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REGULARITY OF OPTIMAL SETS FOR SOME FUNCTIONAL INVOLVING
EIGENVALUES OF AN OPERATOR IN DIVERGENCE FORM

BAPTISTE TREY

ABSTRACT. In this paper we consider minimizers of the functional
min {A1(Q) + -+ 4+ A(Q) + A|Q|, : ©C D open}

where D C R? is a bounded open set and where 0 < A\1(Q) < --- < A\ () are the first k
eigenvalues on {2 of an operator in divergence form with Dirichlet boundary condition and with
Holder continuous coefficients. We prove that the optimal sets Q* have finite perimeter and
that their free boundary 9Q* N D is composed of a regular part, which is locally the graph of a
CY%_regular function, and a singular part, which is empty if d < d*, discrete if d = d* and of
Hausdorff dimension at most d — d* if d > d*, for some d* € {5,6,7}.
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1. INTRODUCTION

This paper is dedicated to the regularity properties of the minimizers to the problem
min {A1(Q) + - + Xe(Q) + A|Q| : Q C D open} (1.1)

where D C R? is a bounded open set (a box), A is a positive constant and 0 < A\(Q) < --- <
A:(Q) stand for the first k eigenvalues (counted with the due multiplicity) of an operator in
divergence form. More precisely, we consider the operator —b(x)~! div(A,V-), where the matrix-
valued function A : D — Sym;l|r is uniformly elliptic with Holder continuous coefficients, and
b€ WH>(D) is a positive Lipschitz continuous function bounded away from 0. This means that
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2 BAPTISTE TREY

for every eigenvalue \;(Q2) there exists an eigenfunction u; € H}(2) such that
—div(AVu;) = \i(Q)bu;  in Q
{ u; =0 on Ofd.

We now state in the following theorem the main result of this present paper.

Theorem 1.1. Let D C R? be a bounded open set and let A : D — Syml, b € WL>(D)
satisfying (L), ([6) and (L) (see below). Then every solution Q* to the problem (L)) has
finite perimeter. Moreover, the free boundary 02* N D can be decomposed into the disjoint union
of a regular part Reg(02* N D) and a singular part Sing(0Q* N D), where:
(1) Reg(0Q* N D) is locally the graph of a CY“-regular function.
If, moreover, a;; € C*¥(D) and b € C*~19(D) for some § € (0,1) and k > 1, then
Reg(02* N D) is locally the graph of a C*1_reqular function.
(2) for a universal constant d* € {5,6,7} (see Definition [L19), Sing(0Q* N D) is:
o empty if d < d*;
e discrete if d = d*;
e of Hausdorff dimension at most (d — d*) if d > d*.

(1.2)

The problem (LI]) can also be considered in the class of the quasi-open sets, but we stress
out that it is the same thing. Indeed, preliminary results, inspired by the work of David and
Toro in [§] (see also [7]), have already been obtained in [29] in view to prove the regularity of the
minimizers to (II). The main results of the paper are stated in theorem [[.2] where the author
shows that if a quasi-open set 2* is solution, among the class of quasi-open sets, to the problem
(1), then the first k eigenfunctions on * are locally Lipschitz continuous, and hence Q* is an
open set.

One of the main interest and difficulty of this paper is to consider an operator with variable
coefficients. This case is more involved than the case of the Laplacian and has been studied only
recently. We notice that our result is quite general and applies, for instance, to an operator with
drift —A + V& -V or in the case of a manifold.

The first result concerning the regularity of the free boundary of optimal sets (for spectral func-
tionals) was established by Briangon and Lamboley in [3], where they consider the minimization
problem of the first eigenvalue of the Dirichlet Laplacian with inclusion and volume constraints.
More precisely, using the strategy developed by Alt and Caffarelli in [I], they prove that the
optimal sets for the problem

min {\(Q) : Q C D open, | <m} (1.3)
have C'*°-regular boundary (inside D) up to a singular set whose (d— 1)-Hausdorff measure is zero
(provided that the box is bounded and connected). In [24], Mazzoleni, Terracini and Velichkov

study the regularity properties of sets that minimize the sum of the first k£ eigenvalues of the
Dirichlet Laplacian among all sets of fixed volume, that is, minimizers of

min { A (Q) + -+ \(Q) : QC R? open, |Q] = 1}. (1.4)

They prove that the regular part of the boundary of an optimal set is C*°-regular and, thanks to
a dimension’s reduction argument due to Weiss (see [30]), that the singular set is of dimension at
most d — d*, hence improving the smallness estimate of the singular set. Meanwhile, Kriventsov
and Lin consider in [20] a more general functional and prove that minimizers of

min { F(A\(Q), -, A\ (Q) + (2] : ©C R? open}.

are C®-regular up to a singular set of dimension at most d — 3. Here, F : R¥ — R is a function
of class C'' which is strictly increasing in each variable (9;F > ¢ > 0). In [21], they also obtain
a regularity result in the case where the functional F' is non-decreasing in its parameters, which
hence apply to minimizers of

min { F(A, (Q), -, A, (Q) + 192 : QC R? quasi-open},
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where the first eigenvalue is not necessary involved. Notice that in these problems, the main
difficulty is to deal with higher eigenvalues since they have a min-max variational characterization.

On the other hand, regularity problems involving different operators have been studied only
recently. In [27], the authors prove the regularity of the minimizers to (IL3]) where A; now stands
for the first eigenvalue of a drifted operator —A + V@ - V with Dirichlet boundary condition (for
some ® € WH°(D,R?)), and therefore extend the result of Briancon and Lamboley. We highlight
that the operator considered in this paper (see (L2)) is more general than the operator with drift
—A + V& - V which corresponds to the special case where A = e~®Id and b = e~®. Recently,
Lamboley and Sicbaldi successfully treated the minimization problem (3] in the manifold setting
with the Laplace-Beltrami operator (see [22]). They prove the existence of an optimal set among
quasi-open set provided that the manifold M is compact and that optimal sets are C'°°-regular if
M is connected (and C'*°) up to (d — d*)-dimensional singular set.

Let us also mention that some regularity results have also been established in the context of
multiphase shape optimization problems involving eigenvalues (see, for instance, [6], [5], [26], [28])

We notice that we deal with a penalized functional and that it is natural to expect that a similar
result also holds with a volume constraint as in (I3]), but we will not address this question in
this paper since our main motivation is to treat the case of an operator with variable coefficients.

1.1. Preliminaries and notations. We will use the following notations throughout this paper.
We fix a matrix-valued function A = (a;;)i; : D — Sym;r, where Sym;r denotes the family of
the real positive symmetric d x d matrices, which is uniformly elliptic and has Holder continuous
coefficients. Precisely, there exist positive constants da,ca > 0 and Ay > 1 such that

laij(x) — aij(y)] < calz — y\‘SA, for every 4,57 and x,y € D; (1.5)
1 d
E|£|2 <E-ALE= Z a;j(x)&& < g2, forevery ze€D and ¢eR% (1.6)
ij=1

We also fix a Lipschitz continuous function b € W1*°(D) which we assume to be positive and
bounded away from zero: there exists ¢; > 0 such that

¢! <b(z) <c for almost every = € D. (1.7)

We set m = bdx and we define, for any an open set 2 C D, the spaces L?(Q;m) = L?(Q) and
H}(;m) = HE(Q) endowed respectively with the norms

1/2
lullzm = ([ aam) " and Jullinom = Rl + Vel
By the Lax-Milgram theorem and the Poincaré inequality, for every f € L?(Q2,m) there exists a
unique solution u € H{ (2, m) to the problem
—div(AVu) = fbin Q, wu € HHQ,m).

The resolvent operator Rq : f € L*(Q;m) — Hi(Q;m) C L?(;m) defined as Ro(f) = u
is continuous, self-adjoint, positive and compact (since H&(Q;m) is compactly embedded into
L?($;m), because b > ¢, > 0). Therefore, the operator —b~!div(AV-) in Q has a discrete
spectrum which consists in real and positive eigenvalues denoted by

0 <A(f) < A() <+ S M(Q) < -+
For every \;(€2) there exists an eigenfunction u; € H{(Q;m) satisfying
—div(AVu;) = \i(Q) bu; in Q,

where the PDE is intended in the weak sense, that is

/ AVu; - Vodx = /\Z(Q)/ uip dm for every o € HJ(Q).
Q Q



4 BAPTISTE TREY

Moreover, the eigenfunctions (u;)ieny (on an open set  C D) will always be normalized with
respect to the norm || - || ;2(q;,) and form an orthonormal system in L*(€;m), that is

s 1 if Q=
/Q”i”j =0 '_{0 if i g

We denote by H&(Q,Rk) the space of all vector-valued function U = (ug,...,u;) : @ — RF
such that u; € H}(2), endowed with the norm

k
U0y = 101 z2g0) + IV U220y = > (luill z20) + 11V till 22(0) -
=1

Similarly, we will also need the following norms for U = (uy,...,u;) : Q@ — R¥
k
|U||L1 Z ||Uz||L1 and ||U||L°°(Q) = SE? ||Uz‘||L°<>(Q)-
Moreover, for U = (ug, ..., ) Q — R weset [U| =ul+---+ul, |VU]? = |[Vug >+ -+ | Vuy 2

and AVU - VU = AVu, - Vul + -+ AVuy - Vuy,. Finally, for f = (f1,..., fr) € L*(Q,R*) we
say that U = (uq,...,u) € H&(Q,Rk) is solution to the equation

—div(AVU)=f in Q, U e H}QRY
if, for every i = 1,..., k, the component u; is solution to the equation
—div(AVu;) = fi in €, u; € HY ().
We summarize in the following theorem the main results obtained in [29].

Theorem 1.2. Let D C R? be a bounded open set and let A: D — Sym;r, b e L>°(D) satisfying
(CH), C8) and [TT). Then the minimum
min {A(Q) + - + X\e(Q) + A|Q| : QC D quasi-open } (1.8)

is achieved. Moreover, the vector U = (uq,...,ux) € H&(Q*,Rk) of the first k normalized eigen-
functions on any optimal set Q* for (L8) satisfies:

(1) U € L*(D) and is a locally Lipschitz continuous function in D. In particular, Q* is an
open set.

(2) U satisfies the following quasi-minimality property: for every C1 > 0 there exist constants
e €(0,1) and C > 0, depending only on d,k,Cy, ||U||p~ and |D|, such that

/AVU-VUda;+A\{\Uy>0}yg (1+CHU—UHL1)/ AV - VT do + A|{|T] > 0], (1.9)
D D

for every U € H{(D,R*) such that |[U — U||;1 < e and ||U||~ < Cy.

1.2. General strategy and main points of the proof. Throughout this paper we will always
denote by Q* an optimal set to the problem (II)). In section 2 we reduce to the case where
A = Id and prove that the vector U = (uq,...,u) of the first k eigenfunctions on 2* is, in some
new set of coordinates, a quasi-minimizer of the Dirichlet energy in small balls centered at the
origin (Proposition 2.2]). We notice that we perform a change of coordinates near every point
x € 00" and hence that one of the main issue is to deal with functions U, = U o F, which depends
on the point = (see ([Z3)) for the definition of F,). We adapt the strategy developed by David
and Toro in [§] to prove that U, is non-degenerate (Proposition 2:3)). Using an idea of Kriventsov
and Lin in [20], we show that the first eigenfunction wu; is non degenerate in 2} (Proposition [Z6]),
where (2] denotes any connected component of {2* where u; is positive. From this result we then
deduce a uniform growth of u; near the boundary 02} and a density estimate for 7.

We notice that, unlike in [24], the optimal set 2* may not be connected. Indeed, the geometrical
constraint imposed by the box D and the presence of variable coefficients do not allow to translate
the connected components of Q* and hence to prove as in [24] that Q* is connected. However, we
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prove in Proposition B.7] that the connected components of 2* cannot meet inside D. Therefore,
in order to prove Theorem [[I]it is enough to prove only the regularity of ] (see also remark [[3]
below). This result comes from the structure of the blow-up limits studied in section Bl where
we in particular prove that the blow-up limits are one-homogeneous functions and solution of the
Alt-Caffarelli functional.

