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The Interior Exploration using Seismic Investigations, Geodesy 
and Heat Transport (InSight) mission landed on Mars on 26 
November 2018 in Elysium Planitia1,2, 38 years after the end 

of Viking 2 lander operations. At the time, Viking’s seismometer3 
did not succeed in making any convincing Marsquake detections, 
due to its on-deck installation and high wind sensitivity. InSight 
therefore provides the first direct geophysical in situ investigations 
of Mars’s interior structure by seismology1,4.

The Seismic Experiment for Interior Structure (SEIS)5 moni-
tors the ground acceleration with six axes: three Very Broad Band 
(VBB) oblique axes, sensitive to frequencies from tidal up to 10 Hz, 
and one vertical and two horizontal Short Period (SP) axes, cover-
ing frequencies from ~0.1 Hz to 50 Hz. SEIS is complemented by 
the APSS experiment6 (InSight Auxiliary Payload Sensor Suite), 

which includes pressure and TWINS (Temperature and Winds for 
InSight) sensors and a magnetometer. These sensors monitor the 
atmospheric sources of seismic noise and signals7.

After seven sols (Martian days) of SP on-deck operation, with 
seismic noise comparable to that of Viking3, InSight’s robotic arm8 
placed SEIS on the ground 22 sols after landing, at a location selected 
through analysis of InSight’s imaging data9. After levelling and noise 
assessment, the Wind and Thermal Shield was deployed on sol 66  
(2 February 2019). A few days later, all six axes started continuous 
seismic recording, at 20 samples per  second (sps) for VBBs and 
100 sps for SPs. After onboard decimation, continuous records at 
rates from 2 to 20 sps and event records5 at 100 sps are transmitted.

Several layers of thermal protection and very low self-noise 
enable the SEIS VBB sensors to record the daily variation of the  
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is about 500 times lower than Earth’s microseismic noise at periods between 4 s and 30 s. The recorded seismic noise increases 
during the day due to ground deformations induced by convective atmospheric vortices and ground-transferred wind-generated 
lander noise. Here we constrain properties of the crust beneath InSight, using signals from atmospheric vortices and from the 
hammering of InSight’s Heat Flow and Physical Properties (HP3) instrument, as well as the three largest Marsquakes detected 
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Fig. 1 | Spectrograms of the vertical, north and east components of acceleration from 0.02 to 50 Hz versus lmst for typical sol 194–195. The spectrogram 
includes data from both the VBB and SP seismometers in the bands where their respective noise is lowest: below 5 Hz, the acceleration shown is measured 
by the VBBs; above 5 Hz, it is measured by the SPs. Four events associated with bursts of energy in the 2.4-Hz resonances have been identified by the 
MarsQuake Service47 (MQS) catalogue27. Data were not returned for two 12-min periods on one SP axis.
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seismic noise at Mars’s surface, down to the lowest noise recorded so 
far by a seismometer on the surface of a terrestrial body, at periods 
between 5 and 20 s.

Figure 1 shows the spectrogram of a typical sol of seismic  
data on Mars (sol 194–195), in the 0.02–50 Hz band. Starting at 
17:00–18:00 lmst (local mean solar time), extremely low noise lev-
els are observed until midnight. During the lowest-wind period, 
accelerations below 1.5 × 10–10 m s−2 Hz−1/2 at 0.4 Hz are detected, 
corresponding to ~3 Å root mean squared ground displacement 
in a one-octave bandwidth. This is ~1/500 of the Earth Low Noise 
Model10, allowing detection of events with a moment magnitude 
Mw ~ 1.8 lower than on Earth. The levels of noise are comparable to 
those recorded by Apollo11 on the Moon at 1 Hz (Fig. 2), but much 
lower at longer periods. After midnight, the noise increases slightly 
until sunrise, and then rises rapidly with atmospheric boundary 
layer activity, from 7:00 to 16:00 lmst, still remaining below the Low 
Noise Model between 2 and 20 s. These three noise regimes, associ-
ated with wind ranging from night-time laminar flow to daily tur-
bulent flow, will probably provide new constraints on the Martian 
Planetary Boundary layer12 when better understood.

Correlation analyses of SEIS with pressure and wind data 
(Supplementary Discussion 1) confirm the Martian environment as 
the key contributor to seismic noise, in line with prelanding pre-
dictions13–18. Observations (Supplementary Figs. 1–3 and 1–4 of 
Supplementary Discussion 1) suggest that long periods are domi-
nated by ground deformation due to pressure perturbation and 
wind stresses, while shorter periods are dominated by lander-gen-
erated noise excited by wind.

