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We study the smooth projective symmetric variety of Picard number one that compactifies the exceptional complex Lie group G 2 , by describing it in terms of vector bundles on the spinor variety of Spin 14 . We call it the double Cayley Grassmannian because quite remarkably, it exhibits very similar properties to those of the Cayley Grassmannian (the other symmetric variety of type G 2 ), but doubled in the certain sense. We deduce among other things that all smooth projective symmetric varieties of Picard number one are infinitesimally rigid.

Introduction

Symmetric spaces have been of constant interest since their classification by Elie Cartan in 1926. In complex algebraic geometry, projective symmetric varieties of Picard number one have been classified by Alessandro Ruzzi in 2011 [START_REF] Ruzzi | Geometrical description of smooth projective symmetric varieties with Picard number one[END_REF]. Some of them are in fact homogeneous under their full automorphism group. Some others are just hyperplane sections of homogeneous spaces.

The two remaining ones are more mysterious, among other things because of their connections with the exceptional group G 2 . These connections prompted us to call the first of them the Cayley Grassmannian, and denote it CG; its geometry and its cohomology (including its small quantum cohomology) were studied in [START_REF] Manivel | The Cayley Grassmannian[END_REF][START_REF] Benedetti | The small quantum cohomology of the Cayley Grassmannian[END_REF]. The second one is the subject of the present paper; we will call it the double Cayley Grassmannian, and denote it DG.

This terminology is supported by the observation that many important properties of CG are also observed for DG, but doubled in a certain way. Let us give an overview of a few of them, first for the Cayley Grassmannian:

(1) CG compactifies G 2 /SL 2 × SL 2 , acted on by G 2 , (2) CG parametrizes four dimensional subalgebras of the complex octonion algebra O, (3) CG can be described as the zero locus of a general section of a rank 4 homogeneous vector bundle on the Grassmannian G(4, V 7 ), where V 7 ≃ ImO is the natural representation of G 2 , (4) its linear span in the Plücker embedding is P(C ⊕ S 2 V 7 ), (5) its G 2 -equivariant Hilbert series is (1 -t) -1 (1 -tV 2ω1 ) -1 (1 -t 2 V 2ω2 ) -1 , (6) its topological Euler characteristic is χ top (CG) = 6 2 , (7) CG admits three orbits under the action of G 2 , the complement of the open one being a hyperplane section, and the closed one being the quadric Q 5 , (8) if we blowup the closed orbit, we obtain the wonderful compactification of G 2 /SL 2 × SL 2 , with the two exceptional divisors

E ≃ P(Sym 2 C)→ Q 5 and F ≃ P(Sym 2 N )→X ad (G 2 ),
where Q 5 ≃ G 2 /P 1 and X ad (G 2 ) ≃ G 2 /P 2 are the two generalized Grassmannians of G 2 , with their G 2 -homogeneous rank two vector bundles: the Cayley bundle C over Q 5 and the null bundle N over X ad (G 2 ). We find it quite remarkable that the double Cayley Grassmannian DG exhibits the very same properties, in the following "doubled" form:

(1) DG compactifies G 2 , acted on by G 2 × G 2 , (2) DG parametrizes eight dimensional subalgebras of the complex bioctonion algebra O ⊗ C, (3) DG can be described as the zero locus of a general section of a rank 7 homogeneous vector bundle on the spinor variety S 14 = Spin 14 /P 7 , (4) its linear span in the spinorial embedding is P(C ⊕ V 7 ⊗ V ′ 7 ), where V 7 and V ′ 7 are the natural representations of the two copies of G 2 , (5) its equivariant Hilbert series is (1 -t) -1 (1 -tV ω1+ω ′ 1 ) -1 (1 -t 2 V ω2+ω ′ 2 ) -1 , (6) its topological Euler characteristic is χ top (DG) = 6 2 , (7) DG admits three orbits under the action of G 2 × G 2 , the complement of the open one being a hyperplane section, and the closed one being Q 5 × Q 5 , (8) if we blowup the closed orbit, we obtain the wonderful compactification of G 2 , with the two exceptional divisors

E ≃ P(C ⊠ C ′ )→ Q 5 × Q 5 and F ≃ P(N ⊠ N ′ )→X ad (G 2 ) × X ad (G 2 ).
The main body of the paper will be devoted to the proof of these properties. In a sense, the whole story is hidden in the observation, already found in [START_REF] Sato | A classification of irreducible prehomogeneous vector spaces and their relative invariants[END_REF]Proposition 40], that Spin 14 acts almost transitively on the projectivization of its half-spin representations, with generic stabilizer G 2 × G 2 . An important consequence is the multiplicative double-point property used in [START_REF] Abuaf | Gradings of Lie algebras, magical spin geometries and matrix factorizations[END_REF] in order to obtain a remarkable matrix factorization of the octic invariant of these representations. We will use this property in an essential way in order to understand the geometry of DG.

We have not been able to describe its cohomology, partly because the number of classes is too big. In principle one should be able to deduce it from the cohomology of its blowup along the closed orbit, which should be accessible using [START_REF] Brion | The behaviour at infinity of the Bruhat decomposition[END_REF][START_REF] Brion | Equivariant Chow ring and Chern classes of wonderful symmetric varieties of minimal rank[END_REF][START_REF] Strickland | Equivariant cohomology of the wonderful group compactification[END_REF]. What we have been able to check is that DG is infinitesimally rigid, a question motivated by a longstanding interest for the rigidity properties of homogeneous and quasi-homogeneous spaces (see for example [START_REF] Hwang | Prolongations of infinitesimal linear automorphisms of projective varieties and rigidity of rational homogeneous spaces of Picard number 1 under Kähler deformation[END_REF][START_REF] Bai | On Fano complete intersections in rational homogeneous varieties[END_REF][START_REF] Kim | On the deformation rigidity of smooth projective symmetric varieties with Picard number one[END_REF]). This concludes the proof of the following statement:

Proposition. Every smooth projective symmetric variety of Picard number one is infinitesimally rigid.

Along the way, when discussing the geometry of DG, we will meet two varieties, admitting an action of G 2 × G 2 , which are Fano manifolds of Picard number one, and as such would deserve special consideration (see Propositions 16 and 18). This illustrates, once again, the amazing wealth of beautiful geometric objects related to the exceptional Lie groups.

Geometric description

2.1. Fano symmetric varieties of Picard number one. Ruzzi proved in [START_REF] Ruzzi | Geometrical description of smooth projective symmetric varieties with Picard number one[END_REF] that there exist exactly six smooth projective symmetric varieties of Picard number one which are not homogeneous. One of them is a completion of G 2 , considered as the symmetric space (G 2 × G 2 )/G 2 . From [START_REF] Ruzzi | Geometrical description of smooth projective symmetric varieties with Picard number one[END_REF] we can extract the following information.

(1) The symmetric space G 2 admits a unique smooth equivariant completion with Picard number one, that we denote DG. 

O 4 ≃ Q 5 × Q 5 . The closure D of O 1 is singular along O 4 . (4)
The blow up of DG along its closed orbit is the wonderful compactification of G 2 . (5) Consider the spinor variety S 14 ⊂ P∆, the closed Spin 14 -orbit inside a projectivized half-spin representation; then DG can be realized as a linear section of S 14 by a linear subspace of codimension 14.

The last statement provides a geometric realization of DG which is not so useful, since the linear subspace is highly non transverse (note that S 14 has dimension 21). Our first observation is that a more satisfactory description can be given in terms of vector bundles.

Octonionic factorization.

We will need some extra information on half-spin representations. Let V 14 be a fourteen dimensional complex vector space endowed with a non degenerate quadratic form. Let ∆ be one of the half-spin representations of Spin 14 . Its dimension is 64, and the action of the 91-dimensional group Spin 14 on P∆ is prehomogeneous.

