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Efficient communication in written and performed music

Laurent Bonnasse-Gahot

Centre d’Analyse et de Mathématique Sociales, CNRS, EHESS, PSL University, Paris, France

Abstract

Since its inception, Shannon’s information theory has attracted interest for the study of language
and music. Recently, a wide range of converging studies have shown how efficient communication
pervades language, from phonetics to syntax. Efficient principles imply that more resources should
be assigned to highly informative items. For instance, average information content was shown to
be a better predictor of word length than frequency, revisiting one of the famous Zipf’s law. How-
ever, in spite of the success of the efficient communication framework in the study of language and
speech, very little work has investigated its relevance in the analysis of music. Here, we examine
the organization of harmonic information in two large corpora of Western music, one made of MIDI
files directly sequenced from scores, and the other made of MIDI recordings of live performances of
highly skilled piano players. We show that there is a clear positive relationship between (contextual)
information content of harmonic sequences and two essential musical properties, namely duration
and loudness: the more unexpected a harmonic event is, the longer and the louder it is.

Keywords: information theory; efficient communication; music; harmony

1 Introduction

In 1948, Claude E. Shannon published his seminal paper A Mathematical Theory of Communication,
founding the field of information theory, which has had a tremendous impact on many hard science
disciplines such as signal processing and computer science (Mac Kay, 2003; Cover and Thomas, 2006),
but has also attracted interests and applications, since its very beginnings, in the study of language
(Shannon, 1948, 1951; Cherry et al., 1953; Mandelbrot, 1954) and music (Meyer, 1956; Pinkerton, 1956;
Meyer, 1957; Brooks et al., 1957; Youngblood, 1958; Cohen, 1962).

A fundamental theorem brought by Shannon states that a good communication code, realized as a
sequence of symbols, should match the length of each symbol with its probability. This principle is widely
used nowadays in data-compression techniques (eg: Huffman, 1952). But this idea was already intuited
before the advent of information theory. For instance, in Morse code, designed by Samuel Morse and
Alfred Vail in the mid-nineteenth century, the length of the sequence of symbols used to code a given
character is roughly in inverse relationship with the frequency of occurrence of that character in English
texts. The most frequent letter, e, is thus coded by a single dot (·), which is the simplest code in Morse,
whereas the letter z, a much rarer letter, is coded as the longer dash dash dot dot (−−··). This allows
for a more efficient use of the bandwidth, sending more information per unit of time, while also limiting
repetitive strain injury to the operator for the same amount of letters transmitted. The same principle
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is at work for languages, as linguist George K. Zipf showed about eighty years ago: “the larger a word
is in length, the less likely it is to be used” (Zipf, 1936). Zipf does not just exhibit the relationship, he
also argues that it is the frequency that shapes the length and not the contrary.

One of the great success of Shannon theory was to precisely and operationally define the common but
at the time vague notion of information. Given context c, the information content (also called surprisal)
of a particular outcome x of a random variable is:

− log2 p(x|c) (1)

If the logarithm is taken in base 2 (as is the case throughout this work), the unit of information is
called the bit. First, with this definition, Eq. 1, one immediately sees that the less probable (thus the
more unexpected) an event is, the more informative it is. Second, the formula takes advantage of the
property that the logarithm of a product is equal to the sum of the logarithms of its factors. This form
thus allows to simply write the total information conveyed by two independent events as the sum of the
information of each corresponding event. Finally, the notion of context is crucial here. Surprisal of an
event depends on the conditions in which this event happens. For instance, as Markov (1913) already
noted a century ago, a given letter does not have the same probability of appearance depending on the
letters that precede it. Consider for example the letter h in English: you will be more surprised to find
it after the letter b than if it follows the letter t.

The past two decades have seen many works looking at language and speech from the point of view
of information theory. For instance, the latter statement about word length and frequency was recently
refined: the length of a given word is better explained by its information content than by its overall
frequency (Piantadosi et al., 2009, 2011) (see also Manin, 2006: the unpredictability of a word is linearly
related to its length). Many other aspects that fall in line with this idea have been studied. At the
word level, when an instance of a word is informative (ie less predictable), speakers tend to increase
its duration (Aylett and Turk, 2004, 2006), whereas predictive contexts lead speakers to choose shorter
variants of words (e.g. exam vs examination) (Mahowald et al., 2013). Similarly, speakers prefer to
choose contracted forms over full forms (“I’m” vs “I am”) in more predictive contexts (Frank and Jaeger,
2008). At the prosodic level, stressed syllables are more informative than unstressed ones (Piantadosi
et al., 2009), and more informative syllables are produced with longer duration (Aylett and Turk, 2004).
At the phonetic level, informative context increases phonetic lengthening, whereas predictive context
increases the probability of phonetic reduction and deletion (Aylett and Turk, 2004, 2006; Cohen Priva
and Jurafsky, 2008; Cohen Priva, 2015). Finally, predictability was shown to affect discourse at the
syntactic level (Levy and Jaeger, 2007; Jaeger, 2010; Temperley and Gildea, 2015). All these results
form a diverse and rich set of evidence that supports the uniform information density hypothesis (Fenk
and Fenk, 1980; Fenk-Oczlon, 2001; Genzel and Charniak, 2002; Aylett and Turk, 2004; Levy and Jaeger,
2007; Jaeger, 2010), according to which speakers manage the rate of information so as to keep it as even
as possible, “avoiding peaks and troughs in information density”.

