λ|{| Bn | > 0} ∩ B r | ≤ Br |∇ B0 | 2 + Λ|{| B0 | > 0} ∩ B r |. (3.1) Let ϕ ∈ C ∞ c (R d ) be a smooth function such that 0 ≤ ϕ ≤ 1, {ϕ = 1} = B r and ϕ = 0 outside B 2r . We set Ũn = ϕ B0 + (1 -ϕ) Bn ∈ H 1 (R d , R k
) and notice that we have

U x 0 -Ũ rn n ∈ H 1 0 (B 2rrn , R k ) where Ũ rn n (ξ) = r n Ũn 1 r n ξ , ξ ∈ R d .
Then, using Ũ rn n as a test function in Proposition 2.2 and by a change of variables we get

B 2r |∇ Bn | 2 + Λ|{| Bn | > 0} ∩ B 2r | ≤ (1 + C(rr n ) δ A ) B 2r |∇ Ũn | 2 + Λ|{| Ũn | > 0} ∩ B 2r | + r n C ϕ( B0 -Bn ) L 1 . (3.2) 
Since we have Ũn = Bn in {ϕ = 0} and Ũn = B0 in {ϕ = 1}, it follows that

|{| Ũn | > 0} ∩ B 2r | ≤ |{| Bn | > 0} ∩ {ϕ = 0} ∩ B 2r | + |{| B0 | > 0} ∩ {ϕ = 1}| + |{0 < ϕ < 1}|, so that (3.2) now gives {ϕ>0} |∇ Bn | 2 -|∇ Ũn | 2 + Λ |{| Bn > 0}∩ {ϕ > 0}|-|{ B0 | > 0}∩ {ϕ = 1}| ≤ Λ|{0 < ϕ < 1}| + C(rr n ) δ A B 2r |∇ Ũn | 2 + Λ|{| Ũn | > 0} ∩ B 2r | + r n C ϕ( B0 -Bn ) L 1 . (3.3)
Now, since Bn converges strongly in L 2 (B 2r ) we have that lim sup

n→+∞ {ϕ>0} |∇ Bn | 2 -|∇ Ũn | 2 = lim sup n→+∞ {ϕ>0} |∇ Bn | 2 -|∇(ϕ B0 + (1 -ϕ) Bn )| 2 = lim sup n→+∞ {ϕ>0} |∇ Bn | 2 -|( B0 -Bn )∇ϕ + (1 -ϕ)∇ Bn + ϕ∇ B0 | 2 = lim sup n→+∞ {ϕ>0} (1 -(1 -ϕ) 2 )|∇ Bn | 2 -2ϕ(1 -ϕ)∇ Bn • ∇ B0 -ϕ 2 |∇ B0 | 2 (3.4) = lim sup n→+∞ {ϕ>0} (1 -(1 -ϕ) 2 ) |∇ Bn | 2 -|∇ B0 | 2 ,
and since ∇ Bn converges weakly in L 2 ({0 < ϕ < 1}) to B0 we have that

{0<ϕ<1} (1 -(1 -ϕ) 2 )|∇ B0 | 2 ≤ lim sup n→+∞ {0<ϕ<1} (1 -(1 -ϕ) 2 )|∇ Bn | 2 . (3.5)
Therefore, (3.5) and (3.4) now entail that lim sup 

n→+∞ {ϕ=1} |∇ Bn | 2 -|∇ B0 | 2 ≤ lim sup n→+∞ {ϕ>0} (1 -(1 -ϕ) 2 ) |∇ Bn | 2 -|∇ B0 | 2 ≤ lim sup n→+∞ {ϕ>0} |∇ Bn | 2 -|∇ Ũn | 2 . ( 3 
|∇ Bn | 2 -|∇ B0 | 2 + Λ |{| Bn | > 0} ∩ {ϕ = 1}| -|{| B0 | > 0} ∩ {ϕ = 1}| ≤ lim sup n→+∞ {ϕ>0} |∇ Bn | 2 -|∇ Ũn | 2 + Λ |{| Bn | > 0} ∩ {ϕ > 0}| -|{| B0 | > 0} ∩ {ϕ = 1}| ≤ Λ|{0 < ϕ < 1}|.
Since we can choose ϕ so that |{0 < ϕ < 1}| is arbitrary small, this proves (3.1) and concludes the proof of parts (1) and (2) of Proposition 3.2. We now prove part (3). Let y ∈ Ω 0 and r > 0. There exists z ∈ B r (y) such that |B 0 |(z) > 0, and hence such that |B n |(z) > 0 for n large enough. Therefore, U = 0 in B rrn (x n + r n z) and hence, by the non-degeneracy of U (Remark 2.5), we get that

r n B n L ∞ (B 4λ 2 A r (z)) = U L ∞ (B 4λ 2 A rrn (xn+rnz)) ≥ 4λ A ηrr n .
In particular, there exists

z n ∈ B 4λ 2 A r (z) such that |B n |(z n ) ≥ 4λ A ηr. Up to a subsequence, z n converges to some z ∞ ∈ B 4λ 2
A r (z) and, since B n uniformly converges to B 0 , we have that

B 0 L ∞ (B (4λ 2 A +1)r (y)) ≥ B 0 L ∞ (B 4λ 2 A r (z)) ≥ |B 0 |(z ∞ ) = lim n→+∞ |B n |(z n ) ≥ 4λ A ηr,
which gives (3). The proof of the Hausdorff convergence of the free boundaries is standard and follows from the non-degeneracy of U and B 0 , and the growth property of U near the boundary of Ω * 1 (see Proposition 2.8). Lemma 3.3 (Optimality of the blow-up limits). Let (x n ) n∈N ⊂ ∂Ω * ∩ D be a sequence converging to some x 0 ∈ ∂Ω * ∩ D, r n → 0 and assume that the blow-up sequence B n := B xn,rn converges to some

B 0 ∈ H 1 loc (R d , R k ) in the sense of Proposition 3.2. Then B0 := B 0 • A 1 /2
x 0 is a global minimizer of the Alt-Caffarelli functional J (see definition 2.11).

Proof. Let r > 0 and Ũ

∈ H 1 loc (R d , R k ) ∩ L ∞ (R d , R k ) be such that B0 -Ũ ∈ H 1 0 (B r , R k ). Let η ∈ C ∞ c (B r ) be such that 0 ≤ η ≤ 1 and set Bn = B n • A 1 /2 xn and V n = Ũ + (1 -η)( Bn -B0 ). Consider the test function V n ∈ H 1 (R d , R k ) defined by V n (ξ) = r n V n (r -1 n ξ) and note that U x 0 - V n ∈ H 1 0 (B rrn , R k ) (since we have Bn -V n ∈ H 1 0 (B r , R k ))
. By Proposition 2.2 applied to V n and a change of variables it follows that

Br |∇ Bn | 2 + Λ|{| Bn | > 0} ∩ B r | ≤ (1 + C(rr n ) δ A ) Br |∇V n | 2 + Λ|{|V n | > 0} ∩ B r | + Cr n Bn -V n L 1 (Br) . (3.7)
Note that from (1) and (2) of Proposition 3.2 we deduce that V n converges strongly in H 1 loc to Ũ and that ½ {|V n|>0} converges strongly in

L 1 loc to ½ {| Ũ |>0} . Moreover, since V n = Ũ in {η = 1},
we have the estimate

|{|V n | > 0} ∩ B r | ≤ |{| Ũ | > 0} ∩ B r | + |{η = 1} ∩ B r |.
Therefore, passing to the limit as n → ∞ in (3.7) we get

Br |∇ B0 | 2 + Λ|{| B0 | > 0} ∩ B r | ≤ Br |∇ Ũ | 2 + Λ |{| Ũ | > 0} ∩ B r | + |{η = 1} ∩ B r | .
Since we can choose η such that that |{η = 1} ∩ B r | is arbitrary small, this gives that J( B0 , r) ≤ J( Ũ , r) and concludes the proof.

As a consequence of the Weiss almost-monotonicity formula we get that the blow-up sequences with fixed center converge to a one-homogeneous function.