Recall that if we fix a maximal isotropic subspace E of V 14 , we can identify the half-spin representation ∆ with the even part ∧ + E of the exterior algebra ∧ • E. For e 1 , . . . , e 7 a besis of E, let us denote e ij = e i ∧ e j , and so on. A general element of ∆ is then z = 1 + e 1237 + e 4567 + e 123456

The stabilizer of z in Spin 14 is locally isomorphic with G 2 ×G 2 (see [START_REF] Sato | A classification of irreducible prehomogeneous vector spaces and their relative invariants[END_REF]Proposition 40] or [1, Proposition 2.1.1]). The following statement was proved in [START_REF] Abuaf | Gradings of Lie algebras, magical spin geometries and matrix factorizations[END_REF].

Proposition 1. A general element z of ∆ determines an orthogonal decomposition

V 14 = V 7 ⊕ V ′ 7 .
This yields a factorization of ∆ as ∆ 8 ⊗ ∆ ′ 8 , for ∆ 8 and ∆ ′ 8 the spin representations of Spin(V 7 ) and Spin(V ′ 7 ), such that z = δ ⊗ δ ′ for some general δ ∈ ∆ 8 and δ ′ ∈ ∆ ′ 8 . Explicitely, for z = 1 + e 1237 + e 4567 + e 123456 we get an orthogonal decomposition of V 14 as the direct sum of the two spaces

V 7 = e 1 , e 2 , e 3 , f 1 , f 2 , f 3 , e 7 -f 7 , V ′ 7 = e 4 , e 5 
, e 6 , f 4 , f 5 , f 6 , e 7 + f 7 , such that each copy of G 2 acts naturally on one of them, and trivially on the other one. Moreover δ = 1 + e 123 and δ ′ = 1 + e 456 . The stabilizer of δ (resp. δ ′ ) in

Spin(V 7 ) (resp. Spin(V ′ 7 )) is the corresponding G 2 .
Let us analyze how ∆ decomposes as a G 2 × G 2 -module. As a Spin 7 × Spin 7module, we have just mentionned that ∆ is a tensor product ∆ 8 ⊗ ∆ ′ 8 of eightdimensional spin representations. Moreover we can identify ∆ 8 with ∧ • A and ∆ ′ 8 with ∧ • A ′ , where A = e 1 , e 2 , e 3 and A ′ = e 4 , e 5 , e 6 . Now, the restriction of ∆ 7 to G 2 decomposes as C ⊕ V 7 , so that finally [START_REF] Ruzzi | Geometrical description of smooth projective symmetric varieties with Picard number one[END_REF] is that DG is the (highly non transverse) intersection of S 14 with PD z , where

∆ ≃ V 7 ⊗ V ′ 7 ⊕ V 7 ⊕ V ′ 7 ⊕ C. The result of
D z = V 7 ⊗ V ′ 7 ⊕ C ⊂ ∆.
The orthogonal to D z can be described as follows. The Clifford multiplication yields a morphism V 14 ⊗ ∆ → ∆ ∨ . The image of V 14 ⊗ z is a subspace L z of ∆ ∨ , of dimension 14, which must be stable under G 2 × G 2 . In particular it must coincide with the orthogonal of D z . We can explicitely determine this subspace by computing a basis: The tautological bundle on G(7, V 14 ) restricts to a rank seven vector bundle U on S 14 , such that det(U) = L -2 . Moreover, U ⊗L is an irreducible homogeneous vector bundle, and by the Borel-Weil theorem,

e 1 .z = e 1 +
H 0 (S 14 , L) = ∆ ∨ and H 0 (S 14 , U ⊗ L) = ∆.
Since U ⊗ L is irreducible and admits non zero sections, it is automatically globally generated. So a general section vanishes along a codimension seven subvariety of S 14 . Note that this zero locus is (locally) constant up to projective isomorphism, since Spin 14 acts on P∆ with an open orbit (whose complement is a degree 7 hypersurface, see [START_REF] Abuaf | Gradings of Lie algebras, magical spin geometries and matrix factorizations[END_REF] for more details).

Proposition 2. The zero locus of a general section of the vector bundle U ⊗ L on S 14 is projectively isomorphic with DG.

Proof. Let z be a general element of ∆, and s z the associated section of U ⊗ L.

Let y be a pure spinor; in other words, [y] is a point of S 14 . Then

s z ([y]) is a linear homomorphism from L ∨ [y] = Cy to U [y]
. The latter is the subspace of V 14 characterized as

U [y] = {v ∈ V 14 , v.y = 0},
where v.y ∈ ∆ ∨ denotes the Clifford product of the vector v by the spinor y (recall that the fact that U [y] is maximal isotropic is equivalent to y being a pure spinor [START_REF] Chevalley | The algebraic theory of spinors and Clifford algebras[END_REF]). We claim that s z ([y]) is defined by the following formula:

s z ([y])(u) = z, u.y , u ∈ V 14 .
Note that the right hand side is a linear form in u ∈ V 14 that certainly vanishes on

U [y] . Since it is maximal isotropic, U [y] ≃ U ⊥ [y]
. So the right hand side really defines an element of U [y] , depending linearly on y ∈ [y], as required.

We have therefore defined a non trivial equivariant morphism from ∆ to H 0 (S 14 , U ⊗ L). By the Schur Lemma, it must be an isomorphism, and the same one up to scalar as the one provided by the Borel-Weil theorem.

So the zero-locus of s z is the set of points [y] ∈ S 14 such that z, u.y = u.z, y = 0 ∀u ∈ V 14 .

In other words, set theoretically it is the intersection of S 14 with the orthogonal to the fourteen dimension subspace V 14 .z ⊂ ∆ ∨ . This is exactly Ruzzi's description, and we are done.

Corollary 3. DG is a prime Fano manifold of dimension 14 and index 7.

Proof. S 14 has index 12, while det(U ⊗ L) = det(U) ⊗ L 7 = L 5 . Of course the restriction of L cannot be divisible since by Kobayashi-Ochiai it cannot be bigger that 15, and DG would be a quadric if it was equal to 14.

Recall that the Chow ring of S 14 has an integral basis of Schubert classes τ µ indexed by strict partitions µ

= (µ 1 > • • • > µ m > 0), with µ 1 ≤ 6.
In particular τ 1 is the hyperplane class, and the Pieri formula states that

τ µ τ 1 = ν τ ν ,
where the sum is over all strict partitions ν obtained by adding one to some part of µ (or adding a part equal to one). There is a more general version for the product of a Schubert class by a special class τ k , with multiplicities given by certain powers of two [START_REF] Boe | Pieri formula for SO 2n+1 /Un and Spn/Un[END_REF]. A consequence is that the Chow ring of S 14 is generated, over the rationals, by the three special classes τ 1 , τ 3 , τ 5 .

Corollary 4. The fundamental class of DG in the Chow ring of S 14 is

[DG] = c 7 (U ⊗ L) = τ 61 + τ 52 + τ 43 + τ 421 = 2τ 1 τ 2 3 + 2τ 2 1 τ 5 -6τ 4 1 τ 3 + 3τ 7 1 . Proof. By the Thom-Porteous formula [DG] = c 7 (U ⊗ L). Since c 7 (U ⊗ L) = 7 i=0 c i (U)c 1 (L) 7-i ,
a repeated application of the Pieri formula yields the result.

Another direct application is to rigidity questions, which attracted strong interests for homogeneous spaces and their subvarieties [START_REF] Hwang | Prolongations of infinitesimal linear automorphisms of projective varieties and rigidity of rational homogeneous spaces of Picard number 1 under Kähler deformation[END_REF][START_REF] Bai | On Fano complete intersections in rational homogeneous varieties[END_REF].

Proposition 5. DG is infinitesimally rigid.

