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ABSTRACT
This technical manuscript reports the detailed calculations, and simulations carried
on the case study of the 4-tanks system based on the control procedure proposed
in [2]. The case study illustrates how, starting from a nonminimum phase nonlinear
system with a linear output, one goes about identifying the minimum phase zeros
of the LTM model of the system, calculating a related dummy output, with respect
to which the original nonlinear system is minimum phase. Regulation of the original
output is thus possible using standard static feedback controls.
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1. Case study: The bench-marking 4-tanks system

Consider the case of a 4-tanks system given by

ḣ = f(h) +Bu (1a)

y = Ch (1b)

with h = col{h1, h2, h3, h4}, f(h) = 2F (h)h

F (h) =

−p1(h1) 0 A3

A1
p3(h3) 0

0 −p2(h2) 0 A4

A2
p4(h4)

0 0 −p3(h3) 0
0 0 0 −p4(h4)



B =


γ1k1
A1

0

0 γ2k2
A2

0 (1−γ2)k2
A3

(1−γ1)k1
A4

0

 , C = κt


1 0
0 1
0 0
0 0


>

pi(hi) = ci
√
2ghi

2Aihi
. For the sake of compactness, let bij correspond to the element in

position (i, j) of the input-state matrix B. In particular, hi, Ai and ci are, respectively,
the level of water in the ith-tank, its cross-section area and the cross-section of the
outlet hole for i = 1, 2, 3, 4. The control signals uj with j = 1, 2 correspond to the
voltage applied to jth-pump with kjuj being the corresponding flow. We consider the
problem of locally asymptotically tracking the output of (1) to a desired y? = (h?1, h

?
2)

corresponding to make h? = (h?1, h
?
2, h

?
3, h

?
4)
> with

h?3 =
(c1γ2

√
h?1 − c2(1− γ2)

√
h?2)

2

c23a
2
3γ

2
2

h?4 =
(c2γ1

√
h?2 − c1(1− γ1)

√
h?1)

2

c24a
2
4γ

2
1

for a3 = γ2
1−γ2 −

1−γ1
γ1

and a4 = γ1
1−γ1 −

1−γ2
γ2

a locally asymptotically stable equilibrium
for the closed-loop system under nonlinear feedback.

1.0.1. Analysis of the zero-dynamics

The vector relative degree of (1) is well defined and given by r = (1 1) so that it
exhibits a two-dimensional zero-dynamics. Accordingly, for investigating minimum-
phaseness of (1), one computes the linear tangent model (LTM) at h? with x = h−h?
and A = 2F (h?) with corresponding transfer function matrix

G(s) = κt

(
b11
s+p1

b32 p3
(s+p1) (s+p3)

b41 p4
(s+p2) (s+p4)

b22
s+p2

)
(2)

pi = pi(h
?
i ) > 0 for i = 1, 2, 3, 4 , Smith form as M(s) = diag{ 1

d(s) , z(s)}, with pole-

polynomial d(s) = (s + p1)(s + p2)(s + p3)(s + p4) and zero-polynomial z(s) = s2 +
(p3+p4)s+ p3p4

b11b22
(b11b22−b32b41). Thus, (1) is nonminimum-phase if b11b22−b32b41 < 0



so that one can factorize z(s) = (s − zu)(s − zs) for zu ∈ R+ and zs ∈ R−. As a
consequence, if b11b22−b32b41 < 0, output regulation to y? cannot be achieved through
classical right-inversion even if the relative degree is well-defined.

In the following we show how the factorization procedure detailed in the previous
section allows to deduce a new output ys = Csh and a nonlinear feedback locally
solving the regulation problem with stability for (1).

1.0.2. The new dummy output using matrix transfer function factorization

Because (A,B,C) possesses three distinct poles in general, one gets that the matrix
Gs(s) = diag{1, s − zs}diag{d(s), 1}R(s) is improper for all choices of (L(s), R(s)).
However, for the pair

L(s) =

(
− ψ1(s)
b32 b41

2 p3 p42 (p2−p3) (p3−p4) − p2−p1+p4+s
(p1−p2) (p1−p4)

− ψ2(s)
b32 b41 p3 p4 (p2−p3) (p3−p4) − b41 p4

b11 (p1−p2) (p1−p4)

)

R(s) =

(
b41 p4 (p3 + s) − ψ3(s)

b11 (p1−p2) (p1−p4)

− b11
2 b22 (p1−p2) (p1−p4)

b32 b41 p3 p4 (p2−p3) (p3−p4)
ψ4(s)

b32 b41
2 p3 p42 (p2−p3) (p3−p4)

)

where

ψ1(s) = b11 (p2 + s) (p4 + s)