Section Mlis then dedicated to the regularity of Q7. Since we work with the first k eigenfunctions
in a new set of coordinates, namely with U,, we define the regular part of ] in a different way than
in [24] (see Definition [4]). Then, we show as in [24] that we can reduce to a one-phase problem,
for which the regularity of the free boundary was proved by De Silva (see [9] and [28, Appendix
AJ). To this aim, we prove that Q] is a non-tangentially accessible (NTA) domain near the regular
points and we prove a boundary Harnack principle for the eigenfunctions U = (u1, ..., uy) on 3.
More precisely, we prove that for every xp on the regular part of the boundary 07, the limits
gi(z0) = limy_y4, % exist and define Holder continuous functions g; : 9Q] N By(xg) — R. We
notice that one difficulty comes from the presence of the function b and that it is the only point
in the paper where the Lipschitz continuity assumption on b is needed. As a consequence, we
deduce that u; satisfies the following optimality condition

|A;/2[Vu1($)” = g(x)VA for every x € O N B,(x),

where g is an Holder continuous function depending on the functions g; (see ({I6])). In subsection
we provide an estimation of the singular set by proving that we can apply the strategy
developed by Weiss in [30] to the case of an operator in divergence form (see Lemmas [L.2T] and

4.22).

Remark 1.3 (On the connected components of the optimal sets). We highlight that it is enough
to prove the regularity of any connected component of * where the first eigenfunction is positive.
Indeed, if Qf is a connected component of Q*, then there exists kg > 0 such that \;() €
(%), .., A (Q9)} for any i € {1,...,ko} and N (€25) & {A(Q%),..., \(2%)} for any i > k.
Using that o(2*) = o(2§) U o (Q*\ QF), it is straightforward to check that €2 is solution to the
problem (1) with k& = kg and D = D\ (2* \ Q). Notice also that the connected components of
" cannot meet inside D (see Proposition [3.7]).

Moreover, we notice that Q* has at most k connected components. Indeed, denote by QF
a connected component of * such that \;(Q*) € o(€f). Then, it turns out that the first k
eigenvalues on Q* coincide with the first k eigenvalues on U¥_; Q¥ and therefore we have |UE_, QF| =
|2*| (since otherwise the optimality of Q* gives a contradiction).

2. GENERAL PROPERTIES

In this section we study some properties of the optimal sets Q* to the problem (I.1]) and of its
first normalized eigenfunctions U = (uy, ..., ux). We first prove that the optimal sets have finite
perimeter and that the vector U is non degenerate. We then prove that the first eigenfunction wuq
is non degenerate on any connected component Q7 of 2* where u; is positive. As a consequence,
we show that (2] satisfies a density estimate. We conclude the section with an almost Weiss type
formula for U.

2.1. Finiteness of the perimeter. We prove that the De Giorgi perimeter of any optimal set to
the problem (L)) is finite. We follow the strategy introduced by Bucur in [4] for the eigenvalues of
the Dirichlet Laplacian (see also [25] and [27]). Together with a density estimate for the optimal
sets Q* (Proposition 2.9]), this provides a kind of smallness of the singular set of Q* (see section
[4.5]). The proof of this result will also be used to obtain a non-degeneracy property of the first
eigenfunction u; on Qf (Lemma [2.7]).

Proposition 2.1. Let Q* C D be an optimal set for the problem ([LIl). Then Q* is a set finite
perimeter in R?.
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Proof. Let U = (uq,...,ux) € HY}(Q*,R¥) be the vector of normalized eigenfunctions on Q*. We
prove that {|u;| > 0} is a set of locally finite perimeter in D for every i € {1,...,k}. This then
implies that the optimal set * = {|U| > 0} has finite perimeter. Let € 9{|u;| > 0} N D and
assume for simplicity that = 0. Let » > 0 be small, ¢t € (0,1) and 1 € C°(B,) be such that
0<n<1{n=1}= B,/ and [|[Vn||p= < C/r. We set

u; —tn if w; >+,
wig = n(u; — )" = n(ui +8)" + (L—nu;=q L—nu; i |u| <t
u; +tn if w; <t,

and Uy = (u1,...,Uigt,...,u;) € H&(D,Rk), where u;; stands at the i-th position. Notice that
we have U — U; € HY(B,,R¥) and ||U — U||;1 < t|B,|. We denote by C' any constant which does
not depend on x or t. By the quasi-minimality property of the function U in Theorem we
have

/ (A, - Vui — AV - Vuig) + A({U] > 0} 1 B,| — |{[U4] > 0} N B,)

T

< U - U / AVU, - VU, < Ct. (2.1)
D

Since n =1 in B, 5 we have Vu;; = Vu;1,, >4 in B, /; and hence

/ (AV’LLZ . V’LLZ' — AVui,t . V’LLM) = / AV’LLZ' . V’LLZ'.
B,/5 {0<]u;|<t}NB,;. /2
On the other hand, with an easy computation we get
/ (AVui -Vu; — AVu,y - Vu@t) = / (2tAVui -Vn — tzAVn . Vn)
Br\B, /2 {ui>t}N(Br\B;/2)

+ / (77(2 —n)AVu; - Vu; — u?AVn -Vn+2(1 —n)u; AVu; - V?])
{Jui| <tIN(Br\By.2)

+ / ( — 2tAVu; - Vg — t2AVn - Vn) > —(C't.
{uiz=t}N(Br\B;/2)

Moreover, since 1 # 1 in B\ B, , and by definition of u;; we have

{IU] >0} 1 Br| = [{|U:] > 0} N By | = [{[U] > 0} N Brja| = [{|Us| > 0} N By o
0 < ful < 64O (U] > 0} 1 Byyal > [{0 < fus] < £} Byl
Then, we now get from (2.1) that

/ AVu; - Vg + A0 < [us] < £} 0 By | < Ct (2.2)
{0<|ui|<t}NB,. /o

and therefore we have
/ V| < / (1Val? +1)
{0<|ui|<t}NB,. /o {0<]u;|<t}NB,;. /2
< max{Ai,A*}(/ AVu; - Vu; + A{0 < Ju;| <t} N Br/2]> < Ct.
{0<]us|<t}NB;. /2
We now use the co-area formula to rewrite the above inequality as

1 t
?/ Per ({|u;| > s}; B,/2) ds < C.
0

Therefore, there exists a sequence t, | 0 such that Per({|us| > t,}; B,/s) < C. Passing to the
limit we get that Per({|u;| > 0}; B, 2) < C, which concludes the proof. O
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2.2. Freezing of the coefficients and non-degeneracy of the eigenfunctions. The prop-
erties of the eigenfunctions on optimal sets in the case where A = Id have already been studied
in [24]. Thus, we perform a change of variables in order to reduce to this case. We prove in
the spirit of [28, Lemma 3.2] (see also [29, Proposition 2.4]) that the vector of the first k eigen-
functions is a local quasi-minimizer at the origin of the Alt-Caffarelli functional. We then prove
a non-degeneracy property for the vector of the first £ eigenfunctions at the boundary of the
optimal set.

We start with some notations which will be used throughout this paper. For U € H'(R?, RF)
and r > 0 we set

J(U,r) = / \VU|> + A|{|U| > 0} N B,|.
By

For z € D we define the function F, : R — R? by
Fi(§) =+ ALlE, €eR, (2.3)

where A;/ ‘e Sym;r denotes the square root matrix of A, (notice that, by assumption, the matrix
A, is positive definite). Moreover, for U = (uy,...,u;) € H'(R? R*) we set U, = U o F, and
Ugs =ujo Fp,i=1,... k.

Proposition 2.2. Let U € Hé(D,]Rk) be the vector of the first k normalized eigenfunctions
on Q*. There exist constants ro € (0,1) and C > 0 such that, if © € D and r < ry satisfy
By,r(z) C D, then

J(Uyz,r) < (1+Cro)J(U,r) + C||Uy — U|| 1 (2.4)
for every U € H' (R4, R®) such that U, — U € HY(B,,R¥) and ||U||p~ < ||Us||z-

Proof. Let V- € H}(D,RF) be such that U = V o F, and set p = A\y7. Observe that U — V €
HE(F.(B,)) and use V as a test function in (L3) to get

/ AVU-VU+A\{\U!>O}mFx(Br)\§(1+Crd)/ AVV - VY
F.(By) F.(By)

+A{|V| >0} N Fp(B)|+ C|U = V1. (2.5)

Moreover, since A has Holder continuous coefficients and is uniformly elliptic, we have

J(Uz,r) < det(A;7?) [(1 + chA§p5A)/ AVU - VU + A[{|U| > 0} N Fm(BT)@. (2.6)
Fy

(Br)
Similarly, we have the estimate from below

HO.1) = den(a: )| (1 = densz™) |
Combining (2.6), (23] and [271) we get

J(Uy,r) < (1+ ch)\ip‘;A) [

AVV -VV + A|{|[V]| >0} n Fx(Br)’] . (27
«(Br)

1+ Crd
1 — dea A3 poa
which gives ([24]). O

J(U,r)+C||U, — ﬁHLl]

We now prove a non-degeneracy property of the function U, = U o F, using the approach of
David an Toro in [8] which is a variant of the result in [IJ.

Proposition 2.3 (Non-degeneracy of U,). Let U = (uq,...,ux) be the vector of the k first
eigenfunctions on Q*. Let K C O be a compact set. There exist constants n = nx > 0 and
rix > 0 such that for every x € K and r < rx we have

k
Z][B lug i < nr = U=0 in By, (7).
i=179Br
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We will need the following Lemma which, loosely speaking, provides an estimate of the non-
subharmonicity of U,.

Lemma 2.4. Let U = (uq,...,ux) be the vector of the k first eigenfunctions on Q*. Let K C Q*
be a compact set. There exists constants Cxg > 0 and rx > 0 such that for every x € K and
r < ri we have

k
Z][ [(um,z - hr,i)+]2 < CKT2+5A7 (28)
i=1 r

where hy ; denotes the harmonic extension of the trace of uy; to 0B,.
Proof. We define the vector U = (@, ..., u;) € HY(R? RF) by

. min(ug i, hy ;) in B,
v Ug g in D\Br.

Then, using U as a test function in Proposition 22 we get (since U, is locally Lipschitz continuous
in D and because we have the inclusion {|U| > 0} C {|U,| > 0} since @; < uz;)

/ VU, |? < (1+C7‘5A)/ VU2 + CroAl{|U| > 0} N By | + C|Uz — Ul 115,
B, By
§(1+CT5A)/ VT2 + Crt+a, (2.9)

T

We now set V; = {h,; < uy;} for every i = 1,...,k, so that by (29) we have

k
Z/ (Vgsl® — [Vhyal?) < CT‘SA/ VT2 + Créton, (2.10)
- Vi B,
Moreover, we have the following equalities

| OV = [Vusa) = [ (Vhasl? = [Vusal) = = | (900 = hro) (2.11)
By Vi Vi

Indeed, the first equality follows from the definition of V;. For the second one, we set v; =
max(ug i, hy;) in B, and v; = uy; elsewhere, so that by harmonicity of h,; we have

0= [ Vhu i - V(vi—hpi)= [ Vuei - V(v;—hp;)= [ Vh; Vug;— /|th|2
B, Vi Vi

which gives (2II)). Finally, combining Poincaré inequality, (2I1]), (ZI0) and using that U, is
Lipschitz continuous we get

Z][ uxz_ rz < CT2Z][ ux,i_ rz 072 dz ’V uxz_hr,i)’2
= CT2_dZ/ (Vg i* = |Vh,i?) < cr?—d <CT6A / |VU|? + CTd+6A>
i=1 Vi r

= Cr?toa <][ |VU|? + 1> < Or*toa <][ VU, > + 1> < Cr?toa,
B, By

Proof of Proposition [Z3l Let n > 0 be small and assume that

Z ][ ugi| < nr. (2.12)
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We first claim that for every i € {1,...,k} we have |u, ;| < 4%*1prin B, /2- Suppose by contradic-
tion that there exists &y € B, o such that |u, ;(§o)| > 44+ pr. Since Uy is L-Lipschitz continuous
(with L depending on K'), we have for every ¢ € B,,./1.(&o)

|t ()] > 13 (60)| = | () — uzi(€0)] = (49T = L)y (2.13)

Moreover, if n < L/4, by Poisson formula we have for every & € By, /1,(§0) C Bs, /4

/8 ug ;i (§) d’}-[d—l(g)‘ < (%)d/aBr otz < 4. (2.14)

B, |€ — &4 ~ dwg \r

Therefore, using (2I3]) and ([21I4]) it follows that

2 d d
]{9 =] 2 (7) ][B a2 (1) ][B ol = hl?

