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LIPSCHITZ CONTINUITY OF THE EIGENFUNCTIONS ON OPTIMAL

SETS FOR FUNCTIONALS WITH VARIABLE COEFFICIENTS

BAPTISTE TREY

Abstract. This paper is dedicated to the spectral optimization problem

min
{

λ1(Ω) + · · ·+ λk(Ω) + Λ|Ω| : Ω ⊂ D quasi-open
}

where D ⊂ R
d is a bounded open set and 0 < λ1(Ω) ≤ · · · ≤ λk(Ω) are the first k eigenvalues on

Ω of an operator in divergence form with Dirichlet boundary condition and Hölder continuous
coefficients. We prove that the first k eigenfunctions on an optimal set for this problem are
locally Lipschtiz continuous in D and, as a consequence, that the optimal sets are open sets.
We also prove the Lipschitz continuity of vector-valued functions that are almost-minimizers of
a two-phase functional with variable coefficients.
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1. Introduction and main results

Let D be a bounded open subset of Rd and Λ be a positive constant. We consider the spectral
optimization problem

min
{

λ1(Ω) + · · ·+ λk(Ω) + Λ|Ω| : Ω ⊂ D quasi-open
}

(1.1)

where 0 < λ1(Ω) ≤ · · · ≤ λk(Ω) denote the first k eigenvalues, counted with the due multiplicity,
of the operator in divergence form −b(x)−1div (Ax∇·). This means that for every λi(Ω) there is
an eigenfunction ui ∈ H1

0 (Ω) such that
{− div(A∇ui) = λi(Ω) b ui in Ω

ui = 0 on ∂Ω.
(1.2)

The aim of the present paper is twofold. From one side, we prove a Lipschitz regularity result
for vector-valued functions which are almost-minimizers of a two-phase functional with variable
coefficients (Theorem 1.2). On the other hand, we show that if Ω∗ is an optimal set for (1.1),
then the vector U = (u1, . . . , uk) of the first k eigenfunctions on Ω∗ satisfies the almost-minimality
condition of Theorem 1.2, and hence that the eigenfunctions u1, . . . , uk are Lipschitz continuous.

We first state our Lipschitz regularity result for eigenfunctions on optimal sets for (1.1).
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2 BAPTISTE TREY

Theorem 1.1. Let D ⊂ R
d be a bounded open set and let Λ > 0. Let A : D → Sym+

d be a matrix
valued function satisfying (1.5) and (1.6) and let b ∈ L∞(D) be a function satisfying (1.7) (see
below). Then the spectral optimization problem (1.1) admits a solution Ω∗. Moreover, the first k
eigenfunctions on any optimal set Ω∗ are locally Lipschitz continuous in D. As a consequence,
every optimal set for (1.1) is an open set.

In [3], Briancon, Hayouni and Pierre proved the Lipschitz continuity of the first eigenfunc-
tion on an optimal set which minimizes the first eigenvalue of the Dirichlet Laplacian among all
sets of prescribed volume included in a box. Their proof, which is inspired by the pioneering
work of Alt and Caffarelli in [1] on the regularity for a free boundary problem, relies on the
fact that the first eigenfunction is the minimum of a variational problem. For spectral optimiza-
tion problems involving higher eigenvalues, the study of the regularity of the optimal sets and
the corresponding eigenfunctions is more involved due to the variational characterization of the
eigenvalue λk through a min-max procedure. In [4] the authors considered the spectral func-
tionals F (λ1(Ω), . . . , λk(Ω)) which are bi-Lipschitz with respect to each eigenvalue λi(Ω) of the
Dirichlet Laplacian, a typical example being the sum of the first k eigenvalues. In particular,
they proved the Lipschitz continuity of the eigenfunctions on optimal sets minimizing the sum
λ1(Ω) + · · ·+ λk(Ω) among all shapes Ω ⊂ R

d of prescribed measure (see [4, Theorem 6.1]). The
present paper extends this result to the case of an operator with variable coefficients, but with a
completely different proof.

Concerning spectral optimization problems involving an operator with variable coefficients, a
regularity result has been obtained in [15], where the authors consider the problem of minimizing
the first eigenvalue of the operator with drift −∆ +∇Φ · ∇, Φ ∈ W 1,∞(D,Rd), under inclusion
and volume constraints. We stress out that our result also applies to this operator with drift since
it corresponds to the special case where A = e−ΦId and b = e−Φ. We would like also to mention a
recent work of Lamboley and Sicbaldi in [11] where they prove an existence and regularity result
for Faber-Krahn minimizers in a Riemanninan setting.

Let us highlight that the Lipschitz regularity of the eigenfunctions in Theorem 1.1 turned out
to be a quite difficult question due to both the min-max nature of the eigenvalues and the presence
of the variable coefficients, but it is an important first step for the analysis of the regularity of
the free boundary of the optimal shapes for (1.1) which we study in [17].

As already pointed out, the proof of Theorem 1.1 goes through the study of the Lipschitz
regularity of vector-valued almost-minimisers for a two-phase functional with variable coefficients.
Our approach is to reduce from the non-constant coefficients case to the constant coefficients-
one by a change of variables and is inspired by [16], where the authors prove free boundary
regularity of almost-minimizers of the one-phase and two-phase functionals in dimension 2 using
an epiperimetric inequality. The second contribution which was a strong inspiration for our
work is of David and Toro in [8]. They in particular prove the Lipschitz regularity of almost-
minimizers of the one-phase and the two-phase functionals with constant coefficients (see also [7]
for free boundary regularity results).

We have the following result for almost-minimizers of the two-phase functional.

Theorem 1.2. Let D ⊂ R
d be a bounded open set and let Ω ⊂ D be a quasi-open set. Let

A : D → Sym+
d be a matrix valued function satisfying (1.5) and (1.6). Let f = (f1, . . . , fk) ∈

L∞(D,Rk). Assume that U = (u1, . . . , uk) ∈ H1
0 (Ω,R

k) is a vector-valued function such that

• U is a solution of the equation

− div(A∇U) = f in Ω, (1.3)

• U satisfies the following quasi-minimality condition: for every C1 > 0, there exist con-
stants ε ∈ (0, 1) and C > 0 such that

∫

D
A∇U · ∇U + Λ|{|U | > 0}| ≤

(

1 + C‖U − Ũ‖L1

)

∫

D
A∇Ũ · ∇Ũ +Λ|{|Ũ | > 0}|, (1.4)

for every Ũ ∈ H1
0 (D,Rk) such that ‖U − Ũ‖L1 ≤ ε and ‖Ũ‖L∞ ≤ C1.
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Then the vector-valued function U is locally Lipschitz continuous in D.

Remark 1.3 (On the assumption (1.4) of Theorem 1.2). The quasi-minimality in Theorem 1.2
is not local but naturally arises from the shape optimization problem (1.1) (see Proposition 3.4).
We stress out that our conclusion also holds, with exactly the same proof, if the quasi-minimality
property (1.4) is replaced by its ”local” version, namely: for every C1 > 0, there exist constants
r0 ∈ (0, 1) and C > 0 such that for every x ∈ D and every r ≤ r0 such that Br(x) ⊂ D we have
∫

Br(x)
A∇U ·∇U+Λ|{|U | > 0}∩Br(x)| ≤

(

1+C‖U−Ũ‖L1

)

∫

Br(x)
A∇Ũ ·∇Ũ+Λ|{|Ũ | > 0}∩Br(x)|,

for every Ũ ∈ H1
0 (D,Rk) such that U − Ũ ∈ H1

0 (Br(x),R
k) and ‖Ũ‖L∞ ≤ C1.

Remark 1.4. We point out that we will only use the assumption (1.3) to prove that U is bounded
and to get an almost-monotonicity formula (see Proposition 2.15 and Corollary 2.16).

In [8, Theorem 6.1], David and Toro proved an almost-monotonicity formula for quasi-minimizers
in the case of the Laplacian. It is natural to expect that the same holds for an operator with vari-
able coefficients, but we will not address this question in the present paper since we are mainly
interested in the Lipschitz continuity of the eigenfunctions on optimal shapes for the problem
(1.1) for which the equation (1.3) is already known.

However, soon before the present paper was published online, a new preprint of the same
authors, in collaboration with Engelstein and Smit Vega Garcia (see [6]), appeared on Arxiv.
They prove a regularity result for functions satisfying a suitable quasi-minimality condition for
operators with variable coefficients. We stress that the present paper and the work in [6] were
done in a completely independent way. We notice that our main result neither directly implies
nor is directly implied by the main result from [6].

Notations. Let us start by setting the assumptions on the coefficients of the operator that we
will use throughout this paper. The matrix-valued function A = (aij)ij : D → Sym+

d has Hölder

continuous coefficients and is uniformly elliptic, where Sym+
d denotes the family of all real positive

symmetric d × d matrices. Precisely, there exist positive constants δA, cA > 0 and λA ≥ 1 such
that

|aij(x)− aij(y)| ≤ cA|x− y|δA , for every i, j and x, y ∈ D ; (1.5)

1

λ2
A

|ξ|2 ≤ ξ · Ax ξ =

d
∑

i,j=1

aij(x)ξiξj ≤ λ2
A|ξ|2, for every x ∈ D and ξ ∈ R

d. (1.6)

The function b ∈ L∞(D) is positive and bounded away from zero: there exists cb > 0 such that

c−1
b ≤ b(x) ≤ cb for almost every x ∈ D. (1.7)

We now fix some notations and conventions. For x ∈ R
d and r > 0 we use the notation Br(x)

to denote the ball centred at x of radius r and we simply write Br if x = 0. We denote by |Ω|
the Lebesgue measure of a generic set Ω ⊂ R

d and by ωd the Lebesgue measure of the unit ball
B1 ⊂ R

d. The (d − 1)-dimensional Hausdorff measure is denoted by Hd−1. Moreover, we define
the positive and the negative parts of a function u : R → R by

u+ = max(u, 0) and u− = max(−u, 0).

For a quasi-open set Ω ∈ R
d we denote by H1

0 (Ω) the Sobolev space defined as the set of
functions u ∈ H1(Rd) which, up to a set of capacity zero, vanishe outside Ω; that is

H1
0 (Ω) = {u ∈ H1(Rd) : u = 0 quasi-everywhere in R

d \ Ω}.
(see e.g. [10] for a definition of the capacity). Notice that if Ω is an open set, then H1

0 (Ω) is
the usual Sobolev space defined as the closure of the smooth real-valued functions with support
compact C∞

c (Ω) with respect to the norm ‖u‖H1 = ‖u‖L2 + ‖∇u‖L2 . We denote by H1
0 (Ω,R

k)
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the space of vector-valued functions U = (u1, . . . , uk) : Ω → R
k such that ui ∈ H1

0 (Ω) for every
i = 1, . . . , k, and endowed with the norm

‖U‖H1(Ω) = ‖U‖L2(Ω) + ‖∇U‖L2(Ω) =

k
∑

i=1

(

‖ui‖L2(Ω) + ‖∇ui‖L2(Ω)

)

.

We also define the following norms (whenever it makes sense)

‖U‖L1(Ω) =

k
∑

i=1

‖ui‖L1(Ω) and ‖U‖L∞(Ω) = sup
1≤i≤k

‖ui‖L∞(Ω).

Moreover, for U = (u1, . . . , uk) : Ω → R
k we set |U | = u21+ · · ·+u2k, |∇U |2 = |∇u1|2+ · · ·+ |∇uk|2

and A∇U · ∇U = A∇u1 · ∇u1 + · · ·+A∇uk · ∇uk. For f = (f1, . . . , fk) ∈ L2(Ω,Rk) we say that
U = (u1, . . . , uk) ∈ H1

0 (Ω,R
k) is solution to the equation

− div(A∇U) = f in Ω, U ∈ H1
0 (Ω,R

k)

if, for every i = 1, . . . , k, the component ui is solution to the equation

− div(A∇ui) = fi in Ω, ui ∈ H1
0 (Ω),

where the PDE is intended is the weak sense, that is
∫

Ω
A∇ui · ∇ϕ =

∫

Ω
fiϕ for every ϕ ∈ H1

0 (Ω).

Moreover, we always extend functions of the spaces H1
0 (Ω) and H1

0 (Ω,R
k) by zero outside Ω so

that we have the inclusions H1
0 (Ω) ⊂ H1(Rd) and H1

0 (Ω,R
k) ⊂ H1(Rd,Rk).

2. Lipschitz continuity of quasi-minimizers

This section is dedicated to the proof of Theorem 1.2. Our approach is to locally freeze the
coefficients to reduce to the case where A = Id. More precisely, for every point x ∈ D, an almost-
minimizer of the functional with variable coefficients becomes, in a new set of coordinates near
x, an almost minimizer for a functional with constant coefficients. We stress out the dealing with
the dependence of this change of variables with respect to the point x is not a trivial task. We
then adapt the strategy developed by David and Toro in [8] for almost-minimizers of a functional
involving the Dirichlet energy.