Lemma 3.4 (Homogeneity of the blow-up limits). For every x 0 ∈ ∂Ω * ∩ D, the blow-up limits B 0 ∈ BU U (x 0 ) are one-homogeneous functions.

Proof. Let B n = B x 0 ,rn converging (in the sense of Proposition 3.2) to B 0 . In particular, Bn converges strongly in H 1 loc and in L 1 loc to B0 which implies that lim n→+∞ W ( Bn , r) = W ( B0 , r). Moreover, by Proposition 2.10 the limit lim s→0 + W (U x 0 , s) exists and is finite. Therefore, we have for every r > 0

W ( B0 , r) = lim n→+∞ W ( Bn , r) = lim n→+∞ W (U x 0 , rr n ) = lim s→0 + W (U x 0 , s), (3.8) 
which says that the function r → W ( B0 , r) is constant on (0, +∞). Then, it follows from Lemma 3.3 and Proposition 2.12 that B0 , and hence B 0 , is one-homogeneous.

We now reduce to the scalar case. More precisely, we prove that for any blow-up limit

B 0 ∈ BU U (x 0 ), the function | B0 | = |B 0 •A 1 /2
x 0 | is a global minimizer of the scalar Alt-Caffarelli functional

H 1 loc (R d ) ∋ u → R d |∇u| 2 + Λ|{u > 0}|. (3.9) Lemma 3.5. Let x 0 ∈ ∂Ω * ∩ D, B 0 ∈ BU U (x 0 ) and set B0 = B 0 • A 1 /2
x 0 . Then there exists a unit 

vector ξ ∈ ∂B 1 ⊂ R k such that B0 = | B0 |ξ. Proof. Set S = ∂B 1 ∩ {| B0 | > 0}. By Lemma 3.

Proof. Let r > 0 and ũ

∈ H 1 loc (R d ) ∩ L ∞ (R d ) be such that | B0 | -ũ ∈ H 1 0 (B r ). Since B0 = | B0 |ξ by Lemma 3.5, we have that B0 -ũ ξ = (| B0 | -ũ) ξ ∈ H 1 0 (B r , R k )

and hence, by optimality of B0 (see Lemma 3.3) we have

Br |∇| B0 || 2 + Λ|{| B0 | > 0} ∩ B r | = J( B0 , r) ≤ J(ũ ξ, r) = Br |∇ũ| 2 + Λ|{|ũ| > 0} ∩ B r |.
We conclude this section with a consequence of the one-homogeneity and the optimality of | B0 | which states that two connected components of an optimal set cannot meet inside D. It is then enough to prove the regularity of one connected component Ω * 1 of Ω * and hence to reduce to a one-phase free boundary problem (see Proposition 4.17). Proposition 3.7. Denote by (Ω * i ) l i=1 the l ≤ k connected componenents of an optimal set Ω * for (1.1). Then, we have ∂Ω * i ∩ ∂Ω * j ∩ D = ∅ for every i, j ∈ {1, . . . , l}, i = j. 

|∇| B0 || = √ Λ on {x d = 0}. Therefore we have | B0 (ξ)| = √ Λ ξ + d and hence ψ 0 (ξ) = |∇ψ(0)| ξ d ≤ | B0 (ξ)| = √ Λ ξ + d
, which completes the proof when ψ touches by below. The case when ψ touches by above is similar. 4.2. Regular and singular parts of the optimal sets. In this section we prove that the regular part of an optimal set Ω * (see Definition 4.4) is relatively open in ∂Ω * .

For any set Ω ⊂ R d we define the blow-ups sets Ω x,r of Ω by

Ω x,r = Ω -x r , x ∈ R d , r > 0.
Given Lebesgue measurable sets (Ω n ) n∈N and Ω in R d , we say that Ω n locally converges to Ω, and we write Ω n loc --→ Ω, if the sequence of characteristics functions ½ Ωn converges in L 1 loc to ½ Ω . 

(∂Ω ∩ D) = x 0 ∈ ∂Ω ∩ D : ∃ν x 0 ∈ ∂B 1 ⊂ R d , Ω x 0 ,r loc --→ {y ∈ R d : y • ν x 0 ≤ 0} as r → 0 + .
The singular part of Ω in D is then define by Sing(∂Ω ∩ D) = ∂Ω ∩ D \Reg(∂Ω ∩ D).

Lemma 4.5. Let U = (u 1 , . . . , u k ) be the vector of the first k normalized eigenfunctions on Ω * . Then, (1) For every x 0 ∈ ∂Ω * ∩ D the limit

Θ Ux 0 (0) := lim r→0 + |{|U x 0 | > 0} ∩ B r | |B r | (4.3)
exists and we have

Θ Ux 0 (0) = 1 Λω d lim r→0 + W (U x 0 , r). (4.4) 
(2) There exists δ > 0 such that, for every x 0 ∈ ∂Ω * ∩ D we have Θ Ux 0 (0) ∈ 1 2 ∪ 1 2 + δ, 1 . Proof. Let (r n ) n∈N be an infinitesimal sequence and set Bn (ξ) = 1 rn U x 0 (r n ξ). Up to a subsequence, Bn converges to some B0 (in the sense of Proposition 3.2). Since B0 is one homogeneous (Lemma 3.4) and harmonic in {| B0 | > 0} (Lemma 3.3) we have

Br |∇ B0 | 2 = 1 r ∂Br | B0 | 2 ,
and hence, for every r > 0, we get that

W ( B0 , r) = 1 r d Br |∇ B0 | 2 + Λ r d |{| B0 | > 0} ∩ B r | - 1 r d+1 ∂Br | B0 | 2 = Λω d |{| B0 | > 0} ∩ B r | |B r | . (4.5) 
On the other hand, by (3.8) we have that W ( B0 , r) = lim s→0 + W (U x 0 , s) for every r > 0 and therefore 1 Λω d lim

s→0 + W (U x 0 , s) = |{| B0 | > 0} ∩ B r | |B r | for every r > 0. (4.6) 
Then, using that Bn converges to B0 in

L 1 loc (R d ), it follows that 1 Λω d lim s→0 + W (U x 0 , s) = |{| B0 | > 0} ∩ B 1 | |B 1 | = lim n→∞ |{| Bn | > 0} ∩ B 1 | |B 1 | = lim n→∞ |{|U x 0 | > 0} ∩ B rn | |B rn | .
This proves part (1) of the Lemma since the above equalities hold for any sequence r n ↓ 0. From (4.6) and (4.4) it follows that the density of the cone {| B0 | > 0} at 0 is given by lim

r→0 + |{| B0 | > 0} ∩ B r | |B r | = Θ Ux 0 (0) ∈ [0, 1]. Moreover, | B0 | is a non-trivial (part (3) of Proposition 3.
2), one-homogeneous (Lemma 3.4) and harmonic function in {| B0 | > 0} (Lemma 3.6). Therefore, the density of {| B0 | > 0} at 0 cannot be strictly less than 1 2 (otherwise, setting S = {| B0 | > 0} ∩ ∂B 1 , the two first parts of [24, Remark 4.8] respectively give λ 1 (S) ≤ d -1 and λ 1 (S) > d -1)), cannot belong to 1 2 , 1 2 + δ) for some universal constant δ > 0 (see [START_REF] Mazzoleni | Regularity of the optimal sets for some spectral functionals[END_REF]Lemma 5.3]) and is less than 1c by Proposition 2.9.

We will also need the following characterization of the regular part. Lemma 4.6. We have

Reg(∂Ω * ∩ D) = x 0 ∈ ∂Ω * ∩ D : Θ Ux 0 (0) = 1 2 ,
where Θ Ux 0 (0) is define in (4.3).