Subsurface constraints from atmospheric vortices and HP3

The elastic properties of Mars’s near surface (upper 10–20 m) pro-
vide information on geological processes that have shaped the 
landing site but are also required to fully understand the seismic 
noise. We derive a first elastic model using three independent seis-
mic techniques at vertical scales varying from a few centimetres to 
~10 m and at horizontal scales up to several tens of metres.

At a 5-cm scale, SEIS’s feet with their 2-cm spikes are in contact 
with the duricrust, a thin, weakly cemented layer about 1 cm below 
unconsolidated soil2. From the modelling of resonant frequencies 
of the SEIS levelling system19, a local Young’s modulus of 47 MPa 
is inferred (Supplementary Discussion 2–1). This value is in agree-
ment with geological inferences of a cohesive layer about 35% stiffer 
than the material immediately below2.

At a 1-m scale, the bulk seismic velocity of the regolith was 
constrained using travel-time measurements of hammer strokes 
from HP3 hammering20, acting as a seismic source at 0.33 m depth. 
See Methods21,22 and Supplementary Discussion 2–2 for details. 
Through precise knowledge of the HP3 and SEIS clocks and averag-
ing data from multiple hammer strokes, the travel time was deter-
mined to be 9.40 ± 2.68 ms over a distance of 1.11 m, yielding an 
apparent P-wave velocity estimate of Vapp

P = 118 ± 34 m s−1.
At horizontal scales of 10–100 m (Supplementary Figs. 2–5), the 

near-surface material was probed using ground deformation caused 
by convective vortices (Supplementary Discussion 2–3), or ‘dust 
devils’ if made visible by their dust content, passing in the vicinity 
of InSight and producing distinct pressure drops detected by APSS7, 
as well as vertical motion and ground tilt detected by SEIS (Fig. 3). 
The ground velocity and pressure measurements23,24 provide values 
for the ground compliance, computed as the ratio of the signal’s 
ground velocity to its correlated atmospheric pressure. Compliance 
is a function of wavelength, and thus can provide depth-dependent 
elastic properties of the subsurface15,16,23,24.

Vapp
P and the ground compliance provide complementary con-

straints on properties of the upper regolith layer and the brecciated 
bedrock beneath. Figure 4 presents the probability density func-
tion (PDF) of possible seismic structures of the topmost 10 m using 

these constraints and assuming a near-surface compaction model25.  
The most probable models are generally consistent with the regional 
geological structure3, with VP ranging from 90 m s−1 at ~5 cm below 
the surface to 145 m s−1 at ~80 cm depth. This suggests that the 
degraded crater (Homestead Hollow) where SEIS is deployed is 
filled largely with unconsolidated cohesionless sandy material2 
with seismic velocities lower than those of previously considered 
Mars analogues26. A compliance-only inversion (Supplementary  
Figs. 2–6) provides higher probabilities for stiffer regolith, but sam-
ples a larger surface area.

Crustal seismic attenuation and diffraction
This first seismic structural analysis of Mars is based on the three 
best-recorded quakes until September 2019, occurring on sols 128, 
173 and 235. Their amplitudes exceed 10–8 m s–2 Hz–1/2 either below 
1 Hz (S0173a and S0235b) or above 1 Hz (S0128a). The complete 
collection of seismic sources includes 171 other events4,27 with 
smaller amplitudes.