Proof. Since DG is Fano, its deformations are non obstructed and we just need to prove that H 1 (T DG ) = 0. Then the usual computations with the Koszul complex and the Borel-Weil-Bott theorem yield the result. Indeed, the Koszul complex takes the form

0-→L -5 -→U ⊗ L -4 -→ • • • -→U ∨ ⊗ L -1 -→O S14 -→O DG -→0.
First step. We first prove that H 1 (T S 14|DG ) = 0 by tensoring the Koszul complex with T S 14 = ∧ 2 U ∨ , and then by checking that for any integer k, with 0 ≤ k ≤ 7, the cohomology group

H k+1 (S 14 , ∧ 2 U ∨ ⊗ ∧ k U ∨ ⊗ L -k ) = 0.
For k = 0 we just get the irreducible bundle ∧ 2 U ∨ , which is globally generated and has no higher cohomology by the Bott-Borel-Weil theorem. For k > 0, the tensor product ∧ 2 U ∨ ⊗ ∧ k U ∨ is the direct sum of at most three irreducible homogeneous bundles, of respective weights

λ k = ǫ 1 + • • • + ǫ k+2 (for k ≤ 5), µ k = 2ǫ 1 + ǫ 2 + • • • + ǫ k+1 (for 1 ≤ k ≤ 6) and ν k = 2ǫ 1 + 2ǫ 2 + ǫ 3 + • • • + ǫ k (for k ≥ 2).
Here we made the usual choice of positive roots ǫ i ± ǫ j for 1 ≤ i < j ≤ 7, where (ǫ 1 , . . . , ǫ 7 ) is an orthonormal basis. Following the Bott-Borel-Weil theorem, these bundles twisted by L -k are acyclic if we can find roots ϕ k , χ k , ψ k such that

λ k -kω 7 + ρ, ϕ k = µ k -kω 7 + ρ, χ k = ν k -kω 7 + ρ, ψ k = 0,
where ρ denotes the sum of the fundamental weights, and

ω 7 = 1 2 (ǫ 1 + • • • + ǫ 7
). We will look for a root of the form ϕ k = ǫ i + ǫ j , with 1 ≤ i < j ≤ 7, so that we always have ω 6 , ϕ k = 1. Then the vanishing condition becomes i + j + k = 14 + δ, with δ = 2 for j ≤ k + 2, δ = 1 for i ≤ k + 2 < j, and δ = 0 for k + 2 < i. Solutions do exist for any k = 1, . . . , 5: take respectively (i, j) = (6, 7), (5, 7), (5, 7), (4, 7), [START_REF] Benedetti | The small quantum cohomology of the Cayley Grassmannian[END_REF][START_REF] Boe | Pieri formula for SO 2n+1 /Un and Spn/Un[END_REF]. Similarly we can choose the root χ k , for k = 1, . . . , 6, to be again of the form ǫ i + ǫ j with (i, j) = (6, 7), (5, 7), [START_REF] Benedetti | The small quantum cohomology of the Cayley Grassmannian[END_REF][START_REF] Boe | Pieri formula for SO 2n+1 /Un and Spn/Un[END_REF], (4, 7), [START_REF] Baez | G 2 and the rolling ball[END_REF][START_REF] Brion | The behaviour at infinity of the Bruhat decomposition[END_REF], [START_REF] Baez | G 2 and the rolling ball[END_REF][START_REF] Brion | The behaviour at infinity of the Bruhat decomposition[END_REF]. Finally for the root ψ k we can choose ǫ i + ǫ j with (i, j) = (5, 7), [START_REF] Benedetti | The small quantum cohomology of the Cayley Grassmannian[END_REF][START_REF] Boe | Pieri formula for SO 2n+1 /Un and Spn/Un[END_REF], (4, 7), [START_REF] Baez | G 2 and the rolling ball[END_REF][START_REF] Brion | The behaviour at infinity of the Bruhat decomposition[END_REF], [START_REF] Bai | On Fano complete intersections in rational homogeneous varieties[END_REF][START_REF] Boe | Pieri formula for SO 2n+1 /Un and Spn/Un[END_REF], [START_REF] Baez | G 2 and the rolling ball[END_REF][START_REF] Boe | Pieri formula for SO 2n+1 /Un and Spn/Un[END_REF] for k = 2, . . . , 7. Second step. Then we need to compute H 0 (U ⊗ L |DG ). Using the same techniques as in the previous step, we check that the restriction morphism

H 0 (U ⊗ L)-→H 0 (U ⊗ L |DG )
is surjective, with kernel generated by the section that defines DG. In other words, H 0 (U ⊗ L |DG ) ≃ ∆/Cz. Third step. We conclude the proof by checking that the morphism

H 0 (T S 14|DG )-→H 0 (U ⊗ L |DG )
is surjective. For this we simply observe that it factorizes the morphism from H 0 (T S 14 ) ≃ spin 14 to ∆/Cz given by X → Xz mod Cz. Finally, the surjectivity of the latter morphism is equivalent to the fact the orbit of [z] is open in P(∆).

As we already mentionned in the introduction, this implies that all the smooth projective symmetric varieties of Picard number one are infinitesimally rigid (see [START_REF] Kim | On the deformation rigidity of smooth projective symmetric varieties with Picard number one[END_REF]).

Question. Is DG globally rigid? There are very nice examples of linear sections (of codimension two and three) of the ten dimensional spinor variety S 10 , which are defined by the generic point of a representation with an open orbit, and turn our for this reason to be locally rigid. However, they are not globally rigid because the generic points of some smaller orbits still define smooth sections, but of a different type [START_REF] Kuznetsov | On linear sections of the spinor tenfold I[END_REF][START_REF] Bai | On Fano complete intersections in rational homogeneous varieties[END_REF]. In our case, what does happen if we replace the general point z of ∆ by a general point of its invariant octic divisor? Since this divisor is the dual to the spinor variety in the dual representation, the zero-locus of a section defined by such a point should contain a special P 6 ; is it its singular locus? An explicit representative is z 1 = 1 + e 1237 + e 1587 + e 2467 + e 123456 . In the case of the Cayley Grassmannian CG, general sections from the exceptional divisor define a P 3 which is singular inside the zero-locus, so there is no immediate obstruction to global rigidity. Up to our knowledge the question of the global rigidity of CG remains open.

Octonionic interpretations

Consider the real algebra C ⊗ R O R , with the obvious product. This is called the algebra of complex octonions, or bioctonions. Of course it is no longer a division algebra, but it is still what is called a structurable algebra [START_REF] Allison | A class of nonassociative algebras with involution containing the class of Jordan algebras[END_REF]. We will consider this algebra with complex coefficients: in other words, we complexify once more. Proposition 6. The double Cayley Grassmannian DG parametrizes the eightdimensional isotropic subalgebras of the complexified bioctonions.

The main point is that complexifying the complex numbers, we just get the algebra C ⊕ C. Indeed, if we denote by i and I the roots of -1 in our two copies of

C, then E = (1 + iI)/2 and F = (1 -iI)/2 are such that E + F = 1, EF = F E = 0, and E 2 = E and F 2 = F . Hence an isomorphism C ⊗ R C ⊗ R O R ≃ O ⊕ O.
An eight dimensional subspace of O ⊕ O, which is transverse to this decomposition, can be written as the graph Γ g of some g ∈ GL(O). Moreover, it contains the unit element if and only if g(1) = 1. And it is a subalgebra if and only if g belongs to G 2 . It is then generated by the unit element, and its intersection L g with V 14 = ImO ⊕ ImO. Note that Γ g (respectively L g ) is isotropic with respect to the difference of the octonionic norms on the two copies of O (respectively ImO). This yields an embedding of G 2 inside Spin 14 , whose closure is exactly DG.

So DG parametrizes a certain family of subspaces of the bioctonions. These spaces must be isotropic subalgebras, since this condition is closed. So let us consider such a subalgebra A, and suppose it defines a point of DG, not on the open orbit. Let K, K ′ denote the kernels of the projections to the two copies of O. They must be positive dimensional subspaces of ImO, totally isotropic, and such that KK ⊂ K and K ′ K ′ ⊂ K ′ . In particular C1 + K and C1 + K ′ are subalgebras of O. Let k = dim K and k ′ = dim K ′ . These are invariants of the Spin 14 -action, and since this group has only three orbits on DG, there are at most two possibilities for the pair (k, k ′ ), apart from the generic case (k, k ′ ) = (0, 0). 