N\9T, idst d 2 77d+22
> () [ ==t = T

s

|hri(§)] =

dwgr

which is in contradiction with (28] if 7 is small enough.
Now, let ¢ € C>°(B,) be a smooth function such that 0 < ¢ < 1, ¢ = 1 in B, 5, ¢ = 0 in
By \Bs,. /4 and |[V| < Cr. We set fori=1,... .k

0= (tgi — AT r)t — (ug; + 4% nro) n B,
i Ug g in D\BT’

and U = (@y,..., ) € H'(RY,RF). Notice that we have U, — U € H'(B,,R¥). Moreover, by
the preceding claim we have the inclusion {|U| > 0} N B, C {|U,| > 0} N (B;\B,2). Therefore,
Proposition applied to the vector U gives

AUz > 0} N By | < / (IVUP = [VU*) + Cr*2d(U,r) + C|Us = Ullpas,)-  (2.15)

T

By the definition of U and since U, is L-Lipschitz continuous, we have in the ball B,
IVU|? < |VU|? + 24  knr LIV | + 424400202V p|? < |VU,|? +Cn in B,.
Since once again U, is Lipschitz continuous, (ZI5]) now gives
A[{|Uz| > 0} N B, ja| < Copr® + Cro4 (L2 + C)r? + Awgr®) + CLrot < C(n + r°2)rd. (2.16)

Then, using once again the claim, we deduce that

k k
Z/ |ui| = Z/ g ] < A kenr|{|U] > 0}N B, /9| < C(n+r')prttt. (2.17)
i=1 7 Br/2 i=1 ¥ Br/2N{|Uz|>0}

Let y € By s, (z). We will find by induction a sequence of radii r; such that the estimate (2.12)
holds with the radius r; and at the point y. Let us choose 71 € (g{r, 11> ) such that
A AN

2
/4N

k k
8)\%/
Uy 4| < —2 ds Uy i
Ly, ot <% > ful

2
i—1 T‘/S)\A 0Bs 7
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Then, by [I7) (and since F, ' o Fx(Br/4)\2 ) C B, /2) we get

/42
9 SETTELAS) o) SEE) oF I

/8N4
< C’r_dZ/ g a] = C’r_dZ/ g | det(F; o Fy)
i=1

r'/4A2 Fy OFy(Br/4A2

< CT_dZ/ e i < C -+ rP8)mry <,
7‘/2

where the last inequality holds if  and r are small enough. Therefore, by the same above
argument we use to get ([2.16) and (2.I7) we now deduce that

§
HIUy| > 0} N By, ol < 0(77+7”1A)7"il

and

)
Z/ Juy.a| < Cln+ri* et
71/2

We now choose 72 € (4, 3) such that

Z][ [uy | < Crle/ M ds/aB [ty il < Crle/ [y i] < C(n—i-r(l;A)m*l < nry,
T1 s

71/2
provided that n and r are small enough. By induction it follows that there exists a sequence of
radii (r;); such that r; € (%£,%) and

9
{]U,] > 0} 1 By, ol < Cly+ 12, (2.18)

Now, if |Uy|(0) > 0, then |U,| > 0 in a neighborhood of 0 since U, is continuous, which is in
contradiction with ([ZI8) for  small enough and j big enough. Hence |U|(y) = |Uy|(0) = 0 for
every y € By, (z), that is, U = 0 in B, /4, (7). O

Remark 2.5 (L* non-degeneracy of U). A consequence of Proposition 2.3]is that U also enjoys
the following non-degeneracy property: there exist n = ng > 0 and rx > 0 such that for every
z € K and r < rg we have

10Ul Lo (B, v(a)) < 17 — U=0 in By, (v).

2.3. Non-degeneracy of the first eigenfunction and density estimate. We prove that
the first eigenfunction u; on an optimal set Q* to (I.I]) is non degenerate at every point of the
boundary of €27, where €] denotes any connected component of {2* where u; is positive. The
proof follows an idea of Kriventsov and Lin taken from [20]. As a consequence, we obtain that wu;
behaves like the distance function to the boundary and also a density estimate for the optimals
sets. Obviously, these properties only hold in f, that is, where u; is positive. However, as
pointed out in Remark [[L3] it is enough to restrict ourselves to this case in order to get the
regularity of the whole optimal set 2*.

Proposition 2.6 (Non-degeneracy of uy). There exists a constant C7 > 0 such that Cruy > |U|
We first recall the following standard result which is a consequence of [29] Lemma 2.1].

Lemma 2.7. Let Q C D be a (non-empty) quasi-open set, f € L=(D), f >0, and u € HY(D)
be such that u > 0 on 0S2 and
div(AVu) < f in Q.

Then, there exists a constant C' > 0, depending only on d and Xy, such that
[u™ || ooy < CHu < 0} N QU7 £l oo )
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Proof. Set Q= = {u < 0} N and notice that u € H}(27) Let v € HZ(27) be the solution of
div(AVv) = f in Q7. By the weak maximum principle we have v < 0 in Q~ (since f > 0) and
v <win Q75 in particular, v~ < v~ = —v in Q7. The proof now follows from Lemma 2.1 in [29]
(applied to —v). O

Proof of Proposition 26l We first claim that div(AV|U|) > —C|U| in Q*. Let ¢ € H}(Q*),

@ > 0. We use an approximation by mollifiers A = (aij) where af; = a;; * p, and we compute

u
(div(A*V|U]), ¢ Z/QZJG\U]Z?]@ Z/afjaiulﬁﬁjgo
_Z/a (o D), <,0—|—Z/a2]8u18 <|U|>

1,5,

B Ojup
— Z/a”aula <|U| > Z /amaul< 0] |U|38 up><,0

1,7,

Therefore, passing to the limit as ¢ — 0 we get

(div(AVI|U]), ) > Z / div AVul <,0 + Z/ |U|3 AVul -V — wjup AV - Vup)go

> = one) /b|U|<pz—Ak<ﬂ*)cb/|U|so, (2.19)

which proves the claim.

Let 79 > 0 be small (to be chosen soon) and set Q, = {z € Q} : |U(x)| < r} for every r > 0.
Since u1 > 0 in Qf we have m := inf{ui(z) : € QF, |[U(z)| = ro} > 0. We set My = m~rg and
vo = Mou; — |U|. The claim implies that div(AVvy) < C|U] in €,,. Moreover, by construction
of vy we have vg > 0 on 0f,,. Therefore, by Lemma 2.7 we get

—infvg = [|vg ||z (0,) = CHwo <0} N Qo[ U | oo 01, -
0

Then, from (22) (and a compactness argument) we have [Q,,| < Cry so that we deduce from

the above inequality that —info, vy < 67‘(1]+2/ ¢ for some C > 0 independent of ro. Therefore, in
Qo \ 2y /2 We have

Mouy = |U| +vo > |U| - C 1+2/d (1—2Ur(2]/d)|U| in - Q\Qpy2-

We now choose 7y small enough so that 467‘;/ 4 <1 and set M, = [1 — 267*(2)/ d]_lMo and vy =
Myuy — [U|. Tt follows that vy > 0 in Q,\Q,,/2; in particular we have v; > 0 on 0€, /, and
hence the above argument now applies to vy in €, /5. Therefore, an induction gives that vy > 0
in Q,, ,\Q,, for every k > 1, where we have set v, = Myu; — |U|, M}, = [1 — QETZ/fl]_le_l
and r, = 27 %ry. Moreover, we have

log(M},) = log(My) — Zlog [1—2Cr” /a 1] < log(My) + Cz2 2i/d < € 4 log(Mp)
i=1 =1
and hence M}, < CMy. It follows that |U| < Miu; < CMyuy in Q,, _,\Q,, for every k > 0
and therefore that |U| < CMyu; in ©,,. On the other hand, since infg»{\gm u1 > 0, there exists
M > 0 such that |U| < Mu; in Q7\Q,,. This completes the proof. O

We now prove that the first eigenfunction on an optimal set has the same growth than the
distance function near the boundary. This property will be useful to prove that the boundaries
of blow-up sets Hausdorff convergence to the boundary of the blow-up limit set.
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Proposition 2.8 (Uniform growth of u; at the boundary). Let K C D be a compact set. There
exist constants cx > 0 and rg > 0 such that the following growth condition holds
ui(x) > ci dist(x,007) for every x € Q] N K such that dist(x,00]) < rg.

Proof. We set r = (2Ax)~Ldist(x, 9Q%) and we denote by h; 1 the harmonic extension of the trace
of uy 1 to 0B,. By non degeneracy of u; (Propositions and [23]) we have (and because hy 1 is

harmonic)
1 d
hx71 0 :]Z hx71 :][ ux71 2 —]Z Ux Z r=:mr. 2.20
©) OB, OB, C1JoB, 10| VkC, (220)
Therefore, with the triangle inequality we get
u1(2) = uz,1(0) 2 ha,1(0) = [uz,1(0) = ha1 (0)] = mr — |ug,1(0) — hea (0)]. (2:21)
We now want to estimate |tz 1(0) — hg 1(0)] is terms of . We apply Proposition to the test
function U = (hg,1,uz2,. .., Uz ) and get (since uy 1 is Lipschitz continuous and that |ug 1| > 0
in B,)
/ |V(um71 — hm71)|2 = / (|Vu$’1|2 — |th,1|2) S CTd+6A. (2.22)
s BT

Now, let 7 > 0 be small to be chosen soon. Since u, 1 and h; 1 are Lipschitz continuous, we have
for every £ € B,

|1z,1(0) = g 1(0)] < 1z, 1(0) = ug1(§)] + |1z, 1(§) — bz 1(§)] + [ha1(§) — hz,1(0)]
< O7r+ ug1(§) — he ()]

Moreover, using Poincaré inequality to the function u, 1 — hy1 and the estimate ([222]), we have

11 (0) — haa (0)] < Crr+ ][ a1 (€) — has ()] < Crr + T—d]{g i1 (€) — s (€)

Tr

< Crr+ CT_dT][ |V (uz,1(€) = ha,1(8))]

T

1/2
< Crr+ O % <][ |V (ug1(€) — hx,l(g))P)
< (CT + CT_dréAp)r < %r,
where the last inequality holds by choosing first 7 small enough and then rx (depending on )
small enough. In view of ([2:2]]), Proposition now follows. O

Proposition 2.9 (Density estimate for 27). Let U be the vector of the first k normalized eigen-
functions on Q* and let K C D be a compact set. There exist constants rx > 0 and cx € (0,1)
such that for every xo € 0 N K and r < rix we have

c|Br| <197 N By ()| < (1 —ck)|Brl.
Proof. We first prove that we have
c|Br| < {[Uso| > 0} N Br| < (1 —¢)[By]. (2.23)

The first inequality follows from the non-degeneracy of U,, (Proposition (23))) since it implies
that there exists { € 9B, /5 such that Zle |tz,,i(€)] > &, and hence, using that U, is L-Lipschitz
continuous, that

k
1 nro .
|Uzo| > ﬁz_; Uz ,i| > m n B%(ﬁ)

For the second estimate, consider the test function U = (Pt U 25 -y Uy k) € H LR, R¥),
where h, 1 denotes as usual the harmonic extension of uy, 1 to 0B,, and note that by the strong
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maximum principle we have h,.1 > 0 in B, since ug, 1 is non-negative. Then, by Proposition
applied to U, and since u,, 1 is L-Lipschitz continuous, we get

/ (‘Vuxo,1‘2 - ‘Vhr,1‘2) < A’{’Uxo’ =0} N B, |+ CT&AJ(ﬁvr) + C”uxo,l - hr’JHLl
By

< A{[Usy| = 0} N By | + Cré*oa, (2.24)

Moreover, by Proposition and the harmonicity of h,; (and also because ug, 1(0) = 0), we
have

[tz (0) = 1 (0)] = P2 (0) :][

0

where 7, is defined as in (Z20). Now, let 7 > 0 be small. Since h,; is 2L-Lipschitz continuous
we have for every £ € B,

‘uﬂco,l(o) - hﬁl(o)‘ < ’u:co,l(o) - uxo,l(f)’ + ‘uxo,l(g) - hr,l(g)‘ + ’hr,l(f) - hr,l(o)’
<BLTT + [tz 1(€) = he1(§)]-

hr,l :][ uxo,l 2 mr, (2.25)
B 0B,

Then, averaging over B;, and using (2.29]) leads to

mr < |ug,1(0) — hy1(0)] < 3L7r +][ |uzo1 — hp1)- (2.26)

Tr

Moreover, by Poincaré inequality and Cauchy-Schwarz inequality we have

][ |um0,1—hr,1|sf—d]l |um,1—hr,1|§f-dr]l 1V (ttg 1 — )|
Tr T B’f'

d 1/ ) 1/2
< 7l </ |V Uy — hr,1)|2> = 774173 </ Vtgg 1 |* = |Vhr,1|2>
B Br

which combined with (224]) and (2.26]), and after some rearrangements, gives
2Ar (| Usy | = 0} 11 By| > i — 442 - Crn,

Then choose 7, depending only on 7; and C, small enough so that C72¢+2 < 77%7'2‘1 /2 and then
choose , depending only on 7,7 and C, such that Cr°A < 77%7'2‘1 /4 to conclude the proof.
Now, by a change of variables, the density estimate in (2.23]) gives

JALB,]| < [{U] > 0y 0 AXLB)| < (1 - OIALIB,).
Then set cx = A} 2%¢ so that (because we have the inclusions B A C A;/OQ [Br] C Bx,r)
x| Baye| = clBy 1, | < o[ AX[B,)| < {IU] > 0} 1 AX[B,)| < {IU] > 0} 1 B
Similarly we have

{[U] = 0} N Byyol = {IU] = 0} n AL(B]| = [AL (B - {[U] > 0} n A2[B]]

> c|A(B,]| > c|Byr,| = ex| By,
which concludes the proof. O
2.4. Weiss monotonicity formula. We prove a monotonicity formula for the vector of the first

k eigenfunctions on an optimal set Q*. The proof follows the idea of [30, Theorem 1.2] (see also
[24, Proposition 3.1]). For every U € H'(RY,R¥) and r > 0 we define

1 1
W (U,r) = r—dJ(U,r) - m/aB |U|2.
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Proposition 2.10. Let U = (uy,...,ux) be the vector of the first k normalized eigenfunctions
on Q" and let K C D be a compact set. Then there exist constants rig > 0 and Cg > 0 such that
for every xg € 00" N K and every r < ri the function Uy, = U o Fpy = (Ugg,1,- - -, Ugg k) Satisfies

d

2 Sa—1
%W( wos T rd+2 Z/ |z - Vg, i — Ugy | de — Crroa™". (2.27)

Moreover, the limit im, _,o+ W(Uy,,r) ezists and is finite.