The peak-to-peak vertical ground acceleration of S0128a is 
about 8.5 × 10−7 m s–2 in the 2–10-Hz bandwidth (Supplementary  
Figs. 1–9). Those of S0173a and S0235b are 3.5 × 10–8 m s–2 
and 3.5 × 10–8 m s–2 respectively in the 0.2–1-Hz bandwidth 
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noise. The colour contours show the PDF of Martian vertical seismic 
noise measured by InSight VBB and SP during sol 194–195. They provide 
the fraction of time with respect to the total observation time. VBBZ and 
SP1 are shown for frequencies of <5 Hz and >5 Hz respectively. The red 
lines provide the seismic noise measured on the spacecraft’s deck by the 
SPs. The two lines represent the 16% and 84% percentile lines, which 
correspond to a 1σ Gaussian distribution. Grey lines are an example of 
terrestrial seismic noise measured at Black Forest Observatory (BFO) in 
Germany. STS1 data were used for long-period (<2 Hz) noise statistics and 
STS2 data were used for shorter periods (>2 Hz). The two lines represent 
the 16% and 84% percentile lines. Dashed grey is the lowest noise for 
Earth from the Low Noise Model10. The white lines are an example of 
lunar seismic noise measured during the Apollo seismic observation. The 
Apollo long-period seismometer was used for frequencies of <1 Hz and the 
short-period seismometer was used for frequencies of >1 Hz. In addition 
to the 16% and 84% percentile lines, the 2.5% percentile curve, which 
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show the lowest noise level on the Moon, which is most likely due to the 
instrument self-noise5,11. Finally, the black line is the theoretical instrument 
noise curve for the VBB estimated from noise expected from each 
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observed on the Moon, but in both cases these noise floors are close to 
those of the sensors in the 0.1–5-Hz bandwidth. The Moon is quieter than 
Mars in the daytime due to activity in the Martian atmosphere. Note also 
the extreme differences between Earth, Mars and the Moon due to the lack 
of the oceanic microseism.
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(Supplementary Figs. 1–10 and 1–11). None have surface waves, 
suggesting a depth too large to excite them above the noise and/
or surface-wave scattering4. Their high signal-to-noise ratio, par-
ticularly with respect to wind (Supplementary Discussion 1 and 
corresponding spectra, seismograms and wind/pressure records 
in Supplementary Figs. 1-8–1-11) enable us to (i) characterize 
attenuation and diffraction in the Martian crust and (ii) search for 
upper-crustal layering using the receiver function (RF) method to 
identify conversion of seismic waves during their propagation in 
the crust.

All three large events are dominated by long incoherent wave-
trains. Polarization analysis reveals a high degree of polarization 
for only a small fraction of the time. Scattering is a possible can-
didate to explain some of the signal characteristics. Scattering and  
attenuation properties are estimated from the S0128a, S0173a and 
S0235b records.

The S0128a signal is above the noise floor for frequencies of 
>2.5 Hz. The morphology of its seismogram is very similar to those 
of Moonquakes28 as illustrated in Fig. 5b–c. The waveform is char-
acterized by a stabilization of the ratio between the kinetic energies 
measured on the vertical and horizontal components, which is very 
reminiscent of high-frequency coda waves excited by small crustal 
quakes on Earth29. Further examination, described in Supplementary 
Discussion 3, reveals two energy bursts, the first one being mostly 
visible above 6 Hz. Due to the lack of polarization, one cannot confi-
dently identify the first burst as P and the second one as S. However, 
a simplified elastic radiative transfer calculation reproduces reason-
ably well the two energy packets seen in the data for a hypocentral 
distance Δ = 530 km, VS = 3 km s−1 and VP/VS = √3. Furthermore, 
the model shows that the signal between the tentative P and S 
arrivals is largely dominated by S waves, which offers an attractive 
explanation for the stabilization of the vertical-to-horizontal energy 

partitioning ratio during the event. The absorption time of shear 
waves (~80–85 s) yields an absorption quality factor Qi ~ 3,770–
4,006 at 7.5 Hz. In the event frequency band, the decay time appears 
fairly constant, so we may speculate that Qi ~ 503–534 at 1 Hz. The  
diffusivity inferred from the data (D ~ 90 km2 s−1) depends 
strongly on the hypocentral distance, which is poorly determined. 
For instance, with a distance of 375 km (found for tS − tP = 75 s, 
VS = 2.5 km s−1 and VP/VS = 2, where tS and tP are the arrival times 
of S and P), the diffusivity is reduced by a factor of 2. Whereas the 
inferred diffusivity is strongly dependent on the assumed quake 
location, the absorption time is not. Note, however, that only an 
apparent absorption has been derived, since the possible leakage of 
diffuse energy from crust to mantle has been neglected30.

Further constraints on attenuation have been gained through the 
analysis of S0173a and S0235b events. Both events contain signal 
above the noise floor in the range 0.2–0.9 Hz and show identifiable, 
coherent P and S pulses with approximately linear polarization. 
After each coherent arrival, the signal shows a coda with no charac-
teristic polarization. The signal-to-noise ratios are higher than for 
S0128a and the events are located at roughly 1,720 km and 1,535 km 
distances4. This suggests seismic waves propagating in a relatively 
transparent but attenuating Martian mantle before entering the 
regional crustal structure beneath InSight.