Q 5 = G 2 /P 1 . Explicitly, if ℓ is an isotropic line in ImO, then K ℓ = ℓO ∩ ImO is such a subalgebra,
and they are all of this type.

When K and K ′ are given, then K ⊕ K ′ is isotropic of dimension six, so it is contained in exactly two maximal isotropic subspaces of V 14 , one in each family. In particular there is exactly one in S 14 . This defines an embedding of

Q 5 × Q 5 inside S 14 . Since this is the unique G 2 × G 2 -equivariant embedding of Q 5 × Q 5 in P∆, it must factor through DG.
Second case: (k, k ′ ) = (2, 2). We will show how to construct examples of this type. Since we know there is only one orbit which is neither closed nor open, this will necessarily provide us with representatives of this intermediate orbit O 1 . We start with two null-planes N and N ′ . Recall that C1 ⊕ N ⊥ is a six dimensional subalgebra of O, a copy of the sextonion subalgebra [START_REF] Landsberg | The sextonions and E 7 1 2[END_REF]. Moreover it contains H, a copy of the quaternion algebra transverse to N . (Over the complex numbers, the quaternion algebra is just an algebra of rank two matrices, and N is isomorphic with its two-dimensional simple module.) Let us also choose

H ′ in C1 ⊕ N ′⊥ , transverse to N ′ . Consider A = (N, 0) ⊕ (0, N ′ ) ⊕ ∆ h ,
where ∆ h is the graph of some morphism δ from H to H ′ . Then A is an isotropic subalgebra of the bioctonions if and only if δ is an algebra isomorphism.

We claim that A belongs to DG. Because of the G 2 × G 2 -equivariance, it is enough to exhibit just one such A that does belong to DG. To do this we shall start from an explicit null plane in ImO. Let u 1 , . . . , u 7 be an orthonormal basis of ImO, whose multiplication rule is encoded in a Fano plane, as in [START_REF] Manivel | The Cayley Grassmannian[END_REF]. Then for example,

N = u 1 + iu 2 , u 4 -iu 5 is a null-plane. It is convenient to reindex this basis by let- ting u 1 = v -1 , u 2 = v 2 , u 3 = v -3 , u 4 = v 1 , u 5 = v -2 , u 6 = v 3 , u 7 = v 0 .
Then we may suppose that the transformation rule between the basis

v -3 , v -2 , v -1 , v 0 , v 1 , v 2 , v 3 and e 1 , e 2 , e 3 , f 1 , f 2 , f 3 , e 7 -f 7 is given by v k = 1 √ 2 (e k + f k ), v -k = i √ 2 (e k -f k ), v 0 = i √ 2 (e 7 -f 7 ).
After this change of basis, our null-plane of

V 7 becomes N = e 1 + e 2 , f 1 -f 2 . Similarly, N ′ = e 4 + e 5 , f 4 -f 5 is a null-plane in V ′ 7 .
Remark. Note the connection with the null triples of [START_REF] Baez | G 2 and the rolling ball[END_REF]. Lemma 7. The three dimensional projective space P(N ⊗ N ′ ) is contained in DG. Moreover a spinor x ∈ N ⊗ N ′ is of type (3, 3) if its tensor rank is one, and type (2, 2) if its tensor rank is two.

Proof. We have the following correspondance between vectors in N ⊗ N ′ and in ∆: This allows to check that N ⊗ N ′ is orthogonal to L z . So its projectivization will be contained in DG as soon as it only consists in pure spinors. Consider y = t 1 y 1 + t 2 y 2 + t 3 y 3 + t 4 y 4 . A straightforward computation shows that y is annihilated by

P y = e 1 + e 2 , f 1 -f 2 , e 4 + e 5 , f 4 -f 5 , p 3 , p 6 , p 7 ,
where p 3 = t 4 e 6 + t 3 e 7 -t 1 f 3 , p 6 = t 4 e 3 -t 2 e 7 + t 1 f 6 , p 7 = t 3 e 3 + t 2 e 6 + t 1 f 7 . In particular y is the pure spinor associated (up to scalar) to the maximal isotropic space P y . Note moreover that the intersection of P y with f 1 , . . . , f 7 has dimension equal to two plus the corank of a size three skew-symmetric matrix; in particular this dimension is always odd, which means that y is a positive pure spinor. In other words, it is a point of DG.

Recall that we denoted by D the closure of the codimension one orbit in DG. Necessarily, D must be the intersection of DG with the hyperplane P(V 7 ⊗ V ′ 7 ). Moreover, by the previous lemma D contains the union of the projective spaces P(N ⊗ N ′ ), for N and N ′ null-planes in V 7 and V ′ 7 . Since this union is obviously G 2 × G 2 -invariant, it has to coincide with D. (This describes D as the image of a projectivized Kempf collapsing). Moreover, for the very same reason the closed orbit O 4 must be the union of the rank one elements PN × PN ′ ⊂ P(N ⊗ N ′ ). Since the intersection of two different tensor products N 1 ⊗ N ′ 1 and N 2 ⊗ N ′ 2 can only contain elements of rank one (or zero), we deduce the following statement.

Proposition 8. Suppose that x belongs to O 1 . Then there exists a unique nullplane N x in V 7 , and a unique null-plane N ′

x in V ′ 7 , such that x is contained in P(N x ⊗ N ′ x ). Moreover, x has full rank in P(N x ⊗ N ′ x ). Geometrically, this means that O 1 fibers over a product of adjoint varieties X ad (G 2 ) × X ad (G 2 ), with fiber the complement of a smooth quadric in P 3 .

Postulation

Recall that the vertices of the Dynkin diagram D 7 are in bijective correspondence with the fundamental weights ω i , or the fundamental representations V ωi of Spin 14 , for 1 ≤ i ≤ 7. We use the following indexation:

• • • • • ❅ ❅ • • V ω1 = V 14 V ω6 = ∆ V ω7 = ∆ ∨
One way to compute the cohomology groups on DG of L and its powers, is again to use the Koszul complex

(1) 0-→ ∧ 7 E ∨ -→ • • • -→E ∨ -→O S14 -→O DG -→0,
where E = U ⊗ L. For any k ≥ 0 and i ≥ 0, the bundle

∧ i E ∨ ⊗ L k = ∧ i U ∨ ⊗ L k-i
is irreducible, with highest weight θ i given by θ i = (k -i)ω 7 + ω i for 0 ≤ i ≤ 5 (and ω 0 = 0 by convention), while θ 6 = (k -5)ω 7 + ω 6 and θ 7 = (k -5)ω 7 . One easily checks that these weights are either dominant or singular. By the Bott-Borel-Weil theorem this implies that L k has no higher cohomology. Moreover we can compute the dimension of its space of global sections as the alternate sum of modules whose dimensions are given by the Weyl dimension formula, as follows:

dim V kω 7 = (k+1)(k+2)(k+3) 2 (k+4) 2 (k+5) 3 (k+6) 3 (k+7) 3 (k+8) 2 (k+9) 2 (k+10)(k+11) 1×2×3 2 ×4 2 ×5 3 ×6 3 ×7 3 ×8 2 ×9 2 ×10×11 , dim V (k-1)ω 7 +ω 1 = k(k+1)(k+2) 2 (k+3) 2 (k+4) 3 (k+5) 2 (k+6) 3 (k+7) 2 (k+8) 2 (k+9)(k+10)(k+11) 3 2 ×4 2 ×5 3 ×6 2 ×7 2 ×8 2 ×9 2 ×10×11×12 , dim V (k-2)ω 7 +ω 2 = (k-1)k(k+1) 2 (k+2) 2 (k+3) 2 (k+4) 2 (k+5) 3 (k+6) 2 (k+7) 2 (k+8) 2 (k+9)(k+11) 2×3 2 ×4 2 ×5 2 ×6 2 ×7 2 ×8 2 ×9 2 ×10 2 ×11 , dim V (k-3)ω 7 +ω 3 = (k-2)(k-1)k 2 (k+1)(k+2) 2 (k+3) 2 (k+4) 3 (k+5) 3 (k+6) 2 (k+7)(k+8)(k+9)(k+10) 2×3 2 ×5 2 ×6 2 ×7 2 ×8 3 ×9 2 ×10×11×12 , dim V (k-4)ω 7 +ω 4 = (k-3)(k-2)(k-1)k(k+1) 2 (k+2) 3 (k+3) 3 (k+4) 2 (k+5) 2 (k+6)(k+7) 2 (k+8)(k+9) 2×3×4×5 2 ×6 3 ×7 2 ×8 2 ×9 2 ×10×11×12 , dim V (k-5)ω 7 +ω 5 = (k-4)(k-2)(k-1) 2 k 2 (k+1) 2 (k+2) 3 (k+3) 2 (k+4) 2 (k+5) 2 (k+6) 2 (k+7)(k+8) 2×3×4×5 2 ×6 2 ×7 2 ×8 2 ×9 2 ×10 2 ×11×12 , dim V (k-5)ω 7 +ω 6 = (k-4)(k-3)(k-2)(k-1) 2 k 2 (k+1) 3 (k+2) 2 (k+3) 3 (k+4) 2 (k+5) 2 (k+6)(k+7) 2×3×4 2 ×5 2 ×6 3 ×7 2 ×8×9 2 ×10 2 ×11×12 , dim V (k-5)ω 7 = (k-4)(k-3)(k-2) 2 (k-1) 2 k 3 (k+1) 3 (k+2) 3 (k+3) 2 (k+4) 2 (k+5)(k+6) 1×2×3 2 ×4 2 ×5 3 ×6 3 ×7 3 ×8 2 ×9 2 ×10×11
. Proposition 9. For any k ≥ 0 and i > 0, H i (DG, L k ) = 0. Moreover, This could also have been deduced from the fundamental class of DG, by applying repeatedly the product formula by the hyperplane class.

h 0 (DG, L k ) = (k + 1)(k + 2)(k + 3) 2 (k + 4) 2 (k + 5)(k + 6) 2 10
Since DG is spherical, it is multiplicity free. As in [START_REF] Manivel | The Cayley Grassmannian[END_REF], we can obtain the G 2 × G 2 -module structure of H 0 (DG, L k ) by restricting to the hyperplane divisor D. Using the projecting bundle structure of its resolution, we get

H 0 (D, L k D ) = H 0 (X ad (G 2 ) × X ′ ad (G 2 ), Sym k (N ⊗ N ′ ) ∨ ). By the Cauchy formula, Sym k (N ⊗ N ′ ) = i+2j=k Sym i N ⊗ (det N ) j ⊗ Sym i N ′ ⊗ (det N ′ ) j .
Since Sym i N ∨ is irreducible of highest weight iω 1 , and det N ∨ of weight ω 2 , the Borel-Weil theorem yields

H 0 (D, L k D ) = i+2j=k V iω1+jω2 ⊗ V ′ iω1+jω2 .
We finally get (to be compared with Proposition 3.6 of [START_REF] Manivel | The Cayley Grassmannian[END_REF]):

Proposition 11. The equivariant Hilbert series of the double Cayley Grassmannian is

H G2×G2 DG (t) = (1 -t) -1 (1 -tV ω1+ω ′ 1 ) -1 (1 -t 2 V ω2+ω ′ 2 ) -1 .
Here we use formally the Cartan multiplication of representations, according to the rule V µ V ν = V µ+ν . Moreover we use it for G 2 × G 2 , so that V µ+ν ′ is the tensor product of the representation V µ of the first copy of G 2 , by the representation V ν of the second copy.

The wonderful compactification of G 2

Recall that the Cayley Grassmannian CG ⊂ G(4, V 7 ) has a very similar G 2 -orbits structure: a closed orbit O 3 ≃ Q 5 , a codimension one orbit O 1 whose closure is a hyperplane section H of CG, and an open orbit O 0 ≃ G 2 /SL 2 × SL 2 . Moreover, if we blow-up O 3 ⊂ CG, we get the wonderful compactification of the symmetric space O 0 . Since we are in rank two, the proper orbit closures of this wonderful compactification CG are the two divisors F (the proper transform of H), E (the exceptional divisor), and their transverse intersection E ∩ F . The two divisors support smooth projective fibrations:

E ≃ P(Sym 2 C)→Q 5 , F ≃ P(Sym 2 N )→X ad (g 2 ),
where C denotes the so-called Cayley bundle over Q 5 , and N is the null-plane bundle over the adjoint variety X ad (G 2 ). Both are rank two irreducible homogeneous bundles. The latter is the restriction of the tautological bundle for the embedding of X ad (G 2 ) into G(2, V 7 ). The former is defined by the conditions that H 0 (C) = 0 and H 0 (C(1)) = g 2 ; its first Chern class is the hyperplane class [START_REF] Ottaviani | On Cayley bundles on the five-dimensional quadric[END_REF].

Observe that in particular, E and F both contain a conic fibration, preserved by G 2 , which must therefore coincide with the closed orbit E ∩ F . In fact, this closed orbit is nothing else than the full flag variety of G 2 .

We have the following diagram:

CG E E ; ; ① ① ① ① ① ① ① ① ① F Q e e ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ G 2 /B D 9 9 t t t t t t t t t t I b b ❋ ❋ ❋ ❋ ❋ ❋ ❋ ❋ ❋ $ $ ❏ ❏ ❏ ❏ ❏ ❏ ❏ ❏ ❏ | | ② ② ② ② ② ② ② ② Q 5 X ad (g 2 )
The picture is strickingly similar for the double Cayley Grassmannian. Blowingup the closed orbit O 4 ≃ Q 5 × Q 5 , we get an exceptional divisor E, which is the projectivization of the normal bundle.

Lemma 12. The normal bundle to the closed orbit in

DG is C ⊗ C ′ .
Moreover the strict transform F of D is the total space of the projectivisation of N ⊗ N ′ over X ad (g 2 ) × X ad (g 2 ). Again each of these divisors contains a quadric surface bundle, which must coincide with the closed orbit E ∩ F . In fact this closed orbit is nothing else than the product of two copies of the flag variety of G 2 . We get the following diagram:

DG E A Ù 6 6 ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ ♥ F T i i ❙ ❙ ❙ ❙ ❙ ❙ ❙ ❙ ❙ ❙ ❙ ❙ ❙ ❙ ❙ ❙ ❙ ❙ ❙ G 2 /B × G 2 /B ′ @ Ø 5 5 ❦ ❦ ❦ ❦ ❦ ❦ ❦ ❦ ❦ ❦ ❦ ❦ ❦ ❦ ❦ ❦ ❦ S
g g P P P P P P P P P P P P P

) ) ❙ ❙ ❙ ❙ ❙ ❙ ❙ ❙ ❙ ❙ ❙ ❙ ❙ ❙ w w ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ Q 5 × Q 5 X ad (g 2 ) × X ad (g 2 )
Proof. For a quick check of the Lemma we can argue as follows. The normal bundle N on Q 5 × Q 5 we are looking for has rank four, and is by construction homogeneous under G 2 × G 2 , and symmetric with respect to the two quadrics. In particular it must be constructed from homogeneous bundles of rank at most two on the two quadrics. Since there are no non trivial extensions between line bundles on Q 5 , this quadric admits only two, up to twists, G 2 -homogeneous bundles of rank at most two: the trivial line bundle and the Cayley bundle. A possibility would be that N = C(a, b) ⊕ C ′ (b, a), where we denote by C and C ′ the two Cayley bundles induced from the two quadrics. But then we would get det(N ) = (2a+ 2b -1, 2a+ 2b -1), while a computation with tangent bundles yields det(N ) = (2, 2). So N must be a twist of C ⊗ C ′ , and since this has the correct determinant, the twist must be trivial.