Proof. We first compare U,, with its one-homogeneous extension in the ball B,, namely the
one-homogeneous function U = (i, ..., i) : By — R¥ defined by U(€) = ‘%‘Umo <%£) We have

o ; ’U“PK ) v \Umq
/BT-‘VU’ —/T |:’V9Uxo‘ r2 ’5‘5 f /(’)BT ‘VGU:U()‘ + r2

and for the measure term
~ r -
{IU] >0} N B,| = E’Hd '"{IU] > 0} N oB,).

Then, we use U as a test function in (Z4]) which gives

I(Usy, 1) < J(O,1) + C (12 (0,7) + Uy = U2
< 1/ (VoUs, | + |Um0| + AZHEL{U] > 0} N OB, + Cord+oa (2.28)
d OB, 7" d

for some Cy > C'(2wg|| VU |2 w0 + Awq + 2wg||V Uy, || L) where the constant C' is given by Propo-
sition We now compute the derivative of W (Us,,r) and use ([Z28) to obtain

d 1 _ d
_W(Uxmr) = T_d</é)B ’VUxo‘z +AHd 1({’[]1‘0‘ > 0} maBT)) - mJ(Ume)

dr
2 1 & Mg ;
e U 2 o 2u . 0,
t oo /8BT [Vl rd+1 Zizl /aJBT v

k
1 > 1 1 Mty i
> — 0 —— Upo|? — —— / Ny §——2t — dCroA~"
= d /E)B v * ra+2 /BBT.| o] ra+1 ; on T ow 0
ou 2 Qg _
= s Z/ [ ot uio’i — 21Uy ({;VO’Z} — dCyroa~t
OB,

1
E 2 op—1
= m ‘.’L’ . VUZ‘OJ — Ux()’i‘ — dCQT A s
r
i=1 0B,

which is (Z27)). This also proves that the function r — W (Uy,,r) + %C@T‘SA is non-decreasing

and hence that the limit of W (U,,,r) as r tend to 0 exists. Moreover, this limit is finite since we
have the bound

1
W(U) 2 =g [ a2 = VU e for every >0,
U

As a consequence of the previous result, we get a monotonicity formula for global minimizers
of the Alt-Caffarelli functional.

Definition 2.11. We say that U € H'(RY RF) is a global minimizer of the (vectorial) Alt-
Caffarelli functional

() = /R VU + AU > 0))
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if J(U,r) < J(U,r) for every r > 0 and every U € H'(RY, R*) N L= (R?, R¥) such that U — U €
HY(B,,RF).

Proposition 2.12. Let U = (uq,...,u;) € H'(RY,RF) be a global minimizer of the Alt-Caffarelli
Junctional J such that U(0) = 0. Then we have

k

d 1 )
—W > . w2
ar (U,r) = Fd+2 ;:1: /a& |- Vg — ]

In particular, if r — W(U,r) is constant in (0,+00), then U is a one-homogeneous function.

Proof. Since U is a global minimizer of J, it satisfies (2.4]) with C' = 0 and hence the computations
in the proof of Proposition .10l hold with Cy = 0. The last claim of the proposition follows from
the fact that « - Vu; = u; in R? implies that u; is one-homogeneous. O

3. BLow-UPS

In this section we study the blow-ups limits (at the origin) of the functions U, = U o Fy,
where zg € 02*N D. Throughout this section, U will denote the first k normalized eigenfunctions
on the optimal set Q* = {|U| > 0}. We prove that the blow-up limits are one-homogeneous
and global minimizers of the Alt-Caffarelli functional. As a consequence, we also prove that the
boundaries of two connected components of 2* have an empty intersection in D.

Let (z)nen be a sequence of points on 9Q* N D converging to some zy € IN* N D and let
(rn)nen be a sequence of positive radii tending to 0. Since U is Lipschitz continuous, up to
extracting a subsequence, the sequence defined by

1
By (€) = —Ulza +m€),  €€RY,
n
converges locally uniformly to a Lipschitz continuous function By € Hlloc(Rd, R¥). We will often
set By, = By, r, and deal with this sequence in a new set of coordinates, that is, we will consider
the sequence B,, defined by

Bal€) = Buo AY2(6) =~ U, (rnf),  E€RE

n
Definition 3.1. If B, ,, converges locally uniformly in R? to some By, we say that B, ,, is a
blow-up sequence (with fixed center if z,, = zy for every n > 1). If the center is fixed, we say
that By is a blow-up limit at xp. We denote by Bl (zp) the space of all blow-up limits at .

We start with a standard result on the convergence of the blow-up sequences and we give
the details of the proofs for convenience of the reader. Recall that 2] stands for any connected
component of Q% where the first eigenfunction uq is positive.

Proposition 3.2 (Convergence of the blow-up sequences). Let (,)nen C 0Q* N D be a sequence
converging to some xg € 02" N D, r, — 0 and assume that the blow-up sequence B,, := By, r,

converges locally uniformly to By € H}oc(Rd,Rk). Then, up to a subsequence, we have

(1) The sequence B,, converges to By strongly in H}OC(Rd,Rk).

(2) The sequences of characteristic functions L, converges in Llloc(]Rd) to the characteristic

function lg,, where we have set Q,, = {|By| > 0} and Qo = {|By| > 0}.
(3) Theiunctz’on By is non-degenerate: there exits a constant ng > 0 such that for every every
y € Qo we have

| BollLe (B, (y)) = mor  for every 1 > 0.

(4) If@ € 90 N D, then the sequences of closed sets Q, and QS converge locally Hausdorff
to Qo and Qf respectively.
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Proof. Notice that it is enough to prove that the sequence B,, = B, o A;:/j strongly converges to
By := By oA;C/O2 in HL (R? RF) and that Ly 4,501 converges to Lz~ oy in LL (R9) to prove the
parts (1) and (2) of Proposition

Since B, is uniformly Lipschitz, B,, converges, up to a subsequence, weakly in HIOC(Rd R¥)

and strongly in L2 _(R% RF) to By. Moreover, the local uniform convergence of |B,| to |Bo|
implies that 1 {1Bo|>0} < liminf,,—so 1 (|Bn|>0}" Therefore, it is sufficient to prove that for every

ball B, ¢ R% we have

lim sup (/ VB, |2+ Al{|B,| > 0} N Br|> < / |VBo|? + Al{|Bo| > 0} N B,|. (3.1)
n—+00 B, B,

Let ¢ € CSO(N]Rd) be a smooth function such that 0 < ¢ <1, {¢ = 1} = B, and ¢ = 0 outside

Bs,. We set U, = 9By + (1 — ¢)B,, € H'(R? R¥) and notice that we have

) ) -1
Upy — U™ € HY(Bayy, ,R¥) where U7"(€) = r,U, (r—g), £ e R

n

Then, using f]ﬁ" as a test function in Proposition and by a change of variables we get

/ VB, |2+ Al{|B,| > 0} N By,| < (1 +C(7’rn)5A)</
Boy

Bay

+71Cllp(Bo = By)ll - (3.2)
Since we have U,, = B,, in {¢ = 0} and U,, = By in {¢ = 1}, it follows that
{|Un] > 0} N Bay| < [{|Ba] > 0} N {pp = 0} N Boy| + [{|Bo| > 0} N {o =1} +[{0 < p < 1},
so that (3:2) now gives

VU, |2+ Al{|U,| >0} N BM)

/{ N (IVBal* = IVU ) +A([{|Bn > 0}0{p > 0} = [{Bo| > 0}n{p = 1}]) < A|{0 < ¢ < 1}
o>

+ O(rry)°A </ VU, + A[{|U,| > 0} N B2r|> +71,Cp(Bo — By)llpr- (3.3)
Bay
Now, since B,, converges strongly in L?(By,) we have that

1imsup/ (|Vén|2 - |Vﬁn|2) = 1imsup/ (|Vén|2 - |V(90B0 + (1 - @)Bn)|2)
{¥>0} {¥>0}

n——+00 n——+00

—timsup [ (VB[ ~|(Bo~ B+ (1~ 90V By + oV Ef)
{¢>0}

n—-+o0o
= limsup/ (1= (=@ VB> = 20(1 = 9)VB, - VBy — ¢*|VBy[*)  (3.4)
{¢>0}

n—-+o0o

n—-4o0o

—timsup [ (1= (1= @) (VB - [VEoP),
{¢>0}
and since VB, converges weakly in L2({0 < ¢ < 1}) to By we have that

|G- R <tmsw [ a-- PR (39)
{0<p<1} n—+o0o J{0<p<1}
Therefore, (85]) and ([B4) now entail that
lim sup / (IVBa* = |V Bo|?) < limsup / (1= (1= @)*)(|VBal> = [VBo|?)
{e=1} {¥>0}

n——+o0o n——+o0o

n——+o0o

< limsup/ (VB2 — VT, 2). (3.6)
{p>0}
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Finally, combining ([3.0]) and [B.3]) we get

. o 12 o 12 o _ _ > _
hmsup(/{@:l}(wm CIVBP) + A({IBal > 0} 1 (g = 1}] — [{IBol > 0} N { 1}|))

n——+0o00
<timsup ([ (9B~ [V0,F) + A({15,] > 0} o > 0)] - (1Bl > 0} 0 {p = 1)) )
n—+oo \ J{x>0}
< A0 < < 1}
Since we can choose ¢ so that |[{0 < ¢ < 1}| is arbitrary small, this proves (3] and concludes
the proof of parts (1) and (2) of Proposition
We now prove part (3). Let y € Qp and r > 0. There exists z € B,(y) such that |By|(z) > 0,

and hence such that |B,|(z) > 0 for n large enough. Therefore, U # 0 in B, (x, + m2) and
hence, by the non-degeneracy of U (Remark [Z5]), we get that

Tn”BnHLOO(BMiT(z)) = HU|’LOO(B4/\2Arrn(x”+Tnz)) = AAANTTy.

In particular, there exists z, € B4>‘2A +(z) such that |By|(z,) > 4\snr. Up to a subsequence, z,

converges to some 2y, € B4)‘i +(z) and, since B,, uniformly converges to By, we have that

1Boll = )2 [Boll =z, ) 2 |Bol(zac) = lim_[Bul(zn) > A,

B(zui +1)7‘(y 4)\ir(z

which gives (3). The proof of the Hausdorff convergence of the free boundaries is standard and
follows from the non-degeneracy of U and By, and the growth property of U near the boundary
of QF (see Proposition 2.§]). O

Lemma 3.3 (Optimality of the blow-up limits). Let (2, )neny C O2*ND be a sequence converging
to some xg € O N D, r, — 0 and assume that the blow-up sequence B, = B, . converges
to some By € H} (R%RF) in the sense of Proposition 2. Then By := By o A;/OQ is a global
minimizer of the Alt-Caffarelli functional J (see definition 2.11]).

Proof. Let r > 0 and U € H} (R%RF) N L®°(R% R¥) be such that By — U € Hy(B,,R*). Let
n € C(B,) be such that 0 < 7 < 1 and set B, = B, o A;/j and_vn = U+ (1=n)(B, — By).
Consider the test function V,, € H1~(Rd,Rk) defined by V,, (&) = 7,V (r; 1¢) and note that Uy, —
V,, € HY(Byr,, R*) (since we have B,, =V, € H&(BT,R’“)). By Proposition 2.2] applied to V;, and
a change of variables it follows that

/ VB2 + A[{|Ba] > 0} N B,| < (1+C(rrn)6A)</ VT2 + A{[Vn] > O}HBTD
B, B

+ Cry|| B, — VnHU(BT). (3.7)

Note that from (1) and (2) of Proposition we deduce that V,, converges strongly in H  to
U and that 1{\Vn|>0} converges strongly in LllOC to 1{\U|>0}' Moreover, since V,, = U in {n = 1},
we have the estimate

{IVal > 0} 0 B,| < [{|U] > 0} N By | +[{n # 1} N By.