In this section, u will stand for a coordinate function of the vector U from Theorem 1.2. In
subsection 2.1 we explicit the change of variables for which u becomes a quasi-minimizer of the
Dirichlet energy (in small balls of fixed center). We then prove that u is continuous and we give
an estimate of the modulus of continuity from which we deduce that u is locally Hölder continuous
in D.

Subsection 2.2 is addressed to the Lipschitz continuity of u in some region where the function
u has a given sign. We show, using in particular the Hölder continuity of u, that most of the
estimates proved in Subsection 2.1 can be improved provided that u keeps the same sign. In this
case, we prove that u is Lipschitz continuous and we provide a bound on the Lipschitz constant
of u. We also show that u is C1,β-regular for some β ∈ (0, 1). Next, we show that under some
assumption (see the first inequality in (2.45)from Proposition 2.11), if the Dirichlet energy of u
in a small ball is big enough, then u keeps the same sign in a smaller ball, which in view of the
preceding analysis implies that u is Lipschitz continuous.

In subsection 2.3 we complete the proof of the Lipschitz continuity of u. The main missing
step is to deal with the case where the Dirichlet energy is big and the first assumption of (2.45)
in Proposition 2.11 fails. Using an almost-monotonicity formula for operators with variable
coefficients proved by Matevosyan and Petrosyan in [13, Theorem III], we show that in this case
the value of the Dirichlet energy has to decrease at some smaller scale.
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Throughout this section we fix u := ui, for some i = 1, . . . , k, a coordinate function of the
vector U = (u1, . . . , uk) from Theorem 1.2. We start by proving that u is a bounded function in
D.

Lemma 2.1 (Boundedness). Let Ω ⊂ D be a (non-empty) quasi-open set, f ∈ Lp(D) for some
p ∈ (d/2,+∞] and let u ∈ H1

0 (Ω) be the solution of

− div(A∇u) = f in Ω, u ∈ H1
0 (Ω).

Then, there is a dimensional constant Cd such that

‖u‖L∞ ≤ λ2
ACd

2/d − 1/p
|Ω|2/d−1/p‖f‖Lp .

Proof. Up to arguing with the positive and the negative parts of f , we can assume that f is a
non-negative function. By the maximum principle (see [9, Theorem 8.1]) we have u ≥ 0 on Ω.
Moreover, u is a minimum of the following functional

J(ϕ) :=
1

2

∫

Ω
A∇ϕ · ∇ϕ−

∫

Ω
fϕ, ϕ ∈ H1

0 (Ω).

We consider, for every 0 < t < ‖u‖L∞ and ε > 0, the test function ut,ε = u∧t+(u−t−ε)+ ∈ H1
0 (Ω).

Then, by ellipticity of the matrices Ax and the inequality J(u) ≤ J(ut,ε) we get that

1

2λ2
A

∫

{t<u≤t+ε}
|∇u|2 ≤ 1

2

∫

{t<u≤t+ε}
A∇u · ∇u ≤

∫

Rd

f (u− ut,ε)

≤ ε

∫

{u>t}
f ≤ ε‖f‖Lp |{u > t}|

p−1
p ,

The end of the proof now follows precisely as in [15, Lemma 5.3]. �

2.1. Continuity and Hölder continuity. We change the coordinates and reduce to the case
A = Id using in particular the Hölder continuity of the coefficients of A, and we then prove that u
is locally Hölder continuous in D. Let us first introduce few notations that we will use throughout
this section. For x ∈ D we define the function Fx : Rd → R

d by

Fx(ξ) := x+A
1/2
x [ξ], ξ ∈ R

d.

Moreover, we set ux = u ◦ Fx for every x ∈ D.

Remark 2.2. For M ∈ Sym+
d we denote by M 1/2 the square root matrix of M . We recall that

if M ∈ Sym+
d , then there is an orthogonal matrix P such that PMP t = diag(λ1, . . . , λd), where

P t is the transpose of P and diag(λ1, . . . , λd) is the diagonal matrix with eigenvalues λ1, . . . , λd.

The matrix M 1/2 is then defined by M 1/2 := P tDP where D = diag(
√
λ1, . . . ,

√
λd).

Remark 2.3 (Notation of the harmonic extension). One of the main ingredient in the proof of
Theorem 1.2 is based on small variations of the function ux. Precisely, we will often compare ux
in some ball Br with the harmonic extension of the trace of ux to ∂Br. This function will often be
denoted by hx,r, or more simply hr if there is no confusion, and is defined by hr = hx,r ∈ H1(Br)
and

∆hr = 0 in Br, ux − hr ∈ H1
0 (Br).

We notice that hr is a minimizer of the Dirichlet energy in the ball Br, that is
∫

Br

|∇hr|2 ≤
∫

Br

|∇v|2 for every v ∈ H1(Br) such that hr − v ∈ H1
0 (Br).

We now prove that the function ux is in some sense a quasi-minimizer for the Dirichlet energy
in small balls centred at the origin.
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Proposition 2.4. There exist constants r0 ∈ (0, 1) and C > 0 such that, if x ∈ D and r ≤ r0
satisfy BλAr(x) ⊂ D, then we have

∫

Br

|∇ux|2 ≤ (1 + CrδA)

∫

Br

|∇ũ|2 +Crd, (2.1)

for every ũ ∈ H1(Rd) ∩ L∞(Rd) such that ux − ũ ∈ H1
0 (Br) and ‖ũ‖L∞ ≤ ‖u‖L∞ .

Proof. Let v ∈ H1
0 (D) be such that ũ = v ◦ Fx and set Ũ = (u1, . . . , v, . . . , uk) ∈ H1

0 (D,Rk),
where v stands at the i-th position. Set ρ = λAr and note that Fx(Br) ⊂ Bρ(x) ⊂ D. Then,

using Ũ as a test function and observing that u− v ∈ H1
0 (Fx(Br)), we get

∫

Fx(Br)
A∇u · ∇u ≤

∫

Fx(Br)
A∇v · ∇v + C‖u− v‖L1

∫

D
A∇Ũ · ∇Ũ + Λ|Bρ|,

where C is the constant from Theorem 1.2. Together with
∫

D
A∇Ũ · ∇Ũ ≤

∫

D
A∇U · ∇U −

∫

D
A∇u · ∇u+

∫

D
A∇v · ∇v

≤
∫

D
A∇U · ∇U +

∫

Fx(Br)
A∇v · ∇v

this yields
∫

Fx(Br)
A∇u · ∇u ≤ (1 + C̃rd)

∫

Fx(Br)
A∇v · ∇v + C̃rd, (2.2)

for some constant C̃. On the other hand, using the Hölder continuity and the ellipticity of A we
estimate

∫

Br

|∇ux|2 = det(A−1/2
x )

∫

Fx(Br)
Ax∇u · ∇u

≤ det(A−1/2
x )(1 + dcAλ

2
Aρ

δA)

∫

Fx(Br)
A∇u · ∇u. (2.3)

Similarly, we have the following estimate from below
∫

Br

|∇ũ|2 ≥ det(A−1/2
x )(1 − dcAλ

2
Aρ

δA)

∫

Fx(Br)
A∇v · ∇v. (2.4)

Now, combining (2.3), (2.2) and (2.4) we get
∫

Br

|∇ux|2 ≤ (1 + dcAλ
2
Aρ

δA)

[

1 + C̃rd

1− dcAλ2
Aρ

δA

∫

Br

|∇ũ|2 + λd
AC̃rd

]

.

which gives (2.2). �

We now prove that the function u is continuous in D. In the sequel we will often use the
following notation: for x ∈ D and r > 0 we set

ω(u, x, r) =

(

−
∫

Br(x)
|∇u|2

)1/2

and ω(ux, r) =

(

−
∫

Br

|∇ux|2
)1/2

.

Proposition 2.5. The function u is continuous in D. Moreover, there exist r0 > 0 and C > 0
such that, if x ∈ D and r ≤ r0 satisfy Br(x) ⊂ D, then we have

|u(y)− u(z)| ≤ C
(

1 + ω(u, x, r) + log
r

|y − z|
)

|y − z| for every y, z ∈ Br/2(x). (2.5)

The next Lemma shows that ω(ux, r) cannot grow too fast as r tends to zero and will be useful
throughout the proof of the Lipschitz continuity of u.
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Lemma 2.6. There exist constants r0 > 0 and C > 0 such that, if x ∈ D and r ≤ r0 satisfy
BλAr(x) ⊂ D, then we have

ω(ux, s) ≤ Cω(ux, r) + C log
(r

s

)

for every 0 < s ≤ r. (2.6)

If, moreover, x is a Lebesgue point for u, then we have
∣

∣

∣

∣

u(x)−−
∫

Br

ux

∣

∣

∣

∣

≤ Cr(1 + ω(ux, r)). (2.7)

Proof. Let t ≤ r and use ht as a test function in (2.1), where ht = hx,t denotes the harmonic
extension in Bt of the trace of ux to ∂Bt, to get

∫

Bt

|∇(ux − ht)|2 =
∫

Bt

|∇ux|2 −
∫

Bt

|∇ht|2

≤ CtδA
∫

Bt

|∇ht|2 +Ctd ≤ CtδA
∫

Bt

|∇ux|2 + Ctd, (2.8)

where in the last inequality we have used that ht is a minimizer of the Dirichlet energy on Bt.
Moreover, since |∇ht| is subharmonic on Bs for every s ≤ t, we have

−
∫

Bs

|∇ht|2 ≤ −
∫

Bt

|∇ht|2 for every s ≤ t. (2.9)

Therefore, the triangle inequality, (2.9) and (2.8) give for every s ≤ t ≤ r0

ω(ux, s) ≤
(

−
∫

Bs

|∇(ux − ht)|2
)1/2

+

(

−
∫

Bs

|∇ht|2
)1/2

≤
( t

s

)d/2
(

−
∫

Bt

|∇(ux − ht)|2
)1/2

+

(

−
∫

Bt

|∇ht|2
)1/2

≤
( t

s

)d/2
C
(

tδA/2ω(ux, t) + 1
)

+ ω(ux, t) (2.10)

≤
(

1 + C
( t

s

)d/2
tδA/2

)

ω(ux, t) + C
( t

s

)d/2
.

We then use the estimate (2.10) with the radii ri = 2−ir, i ≥ 0, and we get

ω(ux, ri) ≤
(

1 + Cr
δA/2
i−1

)

ω(ux, ri−1) + C, i ≥ 1.

This, with an iteration, implies that for every i ≥ 1 we have

ω(ux, ri) ≤ ω(ux, r)

i−1
∏

j=0

(

1 + Cr
δA/2
j

)

+ C

i−1
∑

j=1

i−1
∏

l=j

(

1 + Cr
δA/2
l

)

+ C

≤ Cω(ux, r) + Ci, (2.11)

where we used that the product
∏∞

j=0

(

1+Cr
δA/2
j

)

is bounded by a constant depending on r0. The

first estimate of the Lemma now follows from (2.11). Indeed, choose i ≥ 0 such that ri+1 < s ≤ ri
and note that we have ω(ux, s) ≤ 2d/2ω(ux, ri). If i = 0, this directly implies (2.6); otherwise,
i ≥ 1 and use also (2.11).

We now prove the second estimate. For i ≥ 0 we set mi = −
∫

Bri
ux. By the Poincaré inequality

and (2.11) we have

(

−
∫

Bri

|ux −mi|2
)1/2

≤ Criω(ux, ri) ≤ Cri(ω(ux, r) + i). (2.12)
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Furthermore, 0 is a Lebesgue point for ux since x is a Lebesgue point for u and that for every
s ≤ r we have

λ−2d
A −
∫

B
λ−1
A

s
(x)

|u− u(x)| ≤ −
∫

Bs

|ux − ux(0)| = −
∫

Fx(Bs)
|u− u(x)| ≤ λ2d

A −
∫

BλAs(x)
|u− u(x)|.