Surprisingly, despite the abundant evidence discussed above in the case of language and speech, very
few studies have been conducted in the field of music cognition. To our knowledge, there are only two
exceptions. First, the experimental work by Bartlette (2007, as cited in Temperley, 2014) showed that
musicians tend to perform unexpected harmonic events with a longer duration than more expected ones.
Second, analyzing a corpus of common-practice themes, Temperley (2014) found that in the second in-
stance of a repeated pattern that contains one changed interval, this interval tends be larger and/or the
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new pattern tends to be more chromatic. This is interpreted as a way to balance the information flow:
the repetition induces low-information content, but larger or more chromatic intervals introduce more
surprisal. Yet, despite such scarcity of studies, one could think of several reasons why we might expect to
find efficient communication in music too. First, some authors have proposed music as a protolanguage
(Darwin, 1871, and see Fitch, 2006, for a discussion), and neural bases of language and music possibly
overlap substantially (Patel, 2003; Koelsch, 2005; Fedorenko et al., 2009; Peretz et al., 2015, but see
Fedorenko et al., 2011, 2012). Moreover, speech and music share a similar acoustic code in the way it
puts emphasis on important events: notably, of special interest for the present work, accents can be
realized by an increase in loudness and/or duration (Carlson et al., 1989). Finally, predictability, which
lies at the core of the concept of information, plays a major role in music processing (Meyer, 1957; Huron,
2006; Tillmann, 2012; Rohrmeier and Koelsch, 2012; Pearce and Wiggins, 2012).

The current work aims at filling in part this gap by looking at efficient communication in music.
Music is a highly complex phenomenon, and many aspects, notably melodic, rhythmic, or harmonic,
could be investigated. Here, we focus on harmony, which might be defined as “the study of simultaneous
sounds (chords) and of how they may be joined” (Schoenberg, 1978). Harmonic content is here defined
in a precise and workable way. Tones one or several octave(s) apart share a similar perceptual savor,
called chroma (see Deutsch, 1980, for a review). We consider a piece of music as a sequence of binary
chromagrams, each chroma vector being defined as a 12-dimensional vector of pitch classes, with 1 if a
note with the corresponding pitch class is present, 0 otherwise. For instance, using a vectorial notation
that starts with pitch C and goes chromatically up to B, the most common chromagram in our main
corpus is the vector (100010010000), which corresponds to a C major triad (composed of the C, E, and
G pitch classes, independently of their specific vertical arrangement, or voicing). This way of looking at
harmonic content is somewhat agnostic to harmonic theories, making it possible to notate any chord,
notably passing chords or even ones that would be difficult to label within traditional analysis (consider
for instance the texture from the Augurs of Spring in Stravinsky’s The Rite of Spring).

We restrict ourselves to the study of Western music, mainly within common practice period (baroque,
classical, romantic), although we also consider a few composers from early post-common practice. The
materials that we exploit consist in a large number of files encoded in the standard Musical Instrument
Digital Interface (MIDI) format, freely available on the Web. We consider two corpora:
(i) One that is as close as possible to written music, with MIDI files directly sequenced from the score.
In a traditional musical score, many musical indications are indicated in a symbolic form. For instance,
dynamics can be marked as pianissimo (pp), mezzo-forte (mf) or forte (f), but the actual realization of
this indication is left to the performer. Here, the necessary conversion of a performance marking into a
numeric value is either left to the software used to convert the music into the MIDI format, or to the
person that manually sequenced the score. In a sense, a musical piece in the MIDI file format is already
a performance (albeit very crude) of the piece. Still, the expressiveness of such rendition is rather low
compared to a real live performance. As a limitation, note that the translation process of the scores
might be subject to irrelevant biases either hard coded into the software or introduced by the transcriber,
by adding extra (unwritten) expressiveness or due to the conversion of the existing marking.
(ii) One that consists in MIDI recordings of live performances of highly skilled piano players. These
recordings capture the nuances and subtleties in timing, phrasing, and dynamics of these expressive
performances.