Proof. Let x 0 ∈ ∂Ω * ∩ D, r n ↓ 0 and B n = B x 0 ,rn be a blow-up sequence converging (in the sense of Proposition 3.2) to some B 0 ; in particular, Ω * x 0 ,rn = {|B n | > 0} locally converges to {|B 0 | > 0}. By (4.4), (4.6) and a change of variables (because

B0 = B 0 • A 1 /2 x 0 ) we have Θ Ux 0 (0) = |{| B0 | > 0} ∩ B 1 | |B 1 | = |{|B 0 | > 0} ∩ A 1 /2 x 0 [B 1 ]| |A 1 /2 x 0 [B 1 ]| . (4.7) If x 0 ∈ Reg(∂Ω * ∩ D), then {|B 0 | > 0} is an half-space and it follows by (4.7) that Θ Ux 0 (0) = 1/2. Reciprocally, assume that Θ Ux 0 (0) = 1/2. It is enough to prove that {| B0 | > 0} is an half- space, since then {|B 0 | > 0} is also an half-space. Set S = {| B0 | > 0} ∩ ∂B 1 and notice that H d-1 (S) = dω d /2 since | B0 | is one homogeneous. Assume by contradiction that S = S 0 ⊔ S 1 is the disjoint union of two sets S 0 , S 1 ⊂ ∂B 1 . Since | B0 | is one homogeneous and harmonic on {| B0 | > 0} it follows that ϕ = | B0 | |∂B 1 is solution of -∆ S d-1 ϕ = (d -1)ϕ in S 0 , ϕ = 0 on ∂S 0 ,
which implies that λ 1 (S 0 ) ≤ d -1. On the other hand, since H d-1 (S 0 ) < dω d /2, we also have that λ 1 (S 0 ) > d -1 (see [START_REF] Mazzoleni | Regularity of the optimal sets for some spectral functionals[END_REF]Remark 4.8]), which is a contradiction. Therefore, S is connected and hence λ 1 (S) = d -1. This implies that S is, up to a rotation, the half-sphere ∂B 1 ∩ {x d > 0} and hence that {| B0 | > 0} is the half-space {x d > 0}. 

2 + δ ≤ Θ Ux n (0) = 1 Λω d lim s→0 + W (U xn , s) = 1 Λω d lim s→0 + ϕ n (s) ≤ 1 Λω d ϕ n (r).
Passing to the limit as n → ∞ and using that lim n→∞ W (U xn , r) = W (U x 0 , r), it follows that for every r > 0

1 2 + δ ≤ 1 Λω d lim n→∞ ϕ n (r) = 1 Λω d W (U x 0 , r) + Cr δ A .
But the right hand side converges to Θ Ux 0 (0) = 1/2 as r → 0 which is a contradiction 4.3. The regular part is Reifenberg flat. We prove that the regular part of Ω * 1 is locally Reifenberg flat. Recall that by Proposition 4.7, Reg(∂Ω

* 1 ∩ D) is relatively open in ∂Ω * 1 .
Roughly speaking, a domain is said to be Reifenberg flat if its boundary can be well approximated by hyperplanes. We give here a precise definition. Definition 4.8. Let Ω ⊂ R d be an open set and let δ, R > 0. We say that Ω is a (δ, R)-Reifenberg flat domain if:

(1) For every x ∈ ∂Ω there exist an hyperplane H = H x,R containing x and a unit vector

ν = ν x,R ∈ ∂B 1 ⊂ R d orthogonal to H such that {y + tν ∈ B R (x) : y ∈ H, t ≥ 2δR} ⊂ Ω, {y -tν ∈ B R (x) : y ∈ H, t ≥ 2δR} ⊂ R d \Ω.
(2) For every x ∈ ∂Ω and every r ∈ (0, R] there exists an hyperplane H = H x,r containing x such that dist H (∂Ω ∩ B r (x), H ∩ B r (x)) < δr.

Proposition 4.9. Let δ > 0. Then, for every x 0 ∈ Reg(∂Ω * 1 ∩ D) there exists R = R(x 0 ) > 0 such that Ω * 1 is (δ, R)-Reifenberg flat in a neighborhood of x 0 . Proof. Assume by contradiction that there exists δ > 0 and x 0 ∈ Reg(∂Ω * 1 ∩ D) such that, for every R > 0, Ω * 1 is not (δ, R)-Reifenberg flat in any neighborhood of x 0 . Then, there exist sequences x n → x 0 , x n ∈ ∂Ω * 1 , and r n ↓ 0 such that one of the following assertion holds i) For every hyperplane H containing x n and every ν ∈ ∂B 1 we have either

{y +tν ∈ B rn (x n ) : y ∈ H, t ≥ 2δr n } Ω * 1 or {y -tν ∈ B rn (x n ) : y ∈ H, t ≥ 2δr n } R d \Ω * 1 . ii) For every hyperplane containing x n we have dist H (∂Ω * 1 ∩ B rn (x n ), H ∩ B rn (x n )) ≥ δr n . We consider the blow-up sequence B n (ξ) = 1 rn U (x n + r n ξ) and set Ω n = {|B n | > 0}.
Then the above assumptions can be equivalently reformulated as i') For every hyperplane H containing 0 and every ν ∈ ∂B 1 we have either

{y + tν ∈ B 1 : y ∈ H, t ≥ 2δ} Ω n or {y -tν ∈ B 1 : y ∈ H, t ≥ 2δ} R d \Ω n .
ii') For every hyperplane containing 0 we have

dist H (∂Ω n ∩ B 1 , H ∩ B 1 ) ≥ δ.
Notice that x n ∈ Reg(∂Ω 

(r) = lim r→0 + W (U xn , r) = Λω d Θ Ux n (0) = Λω d 2 .
We now fix r > 0 and ε > 0. Since lim s→0 + W (U x 0 , s) = Λω d Θ Ux 0 (0) = Λω d 2 there exists r > 0 such that W (U x 0 , r)

+ Cr δ A ≤ Λω d 2 + ε.
Moreover, since lim n→∞ W (U xn , r) = W (U x 0 , r), we have for n large enough that

W (U xn , r) ≤ W (U x 0 , r) + ε.
Therefore, choosing n large enough so that rr n ≤ r, we get that

Λω d 2 ≤ ϕ n (r) ≤ ϕ n r r n = W (U xn , r) + Cr δ A ≤ W (U x 0 , r) + ε + Cr δ A + Λω d 2 + 2ε, which proves that lim n→∞ ϕ n (r) = Λω d 2
for every r > 0.

Since Bn converges strongly in H 1 loc to B0 and ½ Ωn converges in L 1 loc to ½ Ω0 we have that lim n→∞ W ( Bn , r) = W ( B0 , r). Hence we get for every r > 0 Λω

d 2 = lim n→∞ ϕ n (r) = lim n→∞ W (U xn , rr n ) = lim n→∞ W ( Bn , r) = W ( B0 , r).
Now, since B0 is solution of the Alt-Caffarelli functional (Proposition 3.3) and since W ( B0 , r) is constant by (4.8), it follows from Proposition 2.12 that B0 is one-homogeneous, and hence by (4.5) that

1 2 = 1 Λω d W ( B0 , r) = |{| B0 | > 0} ∩ B r | |B r | .
Then, as in the proof of Lemma 4.6, we get that Ω 0 = {|B 0 | > 0} is an half-space and hence that ∂Ω 0 = ∂{|B 0 | > 0} is an hyperplane (containing 0). This is in contradiction with both assumptions i') and ii') since Ω n and Ω c n converge locally Hausdorff to Ω 0 and Ω c 0 respectively (Proposition 3.2). This concludes the proof. 4.4. The regular part is C 1,α . We prove that the regular part of Ω * 1 is C 1,α -regular and that it is C ∞ -regular provided that a ij , b ∈ C ∞ (see Proposition 4.10). Using a boundary Harnak principle for non-tangentially accessible (NTA) domains proved by Jerison and Kenig in [START_REF] Jerison | Boundary behavior of harmonic functions in non-tangentially accessible domains[END_REF], we prove that the first eigenfunction satisfies an optimality condition on Ω * 1 . The proof then follows from the regularity result of De Silva for the one-phase free boundaries (see [START_REF] Silva | Free boundary regularity for a problem with right hand side[END_REF]). • (Corkscrew condition) For every x ∈ ∂Ω and r ∈ (0, r 0 ) there exists z r (x) ∈ Ω such that

M -1 r < d(z r (x), ∂Ω) < |x -z r (x)| < r, • R d \Ω satisfies the corkscrew condition, • (Harnack chain condition) If ε > 0, x 1 , x 2 ∈ Ω, d(x i , ∂Ω) > ε, |x 1 -x 2 |
< kε, then there exists a sequence of M k overlapping balls included in Ω of radius ε/M such that, the first one is centered at x 1 and the last one at x 2 , and such that the center of two consecutive balls are at most ε/(2M ) apart.