The observed long coda duration appears to be due to the 
interaction of teleseismic waves with a heterogeneous crust. 
Using a simple acoustic radiative transfer model in a waveguide 
geometry, we inverted for D and the intrinsic attenuation factor 
Qi for S waves in the crust, based on the coherent S wave and its 
coda (Supplementary Discussion 3). In spite of its simplicity the 
model takes leakage into account, which is key to obtaining a reli-
able estimate of absorption. The trade-off31 between D and Qi is 
studied in Supplementary Discussion 3. Our analysis suggests 
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D ≥ 200 km2 s−1 and Qi ≥ 800 at 0.5 Hz. The latter bound is roughly 
one-third that reported for the dry megaregolith of the Moon in 
the same frequency band32.

Thanks to these three events, preliminary comparisons with 
the scattering and attenuation properties of the shallow part of the 
Earth and Moon can be made. The diffusivity of Mars ranges from 
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40 km2 s−1 (from S0128a) to 600 km2 s−1 (from S0173a and S0235b). 
The gap in diffusivity between regional and teleseismic events may 
in large part be related to the difference in frequencies, as diffusivity 
generally decreases with increasing frequency. Estimates of absorp-
tion are obtained from the two teleseismic events, which both sug-
gest Qi ~ 800, possibly higher. The coda quality factor of S0128a 
(518 ± 16) can be reconciled by remembering that energy leakage 
has been neglected in the Qi estimation of this event.

Figure 5 shows typical estimates of D and Qi on Earth, Moon 
and Mars. Earth values are at 1.5 Hz and scattering quality factors 
reported in the literature have been converted to diffusivity assum-
ing an average crustal shear crustal velocity of 3 km s−1. For Earth, 
we show the range of propagation properties due to variability of 
the geological environment, which is directly reflected in the wave-
forms. The low-attenuation, weakly scattering crust of old crys-
talline massifs shows clear ballistic phases including mantle head 
waves up to large distances and long-lasting codas where multiple 
reverberations play an important role. In sharp contrast, in volcanic 
areas the medium is strongly scattering and attenuating, coherent 
phases are absent and the propagation is predominantly diffusive. 
The Moon displays strong scattering like terrestrial volcanic areas 

with very little or virtually no dissipation, due to the low volatile 
content of the crust. Dissipation on Mars appears intermediate 
between Earth and the Moon, comparable to those of crystalline 
massifs: relatively low compared with tectonic areas on Earth31, but 
much stronger than on the Moon. Scattering also has intermedi-
ate values between the Moon and terrestrial crystalline massifs. The 
relatively moderate scattering may in fact reflect additional com-
plexities of the medium, in particular the stratification of subsurface 
materials, which remains to be explored.

Upper-crustal layering from RF modelling
Crustal structure beneath the landing site can be investigated at 
depths greater than a few tens of metres using receiver-side con-
verted S waves within the teleseismic P-wave coda. These conver-
sions are generated when an incident planar P wave encounters a 
discontinuity in the subsurface (Fig. 6a). The relative arrival times 
of these converted phases are dependent on the depth of the dis-
continuity and seismic wave velocities above it, whereas their 
amplitudes are related to the impedance contrast at the disconti-
nuity. Positive amplitudes indicate a velocity increase with depth at  
the discontinuity.
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S0235b

S0173a

S0235b

5 10–5 150

Time relative to direct P (s) Time relative to direct P (s)