In particular, it follows that mi converges to ux(0) = u(x) as i → +∞. Therefore, this with the
Cauchy-Schwarz inequality and (2.12) give

|u(x)−mi| ≤
+∞
∑

j=i

|mj+1 −mj| ≤
+∞
∑

j=i

−
∫

Brj+1

|ux −mj|

≤ 2d
+∞
∑

j=i

−
∫

Brj

|ux −mj | ≤ 2d
+∞
∑

j=i

(

−
∫

Brj

|ux −mj|2
)1/2

≤ C
+∞
∑

j=i

rj(ω(ux, r) + j) ≤ Cri(ω(ux, r) + i+ 1),

where in the last inequality we used that
∑+∞

j=i 2
i−jj ≤ C(i + 1). Then, observe that (2.7) is

precisely the above inequality with i = 0 to conclude the proof. �

Proof of Proposition 2.5. Let y, z ∈ Br/2(x) and notice that it is enough to prove (2.5) when y

and z are Lebesgue points for u. Set δ = |y − z|. We first assume that 4λ2
Aδ ≤ r. Observe that

we hence have the inclusions Fz(Bλ−1
A δ) ⊂ Fy(B2λAδ) ⊂ Br(x) ⊂ D. Using a change of variables,

the Poincaré inequality and then the ellipticity of A, we estimate
∣

∣

∣

∣

−
∫

B2λA
δ
uy −−

∫

B
λ−1
A

δ

uz

∣

∣

∣

∣

=

∣

∣

∣

∣

−
∫

Fy(B2λAδ)
u−−

∫

Fz(B
λ−1
A

δ
)
u

∣

∣

∣

∣

≤ −
∫

Fz(B
λ−1
A

δ
)

∣

∣

∣
u−−

∫

Fy(B2λAδ)
u
∣

∣

∣

≤ 2dλ4d
A −
∫

Fy(B2λAδ)

∣

∣

∣u−−
∫

Fy(B2λAδ)
u
∣

∣

∣ ≤ Cδ

(

−
∫

Fy(B2λAδ)
|∇u|2

)1/2

(2.13)

≤ CδλA

(

−
∫

Fy(B2λAδ)
Ay∇u · ∇u

)1/2

≤ Cδω(uy, 2λAδ).

On the other hand, since Fz(Bλ−1
A δ) ⊂ Fy(B2λAδ) we have

ω(uz, λ
−1
A δ) =



−
∫

Fz(B
λ−1
A

δ
)
Az∇u · ∇u





1/2

≤ λA



−
∫

Fz(B
λ−1
A

δ
)
|∇u|2





1/2

≤ 2d/2λ2d+1
A

(

−
∫

Fy(B2λAδ)
|∇u|2

)1/2

≤ 2d/2λ2d+2
A

(

−
∫

Fy(B2λAδ)
Ay∇u · ∇u

)1/2

(2.14)

≤ Cω(uy, 2λAδ).

We now apply (2.7) to get
∣

∣

∣

∣

u(y)−−
∫

B2λAδ

uy

∣

∣

∣

∣

≤ Cδ(ω(uy, 2λAδ) + 1) (2.15)

and
∣

∣

∣

∣

u(z)−−
∫

B
λ−1
A

δ

uz

∣

∣

∣

∣

≤ Cδ(ω(uz, λ
−1
A δ) + 1) ≤ Cδ(ω(uy , 2λAδ) + 1), (2.16)
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where we used (2.14) in the last inequality. Therefore, combining the triangle inequality, (2.15),
(2.13) and (2.16) we get that

|u(y)− u(z)| ≤ Cδ(ω(uy, 2λAδ) + 1). (2.17)

Moreover, by (2.6) (recall that we assumed 4λ2
Aδ ≤ r) we have

ω(uy, 2λAδ) ≤ Cω(uy, (2λA)
−1r) + C log

r

4λ2
Aδ

. (2.18)

By the ellipticity of A and since Fy(B(2λA)−1r) ⊂ Br(x), we have the following estimate

ω(uy, (2λA)
−1r) =

(

−
∫

Fy(B(2λA)−1r
)
Ay∇u · ∇u

)1/2

≤ λA

(

−
∫

Fy(B(2λA)−1r)
|∇u|2

)1/2

≤ 2d/2λd+1
A

(

−
∫

Br(x)
|∇u|2

)1/2

≤ Cω(u, x, r). (2.19)

Finally, combine (2.17), (2.18) and (2.19) to get

|u(y) − u(z)| ≤ Cδ
(

1 + ω(u, x, r) + log
r

4λ2
Aδ

)

(2.20)

≤ C|y − z|
(

1 + ω(u, x, r) + log
r

|y − z|
)

,

which is (2.5).
Now, if the assumption 4λ2

A|y − z| ≤ r is not satisfied, choose n points y1 = y, y2, . . . , yn = z
in Br(x) such that 4λ2

Aη = |y − z|, where we have set η = |yi − yi+1|, i = 1, . . . , n. Then we have
4λ2

Aη ≤ r. We notice that we can assume the yi to be Lebesgue points for u. Moreover, observe
that we can bound the number of points by n ≤ 16λ4

A+2. Therefore, applying the estimate (2.20)
to each pair (yi, yi+1) we have

|u(y)− u(z)| ≤
n−1
∑

i=1

|u(yi)− u(yi+1)| ≤ C
n−1
∑

i=1

η
(

1 + ω(u, x, r) + log
r

4λ2
Aη

)

≤ nC
|y − z|
4λ2

A

(

1 + ω(u, x, r) + log
r

|y − z|
)

,

which concludes the proof. �

We are now in position to prove the Hölder continuity of u.

Proposition 2.7. The function u is locally α-Hölder continuous in D for every α ∈ (0, 1), that
is, for every compact set K ⊂ D, there exist rK > 0 and CK > 0 such that for every x ∈ K we
have

|u(y)− u(z)| ≤ CK |y − z|α for every y, z ∈ BrK (x). (2.21)

Proof. Let x ∈ K and set 4rK = r1 = min{r0,dist(K,Dc)} where r0 is given by Proposition
2.5. Since the function r 7→ r1−α log(r1/r) is non-decreasing on (0, cα) for some constant cα > 0
depending on α and r1, it follows from Proposition 2.5 that, if y, z ∈ Br1/2(x) are such that
|y − z| ≤ cα, we have

|u(y)− u(z)| ≤ C
(

r1−α
1 (1 + ω(u, x, r1)) + c1−α

α log
r1
cα

)

|y − z|α

≤ C(1 + ω(u, x, r1))|y − z|α (2.22)

If now |y − z| > cα, then choose n points y1 = y, . . . , yn = z in Br1/2(x) such that |yi − yi+1| =
cαr

−1
1 |y − z|, with n bounded by some constant depending on α and r1. Then apply (2.22) to

each pair (yi, yi+1) to prove that u is α-Hölder continuous in the ball Br1/2(x) with a modulus
of continuity depending on ω(u, x, r1). Now, (2.21) follows by a compactness argument with
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the constant CK depending on max{ω(u, xi, r1), i = . . . N}, where the xi’s are given by some
subcovering of K ⊂ ∪N

i=1BrK (xi). �

2.2. Bound of the Lipschitz constant in {u > 0}. We prove that u is Lipschitz continuous
and even C1,β-regular in the regions where u keeps the same sign. We also provide in this case
an estimate of the Lipschitz constant of u in terms of ω(u, x, r) (see Proposition 2.8. Then, we
show that under suitable conditions, u keeps the same sign and is therefore Lipschitz continuous
(see Proposition 2.11).

Proposition 2.8. Let K ⊂ D be a compact set. There exist constants rK > 0 and CK > 0 such
that, if x ∈ K and r ≤ rK satisfy

either ux > 0 a.e. in Br or ux < 0 a.e. in Br, (2.23)

then u is Lipschitz continuous in Br/2(x) and we have

|u(y)− u(z)| ≤ CK(1 + ω(u, x, r))|y − z| for every y, z ∈ Br/2(x). (2.24)

Moreover, u is C1,β in the ball Br/4(x) where β = δA
d+δA+2 and we have

|∇u(y)−∇u(z)| ≤ CKr−
δA
d+2 (1 + ω(u, x, r))|y − z|β for every y, z ∈ Br/4(x). (2.25)

In the next Lemma we compare the Dirichlet energy of ux and of its harmonic extension in
small balls where ux has a given sign. The estimate (2.26) in Lemma 2.9 below is similar to (2.1)
but with a smaller error term. Thanks to this improvement, the strategy developed in the proof
of Lemma 2.6 will lead to a sharper result than estimate (2.6), namely (2.24).

Lemma 2.9. Let K ⊂ D be a compact set and let α ∈ (0, 1). There exist constants rK > 0 and
C > 0 such that, if x ∈ K and r ≤ rK are such that (2.23) holds, then the function ux = u ◦ Fx

satisfies
∫

Br

|∇ux|2 ≤ (1 + CrδA)

∫

Br

|∇hr|2 + Crd+α, (2.26)

where hr stands for the harmonic extension of the trace of ux to ∂Br.

Proof. Set ρ := λAr for some r > 0 small enough so that Bρ(x) ⊂ D. We define v ∈ H1
0 (D)

by hr = v ◦ Fx in Br and v = u elsewhere so that we have u − v ∈ H1
0 (Fx(Br)). Set Ũ =

(u1, . . . , v, . . . , uk) ∈ H1
0 (D,Rk) and observe that |{|Ũ | > 0}| = |{|U | > 0}| by (2.23) and because

v > 0 in Fx(Br). Then, we use Ũ as a test function in (1.3) to get
∫

Fx(Br)
A∇u · ∇u ≤

∫

Fx(Br)
A∇v · ∇v + C‖u− v‖L1

∫

D
A∇Ũ · ∇Ũ ,

where C is the constant from Theorem 1.2. Now, since u is locally α-Hölder continuous, we have
the bound ‖u− v‖L1 ≤ CdCKrd+α, where the constant CK is given by Proposition 2.7. Moreover
we have the estimate

∫

D
A∇Ũ · ∇Ũ ≤

∫

D
A∇U · ∇U +

∫

Fx(Br)
A∇v · ∇v.

Altogether this gives
∫

Fx(Br)
A∇u · ∇u ≤ (1 + C̃rd+α)

∫

Fx(Br)
A∇v · ∇v + C̃rd+α,

for some constant C̃ which involves
∫

D A∇U · ∇U . Finally, using the Hölder continuity and the
ellipticity of A as in the proof of Proposition 2.4, we get

∫

Br

|∇ux|2 ≤ (1 + dcAλ
2
Aρ

δA)

[

1 + C̃rd+α

1− dcAλ2
Aρ

δA

∫

Br

|∇hr|2 + λd
AC̃rd+α

]

.

which gives (2.26). �
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Next Lemma is analogue to Lemma 2.6 with a better estimate of the error term. Its proof is
quite similar but we nonetheless sketch the argument since there are small differences.

Lemma 2.10. Let K ⊂ D be a compact set and α ∈ (0, 1). There exist constants rK > 0 and
C > 0 such that, for every x ∈ K and every r ≤ rK such that (2.23) holds, we have

ω(ux, s) ≤ Cω(ux, r) + Crα/2 for every 0 < s ≤ r. (2.27)

If, moreover, x is a Lebesgue point for u, we have
∣

∣

∣

∣

u(x)−−
∫

Br

ux

∣

∣

∣

∣

≤ Cr(ω(ux, r) + rα/2). (2.28)

Proof. For t ≤ r ≤ rK we have by Lemma 2.9
∫

Bt

|∇(ux − ht)|2 =
∫

Bt

|∇ux|2 −
∫

Bt

|∇ht|2 ≤ CtδA
∫

Bt

|∇ux|2 + Ctd+α, (2.29)

since ht is a minimizer of the Dirichlet energy on Bt. Now, for s ≤ t ≤ r0 we use (2.9) and (2.29)
to estimate as in (2.10)

ω(ux, s) ≤
(

1 + C
( t

s

)d/2
tδA/2

)

ω(ux, t) + C
( t

s

)d/2
tα/2,

which, applied to s = 2−ir and t = 2−(i−1)r, gives

ω(ux, ri) ≤
(

1 + Cr
δA/2
i−1

)

ω(ux, ri−1) +Cr
α/2
i−1 , i ≥ 1,

where we have set ri = 2−ir. Iterating the above estimate we get for every i ≥ 1

ω(ux, ri) ≤ ω(ux, r)

i−1
∏

j=0

(

1 + Cr
δA/2
j

)

+ C

i−1
∑

j=1

(

r
α/2
j−1

i−1
∏

l=j

(

1 + Cr
δA/2
l

)

)

+ Cr
α/2
i−1

≤ Cω(ux, r) + Crα/2,

since
∏∞

j=0

(

1 + Cr
δA/2
j

)

is bounded by a constant depending on rK . This proves (2.27).

Finally, (2.28) is proved in the same way than (2.7) but with (2.12) replaced by the estimate
(

−
∫

Bri

|ux −mi|2
)1/2

≤ Criω(ux, ri) ≤ Cri(ω(ux, r) + rα/2).