Therefore, passing to the limit as n — oo in [B71) we get
[ IV B + AIBol > 0} ol < [ [VOP 4 A{D] > 0} B |+ [ £ 101 B,
B B

Since we can choose n such that that |{n # 1} N B, is arbitrary small, this gives that .J (Bo,r) <
J(U,r) and concludes the proof. O

As a consequence of the Weiss almost-monotonicity formula we get that the blow-up sequences
with fixed center converge to a one-homogeneous function.
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Lemma 3.4 (Homogeneity of the blow-up limits). For every z¢ € 0Q* N D, the blow-up limits
By € BUy(xo) are one-homogeneous functions.

Proof. Let B, = By, converging (in the sense of Proposition B.2]) to By. In particular, B,
converges strongly in Hl _and in L} to By which implies that lim,_, o W (B,,r) = W (B, r).
Moreover, by Proposition 210 the limit lim,_,q+ W (Uy,, ) exists and is finite. Therefore, we have
for every r > 0

W(By,r) = nll)l}_loo W(Bp,r) = nll)l}_loo W(Ugy, 1) = 81_1)1& W(Ugy, S), (3.8)
which says that the function r — W (By,r) is constant on (0, +00). Then, it follows from Lemma
and Proposition that By, and hence By, is one-homogeneous. O

We now reduce to the scalar case. More precisely, we prove that for any blow-up limit By €
BUy (o), the function |By| = |Bo OA;/;] is a global minimizer of the scalar Alt-Caffarelli functional

HL (RY) 50— / Vul? + Al{u > 0}]. (3.9)
Rd

Lemma 3.5. Let xy € 0Q2* N D, By ENBUU(xQ) and set By = By o A;,;/OQ. Then there exists a unit
vector € € OBy C R* such that By = |Byl€.

Proof. Set S = 8B N {|By| > 0}. By Lemma 34 the components of By = (b1,...,bx) are one-
homogeneous functions and by Lemma[3.3] they are harmonic on the cone {|By| > 0}. Therefore,
in polar coordinates we have b;(r,0) = r¢;(r) where ¢; is solution of the equation

—Agi1p; =(d—1)p; in S, ;=0 on 08,

where Aga—1 stands for the Laplace-Beltrami operator. By Proposition [2.9] the components of By
are not all zero. Therefore, at least one ; is non-zero and hence d — 1 is an eigenvalue of —Aga—1
on S. Since the functions p; are non-negative, it follows that A\;(S) = d — 1, where A1(S) denotes
the first eigenvalue on S. Moreover, by Lemma B3] we have |S| < |0B;| and by [24, Remark
4.8] it follows that the first eigenvalue A\ (.S) is simple. Then, there exists non-negative constants

at, ..., ak, not all zero, such that p; = a;p where ¢ stands for the normalized eigenfunction of
—Aga-1 on S. Now set @ = (ay,...,ax) so that we have By = pa on dB;. Since |af # 0, setting
¢ = |a| ' we have By = | By|¢ on B; and hence on R? by one-homogeneity. O

Lemma 3.6. Let xg € 0Q2* N D, By € BUy(xg) and set By = Byo A;/Oz. Then the function |Bo|
is a global minimizer of the (scalar) Alt-Caffarelli functional defined in (33).

Proof. Let 7 > 0 and @ € HL_(R%) N L®(R?) be such that |Bo| — @& € H}(B,). Since By = |By|¢

by Lemma B5 we have that By — @& = (|By| — @) € € H}(B,,R¥) and hence, by optimality of
By (see Lemma [B.3) we have

/|V|BO||2+A|{|BO|>0}OBT|:J(Bo,r)gJ(ﬂg,T):/ Va2 + Al{jd] > 0} N By,

B By

O

We conclude this section with a consequence of the one-homogeneity and the optimality of \Bo\
which states that two connected components of an optimal set cannot meet inside D. It is then
enough to prove the regularity of one connected component 27 of 2* and hence to reduce to a
one-phase free boundary problem (see Proposition EIT]).

Proposition 3.7. Denote by (Qz‘)izl the | < k connected componenents of an optimal set 0* for
(LI). Then, we have 0% MO N D =0 for every i,j € {1,...,1}, i # j.
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Proof. Let zo € 00 N 0Q; N D. Since () C o(2), there exists k; € {1,...,k — 1} such
that Ag(2F) € {A(QF),..., A\ (")} for every s = 1,..., k; and Ag(QF) ¢ {A1(2),..., A\ (%)} for
every s > k;. It follows that €2 is solution of the problem (II]) with k& = k; and D = D\ (2* \ Q7).
Similarly, for some k; € {1,...,k — 1}, Q7 is solution of (L) with & = k;. Then, we denote
by V.= (vi,...,vk,) and W = (wy,...,wy;) the eigenfunctions on 2} and Q7 respectively. Let
r, — 0 and define the blow-up sequences

Ba() = —Ulwo + ), BY©) = —Viwo+m), BY©=-Wo+ng, R’
n n n
Up to a subsequence, B,, BY and BV converge to some blow-up limits By € BUy (zo), B(‘)/ €
BUy (zo) and BY € BUw(z). By Lemmas B4 and B8, [BY | and |BY| are non-trivial, one-
homogeneous and global solutions of the Alt-Caffarelli functional. Therefore, the density at the
origin of each set {|BV| > 0} and {|BY| > 0} is at least 1/2 (sce [24, Lemma 5]) and, since all
the components of BY and B}Y are among the ones of By, it follows that |{|By| > 0} N By| = |Bil.
Hence, |By| is harmonic in B1 since it minimizes the Alt-Caffarelli functional. And since |By| is
also a non-trivial and non-negative function which vanishes at 0, this gives a contradiction (by
the maximum principle). O

4. REGULARITY OF THE FREE BOUNDARY

This section is devoted to the proof of Theorem [[.Il Recall that we denote by Q* a solution
to the problem ([I) and that QF stands for any connected component of Q* where the first
eigenfunction is positive.

4.1. The optimality condition on the free boundary. We prove that the vector U of the
first k eigenfunctions on Q* satisfies an optimality condition on the boundary 9Q2* N D in the
sense of the viscosity.

Definition 4.1. Let D C R? be an open set and U : D € R¢ — R* be a continuous function.

e We say that ¢ € C(D) touches |U| by below (resp. by above) at g € D if p(zg) = |U(z0)]
and ¢ < |U]| (resp. ¢ > |UJ) in a neighborhood of .

e Let Q C D be an open set and let g : D — R be continuous and non-negative function. We
say that U satisfies the boundary condition

A VUl =g on 80N D (4.1)

in the viscosity sense if, for every zg € Q2N D and every ¢ € C?(D) such that o7 := max(y, 0)
touches |U| by below (resp. by above) at xg we have

AL Vel < glao)  (resp. |ALITVe(e0)]] 2 glx0)).

e Let, moreover, A = (\1,...,\r) € R¥ be a vector of positive coordinates. We say that the
function U = (uq,...,ux) is a viscosity solution of the problem

—div(AVU)=XU in Q, U=0 on 90ND, |APVU]l=g on 8QND,
if for every i = 1,...,k the component u; is a solution of the PDE
—div(AVu;) = —=X\jbu; in Q, u;=0 on 00ND,
and if the boundary condition (£IJ]) holds in the viscosity sense.

Remark 4.2. Another equivalent definition of the boundary condition is to say that (4.1]) holds
if for every 2o € 92 N D and every ¢ € C?(R?%) such that 1% touches |U,,| by below (resp. by
above) at 0 we have |V (0)| < g(xg) (resp. |V¢(0)| > g(xp)). Indeed, if we set ¢ = ¢ o F, then

we have |V(0)| = \A;/OQ [V(0)]] (see also [28, Appendix A]).
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Lemma 4.3 (Optimality condition on the free boundary). Let U = (uy,...,u) be the vector
of the first k normalized eigenfunctions on Q* and set X\ = (A1 (Q*),..., \(Q*)). Then U is a
viscosity solution of the problem

—div(AVU) = XU in Q*, U=0 on 80'ND, |AZ[VIU|]|=VA on 9Q°ND. (4.2)

Proof. Since U is Lipschitz continuous, we only have to prove that the boundary condition holds
in the viscosity sense. Let zg € 0Q*N D and let 1) € C?(R?) be a function touching |U,,| by below
at 0 (see Remark @2). We fix an infinitesimal sequence 7, and set for every ¢ € R?

Bn(g) = %Uxo(Tng) and 9, (§) = Tiw(rng)

n n

Up to a subsequence, the blow-up sequences (Bn)neN and (1, )nen converge locally uniformly
in R? to some By € H (R?RF) and to 1o(&) := & - Vi(0) respectively. We can assume that
V(0) = |Vip(0)|eq (by a change of variables) and that [V (0)| # 0, since otherwise |V (0)] <
\/A(zo) obviously holds. We have 9 < |U,,| near 0 an hence ¥y < |By| in R? which gives that
|Bo| > 0 in the half-space {z4 > 0}. Since |By| is a one-homogeneous (Lemma [B4) and non-
degenerate (Proposition B2) function, it follows that {By > 0} = {zq > 0} (see [27, Lemma
5.30]). Moreover, |By| is a local minimizer of the Alt-Caffarelli functional (Lemma [B:6) and hence
satisfies the optimality condition

IV|Bo|| = VA on {xq=0}.
Therefore we have |By(€)| = VAL and hence (&) = [Vi(0)|&x < |Bo(€)| = VAES, which

completes the proof when v touches by below. The case when 9 touches by above is similar. [

4.2. Regular and singular parts of the optimal sets. In this section we prove that the
regular part of an optimal set Q* (see Definition [£.4)) is relatively open in 9Q*.
For any set Q C R? we define the blow-ups sets Q. of Q by
Q—zx

Qm,T: s l‘GRd,’f’>0.
T

Given Lebesgue measurable sets (2, )neny and Q in R?, we say that ©,, locally converges to €,

. 1 . .. . .
and we write ,, —» Q, if the sequence of characteristics functions 1g, converges in LllOC to 1g.

Definition 4.4. Let Q C D be an open set. We define the regular part of €2 in D by

loc

Reg(02N D) = {azo €00ND : Jvy, € 0B C R, Qpor — {y € RY : y- Vgo <0} as r — 0+}.
The singular part of 2 in D is then define by Sing(9Q N D) = (92 N D)\Reg(0Q2 N D).

Lemma 4.5. Let U = (uy,...,uy) be the vector of the first k normalized eigenfunctions on Q*.
Then,
(1) For every xo € 002" N D the limit

Uz | >0} 1 By

=1 4.
O (0):= i =g, -
exists and we have )
Ou,,(0) = oy Tl_1)151+ W (Ugy, ). (4.4)

(2) There exists 6 > 0 such that, for every xo € 0Q* N D we have Oy, (0) € {3IU[L+6,1]

Proof. Let (7,,)nen be an infinitesimal sequence and set By, (€) = %Uxo (rn€). Up to a subsequence,

B,, converges to some By (in the sense of Proposition [3.2)). Since By is one homogeneous (Lemma
[34) and harmonic in {|By| > 0} (Lemma B3] we have

- 1 -
/ VBl = —/ 1Bol?,
B, T JoB,
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and hence, for every r > 0, we get that
~ 1 ~ 9 A 1 ~ 9
W (Bo,r) = r_d/Br. VBl + S 1{1Bol > 0} 1 By - m/m Byl
[{|Bo| >0} N By |
| B: |

On the other hand, by @F38) we have that W (B, r) = lim,_+ W(Uy,,s) for every r > 0 and
therefore

(4.5)

= Awy

_ HIBo| >0} N B/|

.
Ao 81_1)1& W (Uszy,s) = Gl for every 1 > 0. (4.6)
Then, using that B, converges to By in LL (R9), it follows that
Lo {[Bo| >0} Bi| . [{|Bal >0} Bi| . [{|Us| >0} N By,
Ruog o WV (U2 8) By AT By A B,

This proves part (1) of the Lemma since the above equalities holNd for any sequence 7, | 0.
From (@06]) and (44) it follows that the density of the cone {|Bp| > 0} at 0 is given by
{Bol > 030 B,| _

1
ro0+ EX

®Uzo (0) € [0,1].