5 10–5 150

a

b c

Fig. 6 | RF analysis for the Martian upper crust. A schematic background diagram showing the P-wave ray path from S0173 at 28° of epicentral 
distance4,27 (green ball) to SEIS (light-blue ball). The ray path was obtained by raytracing with TTBox48 within an a priori Martian velocity model39.
Topography is derived from MOLA data49 and exaggerated vertically by a factor of 8. Mountains in the background are the Elysium Montes north of 
InSight. a, Zoom-in on the crust below SEIS, illustrating crustal structure and the origin of the receiver-side converted phases analysed here. The incident 
plane P wave is indicated by blue rays, while the S waves resulting from P-to-S conversion at each of the two crustal discontinuities are shown in red. 
Raytracing is done in a velocity model consistent with the results of the RF inversion (Supplementary Discussion 4–4) and Supplementary Table 4–1, so 
that the two illustrated conversions correspond to the two peaks observed at 2.2–2.4 s and 4.6–4.7 s in the RFs. In addition, the ray for the direct P wave 
is shown. b, Various estimates of the P-to-S RFs for S0173a and S0235b, resulting from different deglitching and deconvolution methods as described 
in Supplementary Discussions 4 and 5. The main consistent positive arrivals as discussed in the text are marked in orange. c, RF estimates based on 
transdimensional hierarchical Bayesian deconvolution. The blue shading indicates the probability of a certain amplitude at a certain time, with darker 
shades corresponding to a higher probability. Probabilities for all four deglitching methods are combined for S0173a. Red lines indicate individual average 
RFs, and orange bars mark main arrivals as in b.
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The converted phases can be extracted from seismograms by 
deconvolving the incoming P wavetrain on the vertical component 
from the radial component, which minimizes complexity due to 
source effects and propagation through Mars’s interior. Individual 
arrivals associated with subreceiver conversions can then be readily 
identified in the resulting P-to-S RF.

Over the past 40 years, RFs have become a standard method to 
study crustal and upper-mantle structure of the Earth33,34 and have 
also been applied to lunar seismic data35,36. See Supplementary 
Discussion 4 and Supplementary Figs. 4-2–4-4 for the specific 
methodology used.

We focus on the early part of P-to-S RFs (0–5 s) of S0173a and 
S0235b, which is related to crustal structure37. Both events have distinct 
seismic arrivals and their epicentres are ~450 km apart, at ~26°−28° 
epicentral distance4. A broadband ‘glitch’ contaminates the VBB 
seismograms of S0173a about 15 s after the P onset (Supplementary  
Figs. 1–9), requiring glitch removal (Supplementary Discussion 5).

Figure 6b,c shows RFs obtained for several deglitching algo-
rithms and RF methods. See Supplementary Discussion 4 for 
details. The variability between individual results provides an esti-
mate of the single-event RF uncertainty. An alternative estimate can 
be obtained by applying transdimensional hierarchical Bayesian 
deconvolution38, which yields an ensemble of RFs compatible with 
the data (Fig. 6c). An initial positive arrival is consistently observed 
for all methods at 2.2–2.4 s, followed by a second positive arrival 
4.6–4.7 s after the P wave. The later part of the RFs shows higher 
variability among different methods.

The same two phases are also observed in the RFs for the 
glitch-free S0235b event. These two quakes are located in dif-
ferent directions from InSight (91o back azimuth for S0173a ver-
sus 74o for S0235b), which suggests that the phases are caused by 
crustal layering beneath the receiver rather than distributed scat-
terers along their propagation paths. Clear multiple converted and 
reflected phases could not yet be unambiguously identified within 
these data. The peak at 2.2–2.4 s indicates a discontinuous veloc-
ity increase between 8 and 11 km depth and an S-wave velocity of  
1.7–2.1 km s−1 within the topmost layer (see Supplementary 
Discussion 4 and Supplementary Figs. 4–9). The nearly constant 
relative timing between the peaks at 2.2–2.4 and 4.6–4.7 s and a 
phase around 7 s observed in some of the different realizations of 
the RF could indicate that these phases are reverberations gener-
ated at the same velocity contrast with comparable travel time for 
each additional reflection. However, the absence of any unambigu-
ous accompanying negative arrivals and the comparatively large 
apparent P-wave incidence angles of more than 25° as derived from 
various polarization measurements (see Supplementary Figs. 4–8) 
argue against reverberations in a near-surface low-velocity layer 
(Supplementary Figs. 4–6 and 4–7) and are more compatible with 
structure at depth causing the later arrivals.

No signals before 2.2 s, including oscillating waveforms as 
expected for a shallow strong impedance contrast, are found. The 
regolith layer is therefore not resolved by the RFs and must be thin-
ner than a few tens of metres (see Supplementary Discussion 4 and 
Supplementary Figs. 4–5), in agreement with our compliance anal-
ysis. The transverse components of the RFs are at the noise level 
of the vertical components, thus we have no evidence for crustal 
anisotropy (Supplementary Figs. 4–5).

First seismic constraints on the Martian crust
Even though large quakes with multiple surface wave arrivals39–41 
or located impacts42 have not yet been detected, SEIS already con-
strains the Martian crust and utilizes a new source of seismic infor-
mation through the interaction of the Martian atmosphere with  
the ground.