As detailed below, after segmenting each piece of music into a sequence of harmonic vectors, we
evaluate the information content of each such vector, looking at several millions of them, and relate
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this surprisal quantity with other properties of the corresponding musical segment, namely duration and
loudness. The information content of a given harmonic segment is evaluated as the amount of surprise
experienced by a model trained on the same kind of musical material. Following efficient principles, we
expect informative items to have more prominence: the higher the information content of a harmonic
event, the longer its duration and the greater its loudness.

2 Materials and Methods

2.1 General pipeline

Our workflow is the following. (i) A score or a performance is first turned into a MIDI file. This step
is already done here, as we directly work with MIDI files of either sequenced music or recorded live
performances, freely available on the Web. (ii) We segment this MIDI representation into harmonic
vectors that capture the vertical relationships of the tones, in terms of the pitch classes that are present.
Each such vector is also characterized by its duration and its loudness. (iii) We evaluate the informa-
tion content of each vector as the amount of surprise experienced by a recurrent neural network model
trained on the same kind of musical material. (iv) We compare this quantity with duration and loudness.

We share the preprocessed data, as well as the full Python 3 source code used for preprocessing the
MIDI files, computing the information content, performing the analyses and visualizing the results. The
custom code written for the present project makes use of the following libraries: keras v2.2.4 (Chollet
et al., 2015) (using tensorflow_gpu v1.14.0, Abadi et al., 2015), matplotlib v3.0.3 (Hunter, 2007),
numpy v1.16.2 (Van Der Walt et al., 2011), pandas v0.24.2 (McKinney et al., 2010), pretty_midi

v0.2.8 (Raffel and Ellis, 2014), scikit_learn v0.21.3 (Pedregosa et al., 2011), seaborn v0.9.0,
statsmodels v0.9.0. Data and code available on the Open Science Framework at https://osf.io/

gxw4b (Bonnasse-Gahot, 2019).

2.2 Musical material

Two large corpora are considered, one with sequenced MIDI files and the other with MIDI recordings of
live performances. Among the many parameters that make up a MIDI file1, we are here interested in
three quantities: the timing of each note, so as to extract the duration of each segment; the pitch of those
notes, whose chroma is turned into the harmonic vector; and finally the velocity, a quantity related to
the speed of the hammer that strikes the strings, proportional to the loudness (Jeong and Nam, 2017).
The latter parameter, the velocity, is much more meaningful in the case of the performed corpus, not
only because each note has its own expressive velocity, but also because this corpus is homogeneous in
terms of instrumentation (music written for the piano) and interpretation (music performed on the same
instrument, a Yamaha Disklavier Pro piano).

2.2.1 Written music

A sizable corpus of files was obtained from the kunstderfuge.com website2, which hosts a large collection
of classical music files in MIDI format. The files were sequenced by different authors from the written
score into the MIDI format. We consider 23 composers, from Buxtehude to Stravinsky, spanning a wide
musical period, from the 17th to the early 20th century. Each file might correspond to a small piece of
music or to a full symphony. All in all, 2066 files were included in the present study, amounting to about

1https://www.midi.org/
2http://www.kunstderfuge.com/
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composer birth death # files # chroma vectors

Albéniz, Isaac 1860 1909 61 72295
Bach, Johann Sebastian 1685 1750 157 163760
Beethoven, Ludwig van 1770 1827 102 290562
Brahms, Johannes 1833 1897 116 246243
Bruckner, Anton 1824 1896 30 63991
Buxtehude, Dieterich 1637 1707 82 85915
Chopin, Frédéric 1810 1849 65 88925
Couperin, François 1668 1733 94 57257
Debussy, Claude 1862 1918 93 119804
Dvořák, Antonín 1841 1904 141 277813
Fauré, Gabriel 1845 1924 82 84703
Haydn, Joseph 1732 1809 203 306240
Janáček, Leoš 1854 1928 22 25501
Liszt, Franz 1811 1886 106 165747
Mahler, Gustav 1860 1911 28 108009
Mozart, Wolfgang Amadeus 1756 1791 49 193620
Saint-Saëns, Camille 1835 1921 83 120337
Schubert, Franz 1797 1828 129 273385
Schumann, Robert 1810 1856 85 163163
Scriabin, Alexander 1872 1915 78 45788
Stravinsky, Igor 1882 1971 25 36035
Tchaikovsky, Pyotr Ilyich 1840 1893 195 268714
Vivaldi, Antonio 1678 1741 40 34329

Table 1: List of composers included in the written corpus.