Moreover, | Byl is a non-trivial (part (3) of Proposition B2)), one-homogeneous (Lemma B4) and
harmonic function in {|By| > 0} (Lemma B6]). Therefore, the density of {|By| > 0} at 0 cannot
be strictly less than § (otherwise, setting S = {|By| > 0} N By, the two first parts of [24, Remark
4.8] respectively give A1(S) < d—1 and A\(S) > d — 1)), cannot belong to (3,3 + &) for some
universal constant 6 > 0 (see [24, Lemma 5.3]) and is less than 1 — ¢ by Proposition O

We will also need the following characterization of the regular part.

Lemma 4.6. We have
1
Reg(@Q* N D) = {JEO coN*ND : ®Uz0 (0) = 5}’

where Oy, (0) is define in ([@3).

Proof. Let zg € 0Q*N D, 1, | 0 and B, = By, r, be a blow-up sequence converging (in the sense
of Proposition 3.2)) to some By; in particular, QF = {|B,| > 0} locally converges to {|By| > 0}.

Z0,"n

By ([@4), [@3) and a change of variables (because By = By o A;/OQ) we have

o o 0B >0 0B (1Bl >0} 0 A%[B)
Uz, (0) - |B | - 1/2 :
! Ao [Bal|

If 29 € Reg(02*N D), then {|By| > 0} is an half-space and it follows by (47) that Oy, (0) = 1/2.
Reciprocally, assume that Oy, (0) = 1/2. It is enough to prove that {|By| > 0} is an half-
space, since then {|By| > 0} is also an half-space. Set S = {|By| > 0} N @B, and notice that
HIY(S) = dwg/2 since |By| is one homogeneous. Assume by contradiction that S = Sy U S;
is the disjoint union of two sets Sy, S1 C 0B;. Since ]Bo\ is one homogeneous and harmonic on
{|By| > 0} it follows that ¢ = |Bo|‘aBl is solution of

—Agi-1p=(d—1)¢p in Sy, =0 on 058,

which implies that A;(Sg) < d — 1. On the other hand, since H41(Sy) < dwg/2, we also have
that A\1(Sp) > d — 1 (see [24, Remark 4.8]), which is a contradiction. Therefore, S is connected
and hence A\1(S) = d — 1. This implies that S is, up to a rotation, the half-sphere 9B; N{z4 > 0}
and hence that {|By| > 0} is the half-space {z4 > 0}. O

Proposition 4.7. The regular set Reg(02* N D) is an open subset of O*.

(4.7)
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Proof. Let xy € Reg(9Q2* N D) and assume by contradiction that there exists a sequence (zy,)nen
of points in Sing(9Q* N D) = (02* N D)\Reg(92* N D) converging to x¢. By Lemmas .5 and
we have Oy, (0) =1/2 and O, (0) > 1/2+ 6. Since the function ¢y (r) = W(Uy,,r) + CroA is
non-decreasing by Proposition 2.10, we have for every r > 0

1 1 1 1

- < =— 1 2ns8) = — i n(s) < ——pn(r).

5 705 00,,0)= g lim W(l,,s) = 3 lim ¢nls) < 5 on(r)
Passing to the limit as n — oo and using that lim,,_,oc W(Uy,,,7) = W (Us,, ), it follows that for

every r > (0

1 I 1 W 5
— < —_— = — A .
2t o< Awy nh—>H<;lo () Awyg [ (o, ) +Cr ]

But the right hand side converges to Oy, (0) =1 /2 as r — 0 which is a contradiction g

4.3. The regular part is Reifenberg flat. We prove that the regular part of Q7 is locally
Reifenberg flat. Recall that by Proposition 7], Reg(9€2} N D) is relatively open in 92}. Roughly
speaking, a domain is said to be Reifenberg flat if its boundary can be well approximated by
hyperplanes. We give here a precise definition.

Definition 4.8. Let Q C R? be an open set and let §, R > 0. We say that Q is a (§, R)-Reifenberg
flat domain if:
(1) For every x € 0f) there exist an hyperplane H = H, r containing x and a unit vector
v=1vyRr€0B C R4 orthogonal to H such that
{y+tveBgr(z) : ye H,t > 20R} C Q,
{y —tv € Br(z) : y€ H, t > 20R} Cc R\Q.

(2) For every x € 0N2 and every r € (0, R| there exists an hyperplane H = H, , containing x
such that
disty (092N By (z), H N By(x)) < or.

Proposition 4.9. Let 6 > 0. Then, for every xo € Reg(0Q; N D) there exists R = R(xg) > 0
such that 5 is (9, R)-Reifenberg flat in a neighborhood of xy.

Proof. Assume by contradiction that there exists § > 0 and zp € Reg(92 N D) such that, for
every R > 0, QF is not (6, R)-Reifenberg flat in any neighborhood of xy. Then, there exist
sequences x, — Zog, Tn € 07, and 7, | 0 such that one of the following assertion holds

i) For every hyperplane H containing x,, and every v € 9B; we have either
{y+tv € By, (xn) : y € H, t >20r,} £ or {y—tve B, (v,):yeH, t>2r,} £ RA\Q;.
ii) For every hyperplane containing x,, we have
disty (02 N By, (z,), HN By, (2,)) > 07y
We consider the blow-up sequence B, (¢) = LU (z, + r,€) and set Q,, = {|B,| > 0}. Then the

_Tn

above assumptions can be equivalently reformulated as
i’) For every hyperplane H containing 0 and every v € 9B; we have either

{y+tveBy :ycH t>20}¢Q, or {y—tveB :yecH, t>25}¢RN\Q,.
ii”) For every hyperplane containing 0 we have
disty (02, N B1, H N By) > 4.
Notice that z, € Reg(0Qf N D) for n large enough since Reg(d€2] N D) is an open subset of
08 (Proposition 7). Up to a subsequence, B,, and B, = B, o A;/f converge (in the sense of

Proposition B:2) to By and By = By o A;/OZ respectively.
We first prove that

- A
W(By,r) = % for every 1> 0. (4.8)
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By Proposition ZI0, ¢, (r) := W(Us,,,rrn) + C(rr,)°A is a non-decreasing function. Moreover,
by Lemma .5 and since we have Oy,  (0) = 1/2 (Lemma [.8]), it follows that

Awd
lim on(r) = lim W(Uy,,r) = AwgOp, (0) = —¢,
i o (r) = lim W(Us,,r) = AwiOu,, (0) = —
We now fix 7 > 0 and € > 0. Since lim,_,g+ W(Uy, s) = AwaOy, (0) = % there exists 7 > 0

such that
W (Uy,,T) + CF8 < % +e.
Moreover, since lim,, oo W (U, ,7) = W (Uy,,T), we have for n large enough that
W (Uy,,,T) < W(Uyg,,T) + €.

Therefore, choosing n large enough so that rr,, <7, we get that

A T A
% < n(r) < %(}) =W (Us,,T) + CT% < W(Uy,,T) + &+ CTA + % + 2,

which proves that

. ~ Awy
nh_)ngo on(r) = 5 for every r > 0.

Since B, converges strongly in HllOC to By and I ~converges in LllOC to 1 we have that
lim,, o0 W (B, 7) = W (B, r). Hence we get for every r > 0
A - -
29 i on(r) = lim W(U,, ,rr,) = lim W(B,,r) =W (By,r).
2 n—00 n—00

n—o0

Now, since By is solution of the Alt-Caffarelli functional (Proposition B3) and since W (B, )

is constant by (L8]), it follows from Proposition 2I2] that By is one-homogeneous, and hence by

X)) that
11 [{lBol >0} N B,
S = W(Bor) =
2 Ay P0T) B,
Then, as in the proof of Lemma [L.6] we get that Qo = {|By| > 0} is an half-space and hence
that 090 = 0{|Bo| > 0} is an hyperplane (containing 0). This is in contradiction with both
assumptions i’) and ii’) since €, and Qf converge locally Hausdorff to 2y and Qf respectively

(Proposition B.2]). This concludes the proof. O

4.4. The regular part is C1®. We prove that the regular part of Q} is C1®-regular and that
it is C'°-regular provided that a;j,b € C° (see Proposition I0). Using a boundary Harnak
principle for non-tangentially accessible (NTA) domains proved by Jerison and Kenig in [16], we
prove that the first eigenfunction satisfies an optimality condition on §2]. The proof then follows
from the regularity result of De Silva for the one-phase free boundaries (see [9]).

Proposition 4.10. The regular part Reg(92; N D) is locally the graph of a CY function. More-
over, if a;; € C*9(D) and b € C*=19(D), for some § € (0,1) and k > 1, then Reg(9Qf N D) is
locally the graph of a C**Y% function. In particular, if a;j,b € C®(D), then Reg(0Q; N D) is
locally the graph of a C* function.

Definition 4.11. A bounded open set Q C R% is NTA with constants M > 1 and r¢ > 0 if the
following conditions hold:

e (Corkscrew condition) For every x € 99 and r € (0,rp) there exists z,(z) € © such that
M7 < d(z.(x),00) < |z — z.(z)] <,

o RN\Q satisfies the corkscrew condition,

e (Harnack chain condition) If € > 0, z1, 22 € Q, d(x;,00) > €, |1 — x2| < ke, then there
exists a sequence of Mk overlapping balls included in €2 of radius /M such that, the first
one is centered at x1 and the last one at x9, and such that the center of two consecutive
balls are at most ¢/(2M) apart.
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We now recall that any (6, R)-Reifenberg flat set is NTA, provided that 6 > 0 is small enough.
This result is due to Kenig and Toro, see [I8, Theorem 3.1].

Theorem 4.12 (Reifenberg flat implies NTA). There exists 69 > 0 such that if Q@ C R% is a
(0, R)-Reifenberg flat domain for some R > 0 and some § < g, then Q is an NTA domain.

In the following theorem we state the Boundary Harnack Principle for NTA domains and for
solutions of uniformly elliptic equations in divergence form with bounded, measurable coefficients.
We refer to [I7, Corollary 1.3.7] or [16, Lemma 4.10] for a proof (see also [12] for operator in
non-divergence form).

Theorem 4.13 (Boundary Harnack principle). Let @ C R? be an NTA domain and 2r € (0,7q).
Let A : R — Sym} be uniformly elliptic (i.e. IN > 0, \7HEP < &- A, € < N¢E|? Va, & € RY) with
bounded measurable coefficients. Let zg € O and let u,v € H*(Q N By, (w0)) N C(2N By, (z0)) be
such that u,v =0 on QN By, (xg), v > 0 in QN Ba.(xg) and

div(AVu) = div(AVe) =0 in QN Bo(x0).
Then there exists C' > 0, depending only on d and A and the NTA constants, such that
certl(z) _ ul@) _ u(e0)
v(z(w0)) ~ v(z) T w(zr(z0))

Since the estimate (49) holds for every harmonic functions with a uniform constant, it is
standard to deduce that the quotient of two harmonics functions on an NTA domain is Holder
continuous up to the boundary. We refer to [I7, Corollary 1.3.9] or [I6, Theorem 7.9] (see also
[2, Corollary 1]).

for every x € QN By(x0). (4.9)

Corollary 4.14. Let Q, A, zo,r and u,v be as in Theorem EI3. Then there exist constants
€ (0,1) and C > 0, depending only on d and \ and the NTA constants, such that

u(z(x0) (|2 —y
—Cv<zr<xo>>< :
u(y)

In particular, for every x € 02N By(xo) the limit limosy . v(z) exists and % : QN B,(x9) — R
is a-Holder continuous.

u(x)  uly)

v(z)  o(y)

> for every x,y € QN By(x0).

We now prove the analogous boundary Harnack theorem for the eigenfunctions on an optimal
set 2 to the problem (II]). We notice that in the proof it is essential that the first eigenfunction
uq is positive and non-degenerate (Proposition 2.6]). The case of the eigenfunctions for the Lapla-
cian is already treated in [20, Appendix A]. We extend this result to the case of the operator
—b~1div(AV-). We highlight that one of the difficulty comes from the presence of the Lipschitz
function b.

Theorem 4.15 (Boundary Harnack principle for eigenvalues). Let U = (uq,...,uy) be the first
k normalized eigenfunctions on Q* and let xy € Reg(02; N D). Then Q7 is NTA in B,(xg) for
some r = r(xg) > 0 and there exists a € (0,1), depending only on d,\y and the NTA constants
of Q7, such that for everyi=2,...,k

Y s a-Hslder continuous in QF N By(z0).

Uy

We will need the following Lemma.