�

Proof of Proposition 2.8. Let us first prove (2.24). We follow the proof of Proposition 2.5 and we
only detail the few differences. Let y, z ∈ Br/2(x) be Lebesgue points for u and set δ = |y − z|.
We first assume that 4λ2

Aδ ≤ r. By (2.28) we have
∣

∣

∣

∣

u(y)−−
∫

B2λAδ

uy

∣

∣

∣

∣

≤ Cδ(ω(uy, 2λAδ) + δα/2), (2.30)

and, using also (2.14),
∣

∣

∣

∣

u(z)−−
∫

B
λ−1
A

δ

uz

∣

∣

∣

∣

≤ Cδ(ω(uz , λ
−1
A δ) + rα/2) ≤ Cδ(ω(uy , 2λAδ) + δα/2). (2.31)

Moreover, by (2.27) we have

ω(uy, 2λAδ) ≤ Cω(uy, (2λA)
−1r) + Crα/2. (2.32)

Then, combining (2.30), (2.13), (2.31) and then (2.32) and (2.19) we have

|u(y)− u(z)| ≤ Cδ(ω(uy, 2λAδ) + δα/2) ≤ Cδ(1 + ω(u, x, r) + rα/2)

≤ C(1 + ω(u, x, r))|y − z|. (2.33)
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Finally, if 4λ2
Aδ > r, we argue as in the proof of Proposition 2.5 and choose a few number of

points which connect y and z to prove (2.33).
We now prove the estimate (2.25). Let y ∈ Br/4(x) and r̄ ≤ λ−1

A r/4. We set m(uy, ρ) = −
∫

Bρ
∇uy

for ρ ≤ r̄ and m = −
∫

Br̄
∇hy,r̄ = ∇hy,r̄(0), where hy,r̄ denotes the harmonic extension of the trace

of uy to ∂Br̄. Let η ∈ (0, 1/4). We want to estimate

−
∫

Bηr̄

|∇uy −m(uy, ηr̄)|2 ≤ −
∫

Bηr̄

|∇uy −m|2 ≤ 2−
∫

Bηr̄

|∇(uy − hy,r̄)|2 + 2−
∫

Bηr̄

|∇hy,r̄ −m|2. (2.34)

Firstly, by (2.29) we have

−
∫

Bηr̄

|∇(uy − hy,r̄)|2 ≤ C(ηr̄)−d−
∫

Br̄

|∇(uy − hy,r̄)|2 ≤ C(ηr̄)−d
(

r̄δA
∫

Br̄

|∇uy|2 + r̄d+α
)

≤ Cη−dr̄δAω(uy, r̄)
2 + Cη−dr̄α. (2.35)

Moreover, (2.33) says that for almost every z ∈ Br/4(y) ⊂ Br/2(x) we have |∇u(z)| ≤ C(1 +
ω(u, x, r)), which implies that

ω(uy, r̄)
2 = −

∫

Br̄

|∇uy|2 ≤ λ
2(d+1)
A −

∫

Br/4(y)
|∇u|2 ≤ C(1 + ω(u, x, r))2. (2.36)

On the other hand, by estimates on harmonic functions (see [9, Theorem 3.9]), the Cauchy-
Schwarz inequality and (2.36) we have for every ξ ∈ Bηr̄

|∇hy,r̄(ξ)−m| = |∇hy,r̄(ξ)−∇hy,r̄(0)| ≤ ηr̄ sup
Bηr̄

|∇2hy,r̄| ≤ Cη sup
B2ηr̄

|∇hy,r̄|

≤ Cη

(

−
∫

Br̄

|∇hy,r̄|
)

≤ Cη

(

−
∫

Br̄

|∇hy,r̄|2
)1/2

≤ Cη

(

−
∫

Br̄

|∇uy|2
)1/2

(2.37)

≤ Cη ω(uy, r̄) ≤ Cη(1 + ω(u, x, r)),

where ∇2hy,r̄ stands for the Hessian matrix of hy,r̄. Therefore, combining (2.34), (2.35), (2.36)
and (2.37) we get

−
∫

Bηr̄

|∇uy −m(uy, ηr̄)|2 ≤ Cη−dr̄δA(1 + ω(u, x, r))2 + Cη−dr̄α + Cη2(1 + ω(u, x, r))2

≤ C(1 + ω(u, x, r))2
[

η−dr̄δA + η−dr̄α + η2
]

. (2.38)

We set α = δA (recall that α ∈ (0, 1) was arbitrary). Moreover, we set β = δA
d+δA+2 and η = r̄

δA
d+2

so that we have η−dr̄δA = η2 = (ηr̄)2β . Notice also that ηr̄ = r̄1+ε, where ε = δA
d+2 . Therefore,

(2.38) implies that for every y ∈ Br/4(x) and every ρ ≤
(

r
4λA

)1+ε
we have

−
∫

Bρ

|∇uy −m(uy, ρ)|2 ≤ C(1 + ω(u, x, r))2ρ2β. (2.39)

Now, let y, z ∈ Br/4(x) be Lebesgue points for u and set δ = |x − y|. We first assume that

2λ2
Aδ ≤

(

r
4λA

)1+ε
. Setting δi = 2−iδ, i ≥ 0, we have using (2.39)

|∇uy(0)−m(uy, δ)| ≤
+∞
∑

i=0

|m(uy, δi+1)−m(uy, δi)| ≤
+∞
∑

i=0

−
∫

Bδi+1

|∇uy −m(uy, δi)|

≤ 2d
+∞
∑

i=0

−
∫

Bδi

|∇uy −m(uy, δi)| ≤ 2d
+∞
∑

i=0

(

−
∫

Bδi

|∇uy −m(uy, δi)|2
)1/2

≤ C(1 + ω(u, x, r))δβ . (2.40)

Similarly, we have
|∇uz(0)−m(uz, 2λ

2
Aδ)| ≤ C(1 + ω(u, x, r))δβ . (2.41)
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Moreover, using that F−1
z ◦ Fy(Bδ) ⊂ B2λ2

Aδ
we have

|m(uy, δ)−m(uz, 2λ
2
Aδ)| ≤ −

∫

Bδ

|∇uy −m(uz, 2λ
2
Aδ)|

≤ −
∫

F−1
z ◦Fy(Bδ)

|A1/2
y A−1/2

z ∇uz −m(uz, 2λ
2
Aδ)| (2.42)

≤ (2λ2
A)

2d−
∫

B2λAδ

|A1/2
y A−1/2

z ∇uz −m(uz, 2λ
2
Aδ)|.

Notice that the matrices A1/2 have Hölder continuous coefficients with exponent δA/2 and hence

that |A1/2
y A

−1/2
z − Id| ≤ λA|A−1/2

y −A
−1/2
z | ≤ CδδA/2 ≤ Cδβ (because β ≤ δA/2). Therefore, using

(2.27) it follows that

−
∫

B
2λ2

A
δ
|A1/2

y A−1/2
z ∇uz −∇uz| ≤ Cδβ−

∫

B
2λ2

A
δ
|∇uz| ≤ Cδβω(uz, 2λ

2
Aδ)

≤ Cδβ(ω(ux, λ
−1
A r) + rδA) ≤ C(1 + ω(u, x, r))δβ . (2.43)

Furthermore, the triangle inequality in (2.42) together with (2.43), (2.39) and Cauchy-Schwarz’s
inequality give

|m(uy, δ) −m(uz, 2λ
2
Aδ)| ≤ C(1 + ω(u, x, r))δβ . (2.44)

Now, (2.40), (2.44) and (2.41) infer

|∇uy(0) −∇uz(0)| ≤ |∇uy(0) −m(uy, δ)| + |m(uy, δ) −m(uz, 2λ
2
Aδ)| + |∇uz(0) −m(uz, 2λ

2
Aδ)|

≤ C(1 + ω(u, x, r))δβ .

Since |∇uy(0)| ≤ λA|∇u(y)| ≤ C(1 + ω(u, x, r)) for almost every y ∈ Br/4(x) by (2.33), we get

|∇u(y)−∇u(z)| = |A−1/2
y ∇uy(0) −A−1/2

z ∇uz(0)|
≤ |A−1/2

y ∇uy(0) −A−1/2
z ∇uy(0)| + |A−1/2

z ∇uy(0)−A−1/2
z ∇uz(0)|

≤ |A−1/2
y −A−1/2

z ||∇uy(0)|+ |A−1/2
z ||∇uy(0)−∇uz(0)|

≤ C(1 + ω(u, x, r))δβ .

If |y − z| ≥
(

r
4λA

)1+ε
, then we can connect y and z through less than λA

(4λA
r

)ε
+ 2 points. This

shows (2.25) and concludes the proof. �

The strategy to prove Theorem 1.2 is to show that ω(ux, r) cannot become too big as r gets
small. In the next Proposition we prove, under some condition (see the first inequality in (2.45)
below), that if ω(ux, r) is big enough then u keeps the same sign near the point x and is hence
Lipschitz continuous by Proposition 2.8. The case where ω(ux, r) is big and this condition fails
is treated in the next subsection. We set for x ∈ D and r > 0

b(ux, r) = −
∫

∂Br

ux dHd−1 and b+(ux, r) = −
∫

∂Br

|ux| dHd−1.

Proposition 2.11. Let K ⊂ D be a compact set and let γ > 0. There exists constants rK , CK > 0
and κ1 > 0 such that, if x ∈ K and r ≤ rK satisfy

γr(1 + ω(ux, r)) ≤ |b(ux, r)| and κ1 ≤ ω(ux, r), (2.45)

then there exists a constant c > 0 (independent from x and r) such that u is Lipschitz continuous
in Bcr/2(x) and we have

|u(y)− u(z)| ≤ CK(1 + ω(u, x, r))|y − z| for every y, z ∈ Bcr/2(x). (2.46)

Moreover, u is C1,β in Bcr/4(x) where β = δA
d+δA+2 and we have

|∇u(y)−∇u(z)| ≤ CKr−
δA
d+2 (1 + ω(u, x, r))|y − z|β for every y, z ∈ Bcr/4(x). (2.47)
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Roughly speaking, the condition (2.45) says that the absolute value of the trace of ux to ∂Br

is big. This will in fact ensure that ux has, in some smaller ball, the same sign than (the average
of) ux on ∂Br.

Lemma 2.12. Let γ and τ be two positive constants. There exist r0, η ∈ (0, 1) and κ1 > 0 such
that, if x ∈ D and r ≤ r0 satisfy BλAr(x) ⊂ D,

γ(1 + ω(ux, r)) ≤
1

r
|b(ux, r)| and κ1 ≤ ω(ux, r), (2.48)

then there exist ρ ∈ (ηr2 , ηr) such that

τ(1 + ρδA/2ω(ux, ρ)) ≤
1

ρ
|b(ux, ρ)| and b+(ux, ρ) ≤ 3|b(ux, ρ)|. (2.49)

Moreover, b(ux, r) and b(ux, ρ) have the same sign.

Proof. We first prove the second inequality in (2.49). Let us recall that hr = hx,r denotes
the harmonic extension of the trace of ux to ∂Br. We want to estimate both −

∫

∂Bρ
|hr| and

−
∫

∂Bρ
|ux − hr| in terms of |b(ux, r)| for some ρ ∈ (ηr2 , ηr) defined soon (by (2.52)). If η ≤ 1/2,

then by subharmonicity of |∇hr| in Br we have that for every ξ ∈ Bηr

|∇hr(ξ)|2 ≤ −
∫

Br/2(ξ)
|∇hr|2 ≤ 2d−

∫

Br

|∇hr|2 ≤ 2dω(ux, r)
2.