190 hours of music in total, from which we extracted more than 3 millions harmonic vectors. Table 1
presents the list of composers that were considered in this study, along with their dates of birth and
death, the number of MIDI files included, and the number of harmonic vectors extracted. All the details
about the exact pieces that were considered are available in the preprocessed data supplied with the
present work.

2.2.2 Live performed music

All the entries from the 2018 piano-e-competition3 were included. These files are recordings in the
MIDI format of live performances of highly skilled musicians on Yamaha Disklavier Pro pianos. These
instruments are able to capture all the minute details of the musical executions, notably the expressiveness
of the timing and dynamics, and record them in the MIDI format. Here again, music repertoire is drawn
from common practice period. In total, 252 files were included in the present study, amounting to more
than 30 hours of music, from which we extracted more than half a million harmonic vectors.

2.3 Data preprocessing

Fig. 1 presents the workflow for the data preprocessing. First, a music score (or a live performance)
is turned into a MIDI file representation, where each note has a well-determined numeric value for its
onset, its duration and its intensity. This part is already done as we work directly from the MIDI
files. From these materials, we then extract the sequence of harmonic vectors. In this step, we first
perform a musical segmentation, using a procedure similar to Dubnov et al. (2003) or White and Quinn
(2016). More precisely here, we segment the musical flow at each new onset, provided this onset is not
(quasi-)simultaneous with the previous one. During a performance, whether intentional (for expressive
purposes) or not, the notes constitutive of a chord are never struck at the exact same time, even if
the tones are perceived as simultaneous. Onsets within a time window of 50 ms were then considered

3http://www.piano-e-competition.com/ecompetition/midi_2018.asp
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Figure 1: Pipeline for the preprocessing of the musical data. Each musical piece, either from
a score or from a piano performance, (a), is turned into a pianoroll, (b), in the MIDI format, which is
finally segmented and transformed into a sequence of pitch class vector, (c).

synchronous and were fused, so that only one harmonic vector got associated with that group of onsets.
A segment is then defined as the musical content comprised between two different onsets. The harmonic
vector associated with this segment is taken as the binary chroma vector, that represents the pitch classes
that are sounding during this period of time (see Fig. 1c). Note that rests, defined as periods of silence
longer than 1 s, are also segmented, and associated with a chroma vector of zeros. Each segment is
also annotated with its duration, thus defined as the time interval between two onsets, and its velocity
(proportional to the loudness), taken as the maximum MIDI velocity of the notes being struck at the
beginning of the onset of that segment.

2.4 Evaluation of information content

2.4.1 Model

A key step of our study lies in the estimation of the information content of each harmonic segment. We
evaluate the information of a chroma vector as the prediction error of a recurrent neural network (RNN)
that has been trained on a corpus of the same style. For that, we use the long short-term memory
(LSTM) architecture (Hochreiter and Schmidhuber, 1997). These networks have distinctive properties
that make them appealing for the present work. First, LSTMs exhibit state-of-the-art performance on
many tasks involving time series or sequential data, notably in the case of language modeling (Melis et al.,
2018; Merity et al., 2017). Various studies have shown how these neural networks – unlike n-grams – are
able to capture humanlike traits in various linguistic settings, such as word order preferences (Futrell
and Levy, 2019) or number agreement dependencies (Linzen et al., 2016). In the task of predicting
the next time step given the previous ones in a musical sequence, RNNs and in particular LSTMs are
known to perform better than other modeling techniques such as n-grams or hidden Markov models
(Boulanger-lewandowski et al., 2012; Walder, 2016). Moreover, contrary to traditional RNNs (Elman,
1990), LSTMs are able to learn simple context-free and context-sensitive languages (Gers and Schmid-
huber, 2001). Finally, they can better capture long-term dependencies (Eck and Schmidhuber, 2002),
which is particularly relevant in the context of music (Lerdahl and Jackendoff, 1985). Knowing that the
mean duration of a segment is about 200ms, using n-grams with a workable value of n would amount to
consider only a very short temporal context, whereas harmonic understanding requires longer time span
(see e.g. Bigand et al., 1999; Koelsch et al., 2013).

We thus consider a LSTM with the following architecture: from the input (the current harmonic
vector) and the past states contained in the memory cells of the neural network, the output of the
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model tries to predict the next harmonic vector, represented as a 12-dimensional vector that evaluates
the probability of each individual pitch class4. Following a traditional cross-validation approach, each
dataset is repeatedly split into a training set, used during the learning phase of the model, and a test set,
left for the evaluation (cross validation is 8-fold here). The learning phase somehow mimics the musical
enculturation following experience within a particular style, defined by its own statistics. In order to
take advantage of the fact that harmonic knowledge is transposition invariant, we augment each training
set by transposing the original content in all twelve tones, which allows the generation of more training
data for the model. The information content of each harmonic vector is then evaluated in the test part.
We evaluate the information content for each composer separately in the case of the sequenced corpus,
and for the whole dataset in the case of the performed corpus.