SEIS data confirm, with both compliance and RFs, a thin (few 
metres) regolith layer over a more competent layer in the vicinity 

of the lander. Much deeper, a crustal layer with S-wave velocity 
between 1.7 and 2.1 km s−1 extending down to 8 and 11 km depth is 
suggested by the first SEIS RF analysis. Gamma Ray Spectrometer 
chemical mapping43 and geology44 suggest that the uppermost 
crustal layers are composed of basaltic rocks. Velocities reduced  
by up to 50% with respect to Earth’s analogues (Supplementary 
Table 4–1) imply therefore highly altered and/or damaged layers45.

Finally, the attenuations inferred from S0128a, S0173a and 
S0235b are significantly higher than in the lunar crust, suggest-
ing a crust with small amounts of volatiles46. As the diffusivity 
and thickness of the crust remain weakly constrained, we cannot 
entirely reject the possibility that these attenuations reflect energy 
leakage. However, inversions of S0173a and S0235b data indicate 
that absorption may well be the dominant process and is compa-
rable to that of Earth’s crystalline massifs. The Qi from S0173a and 
S0235b signals agrees with the lithospheric Qi proposed prelaunch45. 
Further work will be needed to confirm this interpretation and to 
delineate more precisely the stratification of attenuation in the Mars 
crust and lithosphere.

Additional locatable events, especially at larger epicentral dis-
tances, and complementary methods (for example, noise auto-
correlations), will reduce uncertainties and will provide tighter 
constraints on the elastic and anelastic structure, including the 
depth of the crust/mantle discontinuity. Events with Mw > 4.5 will 
ultimately provide the deep interior’s constraints5,39.
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Methods
Details of methods related to the SEIS raw data analysis are given in the 
Supplementary Information. This section describes in more detail the  
inversion method used in Supplementary Discussions 2 and 4 for shallow layer 
structure inversions.

Subsurface analysis and Supplementary Discussion 2. A Markov chain Monte 
Carlo algorithm is used to sample solutions (that is, physical configurations) of 
the inverse problem that both fit the observations within errors and satisfy known 
(or assumed) physical a priori constraints. We employ a Bayesian probabilistic 
procedure developed50 and tested for prelaunch works39,40,42.

Bayesian approaches51 allow us to go beyond the classical computation of the 
unique best-fitting model by providing a quantitative probabilistic measure of the 
model resolution, uncertainties and non-unicity. One important advantage of this 
method is complete independence from the choice of the starting model.  
To estimate the posterior distribution of the parameters, we employ the 
Metropolis–Hastings algorithm52,53, which samples the model space with a 
sampling density proportional to the unknown posterior PDF. Using a large 
number of iterations, the samples provide a good approximation of the posterior 
distribution for the model parameters.

The algorithm used in the paper is divided into four steps.
(1) The model parameters (Young’s modulus and Poisson’s ratio) are randomly 

sampled in the parameter space. The model is divided into two parts: the regolith 
and the bedrock. The Young’s modulus and Poisson’s ratio at the surface are 
randomly sampled during the inversion. Equations 1 and 20 from ref. 25 are 
then used to compute the whole Young’s modulus and Poisson’s ratio profile as 
a function of depth within the regolith layer. The depth of the regolith/bedrock 
interface is randomly sampled between the surface and 20 m. The bedrock is 
supposed to be made of one layer.

(2) Forward problem computation. The compliance as a function of frequency 
is calculated in the case of a horizontally layered half space23. The solution to the 
elastostatic equation is obtained with a Thomson–Haskell propagator method54.

(3) Computation of the misfit, which determines the difference between 
the observed data and the computed synthetic data. The input compliance as a 
function of frequency data is provided in the form of a two-dimensional matrix, 
which gives a weight to each (frequency, compliance) couple. In practice, each time 
a new model is randomly sampled, a weight is given for each frequency according 
to the compliance value in the two-dimensional matrix. The sum of the weights for 
all the frequencies gives the misfit value.

(4) The current model is accepted or rejected, using the Metropolis–Hastings 
algorithm52,53. This algorithm relies on a randomized decision rule, which accepts 
or rejects the proposed model according to its fit to the data and the prior.

(5) A new model is proposed by randomly perturbing the previously accepted 
model. Here, the sampling of the parameter space is performed using a Gaussian 
function centred on the last accepted value of the parameters.