Moreover, b(ux, r) = b(hr, r) = hr(0) since hr is harmonic and hence, choosing η such that

η2d/2 ≤ γ/4, we get

|b(ux, r)− hr(ξ)| = |hr(0) − hr(ξ)| ≤ ηr‖∇hr‖L∞(Bηr) ≤ ηr2d/2ω(ux, r)

≤ γr

4
ω(ux, r) ≤

1

4
|b(ux, r)|, (2.50)

where in the last inequality we used the first estimate of (2.48). This gives (because ρ < ηr)

3

4
|b(ux, r)| ≤ −

∫

∂Bρ

|hr| ≤
5

4
|b(ux, r)|. (2.51)

On the other hand, we now fix some ρ = ρx ∈ (ηr2 , ηr) such that
∫

∂Bρ

|ux − hr| ≤
2

ηr

∫ ηr

ηr/2
ds

∫

∂Bs

|ux − hr|. (2.52)

By Cauchy-Schwarz’s inequality, Poincaré’s inequality and (2.1) applied to the test function hr,
it follows that we have

∫

∂Bρ

|ux − hr| ≤
2

ηr

∫

Bηr

|ux − hr| ≤ C(ηr)
d
2
−1

(

∫

Bηr

|ux − hr|2
)1/2

≤ C(ηr)
d
2
−1

(∫

Br

|ux − hr|2
)1/2

≤ C(ηr)
d
2
−1r

(∫

Br

|∇(ux − hr)|2
)1/2

≤ C(ηr)
d
2
−1r

(

rδA
∫

Br

|∇hr|2 + rd
)1/2

≤ Cη
d
2
−1rd

(

rδAω(ux, r)
2 + 1

)1/2

≤ Cη
d
2
−1rd(rδA/2ω(ux, r) + 1)

In view of the two hypothesis in (2.48) we then get

−
∫

∂Bρ

|ux − hr| ≤ Cη−
d
2 r(r

δA/2
0 ω(ux, r) + 1) ≤ Cη−

d
2 r ω(ux, r)

(

r
δA/2
0 +

1

κ1

)

≤ Cη−
d
2 γ−1|b(ux, r)|

(

r
δA/2
0 +

1

κ1

)

≤ 1

4
|b(ux, r)|, (2.53)
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where the last inequality holds if we choose r0 small enough and κ1 > 0 large enough (both
depending on η) such that

Cγ−1
(

r
δA/2
0 +

1

κ1

)

≤ 1

4
ηd/2. (2.54)

Now, using (2.51) and (2.53) we have

b+(ux, ρ) = −
∫

∂Bρ

|ux| ≤ −
∫

∂Bρ

|hr|+−
∫

∂Bρ

|ux − hr| ≤
3

2
|b(ux, r)|,

and, using also that hr keeps the same sign on ∂Bρ by (2.50), we have

|b(ux, ρ)| ≥
∣

∣

∣

∣

−
∫

∂Bρ

hr

∣

∣

∣

∣

−
∣

∣

∣

∣

−
∫

∂Bρ

(ux − hr)

∣

∣

∣

∣

≥ −
∫

∂Bρ

|hr| − −
∫

∂Bρ

|ux − hr| ≥
1

2
|b(ux, r)|. (2.55)

This proves the second inequality in (2.48). Moreover, (2.53) and (2.50) imply that

|b(ux, ρ)− b(ux, r)| ≤
∣

∣

∣

∣

b(ux, ρ)−−
∫

∂Bρ

hr

∣

∣

∣

∣

+

∣

∣

∣

∣

−
∫

∂Bρ

hr − b(ux, r)

∣

∣

∣

∣

≤ −
∫

∂Bρ

|ux − hr|+−
∫

∂Bρ

|hr − b(ux, r)| ≤
1

2
|b(ux, r)|,

which shows that b(ux, r) and b(ux, ρ) have the same sign.
For the first estimate in (2.49), by (2.55) and the first hypothesis in (2.48), we have

1

ρ
|b(ux, ρ)| ≥

1

2ρ
|b(ux, r)| ≥

1

2ηr
|b(ux, r)| ≥

γ

2η
(1 + ω(ux, r)),

which using (2.6) gives (notice that we assumed that BλAr(x) ⊂ D)

1 + ρδA/2ω(ux, ρ) ≤ 1 + ω(ux, ρ) ≤ 1 + C

(

ω(ux, r) + log
r

ρ

)

≤ C
(

1 + ω(ux, r) + | log η|
)

≤ C
(

1 + | log η|
)

(1 + ω(ux, r))

≤ C
(

1 + | log η|
)2η

γρ
|b(ux, ρ)|.

Finally, observe that with η small enough (and also r0 small enough and κ1 large enough so that
(2.54) still holds) we have

τ C
(

1 + | log η|
)2η

γ
≤ 1.

This completes the proof. �

We continue with a self-improvement lemma whose strategy is similar to the one followed in
the previous lemma, the main difference being that we now consider ux with different points x.

Lemma 2.13. There exist constants r0 ∈ (0, 1) and τ0 ≥ 1 with the following property: if x ∈ D,
τ ≥ τ0 and ρ ≤ r0 satisfy BλAρ(x) ⊂ D,

τ(1 + ρδA/2ω(ux, ρ)) ≤
1

ρ
|b(ux, ρ)| and b+(ux, ρ) ≤ 3|b(ux, ρ)|, (2.56)

then for every y ∈ Bερ(x), where ε = τ−1/d, there exists ρ1 ∈ (ερ2 , ερ) such that

2τ(1 + ρ
δA/2
1 ω(uy, ρ1)) ≤

1

ρ1
|b(uy, ρ1)| and b+(uy, ρ1) ≤ 3|b(uy, ρ1)|. (2.57)

Moreover, b(ux, ρ) and b(uy, ρ1) have the same sign.

Proof. Firstly, if ε is small enough so that ε̄ := 2λ2
Aε ≤ 1/4, then by standard estimates on

harmonic functions (see [9, Theorem 3.9]) hρ = hx,ρ satisfies

‖∇hρ‖L∞(Bε̄ρ) ≤
C

ρ
‖hρ‖L∞(Bρ/2) ≤

C

ρ
−
∫

∂Bρ

|hρ| =
C

ρ
b+(ux, ρ).
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Using that b(ux, ρ) = b(hρ, ρ) = hρ(0) by harmonicity and the second hypothesis in (2.56), it
follows that for every ξ ∈ Bε̄ρ we have

|b(ux, ρ)− hρ(ξ)| ≤ ε̄ρ‖∇hρ‖L∞(Bε̄ρ) ≤ εCb+(ux, ρ) ≤ τ
− 1

d
0 C|b(ux, ρ)| ≤

1

4
|b(ux, ρ)|, (2.58)

where the last inequality holds if τ0 is big enough. This implies that

3

4
|b(ux, ρ)| ≤ |hρ(ξ)| ≤

5

4
|b(ux, ρ)| for every ξ ∈ Bε̄ρ. (2.59)

Moreover, by (2.1) applied to hρ (and since ε̄ρ ≤ ρ for τ0 large enough) we have

∫

Bε̄ρ

|ux − hρ| ≤ C(ε̄ρ)
d
2

(

∫

Bε̄ρ

|ux − hρ|2
)1/2

≤ C(ερ)
d
2

(

∫

Bρ

|ux − hρ|2
)1/2

≤ C(ερ)
d
2 ρ

(

∫

Bρ

|∇(ux − hρ)|2
)1/2

≤ C(ερ)
d
2 ρ

(

ρδA
∫

Bρ

|∇hρ|2 + ρd

)1/2

(2.60)

≤ Cε
d
2 ρd+1

(

ρδAω(ux, ρ)
2 + 1

)1/2 ≤ Cε
d
2 ρd+1(ρδA/2ω(ux, ρ) + 1).

We now fix some y ∈ Bερ(x). Let F : Bερ ⊂ R
d → Bε̄ρ ⊂ R

d be the function defined by
F (z) = F−1

x ◦ Fy(z). Then the coarea formula gives (and because ∂F (Bs) = ∂{|F−1| > s})

λ−2
A

∫ ερ

ερ/2
ds

∫

∂F (Bs)
|ux − hρ| dHd−1 ≤

∫ ερ

ερ/2
ds

∫

∂F (Bs)

|ux − hρ|
|∇|F−1|| dH

d−1

=

∫

{ερ/2≤|F−1|≤ερ}
|ux − hρ| (2.61)

≤
∫

F (Bερ)
|ux − hρ| ≤

∫

Bε̄ρ

|ux − hρ|.

We now choose ρ1 ∈ (ερ2 , ερ) such that

∫

∂F (Bρ1 )
|ux − hρ| dHd−1 ≤ 2

ερ

∫ ερ/2

ερ
ds

∫

∂F (Bρ1)
|ux − hρ| dHd−1,

so that (2.60), (2.61) and the first hypothesis in (2.56) imply

−
∫

∂F (Bρ1 )
|ux − hρ| dHd−1 ≤ Cε−

d
2 ρ(ρδA/2ω(ux, ρ) + 1) ≤ Cε−

d
2 τ−1|b(ux, ρ)|

≤ Cτ
−1/2
0 |b(ux, ρ)| ≤

1

4
λ
−4(d−1)
A |b(ux, ρ)|, (2.62)

where the last inequality holds for τ0 is large enough. Moreover, because the functions F and F−1

are Lipschitz continuous with Lipschitz constants bounded by λ2
A, we have for every set E ⊂ R

d

(see [12, Proposition 3.5])

λ
−2(d−1)
A Hd−1(E) ≤ F#Hd−1(E) ≤ λ

2(d−1)
A Hd−1(E), (2.63)
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where F#Hd−1 stands for the pushforward measure of Hd−1 along F . Therefore, by (2.59) (and
since ∂F (Bρ1) ⊂ Bε̄ρ), (2.63) and (2.62) we have

b+(uy, ρ1) = −
∫

∂Bρ1

|uy| dHd−1 =
1

Hd−1(∂Bρ1)

∫

∂F (Bρ1 )
|ux| dF#Hd−1

≤ 1

Hd−1(∂Bρ1)

(

∫

∂F (Bρ1 )
|hρ| dF#Hd−1 +

∫

∂F (Bρ1 )
|ux − hρ| dF#Hd−1

)

≤ 5

4
|b(ux, ρ)|+ λ

4(d−1)
A −

∫

∂F (Bρ1 )
|ux − hρ| dHd−1 (2.64)

≤ 3

2
|b(ux, ρ)|.

On the other hand, we have by (2.62)
∣

∣

∣

∣

∣

b(uy, ρ1)−
1

Hd−1(∂Bρ1)

∫

∂F (Bρ1 )
hρ dF#Hd−1

∣

∣

∣

∣

∣

≤ 1

Hd−1(∂Bρ1)

∫

∂F (Bρ1 )
|ux − hρ| dF#Hd−1

≤ λ
4(d−1)
A −

∫

∂F (Bρ1)
|ux − hρ| dHd−1 (2.65)

≤ 1

4
|b(ux, ρ)|.

Moreover, by (2.58) and since ∂F (Bρ1) ⊂ Bε̄ρ we have
∣

∣

∣

∣

∣

1

Hd−1(∂Bρ1)

∫

∂F (Bρ1 )
hρ dF#Hd−1 − b(ux, ρ)

∣

∣

∣

∣

∣

≤ max

{

max
ξ∈∂F (Bρ1 )

hρ(ξ)− b(ux, ρ), b(ux, ρ)− min
ξ∈∂F (Bρ1)

hρ(ξ)

}

≤ 1

4
|b(ux, ρ)|. (2.66)

Therefore, using the triangle inequality, (2.65) and (2.66) we get

|b(uy, ρ1)− b(ux, ρ)| ≤
1

2
|b(ux, ρ)|.

This proves that b(ux, ρ) and b(uy, ρ1) have the same sign and also implies that

|b(uy, ρ1)| ≥ |b(ux, ρ)| − |b(uy, ρ1)− b(ux, ρ)| ≥
1

2
|b(ux, ρ)| (2.67)

Finally, (2.64) and (2.67) gives

b+(uy, ρ1) ≤
3

2
|b(ux, ρ)| ≤ 3|b(uy , ρ1)|,

which is the second inequality in (2.57).
We now prove the first inequality in (2.57). By (2.67) and the first hypothesis in (2.56) we

have

|b(uy, ρ1)| ≥
1

2
|b(ux, ρ)| ≥

τρ

2
(1 + ρδA/2ω(ux, ρ)), (2.68)

We then apply Lemma 2.6 (notice that we have BλAρ(x) ⊂ D and 2λ2
Aρ1 ≤ ρ) and eventually

choose τ0 bigger (depending only on d and δA) to get

1 + ρ
δA/2
1 ω(uy, ρ1) ≤ 1 + ρ

δA/2
1 λ2

Aω(ux, 2λ
2
Aρ1) ≤ 1 + ρ

δA/2
1 C(ω(ux, ρ) + log(2ε̄ −1))

≤ C(1 + ρ
δA/2
1 ω(ux, ρ) + ρ

δA/2
1 log(2ε̄−1))

≤ C(1 + ρδA/2ω(ux, ρ) + τ
−δA/2d
0 log(τ0))

≤ C(1 + ρδA/2ω(ux, ρ)).
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Therefore, with (2.68) this gives

1

ρ1
|b(uy, ρ1)| ≥

1

ερ

τρ

2
(1 + ρδA/2ω(ux, ρ)) ≥

τ1/d

2C
τ(1 + ρ

δA/2
1 ω(uy, ρ1)),

which, choosing τ0 big enough so that τ
1/d
0 ≥ 4C, completes the proof. �

We are now in position to prove Proposition 2.11 using the results from Lemmas 2.12, 2.13
and Proposition 2.8.

Proof of Proposition 2.11. Set ε = τ
−1/d
0 and r̄ = εη

2 r where η and τ0 are the constants given by
Lemmas 2.12 and 2.13. Note that in view of the first hypothesis in (2.45) we have b(ux, r) 6= 0.
We will prove that if b(ux, r) > 0 (resp. if b(ux, r) < 0), then u > 0 almost everywhere (resp.
u < 0 a.e.) in Br̄(x) .