The error function used during the training and test phase is the binary cross entropy. Assuming
conditional independence between each dimension, this error directly corresponds to the information
content as defined in Eq. 1. Indeed, first consider one pitch class xi ∈ {0, 1}. Given a certain musical
context c, the model evaluates the presence of this chroma as a probability pi. The associated surprisal
− log2 p(xi|c) is thus equal to − log2(pi) if xi = 1 or − log2(1−pi) if xi = 0, which can be more compactly
written as:

− log2 p(xi|c) = −xi log2(pi)− (1− xi) log2(1− pi) (2)

We can then write the full information content − log p(x|c) as:

− log2 p(x|c) = − log2

12∏
i=1

p(xi|c) = −
12∑

i=1
log2 p(xi|c) (3)

= −
12∑

i=1
xi log2(pi) + (1− xi) log2(1− pi) (4)

which is precisely the binary cross entropy loss function.

In other words, given a certain context, the information content of a new harmonic vector is equal to
the error made in predicting this chromagram. Before learning, surprisal is equal to 12 bits, and there
is no relationship between duration and information or between velocity and information.

2.4.2 Technical details

We use a LSTM network with one layer of 128 neurons, with default initial random initialization. Training
is performed through gradient descent using Adam optimizer with default parameters (Kingma and Ba,
2015), truncated backpropagation with 32 time steps, with a 0.2 dropout (Srivastava et al., 2014) and
a 0.2 recurrent dropout (Gal and Ghahramani, 2016). The cross validation is 8-fold. For each fold,
training is done over 15 epochs. We run this simulation 5 times, each time with a different random seed,
considering in the end for each chroma vector the mean information value, in order to accommodate

4Another way would be to predict each possible chromagram as a separate ‘word’, as done in language modeling. There
are several problems with this method. First, most of the chromagrams are actually rare. If we look at each composer
in the written corpus, on average, about 85% of the chromagrams have a frequency inferior to 1%�, and about 25% of
them happen only once or twice in each set. Many chroma vectors would then appear as ‘out of vocabulary’, meaning that
they would appear in the test set but not in the training set. This is problematic as it would impair the evaluation of the
information content of such rare events, which are not only very common but are also the ones that particularly interest us
here. Second, it is well known that chords lie in a lower dimensional space (Krumhansl and Kessler, 1982; Lerdahl, 2004),
and this has an impact on their predictability. Consider for instance chord substitution, or chord enrichment, based on
common tones. Imagine you expect a CMaj chord and observe a CMaj7, that you might have never seen before: you might
be surprised, but not as surprised as if it was a completely unrelated chord. Evaluating the probability of a given chroma
vector through the probability of its individual pitch classes makes it thus possible to better approximate the information
content of rare or even unseen chromagrams.
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for the various sources of randomness (randomness in the initialization of the parameters of the neural
network, in the dropout noise, in the stochastic gradient descent and the order of presentation of the
training input sequences, in the split of the data into folds for the cross validation).

3 Results

For each corpus, we compute the Spearman rank correlation between information content and duration,
and between information content and velocity (loudness). We also look at the relationship between
information content and relative duration, defined as the ratio between the duration of the corresponding
segment and the average duration of segments within a centered window of 10 s. Likewise, we look at the
relationship between information content and relative velocity, defined as the ratio between the velocity
of current segment and the average velocity of the 5 center-surrounding segments.

3.1 Written corpus

Fig. 2 presents the results for the written (sequenced) corpus, where all composers are pooled together
(see Supplementary Figs. S1 to S4 for details per individual composer). One could first notice that the
information content of each harmonic segment is much lower than before training (with a mean value
of 5.6 bits compared to the initial value of 12 bits), which indicates that the model has indeed learned
something.

We found a significant positive correlation between information and (i) duration (r = 0.22, p <

1e−100, z = 399), (ii) relative duration (r = 0.10, p < 1e−100, z = 178), (iii) velocity (r = 0.07,
p < 1e−100, z = 124), and (iv) relative velocity (r = 0.18, p < 1e−100, z = 323). Two-level analyses that
compute statistics for each composer and examine the distribution of the resultant statistic confirm the
latter pooled results. For each composer, we computed the (Spearman) correlation between information
content and each variable of interest (duration, relative duration, velocity, relative velocity). Exact
values of these correlations are provided in Supplementary Figs. S1 to S4 (see also Supplementary Fig.
S5 for a visual summary). For each variable, the 95% confidence intervals, computed with bootstrap,
are the following (we also provide the results from a one-sample t-test): (i) duration: [0.175, 0.245]
(t(22) = 11.3, p = 1.3e−10), (ii) relative duration: [0.086, 0.105] (t(22) = 19.3, p = 2.7e−15), (iii)
velocity: [0.059, 0.140] (t(22) = 4.6, p = 1.5e−4), and (iv) relative velocity: [0.147, 0.200] (t(22) = 12.6,
p = 1.5e−11).