Remark. Exactly as in the case of CG, there also exists another contraction of DG to another variety DG, contracting the divisor D. But the result of this contraction is singular.

Betti numbers

In this section we compute the Betti numbers of DG. We would like to be able to compute its cohomology ring.

6.1. Torus action. Let T be a maximal torus of G 2 × G 2 .

Proposition 13. The torus T acts on DG with exactly 36 fixed points, all contained in the closed orbit

Q 5 × Q 5 .
Proof. Recall that the linear span of DG is the projectivization of V 7 ⊗ V ′ 7 . Moreover, G 2 acts on V 7 with weights 0, ±α 1 , ±α 2 , ±α 3 with α 1 + α 2 + α 3 = 0. The weights of the action of

G 2 × G 2 on V 7 ⊗ V ′ 7 ⊕ C are thus the ±α i , ±α ′ j , ±α i ± α ′ j
, all with multiplicity one, and 0 with multiplicity two. Let W 0 be the two-dimensional zero weight space. To ensure that T acts on DG with finitely many fixed points, the only thing we need to check is that the projective line PW 0 is not contained in DG. But this is clear, since this line contains [z], which is not contained in S 14 and a fortiori not in DG.

We claim, more precisely, that:

(1) every T -fixed point with non zero weight is contained in DG,

DG ∩ PW 0 is empty. The first statement is clear, since ∆ being minuscule, each fixed point in P∆ of a maximal torus of Spin 14 is contained in S 14 . Since T is a subtorus of a maximal torus T + of Spin 14 , this remains true for all the T -fixed points with non zero weight, just because they are also T + -fixed points.

To check the second statement, we may suppose that e 1 , e 2 , e 3 , f 1 , f 2 , f 3 , e 7 -f 7 are T -eigenvectors in V 7 , with weights α 1 , α 2 , α 3 , -α 1 , -α 2 , -α 3 , 0; and similarly for V ′ 7 . Then the T -invariants in L z are e 7 .z and f 7 .z. From that we deduce that W 0 = 1 + e 123456 , e 1237 + e 4567 .

We need to check that W 0 contains no pure spinor. Observe that if an element of ∆ of the form 1 + ω 2 + ω 4 + ω 6 is a pure spinor, then ω 4 must be proportional to ω 2 ∧ ω 2 and ω 6 must be proportional to ω 2 ∧ ω 2 ∧ ω 2 . This already rules out all the points of W 0 except the multiples x 0 = e 1237 + e 4567 . But recall that a spinor x is pure when the space of elements v ∈ V 14 such that vx = 0 is seven dimensional. A straightforward check shows that x 0 is only killed by (multiples of) e 7 , hence is not pure.

An immediate consequence is:

Corollary 14. The Chow ring of DG is free of rank 36.

Explicitly, the T -fixed points correspond to the weight vectors in ∆ of type e ij , e ii ′ j7 , e ijj ′ 7 , e ii ′ jj ′ where 1 ≤ i, i ′ ≤ 3 and 4 ≤ j, j ′ ≤ 6. Note that two fixed points e ij (respectively e ijkl ) and e abcd are connected by a T -stable line if and only if {i, j} ⊂ {a, b, c, d} (respectively {a, b, c, d} and {i, j, k, l} have three elements in common). 6.2. Schubert varieties. Since the maximal torus T of G 2 × G 2 acts on DG with finitely many fixed points, the Bialynicki-Birula decomposition yields, for any choice of a general rank one subtorus, a stratification of DG into affine spaces, which is uniquely defined up to conjugation. The closures of those affine spaces will be called Schubert varieties. Their classes in the (equivariant) Chow ring, called the (equivariant) Schubert classes, form a basis. A priori, we should be able to describe these equivariant Schubert classes by localization, and then their multiplication rule. A more modest goal would be to compute a Pieri formula in the classical Chow ring. This would allow to get the degrees of the Schubert varieties, which would give lots of informations on the restriction map from the spinor variety. In the case of CG, the restriction map from the ambient Grassmannian is surjective, so the multiplicative structure of the Chow ring of CG can be deduced.

In the case of a wonderful compactification Ḡ of an adjoint semisimple group G, the Schubert classes are indexed by W × W and the Betti numbers are given by the following formula:

b 2i ( Ḡ) = #{(u, v) ∈ W × W, ℓ(u) + ℓ(v) + m(v) = i},
where ℓ is the classical length function, and m is the simple length function, defined as the number of simple roots that are sent to negative roots [START_REF] Brion | The behaviour at infinity of the Bruhat decomposition[END_REF]. Recall that the Weyl group of G 2 is isomorphic with the dihedral group D 6 , and in particular has 12 elements: two elements in each length from 1 to 5, and one element of length 0 and 6. All have simple length 1, except the maximal one (whose simple length are 0 and 2). This yields the even Betti numbers of Ḡ2 : 4, 8, 12, 16, 19, 20, 19, 16, 12, 8, 4, 2, 1. In order to deduce the Betti numbers of DG, we just need to recall that Ḡ2 can be obtained by blowing-up Q 5 × Q 5 in DG. This modifies the Betti numbers by the Betti numbers of a (P 2 -P 0 )-bundle over Q 5 × Q 5 . We readily deduce: Note that, as a consequence, the restriction map from S 14 cannot be surjective in degree four. In fact there is an obvious special cohomology class of degree four, that of the closed orbit Q 5 × Q 5 . Its degree is 4 10 5 = 1008, while the degrees of the restrictions to DG of the degree four Schubert classes can be computed to be Question. By pull-back, the Chow ring of DG embeds inside the Chow ring of DG. Moreover, DG being the wonderful compactification of G 2 , its equivariant cohomology ring can be extracted from [START_REF] Strickland | Equivariant cohomology of the wonderful group compactification[END_REF] or [START_REF] Brion | Equivariant Chow ring and Chern classes of wonderful symmetric varieties of minimal rank[END_REF]. Can we deduce that of DG?

b 2• ( Ḡ2 ) = 1, 2,
The Bialynicki-Birula decomposition of the wonderful compactification has been studied in [START_REF] Brion | The behaviour at infinity of the Bruhat decomposition[END_REF]. Can one extract a Pieri formula, and push it down to DG? 7. Some incidences 7.1. Incidences for the Cayley Grassmannian. Let us briefly consider the Cayley Grassmannian CG ⊂ G(4, V 7 ), defined by the general three-form ω. The latter also defines a global section of Q ∨ (1) on G(2, V 7 ), whose zero locus is the adjoint variety of G 2 . Consider the incidence diagram

CI 10 p | | ② ② ② ② ② ② ② ② q $ $ ■ ■ ■ ■ ■ ■ ■ ■ ■ CG G(5, V 7 )
where CI 10 parametrizes the pairs (U 4 ⊂ U 5 ) such that U 4 belongs to CG. In particular CI 10 is a P 2 -bundle over CG. For U 5 ⊂ V 7 , the restriction of ω to U 5 is dual to a skew-symmetric degree two tensor which can be of rank two or four. In the latter case, the support of this tensor is a hyperplane U 4 ⊂ U 5 on which ω vanishes, and it is the only such hyperplane; this implies that q is birational. The former case occurs over a locus X 7 of codimension three, and the corresponding fibers of q are projective planes. We conclude that q is just the blowup of X 7 ≃ OG(2, V 7 ).

There is a slightly different incident diagram where the fibers of s are del Pezzo fourfolds of degree five, and the fibers of r are conics in X ad (G 2 ). As observed by Kuznetsov, this allows to interprete the Cayley Grassmannian CG as the Hilbert scheme of conics on the adjoint variety of G 2 .