Let y ∈ Br̄(x) be fixed. We first apply Lemma 2.12. Now, we apply once Lemma 2.13 at x
(notice that we have y ∈ Bερ(x)) and then iteratively at the point y. It follows that there exists
a sequence of raddi ρi > 0 such that

2iτ(1 + ρ
δA/2
i ω(uy, ρi)) ≤

1

ρi
b(uy, ρi), i ≥ 0, (2.69)

and that b(uy, ρi) has the same sign than b(ux, r) for every i ≥ 0. Assume that b(ux, r) > 0, the
proof in the case b(ux, r) < 0 is identical. Let us denote by hi = hy,ρi the harmonic extension of
the trace of the function uy to ∂Bρi . With the same argument as in (2.58) we get

|b(uy, ρi)− hi(ξ)| ≤
1

4
|b(uy, ρi)| for every ξ ∈ Bερi .

Since b(uy, ρi) > 0, this implies that for every ξ ∈ Bερi ∩ {uy ≤ 0} we have

|uy(ξ)− hi(ξ)| ≥ |uy(ξ)− b(uy, ρi)| − |b(uy, ρi)− hi(ξ)|

≥ |b(uy, ρi)| −
1

4
|b(uy, ρi)| =

3

4
|b(uy, ρi)|.

By the Chebyshev inequality, the Lebesgue measure of Bερi ∩ {uy ≤ 0} is estimate as

|Bερi ∩ {uy ≤ 0}| ≤ 4

3|b(uy, ρi)|

∫

Bερi

|uy − hi|. (2.70)

On the other hand, by (2.60) in this context we have
∫

Bερi

|uy − hi| ≤ Cεd/2ρd+1
i (1 + ρ

δA/2
i ω(uy, ρi)). (2.71)

Now, combining (2.70), (2.71) and (2.69) we get

|Bερi ∩ {uy ≤ 0}|
|Bερi |

≤ (ερi)
−dCεd/2ρd+1

i (2iτρi)
−1 ≤ εd/2C2−i,

which implies that

|Fy(Bερi) ∩ {u ≤ 0}|
|Fy(Bερi)|

=
|Bερi ∩ {uy ≤ 0}|

|Bερi |
−−−−→
i→+∞

0,

where Fy(Bερi) = y + ρiA
1/2
y (Bε). This shows that the density of the set {u ≤ 0} at every point

y ∈ Br̄(x) is 0 (see [12, exercise 5.19]), and hence that u > 0 almost-everywhere in Br̄(x). Now,

we set c = λ−1
A τ

−1/d
0 η/2, where η and τ0 are the constants given by Lemma 2.12 and 2.13. Then

(2.46) and (2.47) follow from Proposition 2.8 and the fact that ω(u, x, cr) ≤ c−d/2ω(u, x, r). This
concludes the proof. �
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2.3. Lipschitz continuity. In this subsection we prove Theorem 1.2. At this stage, the main
work is to deal with the case where ω(ux, r) is big and the first condition in (2.45) fails. In this
case, we show in Proposition 2.14 below that the value of ω(ux, r) decreases at some smaller scale.
Notice that the extra hypothesis (2.72) is almost irrelevant in view of Proposition 2.8.

Proposition 2.14. Let K ⊂ D be a compact set. There exist positive constants rK , γ ∈ (0, 1)
and κ2 > 0 with the following property: if x ∈ K and r ≤ rK satisfy

ux(ξ0) = 0 for some ξ0 ∈ B(2λA)−2r, (2.72)

|b(ux, r)| ≤ γr(1 + ω(ux, r)) and κ2 ≤ ω(ux, r), (2.73)

then we have

ω(ux, r/3) ≤
1

2
ω(ux, r). (2.74)

We will need the following almost-monotonicity formula for operators in divergence form. We
refer to [13, Theorem III] for a proof (see also [2] and [5] for the case of the Laplacian). Let us
set for u+, u− ∈ H1(B1) and r ∈ (0, 1)

Φ(u+, u−, r) =

(

1

r2

∫

Br

|∇u+(ξ)|2
|ξ|d−2

dξ

)(

1

r2

∫

Br

|∇u−(ξ)|2
|ξ|d−2

dξ

)

.

Proposition 2.15. Let B = (bij)ij : B1 → Sym+
d be a uniformly elliptic matrix-valued function

with Hölder continuous coefficients, that is, for every x, y ∈ B1 and ξ ∈ R
d

|bij(x)− bij(y)| ≤ cB|x− y|δB and
1

λ2
B

|ξ|2 ≤ ξ ·Bx ξ ≤ λ2
B
|ξ|2.

Let u+, u− be two non-negative and continuous functions in the unit ball B1 such that

div(B∇u±) ≥ −1 in B1 and u+u− = 0 in B1.

Then there exist r0 > 0 and C > 0, depending only on d, cB, δB and λB, such that for every r ≤ r0
we have

Φ(u+, u−, r) ≤ C
(

1 + ‖u+ + u−‖2L2(B1)

)2
.

We now state this almost-monotonicity formula for the functions u±x .

Corollary 2.16. Let Ω ⊂ D be a quasi-open set and K ⊂ D be a compact set. Let A be a
matrix-valued function satisfying (1.5) and (1.6). Let f ∈ L∞(D). Assume that u ∈ H1

0 (Ω) is a
continuous function solution of the equation

− div(A∇u) = f in Ω. (2.75)

Then there exists rK > 0 and Cm > 0, depending only on d, cA, δA, λA, ‖f‖L∞ , |D| and dist(K,Dc),
such that for every x ∈ K and every r ≤ rK the function ux satisfies

Φ(u+x , u
−
x , r) ≤ Cm.

Proof. We first prove that we have, in the sense of distributions,

div(A∇u+) ≥ f1{u>0} in D and div(A∇u−) ≥ f1{u<0} in D. (2.76)

Let us define pn : R → R
+ for n ∈ N by

pn(s) = 0, for s ≤ 0; pn(s) = ns, for s ∈ [0, 1/n]; pn(s) = 1, for s ≥ 1/n,

and set qn(s) =
∫ s
0 pn(t) dt. Since pn is Lipschitz continuous, we have pn(u) ∈ H1

0 (Ω) and
∇pn(u) = p′n(u)∇u. Let ϕ ∈ C∞

0 (D) be such that ϕ ≥ 0 in D. Multiplying the equation (2.75)
with ϕpn(u) ∈ H1

0 (Ω) we get
∫

D
A∇qn(u) · ∇ϕ =

∫

D
pn(u)A∇u · ∇ϕ ≤

∫

D

(

pn(u)A∇u · ∇ϕ+ ϕp′n(u)A∇u · ∇u)

=

∫

D
A∇u · ∇(ϕpn(u)) =

∫

D
fϕpn(u).
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Now, the inequality for u+ in (2.76) follows by letting n tend +∞, because pn(u) converges
almost-everywhere to 1{u>0} and ∇qn(u) converges in L2 to ∇u+. The same proof holds for u−.

Now, set ρ = λ−1
A dist(K,Dc) and define for every ξ ∈ B1

u±(ξ) = ρ−2‖f‖−1
L∞ u±x (ρξ), f̃(ξ) = f ◦ Fx(ρξ), Bξ = A−1/2

x AFx(ρξ)A
−1/2
x .

Then the functions u± satisfy

div(B∇u±) ≥ ‖f‖−1
L∞ f̃1{u±>0} ≥ −1 in B1.

Therefore, by Proposition 2.15 we have for every r ≤ rK := r0ρ

Φ(u+x , u
−
x , r) = ρ4‖f‖4L∞Φ(u+, u−, r/ρ) ≤ ρ4‖f‖4L∞C

(

1 + ‖u+ + u−‖2L2(B1)

)2

≤ ρ4‖f‖4L∞C
(

1 + λd
Aρ

−d−4‖f‖−2
L∞‖u‖2L2(D)

)2

≤ ρ4‖f‖4L∞C
(

1 + λd
Aρ

−d−4Cd|D|1+4/d
)2

=: Cm.

�

Proof of Proposition 2.14. Let us denote as before hr = hx,r the harmonic extension of the trace
of ux to ∂Br. Then we have

ω(ux, r/3)
2 = −

∫

Br/3

|∇ux|2 ≤ 2−
∫

Br/3

|∇hr|2 + 2−
∫

Br/3

|∇(ux − hr)|2. (2.77)

By the quasi-minimality property of ux we can estimate the second term in the right hand side
of (2.77) as we did in (2.8), this gives

−
∫

Br/3

|∇(ux − hr)|2 ≤ 3d−
∫

Br

|∇(ux − hr)|2 ≤ CrδAω(ux, r)
2 + C

≤ C(rδA + κ−2
2 )ω(ux, r)

2, (2.78)

where in the last inequality we have used the second hypothesis in (2.73). On the other hand,
estimates for harmonic functions give

‖∇hr‖L∞(Br/3) ≤
C

r
‖hr‖L∞(Br/2) ≤

C

r
−
∫

∂Br

|hr| =
C

r
b+(ux, r). (2.79)

We now want to estimate b+(ux, r) in terms of r ω(ux, r). Let us assume that ω(u+x , r) ≤ ω(u−x , r),
the same proof holds if the opposite inequality is satisfied. We first prove that for ξ0 ∈ Br/2 and
η < 1/2 we have

−
∫

∂Br

u+x −−
∫

∂Bηr(ξ0)
u+x ≤ Cdη

1−dr−
∫

Br

|∇u+x |. (2.80)

Notice that up to considering the function ξ 7→ u+x (rξ) we can assume that r = 1. Let us define
a one to one function F : B1 \Bη → B1 \Bη(ξ0) by

F (ξ) = ξ +
1− |ξ|
1− η

ξ0.

We set v = u+x ◦ F . For every ξ ∈ ∂B1 we have by the fundamental theorem of the calculus

v(ξ)− v(ηξ) =

∫ 1

η

d

dt
v(tξ) dt ≤

∫ 1

η
|∇v(tξ)|dt.
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Note that F is the identity on ∂B1 and is simply a translation on ∂Bη. Therefore, averaging on
ξ ∈ ∂B1 (and since |∇v| ≤ Cd|∇u+x ◦ F |) we get

−
∫

∂B1

u+x −−
∫

∂Bη(ξ0)
u+x = −

∫

∂B1

v −−
∫

∂Bη(ξ0)
v ≤ 1

dωd

∫ 1

η
dt

∫

∂B1

|∇v(tξ)| dHd−1(ξ)

≤ η1−d

dωd

∫

B1\Bη

|∇v| ≤ Cdη
1−d

∫

B1\Bη

|∇u+x ◦ F |

≤ Cdη
1−d

∫

B1\Bη(ξ0)
|∇u+x ||det∇F−1| ≤ Cdη

1−d−
∫

B1

|∇u+x |,

which proves (2.80). Now, let ξ0 ∈ B(2λA)−2r be such that ux(ξ0) = 0 as in (2.72). By Proposition

2.5 we have for every ξ ∈ Bηr(ξ0) (and because Fx(ξ0), Fx(ξ) ∈ B(2λA)−1r(x) if η is small enough)

u+x (ξ) ≤ |ux(ξ)| = |ux(ξ0)− ux(ξ)| = |u(Fx(ξ0))− ux(Fx(ξ))|

≤ C|Fx(ξ0)− Fx(ξ)|
(

1 + ω(u, x, λ−1
A r) + log

λ−1
A r

|Fx(ξ0)− Fx(ξ)|

)

≤ C|ξ0 − ξ|
(

1 + ω(u, x, λ−1
A r) + log

r

|ξ0 − ξ|

)

(2.81)

≤ Cr(1 + η ω(ux, r)),

where the last inequality holds for η small enough and since we have

ω(u, x, λ−1
A r)2 = −

∫

B
λ
−1
A

r
(x)

|∇u|2 ≤ λ2
A−
∫

B
λ
−1
A

r
(x)

Ax∇u · ∇u

= λ2
A−
∫

F−1
x (B

λ−1
A

r
(x))

|∇ux|2 ≤ λ
2(d+1)
A ω(ux, r)

2.