3.2 Live performed corpus

Similarly, Fig. 3 summarizes the results for the performed corpus. There is a significant positive cor-
relation between information and (i) duration (r = 0.04, p < 1e−100, z = 28), (ii) relative duration
(r = 0.03, p < 1e−100, z = 21), (iii) velocity (r = 0.22, p < 1e−100, z = 163), and (iv) relative velocity
(r = 0.18, p < 1e−100, z = 131). Here, we can see that the relationship between information and
duration is clearly of a U-shape (which is actually also present in the written corpus if one looks at some
of the individual results), which explains the lower Spearman correlation coefficient compared to the
previous case. One can also notice that the correlation between information and (absolute) velocity is
stronger than in the sequenced corpus, which makes sense given that velocity is much more meaningful
in the case of the performed corpus (as discussed in Section 2.2).
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Figure 2: Relationships between the information content of a harmonic segment and its
duration (top) or its loudness (bottom), in the written corpus, pooling all composers to-
gether. As a function of information content: (a, left) Absolute duration, in seconds. (a, right) Relative
duration, defined as the ratio between the duration of current segment and the average duration of seg-
ments within a centered window of 10 s. (b, left) Absolute MIDI velocity, proportional to the loudness.
(b, right) Relative velocity, defined as the ratio between the velocity of current segment and the average
velocity of the 5 center-surrounding segments. Each bin represents 5% of the data. Error bars indicate
95% confidence intervals, estimated by bootstrap (a given bar might not be visible if below the size of
its corresponding marker).
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Figure 3: Relationships between the information content of a harmonic segment and its
duration (top) or its loudness (bottom), in the performed corpus. Same legend as in Fig. 2.

3.3 Explaining the U-shape relationship between duration and information

In the case of duration, one can immediately notice that the relationship is actually more like a U-shape
than a monotonic increase. Events with low information content tend to be associated with longer du-
ration. This is clearly marked in the case of the performed corpus, and explains why the correlation is
particularly weak in that case. This U-shape can be understood by the following phenomenon. Com-
mon practice period is usually characterized by stereotypical phrase ending, often following the same
harmonic sequence, typically (variations of) the ii-V-I, subdominant, dominant, tonic progression. This
should typically translate into a decrease in information at phrase and sectional boundaries. Final resolu-
tion was indeed experimentally shown to be characterized by a decline in information content (Manzara
et al., 1992; Witten et al., 1994). At the same time, the ending of a musical piece is more than often
performed with a final ritardando, ie a decrease in tempo (Sundberg and Verrillo, 1980; Desain and
Honing, 1996; Friberg and Sundberg, 1999) (more generally, this phenomenon is also observed at the
end of each phrase and each section, Windsor and Clarke, 1997). Here, simply looking at the ending of
each MIDI file (hence without the need of referring to the notion of phrases or structures) and using our
estimation of information content, we can look at the mean profile of surprisal: as expected, as music
gets closer to its end, information typically decreases (Fig. 4a), while duration of each segment increases
(Fig. 4b). If we restrict our analysis to the first half of the ending, where information and duration are
still rather flat as a function of position, the relationship between duration and information is indeed
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monotonic (Fig. 4c, left), whereas the U-shape is clearly marked if we consider the ending of the pieces,
where information decreases and duration increases (Fig. 4c, right). A more detailed analysis confirms
this visualization. For each of these two halves, and for each composer, we fitted a linear model aiming at
explaining duration as a function of information and position from the end. Fig. 4d presents the distri-
bution of the resulting regression coefficients. In both cases, information content is a significant predictor
of duration (one-sample t-test: t(22) = 17.2, p = 2.9e−14 for the first half, t(22) = 16.4, p = 8.4e−14 for
the second half), whereas the influence of position is much greater in the second half (one-sample t-test,
considering the difference, t(22) = 9.4, p = 3.6e−9), where the U-shape is clear. Finally, for each MIDI
file in our sequenced corpus, we computed a U-shapeness score by taking the quadratic coefficient from a
second order polynomial fit. We also estimated the decrease in information by taking the ratio between
the average of the last two values and the average value of the information from a more plateau region
preceding it: values below 1 indicates a decrease in information, and the lower the value the sharper the
decrease. Supplementary Fig. S6 shows that for values of this ending ratio below 1, there is a negative
relationship with the U-shapeness score: the stronger the decline in information, the more U-shaped the
relation between duration and information is.