We now recall that any (δ, R)-Reifenberg flat set is NTA, provided that δ > 0 is small enough. This result is due to Kenig and Toro, see [START_REF] Kenig | Harmonic measure on locally flat domains[END_REF]Theorem 3.1]. Theorem 4.12 (Reifenberg flat implies NTA). There exists δ 0 > 0 such that if Ω ⊂ R d is a (δ, R)-Reifenberg flat domain for some R > 0 and some δ ≤ δ 0 , then Ω is an NTA domain.

In the following theorem we state the Boundary Harnack Principle for NTA domains and for solutions of uniformly elliptic equations in divergence form with bounded, measurable coefficients. We refer to [START_REF] Kenig | Harmonic analysis techniques for second order elliptic boundary value problems[END_REF]Corollary 1.3.7] or [START_REF] Jerison | Boundary behavior of harmonic functions in non-tangentially accessible domains[END_REF]Lemma 4.10] for a proof (see also [START_REF] Silva | A short proof of Boundary Harnack Inequality[END_REF] for operator in non-divergence form). Theorem 4.13 (Boundary Harnack principle). Let Ω ⊂ R d be an NTA domain and 2r ∈ (0, r 0 ). Let à : R d → Sym + d be uniformly elliptic (i.e. ∃λ > 0,

λ -1 |ξ| 2 ≤ ξ • Ãx ξ ≤ λ|ξ| 2 ∀x, ξ ∈ R d ) with bounded measurable coefficients. Let x 0 ∈ ∂Ω and let u, v ∈ H 1 (Ω ∩ B 2r (x 0 )) ∩ C(Ω ∩ B 2r (x 0 )) be such that u, v = 0 on ∂Ω ∩ B 2r (x 0 ), v > 0 in Ω ∩ B 2r (x 0 ) and div( Ã∇u) = div( Ã∇v) = 0 in Ω ∩ B 2r (x 0 ).
Then there exists C > 0, depending only on d and λ and the NTA constants, such that

C -1 u(z r (x 0 )) v(z r (x 0 )) ≤ u(x) v(x) ≤ C u(z r (x 0 )) v(z r (x 0 )) for every x ∈ Ω ∩ B r (x 0 ). (4.9)
Since the estimate (4.9) holds for every harmonic functions with a uniform constant, it is standard to deduce that the quotient of two harmonics functions on an NTA domain is Hölder continuous up to the boundary. We refer to [START_REF] Kenig | Harmonic analysis techniques for second order elliptic boundary value problems[END_REF]Corollary 1.3.9] or [START_REF] Jerison | Boundary behavior of harmonic functions in non-tangentially accessible domains[END_REF]Theorem 7.9] (see also [START_REF] Athanasopoulos | A theorem of real analysis and its application to free boundary problems[END_REF]Corollary 1]). In particular, for every x ∈ ∂Ω ∩ B r (x 0 ) the limit lim Ω∋y→x u(y) v(y) exists and u v : Ω ∩ B r (x 0 ) → R is α-Hölder continuous.

We now prove the analogous boundary Harnack theorem for the eigenfunctions on an optimal set Ω * to the problem (1.1). We notice that in the proof it is essential that the first eigenfunction u 1 is positive and non-degenerate (Proposition 2.6). The case of the eigenfunctions for the Laplacian is already treated in [START_REF] Ramos | Extremality conditions and regularity of solutions to optimal partition problems involving Laplacian eigenvalues[END_REF]Appendix A]. We extend this result to the case of the operator -b -1 div(A∇•). We highlight that one of the difficulty comes from the presence of the Lipschitz function b. Then Ω * 1 is NTA in B r (x 0 ) for some r = r(x 0 ) > 0 and there exists α ∈ (0, 1), depending only on d, λ A and the NTA constants of Ω * 1 , such that for every i = 2, . . . , k u i u 1 is α-Hölder continuous in Ω * 1 ∩ B r (x 0 ).

We will need the following Lemma.

Lemma 4.16. Let Ω ⊂ D be a quasi-open set, u ∈ H 1 0 (Ω) and λ > 0. Then, for every x 0 ∈ ∂Ω∩D there exists r 0 > 0 depending only on d, λ A , c b and λ, such that for every r ≤ r 0 with B r (x 0 ) ⊂ D, there exists a unique solution v ∈ H

1 0 (D) of -div(A∇v) = λbv in Ω ∩ B r (x 0 ) v = u, on ∂(Ω ∩ B r (x 0 )). (4.10) If, moreover, u ∈ L ∞ (D), then v ∈ L ∞ (D) and we have the estimate v L ∞ (Ω∩Br(x 0 )) ≤ C r u H 1 (Ω;m) + u L ∞ (∂Br(x 0 )) (4.11)
where the constant C > 0 depends only on d, λ A , c b and λ.

Proof. Observe that any minimizer in

A := {ϕ ∈ H 1 0 (D) : u -ϕ ∈ H 1 0 (Ω ∩ B r (x 0 ))} of the functional J(ϕ) = D A∇ϕ • ∇ϕ -λ D ϕ 2 b
is solution of (4.10). Therefore, it is enough to prove that {ϕ ∈ A : J(ϕ) ≤ C} is weakly compact in H 1 0 (D) to prove the existence of a function v solution of (4.10). We first compute

D ϕ 2 b ≤ 2 Ω∩Br(x 0 ) (ϕ -u) 2 b + 2 D u 2 b ≤ 2 λ 1 (Ω ∩ B r (x 0 )) Ω∩Br(x 0 ) A∇(ϕ -u) • ∇(ϕ -u) + 2 D u 2 b ≤ 4λ 2 A λ 1 (B r 0 (x 0 )) D |∇ϕ| 2 + |∇u| 2 + 2 D u 2 b.
Then, for r 0 small enough (such that 4λ

4 A λ ≤ λ -∆ 1 (B 1 )/(2λ 2 A c b r 2 0 ) where λ -∆ 1 (B 1
) stands for the first eigenvalue of the Dirichlet Laplacian on B 1 ) we have

D |∇ϕ| 2 ≤ λ 2 A J (ϕ) + λ 2 A λ D ϕ 2 b ≤ λ 2 A J(ϕ) + 1 2 D |∇ϕ| 2 + |∇u| 2 + 2λ 2 A λ D u 2 b, which gives that D |∇ϕ| 2 ≤ 2λ 2 A J(ϕ) + D |∇u| 2 + 4λ 2 A λ D u 2 b ≤ 2λ 2 A J (ϕ) + (1 + 4λ 2 A λ) u H 1 (Ω;m) .
This proves the existence of v, and the uniqueness easily follows provided that λ ≤ λ 1 (Ω∩B r (x 0 )). We now prove the L ∞ -estimate. We consider the functions defined by

div(A∇h) = 0, -div(A∇w) = λbv in Ω ∩ B r (x 0 ) h = u, w = 0 on ∂(Ω ∩ B r (x 0 )).
Reasoning as above this functions exist and are unique, and we have 

v = h+w. Let R = R Ω∩Br(x 0 ) be the resolvent of -b -1 div(A∇•) in Ω ∩ B r (x 0 ). We have the estimates R L(L 2 ,L 2 
v = λ n R n (v) + n-1 i=0 λ i R i (h),
and that h L ∞ (Ω∩Br (x 0 )) ≤ u L ∞ (∂Br(x 0 )) by the maximum principle. Therefore, with an interpolation argument, there exists a dimensional constant n ≥ 1 such that we have the estimate

v L ∞ (Ω∩Br(x 0 )) ≤ C r v L 2 (D;m) + u L ∞ (∂Br(x 0 )) ,
where now C also depends on λ. Hence, it remains only to estimate v L 2 (D;m) to complete the proof. Then, for r 0 small enough, we have