Moreover, recall that we assumed that ω(u+x , r) ≤ ω(u−x , r). Using the monotonicity formula in
Corollary 2.16 we get

ω(u+x , r)
4 ≤ ω(u+x , r)

2ω(u−x , r)
2 ≤ CdΦ(u

+
x , u

−
x , r) ≤ CdCm,

which implies by Cauchy-Schwarz’s inequality

−
∫

Br

|∇u+x | ≤
(

−
∫

Br

|∇u+x |2
)1/2

= ω(u+x , r) ≤ (CdCm)1/4. (2.82)

Therefore, combining (2.81), (2.80), (2.82) and using the first hypothesis in (2.73) we have (and
also since u−x = u+x − ux)

b+(ux, r) = −
∫

∂Br

|ux| = 2−
∫

∂Br

u+x −−
∫

∂Br

ux

≤ 2‖u+x ‖L∞(∂Bηr(ξ0)) + 2

(

−
∫

∂Br

u+x −−
∫

∂Bηr(ξ0)
u+x

)

+ |b(ux, r)|

≤ C
(

(η + γ)ω(ux, r) + 1 + η1−dC1/4
m

)

r (2.83)

≤ C
(

(η + γ) +
(

1 + η1−dC1/4
m

)

κ−1
2

)

rω(ux, r),

where in the last inequality we used the second hypothesis in (2.73). We now return to (2.77).
With (2.78), (2.79) and (2.83) we get

ω(ux, r/3)
2 ≤ C

r2
b+(ux, r)

2 +C(rδA + κ−2
2 )ω(ux, r)

2

≤ C
(

(η + γ)2 + rδA +
(

1 + η1−dC1/4
m

)2
κ−2
2

)

ω(ux, r)
2.
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Therefore, choosing first η, γ and rK small enough and then κ2 big enough (depending on η) we
obtain (2.74), which concludes the proof. �

We are now in position to prove Theorem 1.2 using an iterative argument and Propositions
2.8, 2.11, 2.14.

Proof of Theorem 1.2. Recall that we denote by u any coordinate function of the vector U and
that we have to prove that u is locally Lipschitz continuous in D. Let K ⊂ D be a compact set
and let x ∈ K. Let r ≤ rK , where rK is smaller than the constants given by Propositions 2.8,
2.11 and 2.14. Set κ = max{κ1, κ2} where κ1, κ2 are the constants given by Propositions 2.11
and 2.14. We consider the following four cases:
Case 1:

either ux > 0 in B(2λA)−2r or ux < 0 in B(2λA)−2r (2.84)

Case 2:

γr(1 + ω(ux, r)) ≤ |b(ux, r)| and κ ≤ ω(ux, r), (2.85)

Case 3:

|b(ux, r)| ≤ γr(1 + ω(ux, r)) and κ ≤ ω(ux, r), (2.86)

Case 4:

ω(ux, r) ≤ κ. (2.87)

For k ≥ 0 we set rk = 3−kr. We denote by k0, if it exists, the smallest integer k ≥ 0 such that
the pair (x, rk) satisfies either (2.84) or (2.85), and we set k0 = +∞ otherwise. If k0 > 0, then
for every k < k0 we have that: if (x, rk) satisfies (2.86) then by Proposition 2.14 we have (notice
that (2.72) holds since u is continuous and that (2.84) is not satisfied)

ω(ux, rk+1) ≤
1

2
ω(ux, rk),

while if (x, rk) satisfies (2.87), then we have

ω(ux, rk+1) ≤ 3d/2ω(ux, rk) ≤ 3d/2κ.

Therefore, with an induction we get that for every 0 ≤ k ≤ k0

ω(ux, rk) ≤ max{2−kω(ux, r), 3
d/2κ}. (2.88)

Assume that k0 = +∞. If x is a Lebesgue point for ∇u, then 0 is a Lebesgue point of ux and it
follows from (2.88) that

|∇u(x)| ≤ λA|∇ux(0)| = λA lim
k→+∞

ω(ux, rk) ≤ λA3
d/2κ.

Assume now that k0 < +∞. Then, by definition of k0, the pair (x, rk0) satisfies either (2.84) or
(2.85). If (2.84) holds, then Proposition 2.8 infers that u is C1,β near x and that we have (using
also (2.88))

|∇u(x)| ≤ CK(1 + ω(u, x, (2λA)
−2rk0)) ≤ CK(1 + ω(u, x, λ−1

A rk0))

≤ CK(1 + ω(ux, rk0)) ≤ CK(1 +max{2−k0ω(ux, r), 3
d/2κ})

≤ CK(1 + ω(ux, r)).

Moreover, by Proposition 2.11 the same estimate holds if the pair (x, rk0) satisfies (2.85). There-
fore, in all cases it follows that for almost every point x ∈ K and every r ≤ rK we have

|∇u(x)| ≤ CK(1 + ω(ux, r)). (2.89)

Let now x0 ∈ K. Then, for almost every x ∈ BrK/2(x0), it follows by (2.89) that

|∇u(x)| ≤ CK(1 + ω(ux, rK/2)) ≤ CK(1 + ω(ux0 , rK)).

With a compactness argument this proves that u is locally Lipschitz continuous in D and com-
pletes the proof. �
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3. Lipschitz continuity of the eigenfunctions

This section is dedicated to the proof of Theorem 1.1. Precisely, we prove that the vector
U = (u1, . . . , uk) of the first k eigenfunctions on an optimal set for (1.1) is locally Lipschitz
continuous in D. Using an idea taken from [14], we show that U is a quasi-minimizer in the sense
of (1.4), and we then apply Theorem 1.2 to get the Lipschitz continuity of U .

3.1. Preliminaries and existence of an optimal set. We start with some properties about
the spectrum of the operator in divergence form defined in 1.2, and we then prove that the
problem (1.1) admits a solution among the class of quasi-open sets.

Let us define the weighted Lebesgue measure m = b dx, where dx stands for the Lebesgue
measure in R

d. For a quasi-open set Ω ⊂ R
d, we define the spaces L2(Ω;m) = L2(Ω) and

H1
0 (Ω;m) = H1

0 (Ω) endowed respectively with the following norms

‖u‖L2(Ω;m) =

(∫

Ω
u2 dm

)1/2

and ‖u‖H1(Ω;m) = ‖u‖L2(Ω;m) + ‖∇u‖L2(Ω).

Moreover, if Ω = R
d we will simply write ‖u‖L2(m) = ‖u‖L2(Rd;m). We notice that, by the

hypothesis (1.7) on the function b, the norms ‖ · ‖L2(Ω;m) and ‖ · ‖L2(Ω) are equivalent. We stress
out that the choice of these norms is natural in view of (1.2) and is motivated by the variational
formulation of the sum of the first k eigenfunctions (see (3.1) below). Now, the Lax-Milgram
theorem and the Poincaré inequality imply that for every f ∈ L2(Ω,m) there exists a unique
solution u ∈ H1

0 (Ω,m) to the problem

− div(A∇u) = f b in Ω, u ∈ H1
0 (Ω,m).

The resolvent operator RΩ : f ∈ L2(Ω;m) → H1
0 (Ω;m) ⊂ L2(Ω;m) defined as RΩ(f) = u is a

continuous, self-adjoint and positive operator. Since the Sobolev space H1
0 (Ω;m) is compactly

embedded into L2(Ω;m) (because we have assumed that b ≥ cb > 0, see (1.7)), the resolvent RΩ is
in addition a compact operator. We say that a complex number λ is an eigenvalue of the operator
(1.2) in Ω if there exists a non-trivial eigenfunction u ∈ H1

0 (Ω;m) solution of the equation

− div(A∇u) = λu b in Ω, u ∈ H1
0 (Ω;m).

The above properties of the resolvent ensure that the spectrum of the operator (1.2) in Ω is given
by an increasing sequence of eigenvalues which are strictly positive real numbers, non-necessarily
distinct, and which we denote by

0 < λ1(Ω) ≤ λ2(Ω) ≤ · · · ≤ λk(Ω) ≤ · · ·
The eigenvalues λk(Ω) are variationnaly characterized by the following min-max formula

λk(Ω) = min
V subspace of

dimension k of H1
0 (Ω,m)

max
v∈V \{0}

∫

ΩA∇v · ∇v dx
∫

Ω v2 dm
.

Moreover, we denote by uk the normalized (with respect to the norm ‖ · ‖L2(Ω;m)) eigenfunctions
corresponding to the eigenvalues λk(Ω) and note that the family (uk)k form an orthonormal
system in L2(Ω;m), that is

∫

Ω
uiuj dm = δij :=

{

1 if i = j,

0 if i 6= j.

As a consequence, we have the following variational formulation for the sum of the first k eigen-
values on a quasi-open set Ω

k
∑

i=1

λi(Ω) = min
{

∫

Ω
A∇V · ∇V dx : V = (v1, . . . , vk) ∈ H1

0 (Ω,R
k),

∫

Ω
vivj dm = δij

}

, (3.1)

for which the minimum is attained for the vector U = (u1, . . . , uk). We now deduce from this
characterization that the minimum in (1.1) is reached.
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Proposition 3.1 (Existence). The shape optimization problem (1.1) has a solution.

Proof. Let (Ωn)n∈N be a minimizing sequence of quasi-open sets to the problem (1.1) and denote
by Un = (un1 , . . . , u

n
k) the first k eigenfunctions on Ωn. Since the matrices Ax, x ∈ D, are uniformly

elliptic, we have the following inequality

λ−2
A

∫

D
|∇Un|2 dx ≤

∫

D
A∇Un · ∇Un dx =

k
∑

i=1

λi(Ωn)

which infers that the norm ‖Un‖H1 is uniformly bounded. Therefore, up to a subsequence, Un

converges weakly in H1(D,Rk) and strongly in L2(D,Rk) to some V ∈ H1(D,Rk). Notice that
V is an orthonormal vector. Set Ω∗ := {|V | > 0}. Then using (3.1), the weak convergence in H1

of Un to V and the semi-continuity of the Lebesgue measure we have

k
∑

i=1

λi(Ω
∗) + Λ|Ω∗| ≤

∫

D
A∇V · ∇V dx+ Λ|{|V | > 0}|

≤ lim inf
n

(

∫

D
A∇Un · ∇Un dx+ Λ|{|Un| > 0}|

)

≤ lim inf
n

(

k
∑

i=1

λi(Ωn) + Λ|Ωn|
)

which concludes the proof. �

In the next Lemma we prove that the eigenfunctions are bounded. This result is a consequence
of Lemma 2.1 and we refer to [15, Lemma 5.4] for a proof which is based on an interpolation
argument.

Lemma 3.2 (Boundedness of the eigenfunctions). Let Ω ⊂ R
d be a bounded quasi-open set.

There exist a dimensional constant n ∈ N and a constant C > 0 depending only on d, λA, cb and
|Ω|, such that the resolvent operator RΩ : L2(Ω;m) → L2(Ω;m) satisfies

Rn(L2(Ω;m)) ⊂ L∞(Ω) and ‖Rn‖L(L2(Ω;m);L∞(Ω)) ≤ C.

In particular, if u is an eigenfunction on Ω normalized by ‖u‖L2(m) = 1, then u ∈ L∞(Ω) and

‖u‖L∞ ≤ Cλ(Ω)n,

where λ(Ω) denotes the eigenvalue corresponding to u.

To conclude this subsection, we show that the first eigenfunction on an optimal set Ω∗ keeps
the same sign on every connected component of Ω∗. Notice that Ω∗ may not be connected and
has at most k connected components.

Lemma 3.3 (Sign of the principal eigenfunction). Let Ω ⊂ D be an open and connected set and
let u ∈ H1

0 (Ω) be the normalized first eigenvalue on Ω, that is

− div(A∇u) = λ1(Ω) b u in Ω and

∫

Ω
u2 dm = 1.

Then u is non-negative in Ω (up to a change of sign).

Proof. We assume that u+ 6= 0 (if not, take −u instead of u) and we set

u+ = u+/‖u+‖L2(m) and u− = u−/‖u−‖L2(m).

Since u is variationally characterized by

λ1(Ω) =

∫

Ω
A∇u · ∇u dx = min

{

∫

Ω
A∇ũ · ∇ũ dx : ũ ∈ H1

0 (Ω),

∫

Ω
ũ2 dm = 1

}

, (3.2)

we have
∫

Ω
A∇u · ∇u dx ≤

∫

Ω
A∇u+ · ∇u+ dx and

∫

Ω
A∇u · ∇u dx ≤

∫

Ω
A∇u− · ∇u− dx.
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Then, it follows that the two above inequalities are in fact equalities since otherwise we have
∫

Ω
A∇u · ∇u dx =

∫

Ω
A∇u+ · ∇u+ dx+

∫

Ω
A∇u− · ∇u− dx

>
(

∫

Ω
(u+)2 dm+

∫

Ω
(u−)2 dm

)

∫

Ω
A∇u · ∇u dx =

∫

Ω
A∇u · ∇u dx,

which is absurd. In view of the minimization characterization (3.2), this ensures that u+ is
solution of the equation

− div(A∇u+) = λ1(Ω)u+b in Ω.