Lemma 4.16. Let Q C D be a quasi-open set, u € HE(Q) and A > 0. Then, for every zo € 9QND
there exists ro > 0 depending only on d, \x, cp and X\, such that for every r < ro with B.(z¢) C D,
there exists a unique solution v € H}(D) of

{ —div(AVv) = \bv in QN Bp(xo)

v =u, on  O(2N By(xp)). (4.10)
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If, moreover, uw € L>(D), then v € L>(D) and we have the estimate

[0l Lo (@B, (z0)) < C (Pllull i1 (@um) + 1ull Lo (9B, (20))) (4.11)
where the constant C > 0 depends only on d, Ax,cp, and .

Proof. Observe that any minimizer in A := {¢ € H}(D) : u — ¢ € H}(Q N By(x0))} of the

functional
j(sD)Z/AVsD-VsD—A/ ©°b
D D

is solution of @IN). Therefore, it is enough to prove that {¢ € A : J(p) < C} is weakly
compact in Hg (D) to prove the existence of a function v solution of [I0). We first compute

/902b§2/ (go—u)2b+2/u2b
D QNBy(z0) D

2 / 2
é AV@_U.V(’D—U +2/Ub
AN Br(z0)) Jons, (o) | Y | Y
4)\2

A 2 2 2
< 7M<BTO($0))/D(|W| -Vl )—1—2/Du b,

Then, for ro small enough (such that 4\4\ < A\T2(B1)/(2A2 1) where AT2(B;) stands for the
first eigenvalue of the Dirichlet Laplacian on Bj) we have

- ~ 1
/ Vo|? < AiJ(go)Jr)\i/\/ 0% < AiJ(¢)+—/ (IVel® + [Vul?) +2AiA/ u?b
D D 2 /p D

which gives that
/ |Ve|? < 222 J( / |Vul? + 4)\2)\/Du2b <222 J(p) + (1 + 4AiA)HuHH1(Q;m).

This proves the existence of v, and the uniqueness easily follows provided that A < A1 (QNB,(xy)).
We now prove the L*°-estimate. We consider the functions defined by
div(AVh) =0, —div(AVw) = Abv in QN By(xo)
h = u, w=0 on 0(QN By(xp)).
Reasoning as above this functions exist and are unique, and we have v = h+w. Let R = Ronp, (z,)
be the resolvent of —b~1 div(AV-) in QN B,(z9). We have the estimates Rl (2, r2+) < Cq where

2% = dsz2 and HRHE(LdLoo) < Cr by [29, Lemma 2.1], where the constant C' depends only on d, Ay
and ¢,. Notice also that we have

v=X"R"(v) + Y MNR(h)

and that [|A]| e @B, (20)) < Ul L @B, (20)) Dy the maximum principle. Therefore, with an inter-
polation argument, there exists a dimensional constant n > 1 such that we have the estimate
[0l Lo (@B, (z0)) < C (Pllvll L2(Dim) + 1ull oo (9B, (w0)))

where now C' also depends on A. Hence, it remains only to estimate [|v[|z2(p,m) to complete the
proof. Then, for r¢ small enough, we have

4
v2b§2/ v—u2b+2/u2b§7/ Vol + |Vul? +2/u2b
/D QnBr(gco)( ) D A1(Bro(20)) D(| | | |) D

1 2 1 2 /2
2
_2/\,]() 2/Dvb—|— /\%)\/D|Vu| + Dub,

which implies that (since J(v) < J(u))

1 203
2 2 2
/D < 3T ix/‘w’ *4/17 b= (554 4) bl




26 BAPTISTE TREY

O

Proof of Theorem [Z15. By Proposition and Theorem AI2] 2} is an NTA domain near .
Let « be the constant given by Corollary 14l and set 3 = 13;. Let x,y € B, (z¢) and set
7=z —yl® d, = d(z,00), dy = d(y,09Q7). We divide the proof in three steps.

Step 1. Assume that d,d, > 27. By a change of variables, it follows that u(z) =7~
is solution of

Yuy(z+72)
—div(AVa) = 7A\ (Q)ba  in B,

where we have set A, = A, 7. and b(z) = b(x + 72). By standard Schauder estimates (see [I3]

Theorem 8.8]) we have

@]l a6 5,y < Cll@fl Lo (By) + TEAL(Q)]|b]| oo () )+
(B1)

where C' depends only on d,cy and As. In particular,

s . - C
lurller sy < o) < lallgroa s,y < Clal=s,) < =

Similarly, we have [|u;|lc1(p.(z)) < C/T. On the other hand, by non-degeneracy of u; we have
w1 (z) > edy and uy (y) > cd, for some constant ¢ > 0. Therefore, since u; is L-Lipschitz continuous
(and because y € Br(z)), we get

(e sl fute) - ol o) bt L ),y L)
ui(z)  wi(y)| — up(x) up(z)ug(y) T cdy  c*dyd,

C -
é;lﬂs—ylz(flx—yl1 < Clr -y,

where the last inequality holds provided that 5 < 1/3.
Step 2. Assume that d, < 27. Let T € 08} such that d, = |T — x|. We write for simplicity
A1 = A1 (2%), A = \i(QF) and B = Bgr(T). Since u; may change its sign, we consider the functions
— diV(AV’UZ') = \;bu;, — diV(AVwi) = \;bw; in QT NB
v =y, w; = u; on J(Q;NB).
These functions exist thanks to Lemma and we have u; = v; — w;. We now set m =
min,ep b(z) and M = max.cpb(z) and I = (—1,1). Moreover, for (z,z411) € (27 N B) x I we
define the functions

VAimzgi ) — e—\/)\ledJrlul(Z)

uy (2) u1,M (%, Zd41

) = VAT (2)

U (2, 2d441) = €

)=e"V )‘iMzd“fui(z).

Ui m (2, 2d41 wi M (2, Zd41

We define the matrix-valued function A : (Qf N B) x I ¢ R4 — Symy., by

A(z,de) = <%Z (1)> for every (z,z441) € (21N B) x I.

Moreover, we define the harmonic extensions of the above functions as follows
{ div(AVhy ) = div(AVhy ar) = div(AVh; ) = div(AVhi ) =0 in (U NB)x T
M =Uim, hiv=vim,  Rim = Uim, hiyv =uinm on 8[(9’{ N B) x I]
Now, we get with an easy computation that
Aiv(AV (u1m — him)) = Are” VA0 (m — b(a))uy (z) <0 in (XN B) x 1,

which, by the weak maximum principle, implies that hj , < w1, in (2 N B) x I. Similarly we
have (since the functions w; ,,,u; v are positive)

hl,m < Ul,m, UM < hl,M, h@m < Wi ms Wi, M < hi,M in (QT N B) x I. (4.12)
Moreover, using again the maximum principle, we have the following inequalities
eVArm eV M

him < hia <

in (I NB)xI, (4.13)

R h
oV oVarm B
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and similarly we have

e Aim e i M )

Now, since =,y € Bs(Z) C B, we can use (£12]), ([LI3) and (£I4) to estimate
vie)  vily) _ wim(@,0)  wim(y,0) _ him(2,0)  him(y,0)

ur(z)  w(y)  wm(@,0)  wim(®,0) = him(z,0)  hia(y,0)
& MM B (2,0) eV Ry (y, 0)
T eVAim hy(z,0)  eVMM hy g (y,0)
< hi,m(l‘, 0) _ hi,m(y7 0) CF hi,m($v 0) 7 hi,m(yy 0)
him(z,0)  him(y,0) h1,m(z,0) h1m(y,0)
where the last inequality follows from the definitions of m, M and the fact that b is a Lipschitz
continuous function. Now, observe that Q% x I € R4*! is an NTA domain near (7,0) with the
same constants than Q. By Corollary BL14] setting zp = 237(%,0) € R we have (notice also
that z,y € Bs(T))
him(2,0)  him(y,0) < Chi,m(zo) (!33 —y!>a _ ?hi,m(zo)
hl,m(x70) hl,m(y70) n hl,m(ZO) 3r

where in the last equality we have used that 7 = |z — y|® with 8 = Tia- Moreover, by Theorem

413l we have " "
i;m (2, 0) < Chi,m(ZO) im(y,0) <C

h1m(z,0) h1m(20)’ h1,m(y,0) him(20)’
which finally gives

; ; _Dhim
v (.Z') N v (y) < cF (ZO) ) (415)
ui(z)  ui(y) h1m(20)
Then, using ([@I3]) and (£I2) we have the following estimate
e\/)\lm e\/)\lm e\/)qm
him(z0) > Whl’M(ZO) > WULM(ZO) > Voryri u1,m(20) > Cutm(20)-

Now, in view of the definition of zy = 23-(7,0) € R we have d(zp,0(Q% x I)) > 3rM~! and
by non-degeneracy of u; (Proposition 2.6]) it follows that w1 ,,,(29) > CT. Moreover, by (&I1l), it
follows that [|v| () < CT since u; is Lipschitz continuous. Therefore we have

ui(z)  wi(y) =~ wim(20) u1,m(20)
This concludes the proof since the same estimate also holds for w; and that we have w;/u; =
vifuy — w;/uy. O

vi(z)  vily) _ CFui,m(ZO) < CFHUZ'HL“’(B) < CF = Cla —yff.

As a consequence of the optimality condition of U (Lemma[43]) and of the boundary Harnack
principle (Theorem [L15]), it follows that the first eigenfunction is solution of a one-phase free
boundary problem on 27.

Lemma 4.17. For every xg € Reg(0Q; N D) there exist r = r(xg) > 0, ¢ € (0,1) and a Hélder
continuous function g : 0 N By(xg) — [c, 1] such that uy is a viscosity solution to the problem
—div(AVuy) = M (Q)buy in 5, ui =0 on 9V, |AV[Vu]|=gVA on 0N B,(xo).

Proof. Let U = (uq,...,ux) be the first k eigenfunctions on Q*. By Theorem the functions
gi = Z—; 10" N Br(xg) — R, for i = 2,...,k, are Holder continuous. Therefore, the function
g : 09 N By(x0) — [0, 1] defined by

1

g= :
Vi+ @+ +g?

(4.16)
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is also Holder continuous. Since u; = g¢|U|, it follows from the non-degeneracy of uy that g >
c = Cl_l where C7 is the constant from Proposition Now, let y € 99} N By (xp) and let
@ € C?(D) be a function touching u; by below at the point y. Since 1/g is f-Hélder continuous
for some 8 € (0, 1), there exists C' > 0 such that for p > 0 small enough we have

1 1 _
—>— —Clz—y|?>0 forevery z€Q'NB .
o) =gty Y Yo
Therefore, the function 1 (z) = p(x) <@ —Clx — y|ﬁ> is such that ¥ (y) = |U(y)| and satisfies
1 —
P(x) < up(x) <m —Clz — y\6> <|U(x)| forevery xe€QfnNB,(y). (4.17)
0

This proves that 1 touches |U| by below at the point y. On the other hand, ¢ is differentiable
at y and we have Vi (y) = ﬁch(y). Therefore, using that U is a viscosity solution of ({2, it
follows that

1
VA > [AL V()| > @I%ﬁ[vw(y)]l-
The case when ¢ touches u; by above is similar. O

Theorem 4.18 (Higher boundary Harnack principle for eigenvalues). Let k > 1 and assume
that Q7 s C*_reqular near xq € o N D for some a € (0,1). If k > 2, suppose moreover that
a;j,b € Ck=Le(D). Then there exists v > 0 such that for everyi=2,... k

Wi of class C** in QF N By (x).

uy
Proof. Let R > 0 such that there exists ¢ € Hg(Br(zo)) satisfying ¢ > 0 in Bg(zo) and solution
of the equation

—div(AVy) = M (Q%)by in  Bgr(xg).

(More precisely, we extend a;; and b to bounded functions in R? with b > ¢, and we choose

R > 0 such that A\j(Bg) = A\(Q2*)). Let 2r < R be such that Qf is C¥“regular in the ball
B (29) C D. Then we have

div <¢2AV<%>> = div (@AVul — ulAVgo)
= pdiv(AVuy) + VpAVu; — Vui AV — uy div(AVe) =0 in Q] N By, (xp),

and similarly
div <¢2AV(%)> = (A () = M(Q)buze in QN Boy(a).

Now, the proof follows by [LI, Theorem 2.4] for k =1 and by [1I, Theorem 3.1] for k > 2, which
say that uy /o, u; /¢ € CE(Q5 N B,(20)). O

Proof of Proposition 10 We prove the regularity by a finite induction on [ € {1,...,k}. For
I =1, by [9, Theorem 1.1] and Lemma 17 it follows that Reg(9Q; N D) is locally C1“-regular.
Now, if Reg(99; N D) is C'*-regular, | < k, by Theorem I8 and the definition of g in [@I0)), we
have that g is a C%® function on Reg(99; N D). Therefore, in view of Lemma EI7 and by [T9,
Theorem 2] it follows that Reg(9Q} N D) is locally C*+1%regular. This completes the proof. [J

4.5. Dimension of the singular set. We prove in this last subsection some kind of smallness
of the singular set. We recall that 2* denotes an optimal set to (LI]) and that Q7 stands for any
connected component of * at which the first eigenfunction is positive.