D v 2 b ≤ 2 Ω∩Br(x 0 ) (v -u) 2 b + 2 D u 2 b ≤ 4 λ 1 (B r 0 (x 0 )) D |∇v| 2 + |∇u| 2 + 2 D u 2 b ≤ 1 2λ J (v) + 1 2 D v 2 b + 1 2λ 2 A λ D |∇u| 2 + 2 D u 2 b, which implies that (since J(v) ≤ J (u)) D v 2 b ≤ 1 λ J (u) + 1 λ 2 A λ D |∇u| 2 + 4 D u 2 b ≤ 2λ 2 A λ + 4 u H 1 (D;m) .
Proof of Theorem 4.15. By Proposition 4.9 and Theorem 4.12, Ω * 1 is an NTA domain near x 0 . Let α be the constant given by Corollary 4.14 and set β = α 1+α . Let x, y ∈ B r (x 0 ) and set r = |x -y| β , d x = d(x, ∂Ω * 1 ), d y = d(y, ∂Ω * 1 ). We divide the proof in three steps.

Step 1. Assume that d x , d y ≥ 2r. By a change of variables, it follows that ũ

(z) = r -1 u 1 (x + rz) is solution of -div( Ã∇ũ) = r 2 λ 1 (Ω * ) bũ in B 2 ,
where we have set Ãz = A x+rz and b(z) = b(x + rz). By standard Schauder estimates (see [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]Theorem 8.8]) we have

ũ C 1,δ A (B 1 ) ≤ C ũ L ∞ (B 2 ) + r 2 λ 1 (Ω * ) bũ L ∞ (B 2 ) ,
where C depends only on d, c A and λ A . In particular,

u 1 C 1 (B r (x)) ≤ ũ C 1 (B 1 ) ≤ ũ C 1,δ A (B 1 ) ≤ C ũ L ∞ (B 2 ) ≤ C r .
Similarly, we have u i C 1 (B r (x)) ≤ C/r. On the other hand, by non-degeneracy of u 1 we have u 1 (x) ≥ cd x and u 1 (y) ≥ cd y for some constant c > 0. Therefore, since u i is L-Lipschitz continuous (and because y ∈ B r (x)), we get

u i (x) u 1 (x) - u i (y) u 1 (y) ≤ |u i (x) -u i (y)| u 1 (x) + |u 1 (x) -u 1 (y)| |u i (y)| u 1 (x)u 1 (y) ≤ C r |x -y| 1 cd x + Ld y c 2 d x d y ≤ C r 2 |x -y| = C|x -y| 1-2β ≤ C|x -y| β
, where the last inequality holds provided that β ≤ 1/3.

Step 2. Assume that d x ≤ 2r. Let x ∈ ∂Ω * 1 such that d x = |x -x|. We write for simplicity λ 1 = λ 1 (Ω * ), λ i = λ i (Ω * ) and B = B 6r (x). Since u i may change its sign, we consider the functions

-div(A∇v i ) = λ i bv i , -div(A∇w i ) = λ i bw i in Ω * 1 ∩ B v i = u + i , w i = u - i on ∂(Ω * 1 ∩ B)
. These functions exist thanks to Lemma 4.16 and we have u i = v iw i . We now set m = min z∈B b(z) and M = max z∈B b(z) and I = (-1, 1). Moreover, for (z, z d+1 ) ∈ (Ω * 1 ∩ B) × I we define the functions

u 1,m (z, z d+1 ) = e - √ λ 1 mz d+1 u 1 (z) u 1,M (z, z d+1 ) = e - √ λ 1 M z d+1 u 1 (z) u i,m (z, z d+1 ) = e - √ λ i mz d+1 v i (z) u i,M (z, z d+1 ) = e - √ λ i M z d+1 v i (z).
We define the matrix-valued function à :

(Ω * 1 ∩ B) × I ⊂ R d+1 → Sym + d+1 by Ã(z,z d+1 ) = A z 0 0 1 for every (z, z d+1 ) ∈ (Ω * 1 ∩ B) × I.
Moreover, we define the harmonic extensions of the above functions as follows Then, using (4.13) and (4.12) we have the following estimate Now, in view of the definition of z 0 = z 3r (x, 0) ∈ R d+1 we have d(z 0 , ∂(Ω * 1 × I)) > 3rM -1 and by non-degeneracy of u 1 (Proposition 2.6) it follows that u 1,m (z 0 ) ≥ Cr. Moreover, by (4.11), it follows that v i L ∞ (B) ≤ Cr since u i is Lipschitz continuous. Therefore we have

div( Ã∇h 1,m ) = div( Ã∇h 1,M ) = div( Ã∇h i,m ) = div( Ã∇h i,M ) = 0 in (Ω * 1 ∩ B) × I h 1,m = u 1,m , h 1,M = u 1,M , h i,m = u i,m , h i,M = u i,M on ∂ (Ω * 1 ∩ B) × I Now, we get with an easy computation that div( Ã∇(u 1,m -h 1,m )) = λ 1 e - √ λ 1 mx d+1 (m -b(x))u 1 (x) ≤ 0 in (Ω * 1 ∩ B) × I,
v i (x) u 1 (x) - v i (y) u 1 (y) ≤ Cr u i,m (z 0 ) u 1,m (z 0 ) ≤ Cr v i L ∞ (B) u 1,m (z 0 ) ≤ Cr = C|x -y| β .
This concludes the proof since the same estimate also holds for w i and that we have

u i /u 1 = v i /u 1 -w i /u 1 .
As a consequence of the optimality condition of U (Lemma 4.3) and of the boundary Harnack principle (Theorem 4.15), it follows that the first eigenfunction is solution of a one-phase free boundary problem on Ω * 1 . Lemma 4.17 

≤ C|x 0 -x n | δ A /2 + C |y 0 -y n | r .
Now, in view of (4.20) we get (4.18). This completes the proof.

In the following Lemma we prove that if Bn is a blow-up sequence with fixed center converging to B0 , then locally the singular set of {| Bn | > 0} must lie close to the singular set of {| B0 | > 0} (see [START_REF] Weiss | Partial regularity for a minimum problem with free boundary[END_REF]Lemma 4.2] and [START_REF] Mazzoleni | Regularity of the optimal sets for some spectral functionals[END_REF]Lemma 5.20]). 
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Theorem 1 . 1 .

 11 Let D ⊂ R d be a bounded open set and let A : D → Sym + d , b ∈ W 1,∞ (D) satisfying (1.5), (1.6) and (1.7) (see below). Then every solution Ω * to the problem (1.1) has finite perimeter. Moreover, the free boundary ∂Ω * ∩ D can be decomposed into the disjoint union of a regular part Reg(∂Ω * ∩ D) and a singular part Sing(∂Ω * ∩ D), where:

Lemma 3 . 6 . 2 x 0 .

 3620 4, the components of B0 = (b 1 , . . . , b k ) are onehomogeneous functions and by Lemma 3.3, they are harmonic on the cone {| B0 | > 0}. Therefore, in polar coordinates we have b i (r, θ) = rϕ i (r) where ϕ i is solution of the equation-∆ S d-1 ϕ i = (d -1) ϕ i in S, ϕ i = 0 on ∂S,where ∆ S d-1 stands for the Laplace-Beltrami operator. By Proposition 2.9, the components of B0 are not all zero. Therefore, at least one ϕ i is non-zero and hence d -1 is an eigenvalue of -∆ Sd-1 on S. Since the functions ϕ i are non-negative, it follows that λ 1 (S) = d -1, where λ 1 (S) denotes the first eigenvalue on S. Moreover, by Lemma 3.3 we have |S| < |∂B 1 | and by [24, Remark 4.8] it follows that the first eigenvalue λ 1 (S) is simple. Then, there exists non-negative constants α 1 , . . . , α k , not all zero, such that ϕ i = α i ϕ where ϕ stands for the normalized eigenfunction of -∆ S d-1 on S. Now set α = (α 1 , . . . , α k ) so that we have B0 = ϕα on ∂B 1 . Since |α| = 0, setting ξ = |α| -1 α we have B0 = | B0 |ξ on ∂B 1 and hence on R d by one-homogeneity. Let x 0 ∈ ∂Ω * ∩ D, B 0 ∈ BU U (x 0 ) and set B0 = B 0 • A 1 /Then the function | B0 | is a global minimizer of the (scalar) Alt-Caffarelli functional defined in (3.9).