Then, the strong maximum principle (see [9, Theorem 8.19]) and the connectedness of Ω imply
that u+ is strictly positive in Ω, which completes the proof. �

3.2. Quasi-minimality and Lipschitz continuity of the eigenfunctions. We prove that
the vector U = (u1, . . . , uk) of normalized eigenfunctions on an optimal set Ω∗ for the problem
(1.1) is a local quasi-minimizer of the vector-valued functional

H1
0 (D,Rk) ∋ Ũ 7→

∫

D
A∇Ũ · ∇Ũ dx+ Λ|{|Ũ | > 0}|

in the sense of the Proposition below. The Lipschitz continuity of the eigenfunctions is then a
consequence of Theorem 1.2. We notice that, in view of the variational formulation (3.1), the
vector U is solution to the following problem

min

{∫

D
A∇V ·∇V dx+Λ|{|V | > 0}| : V = (v1, . . . , vk) ∈ H1

0 (D,Rk),

∫

D
vivj dm = δij

}

. (3.3)

Proposition 3.4 (Quasi-minimality of U). Let Ω∗ ⊂ D be an optimal set for the problem (1.1).
Then the vector of orthonormalized eigenfunctions U = (u1, . . . , uk) ∈ H1

0 (Ω
∗,Rk) satisfies the

following quasi-minimality condition: for every C1 > 0 there exist constants ε ∈ (0, 1) and C > 0,
depending only on d, k, C1, ‖U‖L∞ and |D|, such that
∫

D
A∇U · ∇U dx+ Λ|{|U | > 0}| ≤

(

1 + C‖U − Ũ‖L1

)

∫

D
A∇Ũ · ∇Ũ dx+ Λ|{|Ũ | > 0}|, (3.4)

for every Ũ ∈ H1
0 (D,Rk) such that ‖U − Ũ‖L1 ≤ ε and ‖Ũ‖L∞ ≤ C1.

The next Lemma, in which we get rid of the orthogonality constraint in (3.3), is similar to
Lemma 2.5 in [14] with only slight modifications, but we decided to recall the whole proof for a
sake of completeness.

Lemma 3.5. Let Ω ⊂ D be a quasi-open set and let U = (u1, . . . , uk) be the vector of normalized
eigenvalues on Ω. Let δ > 0. Then there exist εk ∈ (0, 1) and Ck > 0, depending only on d, k, δ

and |Ω|, such that for every Ũ = (ũ1, . . . , ũk) ∈ H1
0 (D,Rk) satisfying

εk :=

k
∑

i=1

∫

D
|ũi − ui| dm ≤ εk and sup

i=1,...,k

{

‖ui‖L∞ + ‖ũi‖L∞

}

≤ δ

the following estimate holds
∫

D
A∇V · ∇V dx ≤ (1 + Ckεk)

∫

D
A∇Ũ · ∇Ũ dx, (3.5)

where V = (v1, . . . , vk) ∈ H1
0 (D,Rk) is the vector obtained by orthonormalizing Ũ with the Gram-

Schmidt procedure:

vi = wi/‖wi‖L2(m) where wi =

{

ũ1 if i = 1

ũi −
∑i−1

j=1

(∫

D ũivj dm
)

vj if i = 2, . . . , k.
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Proof. We first prove an estimate of ‖uk − wk‖L2(m) in terms of εk. Precisely, we prove by
induction on k that there exist constants εk ∈ (0, 1) and Ck > 0 such that the following estimates
hold whenever εk ≤ εk

‖uk − wk‖L1(m) ≤ Ckεk,

k
∑

i=1

‖ui − vi‖L1(m) ≤ Ckεk, max
i=1,...,k

‖vi‖L∞ ≤ Ck. (3.6)

For k = 1 the first estimate obviously holds with C1 ≥ 1. Moreover we have

‖ũ1 − v1‖L1(m) =
|‖ũ1‖L2(m) − 1|

‖ũ1‖L2(m)
‖ũ1‖L1(m) ≤

|‖ũ1‖2L2(m) − 1|
‖ũ1‖2L2(m)

‖ũ1‖L1(m)

=
|‖u1 + (ũ1 − u1)‖2L2(m) − 1|

‖u1 + (ũ1 − u1)‖2L2(m)

‖u1 + (ũ1 − u1)‖L1(m) (3.7)

≤
2
∫

u1|ũ1 − u1| dm+ ‖ũ1 − u1‖2L2(m)

1− 2
∫

u1|ũ1 − u1| dm
(

‖u1‖L1(m) + ‖ũ1 − u1‖L1(m)

)

≤
(2‖u1‖L∞ + ‖ũ1 − u1‖L∞)‖ũ1 − u1‖L1(m)

1− 2‖u1‖L∞‖ũ1 − u1‖L1(m)

(

‖u1‖L1(m) + ‖ũ1 − u1‖L1(m)

)

≤ 3δε1
1− 2δε1

(

|Ω|1/2 + ε1

)

≤ 12δ|Ω|1/2ε1,

where the last inequality holds if ε1 ≤ min{(4δ)−1, |Ω|1/2}. This gives the following L1-estimate

‖u1 − v1‖L1(m) ≤ ‖u1 − ũ1‖L1(m) + ‖ũ1 − v1‖L1(m) ≤ (1 + 12δ|Ω|1/2)ε1.

Finally, we estimate the infinity norm

‖v1‖L∞ =
‖ũ‖L∞

‖ũ1‖L2(m)
=

‖ũ‖L∞

‖u1 + (ũ1 − u1)‖L2(m)
≤ ‖ũ‖L∞

(1− 2
∫

u1|ũ1 − u1| dm)1/2

≤ ‖ũ‖L∞

1− 2
∫

u1|ũ1 − u1| dm
≤ δ

1− 2δε1
≤ 2δ,

which proves the claim for k = 1. Suppose now that the claim holds for 1, . . . , k − 1. We first
estimate ‖uk − wk‖L1(m). Since the functions ui form an orthogonal system of L2(Ω,m) and by
the induction’s hypothesis we have (and also because εk−1 ≤ εk)

k−1
∑

i=1

∣

∣

∣

∣

∫

D
ũkvi dm

∣

∣

∣

∣

≤
k−1
∑

i=1

∫

D

(

|ũk − uk|ui + |vi − ui|uk + |vi − ui||ũk − uk|
)

dm

≤ ((k − 1)δ + δCk−1 + (k − 1)(Ck−1 + δ))εk =: C̃kεk. (3.8)

Therefore, with the triangle inequality we obtain

‖uk − wk‖L1(m) ≤ ‖uk − ũk‖L1(m) +
k−1
∑

i=1

∣

∣

∣

∣

∫

D
ũkvi dm

∣

∣

∣

∣

(‖ui‖L1(m) + ‖vi − ui‖L1(m))

≤ (1 + C̃k(|Ω|1/2 + εk−1))εk ≤ (1 + 2C̃k|Ω|1/2)εk. (3.9)

We now prove the second estimate in (3.6). Using once again (3.8), we have the following estimate
of the L∞-norm of wk

‖wk‖L∞ ≤ ‖ũk‖L∞ +

k
∑

i=1

∣

∣

∣

∣

∫

D
ũkvi dm

∣

∣

∣

∣

‖vi‖L∞ ≤ δ + Ck−1C̃k. (3.10)
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Moreover, with the same procedure as in (3.7), it follows from (3.9) and (3.10) that

‖ũk − vk‖L1(m) ≤
(3‖uk‖L∞ + ‖wk‖L∞)‖wk − uk‖L1(m)

1− 2‖uk‖L∞‖wk − uk‖L1(m)

(

‖uk‖L1(m) + ‖wk − uk‖L1(m)

)

≤ (4δ + Ck−1C̃k)(1 + 2C̃k|Ω|1/2)
1− 2δ(1 + 2C̃k|Ω|1/2)εk

(|Ω|1/2 + (1 + 2C̃k|Ω|1/2))εk.

Now, choose εk ≤ [4δ(1 + 2C̃k|Ω|1/2)]−1 so that with the triangle inequality we have

‖uk − vk‖L1(m) ≤ ‖uk − ũk‖L1(m) + ‖ũk − vk‖L1(m)

≤
[

1 + 2(4δ + Ck−1C̃k)(1 + 2C̃k|Ω|1/2)(|Ω|1/2 + (1 + 2C̃k|Ω|1/2)
]

εk.

We then use the inductive hypothesis to get the desired L1-estimate. It remains only to estimate
‖vk‖L∞ . Firstly, notice that we have

| ‖wk‖L2(m) − 1| ≤ | ‖wk‖2L2(m) − 1| = | ‖uk + (wk − uk)‖2L2(m) − 1|

≤
∣

∣

∣

∣

2

∫

D
uk(uk − wk) dm+

∫

D
(uk − wk)

2 dm

∣

∣

∣

∣

≤ (3‖uk‖L∞ + ‖wk‖L∞)‖uk − wk‖L1(m)

≤ (4δ + Ck−1C̃k)(1 + 2C̃k|Ω|1/2)εk.
Thus, with the extra assumption εk ≤ [(4δ + Ck−1C̃k)(1 + 2C̃k|Ω|1/2)]−1, it follows that 1/2 ≤
‖wk‖L2(m) ≤ 3/2. With (3.10) this gives the following L∞-norm of vk

‖vk‖L∞ =
‖wk‖L∞

‖wk‖L2(m)
≤ 2(δ + Ck−1C̃k)

and concludes the proof of the claim.
We are now in position to prove the Lemma by induction. For k = 1, we ask that ε1 ≤ (4δ)−1,

so that we have
∫

D
A∇v1 · ∇v1 dx ≤ ‖ũ1‖−2

L2(m)

∫

D
A∇ũ1 · ∇ũ1 dx

≤ (1− 2‖u1‖L∞‖ũ1 − u1‖L1(m))
−2

∫

D
A∇ũ1 · ∇ũ1 dx

≤ (1 + 4δε1)
2

∫

D
A∇ũ1 · ∇ũ1 dx ≤ (1 + 12δε1)

∫

D
A∇ũ1 · ∇ũ1 dx.

Suppose now that the Lemma holds for 1, . . . , k − 1. Thanks to the first estimate in (3.6) of the
preceding claim we have

‖wk‖−2
L2(m)

≤ (1− 2‖uk‖L∞‖uk − wk‖L1(m))
−2 ≤ (1 + 4δCkεk)

2 ≤ 1 + 12δCkεk,

where the last inequality holds if εk ≤ (4δCk)
−1. On the other hand, for every i = 1, . . . , k − 1,

we have by the inductive assumption
∫

D
A∇vi · ∇vi dx ≤

k−1
∑

j=1

∫

D
A∇vj · ∇vj dx ≤ (1 + Ck−1εk−1)

k−1
∑

j=1

∫

D
A∇ũj · ∇ũj dx.

Therefore, using the estimate (3.8) we get

(∫

D
A∇wk · ∇wk dx

)1/2

≤
(∫

D
A∇ũk · ∇ũk dx

)1/2

+

k−1
∑

i=1

∣

∣

∣

∣

∫

D
ũkvi dm

∣

∣

∣

∣

(∫

D
A∇vi · ∇vi dx

)1/2

≤
(∫

D
A∇ũk · ∇ũk dx

)1/2

+ C̃kεk(1 + Ck−1)
1/2





k−1
∑

j=1

∫

D
A∇ũj · ∇ũj dx





1/2

.
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We then ask that εk ≤ (2C̃k)
−1(1 + Ck−1)

−1/2 so that we get
∫

D
A∇vk · ∇vk dx = ‖wk‖−2

L2(m)

∫

D
A∇wk · ∇wk dx

≤ (1 + 12δCkεk)



(1 + C̃k(1 + Ck−1)
1/2εk)

∫

D
A∇ũk · ∇ũk dx+

k−1
∑

j=1

∫

D
A∇ũj · ∇ũj dx



 .

This, using once again the inductive hypothesis, proves (3.5) and concludes the proof. �

Proof of Proposition 3.4. Let Ũ be a vector satisfying the hypothesis of Proposition 3.4 and let
V ∈ H1

0 (D,Rk) be the vector given by Lemma 3.5 and obtained by orthonormalizing Ũ . Using
V as a test function in (3.3) and then Lemma 3.5, we have

∫

D
A∇U · ∇U dx+ Λ|{|U | > 0}| ≤

∫

D
A∇V · ∇V dx+ Λ|{|V | > 0}|

≤ (1 + Ck‖U − Ũ‖L1)

∫

D
A∇Ũ · ∇Ũ dx+ Λ|{|Ũ | > 0}|,

where we have used in the last inequality that {|V | > 0} ⊂ {|Ũ | > 0} (which holds by construction
of V ). �

We now conclude the proof of Theorem 1.1.

Proof of Theorem 1.1. The proof follows from Proposition 3.4 and Theorem 1.2 (see also Lemma
3.2). �
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