CI 11 r | | ② ② ② ② ② ② ②
7.2. Incidences with DG. What are the analogs of those incidences when we switch to DG? Recall that DG is defined by a general element of ∆, which defines a global section of the irreducible homogeneous vector bundle E ω6 = U ⊗ L over S 14 . Over each flag variety F of Spin 14 , there is an irreducible homogeneous vector bundle E F ω6 whose space of sections is ∆. Consider for example the flag variety OF = OF (k, 7, V 14 ) for k ≤ 5, with its two projections to S 14 and OG = OG(k, V 14 ). The ranks of E OF ω6 and E OG ω6 can be read on the following weighted Dynkin diagram (where k = 3):

• • • • • • ❅ ❅ • • ω 6
The flag variety OF is defined by the two marked vertices. When we suppress those two vertices, the connected component of the remaining diagram containing the vertex associated to ω 6 has type A 6-k . So E OF ω6 , which corresponds to the natural representation, has rank 7 -k. Similarly, the orthogonal Grassmannian OG is defined by the rightmost of the two marked vertices. When we suppress this vertex, the connected component of the remaining diagram containing the vertex associated to ω 6 has type D 7-k . So E OG ω6 , which corresponds to a half-spin representation, has rank 2 6-k .

Our general element z ∈ ∆ defines a general section s z of the bundle E OF ω6 , whose zero locus we denote by OF z . The fibers of the projection to S 14 are Grassmannians G(k, 7), and the restriction of E OF ω6 to each fiber is isomorphic with the quotient tautological bundle. In particular, if the restriction of s z to such a fiber is non identically zero, it vanishes on a copy of G(k -1, 6). So the general fiber of the projection from OF z to S 14 is G(k -1, 6), and the special fiber is G(k, 7) over DG.

Similarly the projection of OF to OG is a spin manifold S 14-2k , and the restriction of E OF ω6 to each fiber is isomorphic to a spinor bundle. The zero-locus of s z to such a fiber depends on its type as an element of the half-spin representation of Spin 14-2k . In fact this representation has finitely many orbits, so there is an induced stratification of OG by orbital degeneracy loci of s z , and the type of the fiber of the projection from OF z to OG depends on the strata. Let us discuss two cases a little further. 7.3. Incidence with 4-planes. The case where k = 4 is special because Spin 6 = SL 4 , and in this case the bundle E OG ω6 is just a rank four bundle defined by a natural representation of SL 4 , as can be read from the weighted diagram

• • • • • • ❅ ❅ • • ω 6
Similarly E OF ω6 is defined by a natural representation of SL 3 , so on each fiber of the projection from OF z to OG, the section s z vanishes either at one point, or everywhere. We thus get a diagram OF z p y y s s s s s s s s s s

q ' ' ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❖ DG ⊂ S 14 OG(4, V 14 ) ⊃ SG
where q is the blowup of a codimension four subvariety SG ⊂ OG(4, V x x q q q q q q q q q q q q ' ' ❖

❖ ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❖ ❖ F DG 1 / / S 14 OG(5, 14) F 1 (DG) c o o
Since DG is defined by a general section s of the bundle E = U ⊗ L on S 14 , its variety of lines F 1 (DG) will be defined by a section of the bundle F = q * p * E on OG [START_REF] Benedetti | The small quantum cohomology of the Cayley Grassmannian[END_REF][START_REF] Landsberg | The sextonions and E 7 1 2[END_REF]. Obviously there is an exact sequence

0-→q * V ⊗ p * L-→p * (U ⊗ L)-→(p * U/q * V) ⊗ p * L-→0
on OF [START_REF] Benedetti | The small quantum cohomology of the Cayley Grassmannian[END_REF][START_REF] Brion | The behaviour at infinity of the Bruhat decomposition[END_REF][START_REF] Landsberg | The sextonions and E 7 1 2[END_REF]. We claim that this pushes forward on OG(5, 14) to 0-→V ⊗ E 6 -→F -→E 7 -→0.

We deduce that F has rank 12, and that the space of its global sections is again ∆. By construction F is globally generated, so F 1 (DG) is smooth of dimension 30-12 = 18, being the zero-locus of a general section. Since moreover det F = O(4), we deduce that F 1 (DG) is Fano of index 4.

In order to check that F 1 (DG) has Picard number one, consider the point-line incidence correspondence

I 19 p } } ④ ④ ④ ④ ④ ④ ④ ④ q $ $ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ DG F 1 (DG).
Of course q is just a P 1 -bundle. The fibers of p are of three different types, over the three orbits in DG. A computation shows that the fiber over the closed orbit is the union of two copies of P 2 × P 3 blown-up at one point, while the other orbits are irreducible. We could in principle compute the Hodge polynomials of the three fibers and deduce that of F 1 (DG), but the simple fact that the fiber over the codimension one orbit O 1 ⊂ DG is irreducible already implies that the Picard number of F 1 (DG) is one, as claimed.

The generic fiber of p is the variety of lines in DG through a general point. It is isomorphic with its image in the tangent space, the variety of minimal rational tangents (VMRT). Proposition 19. The VMRT at a general point of DG is a copy of the adjoint variety X ad (G 2 ) ⊂ Pg 2 .

Proof. The general point x of DG has stabilizer G 2 , so the VMRT at x is a five dimensional subvariety, stable under G 2 , and equivariantly embedded inside PT x DG = P 13 . This VMRT must contain a closed G 2 -orbit, and it contains no fixed point because the restriction of D z = V 7 ⊕ V ′ 7 ⊕ C to the diagonal G 2 contains a unique stable plane, but the corresponding line, since it contains [z], is not contained in DG. Since the minimal non trivial closed G 2 -orbits are G 2 /P 1 = Q 5 and G 2 /P 2 = X ad (G 2 ); both of dimension five, the VMRT must be one of these. Since it is equivariantly embedded inside P 13 , it must be the second one.

It was already observed in [START_REF] Brion | Minimal rational curves on wonderful group compactifications[END_REF] that the VMRT at a general point of the wonderful compactification of an adjoint simple algebraic group is a copy of its adjoint variety (except in type A). The only special feature in our situation is that the minimal rational curves are lines in the spinor variety.

Corollary 20. DG contains planes, but no higher dimensional linear spaces, passing through the general point.

In fact we have seen that DG also contains a ten-dimensional family of P 3 's, parametrized by X ad (G 2 ) × X ad (G 2 ). But they only cover the codimension one orbit closure (and there is exactly one of them through the general point).

Some numerology

Let us conclude this paper by a couple of slightly esoteric observations. The Cayley Grassmannian and its double appear in two series of compactifications of symmetric spaces, as follows:

X = SL 3 /SO 3 ⊂ P 5 , SO 5 /GL 2 ⊂ Q 3 × Q 3 , G 2 /SO 4 ⊂ CG, Y = P SL 3 ⊂ P 8 , SO 5 ⊂ S 10 , G 2 ⊂ DG.
Each of these compactifications contains a unique closed orbit, and blowing it yields the wonderful compactification. Let a = 1, 2, 4 for the three members of each series.

The closed orbit Z in the first series has dimension a + 1 and codimension 3. The closed orbit Z ′ in the second series is isomorphic with Z × Z , so its dimension is 2a+2, while its codimension is 4. In fact each Z in the series admits a homogeneous rank two vector bundle C such that its normal bundle is isomorphic with Sym 

( 2 )

 2 The connected automorphism group of DG is G 2 × G 2 ; it has index two inside the full automorphism group.(3) Under the action of G 2 × G 2 , the variety DG has exactly three orbits: the open one, a codimension one orbit O 1 , and a closed orbit

First

  case: (k, k ′ ) = (3, 3). Then C1 + K and C1 + K ′ are four dimensional subalgebras of O. By [15, Proposition 2.7], the isotropic four dimensional subalgebras of O are parametrized by the quadric

(e 1

 1 + e 2 ) ⊗ (e 4 + e 5 ) → y 1 = (e 1 + e 2 )(e 4 + e 5 ), (e 1 + e 2 ) ⊗ (f 4 -f 5 ) → y 2 = (e 1 + e 2 )(e 4 + e 5 )e 6 e 7 , (f 1 -f 2 ) ⊗ (e 4 + e 5 ) → y 3 = (e 1 + e 2 )(e 4 + e 5 )e 3 e 7 , (e 1 + e 2 ) ⊗ (e 4 + e 5 ) → y 4 = (e 1 + e 2 )(e 4 + e 5 )e 3 e 6 .
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 1110 (k), P (k) = 186k 6 + 3906k 5 + 34441k 4 + 163184k 3 + 438545k 2 + 634858k + 388080. The degree of DG ⊂ P 49 is 4836 = 2 2 × 3 × 13 × 31.