RF analysis and Supplementary Discussion 4. Five different groups calculated 
RFs to compare the results of different techniques, specifically of different 
deconvolution methods. One of the applied methods is probabilistic and produces 
an ensemble of RFs. For this method, upgoing P and SV waveforms were obtained 
from the Z and R waveforms by applying a free-surface transfer matrix55. As 
this matrix depends on the ray parameter as well as near-surface P- and S-wave 
velocities, these velocities were estimated by minimizing the energy of the SV 
component during the first 2 s of the P-wave arrival34. The deconvolution itself  
was performed by applying the transdimensional hierarchical Bayesian 
deconvolution method38. The method uses a reversible jump Markov chain  
Monte Carlo algorithm to sample one million random realizations of RFs, 
represented by Gaussian pulses of unknown width, lag time and amplitude. The 
number of these pulses in the RFs is also an unknown that is determined during 
the sampling process.

The other four groups worked with deterministic methods. To produce the RFs 
shown in Fig. 6, two groups applied iterative time-domain deconvolution56. The 
code for this method is available at http://eqseis.geosc.psu.edu/cammon/HTML/
RftnDocs/thecodes01.html. Details of parameters used are given in Supplementary 
Discussion 4. One group applied spectral whitening and cross-correlation57. The 
parameters used in the processing and comparison of results with other methods 
are detailed in Supplementary Discussion 4. The final group calculated RFs by 
using a time-domain Wiener filter that transforms the complex P wavetrain on 
the Z component into a band-limited spike58,59. This Wiener filter was applied to 
all three components of the seismogram to produce the RFs. The processing was 
implemented in Seismic Handler (http://www.seismic-handler.org/) by using the 
spiking and fold commands. Results are compared for different parameter settings 
in Supplementary Discussion 4.

Inversion of RFs and apparent S-wave velocities (Supplementary Figs. 4–9)  
was performed using the Neighbourhood Algorithm as implemented in dinver60 
(www.geopsy.org). The forward computation of the RF waveforms in the 
inversion as well as those shown in Supplementary Figs. 4–6 uses the FORTRAN 
code by Shibutani et al.61 contained in the original Neighbourhood Algorithm 
implementation by Sambridge62 (http://www.iearth.org.au/codes/NA/).

Data availability
All InSight SEIS data63 used in this paper are available from the IPGP Data Center, 
IRIS-DMC and NASA PDS; all InSight APSS data are available from NASA PDS 
(https://pds-geosciences.wustl.edu/missions/insight/index.htm). The data used for 
Fig. 2 have been obtained from IRIS/DMC for Black Forest Observatory64 and from 
IPGP Data Center for lunar data (Code XA, http://datacenter.ipgp.fr/data.php). 
The data displayed in Fig. 5 correspond to the following events. A is a broadband 
(1–10-Hz) shallow Moonquake waveform recorded on 13 March 1973, at Apollo 
Station 15; the inferred hypocentre is latitude −84°, longitude −134° (ref. 65). B are 
S0128 and S0173 events described in the main text. C is a broadband (1–10-Hz) 
regional crustal earthquake waveform recorded on 28 April 2016, at the broadband 
station ATE (https://doi.org/10.15778/RESIF.FR); the hypocentre is latitude 46.04°, 
longitude −1.04°, depth 15 km (BCSF bulletin, http://renass.unistra.fr).  
D is a broadband (1–10-Hz) waveform recorded on 22 February 2000, at Mount 
St. Helens station ESD66 (now EDM); the hypocentre is latitude 46.1472°, longitude 
−122.1457°, depth = 10.4 km (event 10495398, PNSN bulletin, https://pnsn.org).  
P and S arrival times for S0128a, S0173a and S0235b are from the MQS47 
catalogue27. The S–P travel-time difference used in the scattering analysis is 75 s, 
compatible with the reported27 value of 84 ± 28 s. Subsets for the models proposed 
for the subsurface and a summary for the upper crust are available (Supplementary  
Tables 1 and 2 for subsurface, Supplementary Table 3 for upper crust). See 
Supplementary Discussions 2 and 4 respectively for more details.

Code availability
See Methods for publicly available codes and for associated algorithms.  
The multiple-scattering simulation codes used in Supplementary Discussion 3 are 
available on request from L.M. (ludovic.margerin@irap.omp.eu).
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