Lemma 4 . 3 (

 43 Optimality condition on the free boundary). Let U = (u 1 , . . . , u k ) be the vector of the first k normalized eigenfunctions on Ω * and set λ = (λ 1 (Ω * ), . . . , λ k (Ω * )). Then U is a viscosity solution of the problem-div(A∇U ) = λbU in Ω * , U = 0 on ∂Ω * ∩D, |A 1 /2 [∇|U |]| = √ Λ on ∂Ω * ∩D. (4.2)Proof. Since U is Lipschitz continuous, we only have to prove that the boundary condition holds in the viscosity sense. Let x 0 ∈ ∂Ω * ∩ D and let ψ ∈ C 2 (R d ) be a function touching |U x 0 | by below at 0 (see Remark 4.2). We fix an infinitesimal sequence r n and set for everyξ ∈ R d Bn (ξ) = 1 r n U x 0 (r n ξ) and ψ n (ξ) = 1 r n ψ(r n ξ).Up to a subsequence, the blow-up sequences ( Bn ) n∈N and (ψ n) n∈N converge locally uniformly in R d to some B0 ∈ H 1 loc (R d , R k )and to ψ 0 (ξ) := ξ • ∇ψ(0) respectively. We can assume that ∇ψ(0) = |∇ψ(0)|e d (by a change of variables) and that |∇ψ(0)| = 0, since otherwise |∇ψ(0)| ≤ Λ(x 0 ) obviously holds. We have ψ ≤ |U x 0 | near 0 an hence ψ 0 ≤ | B0 | in R d which gives that | B0 | > 0 in the half-space {x d > 0}. Since | B0 | is a one-homogeneous (Lemma 3.4) and nondegenerate (Proposition 3.2) function, it follows that { B0 > 0} = {x d > 0} (see [27, Lemma 5.30]). Moreover, | B0 | is a local minimizer of the Alt-Caffarelli functional (Lemma 3.6) and hence satisfies the optimality condition

Definition 4 . 4 .

 44 Let Ω ⊂ D be an open set. We define the regular part of Ω in D by Reg

Proposition 4 . 7 .

 47 The regular set Reg(∂Ω * ∩ D) is an open subset of ∂Ω * . Proof. Let x 0 ∈ Reg(∂Ω * ∩ D) and assume by contradiction that there exists a sequence (x n ) n∈N of points in Sing(∂Ω * ∩ D) = (∂Ω * ∩ D)\Reg(∂Ω * ∩ D) converging to x 0 . By Lemmas 4.5 and 4.6 we have Θ Ux 0 (0) = 1/2 and Θ Ux n (0) ≥ 1/2 + δ. Since the function ϕ n (r) = W (U xn , r) + Cr δ A is non-decreasing by Proposition 2.10, we have for every r > 0 1

Proposition 4 . 10 .

 410 The regular part Reg(∂Ω* 1 ∩ D) is locally the graph of a C 1,α function. Moreover, if a i,j ∈ C k,δ (D) and b ∈ C k-1,δ (D), for some δ ∈ (0, 1) and k ≥ 1, then Reg(∂Ω * 1 ∩ D) is locally the graph of a C k+1,α function. In particular, if a i,j , b ∈ C ∞ (D), then Reg(∂Ω * 1 ∩ D) is locally the graph of a C ∞ function.Definition 4.11. A bounded open set Ω ⊂ R d is NTA with constants M > 1 and r 0 > 0 if the following conditions hold:

Corollary 4 . 14 .

 414 Let Ω, Ã, x 0 , r and u, v be as in Theorem 4.13. Then there exist constants α ∈ (0, 1) and C > 0, depending only on d and λ and the NTA constants, such that ur (x 0 )) v(z r (x 0 )) |x -y| r α for every x, y ∈ Ω ∩ B r (x 0 ).

Theorem 4 . 15 (

 415 Boundary Harnack principle for eigenvalues). Let U = (u 1 , . . . , u k ) be the first k normalized eigenfunctions on Ω * and let x 0 ∈ Reg(∂Ω * 1 ∩ D).

  * ) ≤ C d where 2 * = 2d d-2 and R L(L d ,L ∞ ) ≤ Cr by [29, Lemma 2.1], where the constant C depends only on d, λ A and c b . Notice also that we have

2 u 1

 21 ,m (z 0 ) ≥ Cu 1,m (z 0 ).

.--|

  For every x 0 ∈ Reg(∂Ω * 1 ∩ D) there exist r = r(x 0 ) > 0, c ∈ (0, 1) and a Hölder continuous function g : ∂Ω * 1 ∩ B r (x 0 ) → [c, 1] such that u 1 is a viscosity solution to the problemdiv(A∇u 1 ) = λ 1 (Ω * )bu 1 in Ω * 1 , u 1 = 0 on ∂Ω * 1 , |A 1 /2 [∇u 1 ]| = g √ Λ on ∂Ω * 1 ∩ B r (x 0 ). Proof. Let U = (u 1 , .. . , u k ) be the first k eigenfunctions on Ω * . By Theorem 4.15 the functions g i := u i u 1 : ∂Ω * ∩ B r (x 0 ) → R, for i = 2, . . . , k, are Hölder continuous. Therefore, the functiong : ∂Ω * 1 ∩ B r (x 0 ) → [0, 1] defined by the coefficients of A 1 /2 are δ A 2 -Hölder continuous, we have the estimate of the determinant | det(A ≤ 1 + c A |x 0x n | δ A /2and the following estimate of the symmetric difference|B△B r (y n )| = |A -1 /2 x 0 A 1 /2 xn B r △B r | ≤ ω d r d 1 + c A |x 0x n | δ A /2 d -1c A |x 0x n | δ A /2 d ≤ ω d r d 1 + d2 d c d A |x 0x n | δ A /2 -1 -d2 d c d A |x 0x n | δ A /2 ≤ r d C|x 0x n | δ A /2. Similarly, for n big enough so that |y 0y n | ≤ r/2, we have|B r (y 0 )△B r (y n )| ≤ ω d r d 1 + |y 0y n | r d -1 -|y 0y n | r d ≤ r d C |y 0y n | r .Combining all these estimates (4.19) now gives (because Bn is λA L-Lipschitz continuous) 1 (rr n ) d J(U xn , rr n ) ≤ 1 r d J( Bn , y 0 , r) + ω d L 2 c A |x 0x n | δ A + λ 2 A L 2 + Λ r d |B|c A |x 0x n | δ A /2 + + λ 2 A L 2 + Λ r d |B△B r (y n )| + |B r (y 0 )△B r (y n )| + |B|c A |x 0x n | δ A /2 (4.20) ≤ 1 r d J( Bn , y 0 , r) + C|x 0x n | δ A /2 + C |y 0y n | r .We now compare the boundary integral terms. Since U xn (ξ) = r n Bn (y n + r -1 n A (ξ)) and by the change of variables ξ = r -1 n ξ + y 0 we have∂Brr n |U xn | 2 (ξ) dH d-1 (ξ) = ∂Brr n r 2 n | Bn | 2 (y n + r -1 n A -Bn | 2 (y n + A -1 /2 x 0 A 1 /2 xn ( ξy 0 )) dH d-1 ( ξ).Therefore, using that Bn is λ A L-Lipschitz continuous, Bn (y n ) = 0 and that |y 0y n | ≤ r/2, we get that 1 r d+1 ∂Br(y 0 ) | Bn | 2 (ξ) dH d-1 (ξ) -1 (rr n ) d+1 ∂Brr n |U xn | 2 (ξ) dH d-1 (ξ) = = 1 r d+1 ∂Br(y 0 ) | Bn | 2 (ξ) -| Bn | 2 (y n + A -1 /2 x 0 A 1 /2 xn (ξy 0 )) dH d-1 (ξ) ξy 0 ) + y 0y n |ξy n | + λ 2 A r dH d-1 (ξ)