DG τ 4 h

 4 10 = 1260, DG τ 31 h 10 = 1780.So the class of Q 5 × Q 5 is certainly not an integral combination of the restrictions of τ 4 and τ 31 , and probably not a combination at all.

2 .

 2 2 C, while the normal bundle to Z ′ is isomorphic with C ⊠ C.The Weyl group W has cardinality 2a + 4. Recall that the Chow ring of the wonderful compactification has a basis indexed by W × W , so that the Euler topological characteristic χ top ( Ḡ) = (#W ) 2 = 4(a + 2) 2 . A computation shows that the minimal compactification Y as Euler characteristicχ top (Y ) = 1 4 χ top ( Ḡ) = (a + 2)Does it admit a natural basis indexed by W × W , where W = W/Z 2 ?

  e 14567 , f 1 .z = e 237 + e 23456 , e 2 .z = e 2 + e 24567 , f 2 .z = -e 137 -e 13456 , e 3 .z = e 3 + e 34567 , f 3 .z = e 127 + e 12456 , e 4 .z = e 4 -e 12347 , f 4 .z = e 567 -e 12356 , e 5 .z = e 5 -e 12357 , f 5 .z = -e 467 + e 12346 , e 6 .z = e 6 -e 12367 , f 6 .z = e 457 -e 12345 , e 7 .z = e 7 + e 1234567 , f 7 .z = -e 123 -e 456 . 2.3. Spinorial interpretation. Let us denote by L the very ample line bundle that defines the embedding of the spinor variety S 14 ⊂ P∆. Recall that ∆ is one of the half-spin representations of Spin 14 , and its dimension is 64. The spinor variety S 14 parametrizes one of the two families of maximal isotropic spaces in V 14 , and the square L 2 defines the Plücker embedding S 14 ֒→ G(7, V 14 ) ⊂ P(∧ 7 V 14 ).

  Proposition 15. The Poincaré polynomial of the variety DG is P DG (t) = 1 -t 12 1 -t 2 (1 + t 6 + t 8 + t 10 + t 12 + t 18 ). In other words the odd Betti nubers of DG are zero, and the even ones are

	b 2• (DG) = 1, 1, 1, 2, 3, 4, 4, 4, 4, 4, 3, 2, 1, 1, 1.

  ②

	CG	s P P P P P P P P P P P P ' ' X ad (G 2 ) ⊂ G(2, V 7 )

  The weights of the rank four bundle E OG ω6 are ω 6 , s 6 (ω 6 ) = ω 5 -ω 6 , s 5 s 6 (ω 6 ) = ω 4 -ω 5 + ω 7 and s 7 s 5 s 6 (ω 6 ) = ω 4 -ω 7 , hence det(E OG ω6 ) = O(2). We readily deduce: Proposition 16. The variety SG is a Fano manifold of dimension 26, Picard number 1, and index 7, admitting an action of G 2 × G 2 . Its Poincaré polynomial isP SG (t) = 1 -t 10 1 -t 2 (1 + t 6 ) 2 1 -t 16 1 -t 4 (1 + t 8 + t 10 + t 12 + t 20 ) + t 16 .The topological Euler characteristic is 420. It would be interesting to know if the action of G 2 × G 2 is quasi-homogeneous.Consider the incidence diagram, where OF (5, 7, 14) = D 7 /P 5,7 ,

	U ⊗ L	OF (5, 7, 14)
	This means the odd Betti numbers of SG are zero, and the even ones are
	b 2• (SG) =1,1,2,4,6,8,12,16,20,25,29,33,35,36,35,33,29,25,20,16,12,8,6,4,2,1,1.

14 ), while p is a G(3, 6)-fibration over the complement of DG in S 14 , with special fibers G(4, 7) over DG.

p
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7.4. Incidence with 2-planes. Over the orthogonal Grassmannian OG [START_REF] Allison | A class of nonassociative algebras with involution containing the class of Jordan algebras[END_REF][START_REF] Landsberg | The sextonions and E 7 1 2[END_REF], the bundle E OG ω6 has rank 16 and is induced from a half-spin representation of Spin 10 . Since OG [START_REF] Allison | A class of nonassociative algebras with involution containing the class of Jordan algebras[END_REF][START_REF] Landsberg | The sextonions and E 7 1 2[END_REF] has dimension 21, the general section of E OG ω6 defined by z must vanish in dimension 5 (or possibly, nowhere), and its zero locus Z z must be stable under the action of G 2 × G 2 .

Proposition 17. Z z is the disjoint union of two copies of X ad (G 2 ).

Proof. Recall that our general element z of ∆ determined an orthogonal decomposition V 14 = V 7 ⊕ V ′ 7 and a tensor decomposition ∆ = ∆ 7 ⊗ ∆ ′ 7 such that z = δ ⊗ δ ′ for some general elements δ and δ ′ of ∆ 7 and ∆ ′ 7 . Given an orthogonal plane P , consider the Plücker line ∧ 2 P . The image of the Clifford multiplication map

is a sixteen dimensional space G P ⊂ ∆, and we can identify G with F ∨ (recall that ∆ is self-dual). This implies that P belongs to Z z if and only if G P ⊂ ω ⊥ . Now suppose that P ⊂ V 7 . The Clifford action of P on ∆ = ∆ 7 ⊗∆ ′ 7 is just given by its action of ∆ 7 , so we deduce that P belongs to Z z if and only if ∧ 2 P.∆ 7 ⊂ δ ⊥ . This is a codimension two condition on OG(2, V 7 ), that defines the adjoint variety X ad (G 2 ).

We conclude that Z z contains the disjoint union of X ad (G 2 ) and X ′ ad (G 2 ), the adjoint varieties of our two copies of G 2 . In order to prove equality, we just need to check that Z z has at most two connected components. For this we can use the Koszul resolution of the structure sheaf of Z z . A direct computation shows that the only non zero cohomology groups of the wedge powers of the dual of

We readily deduce that h 0 (O Zz ) = 2, and this concludes the proof.

Taking the incidence between DG and Z z we get the following diagram: 

where the fibers of t are codimension two linear sections of S 10 .

Linear subspaces

Since DG has dimension 14 and index 7, the expected dimension of the space of lines on DG is 14 + 7 -3 = 18. The expected dimension of the space of lines through a general point, or of the VMRT, is 5.

Proposition 18. The variety F 1 (DG) of lines on DG is a smooth Fano manifold of dimension 18, Picard number one, and index 4.

Proof. The variety of lines on S 14 is the orthogonal Grassmannian OG(5, 14), whose dimension is 30. The weights ω 1 , ω 6 , ω 7 define irreducible homogeneous vector bundles of ranks 5, 2, 2 on OG [START_REF] Benedetti | The small quantum cohomology of the Cayley Grassmannian[END_REF][START_REF] Landsberg | The sextonions and E 7 1 2[END_REF]: the first one is V ∨ , the dual of the tautological bundle, and we denote the other ones by E 6 and E 7 . Their determinant line bundles are all equal to O(1), the restriction of the Plücker line bundle. Note moreover that E 6 ⊗ E 7 ≃ (V ⊥ /V)(1).