An estimate of the dimension of the singular set can be obtain as a consequence of the Federer’s
Theorem. Indeed, since €27 is a set of finite perimeter (Proposition 2.T]) and in view of the density
estimate (Proposition [29)), it follows from the Federer’s Theorem (see, for instance, [23, Theorem
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16.2]) that H41(Sing(992; N D)) = 0. In Proposition E20] below we provide a more precise
estimate of the dimension of the singular set.

Definition 4.19. We define d* as the smallest dimension which admits a one-homogeneous global
minimizer of the Alt-Caffarelli functional with exactly one singularity at zero.

The exact value of the critical dimension d* is still unknown but we know that d* € {5,6,7}
(see [15] for d* > 5 and [10] for d* < 7). The following result on the smallness of the singular set
is standard and was first proved in the framework of the minimal surfaces (for which the critical
dimension is exactly 8, see for example [I4, Chapter 11]). Later, in [30], Weiss adapted this
strategy for minimizers of the Alt-Caffarelli functional by introducing a monotonicity formula.
In [24], the authors prove this result in the vectorial setting. In this section we follow the same
approach and we extend this result to the case of variable coefficients.

Proposition 4.20 (On the dimension of the singular set). The singular part Sing(02; N D) is:
(1) empty if d < d*,
(2) a discrete (locally finite) set if d = d*,
(3) of Hausdorff dimension at most (d — d*) if d > d*, that is, H=4+5(Sing(0Q; N D)) = 0
for every s > 0.

We first prove two preliminary Lemmas and to this aim we extend the definition of the Weiss
functional for any ball. Let U € H'(R?,RF), z € R? and r > 0. We set

J(U,x,r):/ VU2 + A|{|U] > 0} N B, ()|
Bv"(x)

and

1 1
WU, 2,r) = o J(U,7) ~ /aB N

Obviously we have J(U,r) = J(U,0,r) and W(U,r) = W (U,0,r).

Lemma 4.21. Let (xn)nen C 0Q7 N'D be a sequence converging to xo € I N D and let
By, = By, r, be a blow-up sequence with fixed center. We set B, = BnoA;c/o2 and Q,, = {|Bn| > 0}.
Then, up to a subsequence, the sequence y, = A;()l/z [”c"r—_nmo] € 0Q,, converges to some yo and, for
every small r > 0, there exists ng such that for every n > ng we have

W (Us,,,770) < W (Bp,yo,7) + Clag — n|A7% + CM, (4.18)

where the constant C' > 0 depends only on d, cx, A, A and the Lipschitz constant L = ||VU|| e k)
of U in some compact neighborhood K C D of xg.

Proof. We first compare J(U,,,rry,) and J(By,,yo,7). Since U,, = U o F,, by definition, we
compute

J(Ua, 1) = /B (VU (6) + ALgu, (o150 d

= /B (AanU VU+A]I{|U‘>O}) oan(f) dg

< / (42, VU - VU + ALyjso}) © Fa, (€) dé + wa(rra)*L¥ealwo — 24|,
B'rrn

where in the last inequality we have used that the coefficients a;; are 6,-Holder continuous, that
is || Azy — Az, || < calzo — zn|°4. We perform the change of variables £ = r; 1 F .1 o F, (£) and set
B=vy,+ A;()l/ QA;/f [B,] to get

1 _ B _
(Trn)dJ(Ux"’TT") <2 /B (]VBn\2+A]l{|Bn|>O}) | det(A; 2 AY?)| dé+waLcn|wo—2,|%. (4.19)
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Moreover, since the coefficients of A'/2 are %A—Hélder continuous, we have the estimate of the

determinant | det(A_l/ 2A1/02 )| < 1+ calwg — z,|%4/2 and the following estimate of the symmetric
difference

‘BAB (yn)‘ - ’A_l/z 1/2 [Br] ABT’ < Wde [(1 + CA"TO - xnléA/z)d - (1 - CA‘*Z'O - xnléA/z)d}
< wdrd[(l + d2%cd |zo — xn|5A/2) - (1- d24cd |zy — :En|6A/2)] < 10| — |22

Similarly, for n big enough so that |yo — y,| < r/2, we have

d d
‘Br(yO)ABr(yn)’ Swde|:<1+ ‘yO - yn‘) - <1_ ’yO - yn’) :| < TdC‘yO - yn‘

Combining all these estimates [@I9) now gives (because By, is Ay L-Lipschitz continuous)
A3 L? + A

1 ~
J(Usy ) < =5 (Bu,o,7) + wal2ex|zo — 0] + |Blea|wo — xa|A 2+

(rrp)?

N2+ A
7“3&3 (ya)| + | B (0) AB,(yn)| + | Blea|wo — z|%47%| (4.20)

1 3 fe—
< ﬁJ(Bnayo,T) + C’xo — xnléA/2 + C|Z/(]T‘7yn|

We now compare the boundary integral terms. Since Uy, (§) = T By (4 + r_lA_l/zAl/j(g)) and
by the change of variables £ = r;1¢ + yo we have

/ U, (&) R (€) = / P2\ B2 (yn + 1y AL PAYR () dHOT (€)
8By r, Brr,

=yl / Bo 2y + AZ AL E — o)) dHE(E).
0By (yO)

Therefore, using that B, is A L-Lipschitz continuous, By (y,) = 0 and that |yo — yn| < /2, we
get that

1 ~ 92 d—1 o 1 / 2 d—1 _
i L BPOa O — o [ o @@ 6 =
1 / D |12 P12 —1/2 41/2 d—1
=T [ Bn|*(€) = |Bnl"(yn + Az, " AL (E — o)) ) dHT(E)
1 Jos, (o) ( ' )
)\iL2 _1/2 1/2 1/2 2 d—1
S / | AL P (AL — AL (E —w0) +yo — Unl (1€ = ynl + A37) dHATH(E)
9Br(yo)
< Clag — M2 4 o0 =80
T
Now, in view of (£20) we get (AI8)). This completes the proof. O

In the following Lemma we prove that if B,, is a blow-up sequence with fixed center converging
to By, then locally the singular set of {|B,| > 0} must lie close to the singular set of {|By| > 0}
(see [30, Lemma 4.2] and [24, Lemma 5.20]).

Lemma 4.22. Let xg € 0Q] N D and let B,, = By, ,, be a blow-up sequence converging in the
sense of Proposition to some By € BUy(xg). We set B, = B, o A;/Oz, By = By o A;/Oz,
Q, = {|Bn| > 0} and Qo = {|By| > 0}. Then, for every compact set K C R? and every open set
O C R? such that Sing(9Q0) N K C O, we have Sing(0Q,) N K C O for n large enough.

Proof. Arguing by contradiction there exist a compact set K C R? and an open set O C R? such
that Sing(9Qp) N K C O and a sequence (y)nen C Sing(9Q,) N K \ O. Up to a subsequence,
yn converges to some yg € K \ O. Since 99, locally Hausdorff converges to 9y by Proposition
B2 it follows that yo € 9 and, since Sing((‘)Qo) N K C O, we have that yg is a regular point of
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9, that is Yo € Reg(c‘)ﬁo). Since, moreover, By is ~solution of the Alt-Caffarelli functional and
is one-homogeneous, it follows that ALWd lim, o+ W(Bo,y0,7) = 3 (see [24, Lemma 5.4]). We now
fix » > 0 such that

=

R — <
Aw dW(BO7 Yo, T) >~

N —

where 0 is the constant from Lemma Now, since lim,, W(Bn,yo,r) = W(Bo,yo,r), it
follows that for every n large enough we have

Wl >

+ (4.21)

=]
DO |

1 ~
n 9 S U B ) ) é
—W(Bn,y0,7) Ade( 0,%0,7) +

Awd

Set z,, = z¢ + rnA;{f(yn) € 99} N D and notice that x, converges to zp. By Lemma [21] and
[#2T)) we get that for every n large enough

1 0 Yo — yn]|
WUy, ,r1) < =+ — + Clzg — 2,082 + 2710
Awd ( n,rr)_2+3—|- |z — Zn| + "

On the other hand, by Proposition 210, the function ¢, (s) = W (U,,,, s)+Cs%A is non-decreasing
and hence

1 1 1 1
@U:vn (0) = — lim W(Uy,,s) = —— lim @,(s) < —n(rr,) = —W (U, ,77rn) + C(M‘n)éA

Awy s—0+ Awg s—0+ ~ Awy Awy
1 1) 1 6
2 + = +C|:E0 :En|5A/2+C'7‘yO ryn‘ + C(rr,)°A < = 5 —1-5

where the last inequality holds for n large enough. It follows from Lemmas 5] and 6] that x,,
is a regular point of €2}, in contradiction with the fact that v, = Ay, /2 [m”T, xo] € Sing(9Q,). O

We are now in position to prove Proposition [4.20)

Proof of Proposition [ ) (1) Let zp € 993 N D and By € BUy(zp) and set By = Byo Al/2 and
Qo = {|Bo| > 0}. By Lemma 3.6 |BO| is a local minimizer of the scalar Alt-Caffarelli functional
and since d < d*, it follows that 9 is the graph of a C'® function near 0 (see [30, Section 3]).
In particular, the density of Qg at 0 is 1/2 and hence Ou,,(0) =1/2 by [@.E). In view of Lemma
we get that o € Reg(09Q; N D).

(2) Assume by contradiction that there exists a sequence (7, )neny C Sing(0Q2] N D) converging
to some zg € 9Q; N D. Set r, = |9 — x| and let By, := By, ., be a blow-up sequence converging
(in the sense of Proposition B.2]) to some blow-up limit By € BUy (). We consider two cases:

Case 1: Sing(90)\{0} # 0. By a rotation we may assume that e; € R is a singular point
of 9Qy. Notice that ug = ]B()] is solution of the scalar Alt-Caffarelli functional and is one-
homogeneous. Consider a blow-up limit ugy of uy at eq. By [B0, Lemma 3.1], {ugg > 0} is a
minimal cone with vertex 0 such that the whole line tey, t € R, consists of singular points. Then,
by [30, Lemma 3.2], denoting the restriction @ = uggga-1, we have that {& > 0} is a minimal cone
of dimension (d — 1) which is singular at 0. Now, either 0 is the only singular point and we have
a contradiction with the definition of d*, or we can repeat this procedure and get a contradiction
since there are no three-dimensional singular minimal cones.

Case 2: Sing(990)\{0} = 0. Let r > 0 to be chosen later. By Lemma E2I] we have for every
n large enough

W Uy, 770) < W (B, ) + O8] 4 Gy a2
Now, by Proposition 210, the function on(s) = W(U,,,s) + C’s‘sA is non-decreasing and, since
z, € Sing(9Qf N D), by Lemmas E6 and E5l we have that ~limg o+ W(Us,,s) 2 2 +0.
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Therefore, we have

1 1 . 1. 1 5
- - - - A
5 +0 < o Sl_l)m0+ W(U,,,s) = Ao 81_1>m0+ on(s) < oplrry) = vy W (U, ,rryn) + C(rry)

1 - _
< —W(By,90,7) +CM

— . 9A/2 A
< Ao + Clzo — xy| + C(rry)oA. (4.22)

Now, since yg € 9\{0} is a regular point of 9 (and also because By is solution of the Alt-

Caffarelli functional and is one-homogeneous), it follows that ALWd lim, o+ W(Bo,yo,7) = % (see

[24, Lemma 5.4]). Using also that lim, oo W (By,y0,7) = W(Bo, 40, 7), it follows that we can
choose r > 0 small enough such that for every n large enough we have
1 4§

1 ~ 1 ~ 1)
—WI(Bp,yo,7) < —W (B, 4o, - < =4 -
Aoy (Bn,yo,r) Aoy (01/07”)+4 2+2

Therefore, passing to the limit n — oo in the equation ([4.22]) gives a contradiction.

(8) Assume by contradiction that H%~4 *+$(Sing(99;N D)) > 0 for some s > 0. By Lemma @22
and [30, Lemmas 4.3 and 4.4] there exists zg € 92} N D and a blow-up limit By € BUy(xp) such
that H44"*5(Sing(0)) > 0, where we have set By = By o A;c/oz and Qo = {|By| > 0}. Since | By
is a minimizer of the Alt-Caffarelli functional and is one-homogeneous, the dimension reduction
procedure in [30, Lemma 4.5] applies and yields to a minimizer v : R? — R of the Alt-Caffarelli
functional such that H?*(Sing(9{u > 0})) > 0, in contradiction with [30, Lemma 4.1]. O
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