Lemma 4 . 22 . 2 x 0 ,

 42220 Let x 0 ∈ ∂Ω * 1 ∩ D and let B n = B x 0 ,rn be a blow-up sequence converging in the sense of Proposition 3.2 to some B 0 ∈ BU U (x 0 ). We setBn = B n • A 1 /B0 = B 0 • A 1 /2 x 0 , Ωn = {| Bn | > 0} and Ω0 = {| B0 | > 0}.Then, for every compact set K ⊂ R d and every open set O ⊂ R d such that Sing(∂ Ω0 ) ∩ K ⊂ O, we have Sing(∂ Ωn ) ∩ K ⊂ O for n large enough. Proof. Arguing by contradiction there exist a compact set K ⊂ R d and an open set O ⊂ R d such that Sing(∂ Ω0 ) ∩ K ⊂ O and a sequence (y n ) n∈N ⊂ Sing(∂ Ωn ) ∩ K \ O. Up to a subsequence, y n converges to some y 0 ∈ K \ O. Since ∂ Ωn locally Hausdorff converges to ∂ Ω0 by Proposition 3.2, it follows that y 0 ∈ ∂ Ω0 and, since Sing(∂ Ω0 ) ∩ K ⊂ O, we have that y 0 is a regular point of

  to prove the parts (1) and (2) of Proposition 3.2.Since Bn is uniformly Lipschitz, Bn converges, up to a subsequence, weakly inH 1 loc (R d , R k ) and strongly in L 2 loc (R d , R k ) to B0 . Moreover, the local uniform convergence of | Bn | to | B0 | implies that ½ {| B0 |>0} ≤ lim inf n→∞ ½ {| Bn|>0}. Therefore, it is sufficient to prove that for every ball B r ⊂ R d we have

	lim sup	
	n→+∞	Br

  * 1 ∩ D) for n large enough since Reg(∂Ω * 1 ∩ D) is an open subset of ∂Ω * 1 (Proposition 4.7). Up to a subsequence, B n and Bn = B n • A By Proposition 2.10, ϕ n (r) := W (U xn , rr n ) + C(rr n ) δ A is a non-decreasing function. Moreover, by Lemma 4.5 and since we have Θ Ux n (0) = 1/2 (Lemma 4.6), it follows that

	lim r→0 +	ϕ n
			1 /2 xn converge (in the sense of
	1 /2 x 0 respectively. Proposition 3.2) to B 0 and B0 = B 0 • A We first prove that W ( B0 , r) = Λω d 2 for every r > 0.	(4.8)

  which, by the weak maximum principle, implies that h 1,m ≤ u 1,m in (Ω * 1 ∩ B) × I. Similarly we have (since the functions u i,m , u i,M are positive)h 1,m ≤ u 1,m , u 1,M ≤ h 1,M , h i,m ≤ u i,m , u i,M ≤ h i,M in (Ω i,m , in (Ω * 1 ∩ B) × I. (4.14) Now, since x, y ∈ B 3r (x) ⊂ B, we can use (4.12), (4.13) and (4.14) to estimate where the last inequality follows from the definitions of m, M and the fact that b is a Lipschitz continuous function. Now, observe that Ω * 1 × I ⊂ R d+1 is an NTA domain near (x, 0) with the same constants than Ω * 1 . By Corollary 4.14, setting z 0= z 3r (x, 0) ∈ R d+1 , we have (notice also that x, y ∈ B 3r (x)) Cr h i,m (z 0 ) h 1,m (z 0 ) ,where in the last equality we have used that r = |x -y| β with β = α 1+α . Moreover, by Theorem 4.13 we haveh i,m (x, 0) h 1,m (x, 0) ≤ C h i,m (z 0 ) h 1,m (z 0 ) , h i,m (y, 0) h 1,m (y, 0) ≤ C h i,m (z 0 ) h 1,m (z 0 ) ,

	and similarly we have e √ e √ λ i M λ i m	h i,m ≤ h i,M ≤	√ e e √ λ i M λ i m
	v i (x) u 1 (x)	-	v i (y) u 1 (y)	= ≤	u i,M (x, 0) u 1,m (x, 0) e √ λ i M e √ λ i m h i,m (x, 0) -u i,m (y, 0) u 1,M (y, 0) h 1,m (x, 0) -e √ λ 1 m ≤ e √ λ 1 M	h i,M (x, 0) h 1,m (x, 0) h i,m (y, 0) h 1,m (y, 0)	-	h i,m (y, 0) h 1,M (y, 0)
				≤	h i,m (x, 0) h 1,m (x, 0)	-		h i,m (y, 0) h 1,m (y, 0)	+ Cr	h i,m (x, 0) h 1,m (x, 0)	+ Cr	h i,m (y, 0) h 1,m (y, 0)
	h i,m (x, 0) h 1,m (x, 0)	-	h i,m (y, 0) h 1,m (y, 0)	≤ C	h i,m (z 0 ) h 1,m (z 0 )	|x -y| 3r
	which finally gives							
						v i (x) u 1 (x)	-	v i (y) u 1 (y)	≤ Cr	h i,m (z 0 ) h 1,m (z 0 )	.	(4.15)

* 1 ∩ B) × I.

(4.12)

Moreover, using again the maximum principle, we have the following inequalities

e √ λ 1 m e √ λ 1 M h 1,m ≤ h 1,M ≤ e √ λ 1 M e √ λ 1 m h 1,m , in (Ω * 1 ∩ B) × I,

(4.13

)

h α =
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Proof. Let x 0 ∈ ∂Ω * i ∩ ∂Ω * j ∩ D. Since σ(Ω * i ) ⊂ σ(Ω * ), there exists k i ∈ {1, . . . , k -1} such that λ s (Ω * i ) ∈ {λ 1 (Ω * ), . . . , λ k (Ω * )} for every s = 1, . . . , k i and λ s (Ω * i ) / ∈ {λ 1 (Ω * ), . . . , λ k (Ω * )} for every s > k i . It follows that Ω * i is solution of the problem (1.1) with k = k i and D = D\(Ω * \ Ω * i ). Similarly, for some k j ∈ {1, . . . , k -1}, Ω * j is solution of (1.1) with k = k j . Then, we denote by V = (v 1 , . . . , v k i ) and W = (w 1 , . . . , w k j ) the eigenfunctions on Ω * i and Ω * j respectively. Let r n → 0 and define the blow-up sequences

Up to a subsequence, B n , B V n and B W n converge to some blow-up limits B 0 ∈ BU U (x 0 ), B V 0 ∈ BU V (x 0 ) and B W 0 ∈ BU W (x 0 ). By Lemmas 3.4 and 3.6, | BV 0 | and | BW 0 | are non-trivial, onehomogeneous and global solutions of the Alt-Caffarelli functional. Therefore, the density at the origin of each set {| BV 0 | > 0} and {| BW 0 | > 0} is at least 1/2 (see [START_REF] Mazzoleni | Regularity of the optimal sets for some spectral functionals[END_REF]Lemma 5]) and, since all the components of BV 0 and BW 0 are among the ones of B0 , it follows that

it minimizes the Alt-Caffarelli functional. And since | B0 | is also a non-trivial and non-negative function which vanishes at 0, this gives a contradiction (by the maximum principle).