All in all, the ending of a piece is therefore characterized by both a decrease in information and
an increase in the average duration between two onsets, hence the U-shapeness of the relationship be-
tween duration and information. The typical final ritard as well as the decreases in tempo at phrase
and sectional boundaries are a hallmark of expressive performances, which explains why the U-shape
relationship is more marked in the case of performed music.

3.4 Analysis of a possible confound: musical meter

Harmonic rhythm is often aligned with meter, meaning that harmonic changes usually happen between
bars, while chords tend to stay the same within a given bar. Meanwhile, it is also well known that
events on strong beats are typically longer in duration (Palmer and Krumhansl, 1990; Longuet-Higgins
and Lee, 1982). All in all, the observed association between duration and information could simply be
due to these already well known effects of the metrical structure: a chord at the beginning of a measure
tends to be both unexpected (informative) and long in duration (the same phenomenon actually apply
for relationships between information and loudness, intensity being also used as a cue for meter, see
e.g. Palmer and Krumhansl, 1990). First, note that even if the information/duration relationship were
essentially driven by this metrical confound, it would still be compatible with the efficient communication
framework. We have considered that informative items would be emphasized by means of phenomenal
accents (duration and loudness here), but this could indeed also be realized thanks to metrical accents. It
has been proposed that metrical prominence induces greater attention (Large and Jones, 1999; Large and
Palmer, 2002), which means that the processing of unexpected chords would be eased by their prominent
position in the metrical structure.

By taking metrical strength into account in our analysis, we show that the information/duration
relationship actually holds beyond this possible metrical confound. We restrict ourselves to the written
corpus, for which we have access to valid bar positions, and consider all the pieces with a 4/4 time
signature. We model metrical hierarchy (Lerdahl and Jackendoff, 1985) by considering four levels of
metrical prominence as a function of the position within a measure: events on the first beat in a bar
receive the highest prominence, followed by those lying on beat 3, then those on beat 2 and 4, while events
on any other temporal position (ie not falling on a beat) receive the lowest prominence (see Supplementary
Fig. S7a). First, we find that the well-known above-mentioned associations hold, motivating our initial
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Figure 4: Analysis of the ending of each piece, or why low information content can be
associated with greater duration. Looking at the ending (the last 50 segments) of each MIDI
file of the sequenced corpus: (a) Mean information content (in bits) of a segment as a function of
its position from the end. (b) Same with mean duration (in seconds). (c) Duration as a function
of information, for the first half of the ending of each piece (left) and the second half (right). (d)
Distribution of the standardized regression coefficients of a linear model ‘duration ∼ information +
position’, computed for each composer in the sequenced corpus, for the first half of the ending of each
piece (left) and the second half (right). The gray dots correspond to individual composers, while the
blue dot represents the mean. Error bars indicate the 95% confidence intervals, estimated by bootstrap.
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concern: the greater the metrical prominence, the longer the duration (Supplementary Fig. S7b), and
the higher the information (Supplementary Fig. S7c). However, combining information and metrical
prominence into a regression model that aims at explaining duration, we find that both quantities
actually play a role (see statistical analysis in Supplementary Fig. S7d).

3.5 Diachronic changes

On a more minor note, the present study allows one to look at diachronic changes of the information
content of music (here through the lens of harmonic flow). Computing different information-related
quantities for each composer, and comparing them with the birth dates, we find that high information
(defined as the 95th percentile), information rate (information per unit of time), and information breadth
(defined as the difference between the 95th and the 5th percentile) increase over time (see Supplementary
Fig. S8). As for the U-shapeness of the relationship between duration and information, we might expect
to find such shape in the baroque, classical and romantic styles, but not so much in post-common practice
music, for the tonal clichés got less and less prevalent. Looking at the detailed figures, and, for each
composer, estimating a U-shapeness score as the quadratic coefficient of a second order polynomial fit, we
can see that this is indeed the case to a certain extent, although we still find a clear U-shape relationship
for some nineteenth-century composers (see Supplementary Figs. S1, S2 and S8).

4 Discussion and Conclusion

We found that the more surprising a harmonic event, the longer and the louder it will tend to be written
and performed. The results of the present study suggest that efficient communication principles are at
work in music, complementing the evidence already provided by the ample literature on language and
speech.

Interestingly, in the case of duration, the relationship is more of a U-shape. This relates with the two
kinds of positions that have been taken with respect to musical meaning. Following Meyer (1956), one
view, the “absolutist”, states that “musical meaning lies exclusively within the context of the work itself”,
whereas the other one, the “referentialist”, asserts that “music also communicates meanings which in
some way refer to the extramusical world of concepts, actions, emotional states, and character”. Meyer
also talks respectively about “embodied” and “designative” meanings. This author mainly focuses on the
former aspect, while the latter view lies at the heart of the work of Schlenker (2016). As we have shown,
musical pieces (and musical phrases) typically end with a decrease in both information and tempo. This
slow down has been repeatedly interpreted as resulting from the association of music with a (possibly
virtual) source that loses energy, thus decelerating (Sundberg and Verrillo, 1980; Desain and Honing,
1996; Schlenker, 2016). This phenomenon operates in addition to the positive relationship between
information and duration that directly follows the efficient communication principle, which is only con-
cerned by close internal connections that arise from the specific organization of the musical material itself.

A working hypothesis of our work assumes that music acts as some form of communication, at least
in part. This point has been extensively discussed elsewhere (see e.g. Juslin and Laukka, 2003; Miell
et al., 2005; Cross, 2014) and is not the topic of this study. Communication and information are loaded
concepts, and should only be considered here from a Shannon information theoretic point of view. We do
not say anything about the content of the messages that are communicated (their meaning), nor about
why there is communication. For the sake of clarity, let us summarize this framework. We consider two
entities, a source and a destination (here e.g. a composer and a listener, or a musician and an audience).
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The source sends a message which is encoded into a certain signal. The destination has to decode it
to reconstruct the original message with low probability of error, despite channel noise, using mutual
knowledge shared by both parties. This common knowledge is crucial for the current discussion, and is in
part constituted by the contextual probabilities that define a specific style. The present results show that
communication is efficient in the sense that it adapts the resources involved in the process as a function
of the information content of a segment, thus minimizing the effort in achieving successful transmission.
Note that this ‘minimization of effort’ is somehow vague, and can be distributed along the whole chain
of processing: for instance, it might reduce the physical effort from the sender (the sound-maker), or
facilitate comprehension from the listener, notably by making perception more robust to noise, or by
easing the memory process. Teasing out where and why exactly this efficiency occurs is a question that
cannot be answered easily, and probably not with the current data.

Keeping a rather constant rate of complexity in information flow could have another additional bene-
fit. It is well known that music lies at the edge between order and chaos, in the sense that it is neither too
monotonous nor too disordered, and this property was recently shown to be a musical universal shared
across different cultures (Mehr et al., 2019). By allocating more resources to more complex elements
while reducing effort on the obvious, the efficiency principle could ensure that any event lies in a sweet
spot of complexity, neither too simple nor too complex, following the Goldilocks Effect formulation that
was found by Kidd et al. (2012): infants prefer to look at visual sequences that have a complexity that is
neither too high nor too low, yielding a U-shape relationship between looking time and complexity. Here,
the efficiency principle might help keep the musical content not only understandable, but also interesting.

The present results do not say anything a priori about aesthetics, but simply show how efficient com-
munication shapes both musical composition and performance. Still, the notion of information depends
on a particular model, which is built on previous musical exposure. Proper understanding of a style,
appreciation of the subtleties of a particular musical interpretation requires learning, ie enculturation,
which might then influence liking. The present framework might thus help to investigate the role of
efficient communication with respect to aesthetic judgments and musical manifestation (either composed
or performed), following Meyer (1956), who claims that playing with the expectancies created by the
musical work are at the heart of the musical emotions.

Many directions would be worth exploring in future work. First, we might investigate other means
to give prominence to a musical segment. We have considered duration and intensity (although we have
also briefly considered the role of metric prominence and attentional resources in section 3.4), which
are important dimensions of musical expressiveness, but many other accents could also be considered:
agogic accents, melodic accents by means of skips or turns, changes in articulation, to name but a few
(see Parncutt, 2003, for a catalog). A composer or a player has access to the whole palette – how these
elements are combined to provide the right amount of prominence depending on the information content
remains an open empirical question. Second, we have only considered predictability from the point of
view of using the past to predict the future. In other words, following Western music notation, flowing
in a left to right manner, we used the left context of a given segment. But the case that reverses time
would also be an interesting perspective: the context on the right side of a given element might explain
a posteriori the presence of this element, as illustrated by the following quote, attributed to famous jazz
pianist and composer Bill Evans: “There are no wrong notes, only wrong resolutions.”5. Finally, other
aspects of music, notably melodic and rhythmic, and other musical genres beyond Western music will be

5See e.g. https://commonreader.wustl.edu/c/the-art-of-the-mistake/
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worth investigating in the future.
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