Regularity of the free boundary

This section is devoted to the proof of Theorem 1.1. Recall that we denote by Ω * a solution to the problem (1.1) and that Ω * 1 stands for any connected component of Ω * where the first eigenfunction is positive. • Let Ω ⊂ D be an open set and let g : D → R be continuous and non-negative function. We say that U satisfies the boundary condition

in the viscosity sense if, for every x 0 ∈ ∂Ω ∩ D and every ϕ ∈ C 2 (D) such that ϕ + := max(ϕ, 0) touches |U | by below (resp. by above) at x 0 we have

• Let, moreover, λ = (λ 1 , . . . , λ k ) ∈ R k be a vector of positive coordinates. We say that the function U = (u 1 , . . . , u k ) is a viscosity solution of the problem 

is also Hölder continuous. Since u 1 = g|U |, it follows from the non-degeneracy of u 1 that g ≥ c := C -1

where C 1 is the constant from Proposition 2.6. Now, let y ∈ ∂Ω * 1 ∩ B r (x 0 ) and let ϕ ∈ C 2 (D) be a function touching u 1 by below at the point y. Since 1/g is β-Hölder continuous for some β ∈ (0, 1), there exists C > 0 such that for ρ > 0 small enough we have

Therefore, the function

This proves that ψ touches |U | by below at the point y. On the other hand, ψ is differentiable at y and we have ∇ψ(y) = 1 g(y) ∇ϕ(y). Therefore, using that U is a viscosity solution of (4.2), it follows that

The case when ϕ touches u 1 by above is similar.

Theorem 4.18 (Higher boundary Harnack principle for eigenvalues). Let k ≥ 1 and assume that

(More precisely, we extend a i,j and b to bounded functions in R d with b ≥ c b , and we choose

Now, the proof follows by [START_REF] Silva | A note on higher regularity boundary Harnack inequality[END_REF]Theorem 2.4] for k = 1 and by [START_REF] Silva | A note on higher regularity boundary Harnack inequality[END_REF]

). Proof of Proposition 4.10. We prove the regularity by a finite induction on l ∈ {1, . . . , k}. For l = 1, by [9, Theorem 1.1] and Lemma 4.17 it follows that Reg(∂Ω

18 and the definition of g in (4.16), we have that g is a C l,α function on Reg(∂Ω * 1 ∩ D). Therefore, in view of Lemma 4.17 and by [START_REF] Kinderlehrer | Regularity in free boundary problems[END_REF]Theorem 2] it follows that Reg(∂Ω * 1 ∩ D) is locally C l+1,α -regular. This completes the proof.

4.5. Dimension of the singular set. We prove in this last subsection some kind of smallness of the singular set. We recall that Ω * denotes an optimal set to (1.1) and that Ω * 1 stands for any connected component of Ω * at which the first eigenfunction is positive.

An estimate of the dimension of the singular set can be obtain as a consequence of the Federer's Theorem. Indeed, since Ω * 1 is a set of finite perimeter (Proposition 2.1) and in view of the density estimate (Proposition 2.9), it follows from the Federer's Theorem (see, for instance, [START_REF] Maggi | Sets of finite perimeter and geometric variational problems[END_REF]Theorem 16.2]) that H d-1 (Sing(∂Ω * 1 ∩ D)) = 0. In Proposition 4.20 below we provide a more precise estimate of the dimension of the singular set. Definition 4.19. We define d * as the smallest dimension which admits a one-homogeneous global minimizer of the Alt-Caffarelli functional with exactly one singularity at zero. The exact value of the critical dimension d * is still unknown but we know that d * ∈ {5, 6, 7} (see [START_REF] Jerison | Some remarks on stability of cones for the one-phase free boundary problem[END_REF] for d * ≥ 5 and [START_REF] Silva | A singular energy minimizing free boundary[END_REF] for d * ≤ 7). The following result on the smallness of the singular set is standard and was first proved in the framework of the minimal surfaces (for which the critical dimension is exactly 8, see for example [START_REF] Giusti | Minimal surfaces and functions of bounded variation[END_REF]Chapter 11]). Later, in [START_REF] Weiss | Partial regularity for a minimum problem with free boundary[END_REF], Weiss adapted this strategy for minimizers of the Alt-Caffarelli functional by introducing a monotonicity formula. In [START_REF] Mazzoleni | Regularity of the optimal sets for some spectral functionals[END_REF], the authors prove this result in the vectorial setting. In this section we follow the same approach and we extend this result to the case of variable coefficients.

Proposition 4.20 (On the dimension of the singular set). The singular part Sing(∂Ω

We first prove two preliminary Lemmas and to this aim we extend the definition of the Weiss functional for any ball.

Obviously we have J(U, r) = J(U, 0, r) and W (U, r) = W (U, 0, r). ∈ ∂ Ωn converges to some y 0 and, for every small r > 0, there exists n 0 such that for every n ≥ n 0 we have

where the constant C > 0 depends only on d, c A , λ A , Λ and the Lipschitz constant

Proof. We first compare J(U xn , rr n ) and J( Bn , y 0 , r). Since U xn = U • F xn by definition, we compute

where in the last inequality we have used that the coefficients a ij are δ A -Hölder continuous, that is

∂ Ω0 , that is y 0 ∈ Reg(∂ Ω0 ). Since, moreover, B0 is solution of the Alt-Caffarelli functional and is one-homogeneous, it follows that 1 Λω d lim r→0 + W ( B0 , y 0 , r) = 1 2 (see [START_REF] Mazzoleni | Regularity of the optimal sets for some spectral functionals[END_REF]Lemma 5.4]). We now fix r > 0 such that

where δ is the constant from Lemma 4.5. Now, since lim n→∞ W ( Bn , y 0 , r) = W ( B0 , y 0 , r), it follows that for every n large enough we have

Set

x 0 (y n ) ∈ ∂Ω * 1 ∩ D and notice that x n converges to x 0 . By Lemma 4.21 and (4.21) we get that for every n large enough

On the other hand, by Proposition 2.10, the function ϕ n (s) = W (U xn , s)+ Cs δ A is non-decreasing and hence

where the last inequality holds for n large enough. It follows from Lemmas 4.5 and 4.6 that x n is a regular point of Ω * 1 , in contradiction with the fact that y n = A In particular, the density of Ω0 at 0 is 1/2 and hence Θ Ux 0 (0) = 1/2 by (4.6). In view of Lemma 4.6 we get that x 0 ∈ Reg(∂Ω * 1 ∩ D). (2) Assume by contradiction that there exists a sequence (x n ) n∈N ⊂ Sing(∂Ω * 1 ∩ D) converging to some x 0 ∈ ∂Ω * 1 ∩ D. Set r n = |x 0x n | and let B n := B x 0 ,rn be a blow-up sequence converging (in the sense of Proposition 3.2) to some blow-up limit B 0 ∈ BU U (x 0 ). We consider two cases:

Case 1: Sing(∂ Ω0 )\{0} = ∅. By a rotation we may assume that e d ∈ R d is a singular point of ∂Ω 0 . Notice that u 0 = | B0 | is solution of the scalar Alt-Caffarelli functional and is onehomogeneous. Consider a blow-up limit u 00 of u 0 at e d . By [30, Lemma 3.1], {u 00 > 0} is a minimal cone with vertex 0 such that the whole line te d , t ∈ R, consists of singular points. Then, by [START_REF] Weiss | Partial regularity for a minimum problem with free boundary[END_REF]Lemma 3.2], denoting the restriction u = u 00|R d-1 , we have that {u > 0} is a minimal cone of dimension (d -1) which is singular at 0. Now, either 0 is the only singular point and we have a contradiction with the definition of d * , or we can repeat this procedure and get a contradiction since there are no three-dimensional singular minimal cones.

Case 2: Sing(∂ Ω0 )\{0} = ∅. Let r > 0 to be chosen later. By Lemma 4.21, we have for every n large enough 

Now, since y 0 ∈ ∂ Ω0 \{0} is a regular point of ∂ Ω0 (and also because B0 is solution of the Alt-Caffarelli functional and is one-homogeneous), it follows that 1 Λω d lim r→0 + W ( B0 , y 0 , r) = 1 2 (see [START_REF] Mazzoleni | Regularity of the optimal sets for some spectral functionals[END_REF]Lemma 5.4]). Using also that lim n→∞ W ( Bn , y 0 , r) = W ( B0 , y 0 , r), it follows that we can choose r > 0 small enough such that for every n large enough we have