(
b11 b22 s

4 + b32 b41 p3
3 p4 + b11 b22 p2 s

3 + b11 b22 p3 s
3 + 2 b11 b22 p4 s

3

− b32 b41 p32 p42 − b11 b22 p12 s2 + b11 b22 p4
2 s2 + b11 b22 p1 p3 p4

2 − b11 b22 p12 p3 p4 − b32 b41 p1 p3 p42

+ b32 b41 p1
2 p3 p4 + b32 b41 p2 p3 p4

2 − b32 b41 p2 p32 p4 + b11 b22 p1 p2 s
2 − b11 b22 p12 p3 s+ b11 b22 p1 p4 s

2

+ b11 b22 p1 p4
2 s+ b11 b22 p2 p3 s

2 − b11 b22 p12 p4 s+ b11 b22 p2 p4 s
2 + 2 b11 b22 p3 p4 s

2 + b11 b22 p3 p4
2 s

− b32 b41 p3 p4 s2 − b32 b41 p3 p42 s+ b11 b22 p1 p2 p3 p4 − b32 b41 p1 p2 p3 p4 + b11 b22 p1 p2 p3 s

+ b11 b22 p1 p2 p4 s+ b11 b22 p1 p3 p4 s+ b11 b22 p2 p3 p4 s− b32 b41 p2 p3 p4 s
)

ψ2(s) = (p1 + s) (p3 + s)

(
b32 b41 p3

2 p4 − b32 b41 p3 p42 − b32 b41 p3 p4 s− b32 b41 p2 p3 p4 + b11 b22 p4
2 s

+ b11 b22 p2 p4
2 + 2 b11 b22 p4 s

2 + 2 b11 b22 p2 p4 s+ b11 b22 s
3 + b11 b22 p2 s

2

)
ψ3(s) = (p4 + s)

(
b11 b22 s

3 − b11 b22 p12 p3 − b11 b22 p12 s+ b11 b22 p2 s
2 + b11 b22 p3 s

2 + b11 b22 p4 s
2

+ b11 b22 p1 p2 p3 + b11 b22 p1 p3 p4 − b32 b41 p2 p3 p4

+ b11 b22 p1 p2 s+ b11 b22 p1 p4 s+ b11 b22 p2 p3 s+ b11 b22 p3 p4 s− b32 b41 p3 p4 s
)

ψ4(s) = b11 b22

(
− b11 b22 p12 p4 − b11 b22 p12 s+ b11 b22 p1 p4

2 + b11 b22 p1 p4 s+ b11 b22 p2 p1 p4 + b11 b22 p2 p1 s

+ b32 b41 p3
2 p4 − b32 b41 p3 p42 − b32 b41 p3 p4 s− b32 b41 p2 p3 p4 + b11 b22 p4

2 s+ 2 b11 b22 p4 s
2

+ b11 b22 p2 p4 s+ b11 b22 s
3 + b11 b22 p2 s

2

)

One can obtain a matrix K(s) so getting in the proper factorization for which the
minimum phase proper component;

G̃s(s) =

(
b11
p1+s

b32 p3
(p1+s) (p3+s)

ψ5(s) ψ6(s)

)



where

ψ5(s) =
b32 b41 p4 (β + 2 b11 b22 p2 − b11 b22 p3 + b11 b22 p4 + 2 b11 b22 s)

2β (p2 + s) (p4 + s)
− b11 b22 b32 b41 p4

β (p1 + s)

ψ6(s) =
b22 b32 (β − b11 b22 p3 + b11 b22 p4)

2β (p2 + s)

−
(
b32β(p1 + s)b22 (β − b11 b22 p3 + b11 b22 p4)− 2b32b22 b32 b41 p3 p4

2β (p1 + s) (p3 + s)

)
In the original state space coordinates, a suitable realization of Gs(s) yeids;

ys =

(
1 0 0 0

− b32b41p4
2b11β

b32
2 −

b32(p3+p4)
2β − b22

2 −
b22(p3+p4)

2β
b32 p4
2β

)
h (3)

with β =
√

(p3 + p4)2 − 4 p3p4
b11b22

(b11b22 − b32b41) making the LTM model of (1a)

minimum-phase.

1.0.3. The new dummy output using the normal form

At this point, one can also verify that the dummy output can be obtained directly
using the normal form through an iterative procedure. To this end, note that the
coordinates change

T =


1 0 0 0
0 1 0 0
b41 0 0 −b11
0 b32 −b22 0


puts the LTM at h? of the 4-tanks system into the normal form;

ż1 = R1z + S1η? + a1,1u1 + a1,2u2

ż2 = R2z + S2η? + a2,1u1 + a2,2u2

η̇? = Pz +Q?η?

y1 = z1, y2 = z2

where a1,1 = b11, a2,2 = b22, a1,2 = a2,1 = 0 and

R1 =
(
−p1 b32 p3

b22

)
, R2 =

(
b41 p4
b11

−p2
)
, S1 =

(
0 − p3

b22

)
, S2 =

(
− p4
b11

0
)

P =

(
−b41 (p1 − p4) b32 b41 p3

b22
b32 b41 p4
b11

−b32 (p2 − p3)

)
, Q? =

(
−p4 − b41 p3

b22

− b32 p4
b11

−p3

)

The transformation V putting Q? in Jordan canonical form is;

V =

( β−b11 b22 p3+b11 b22 p4
2 b22 b32 p4

−β+b11 b22 p3−b11 b22 p4
2 b22 b32 p4

1 1

)
=⇒ Q̃ = V QV −1 =

(
zs 0
0 zu

)



Step 1: Fix the first output as ỹs1 = h1 and for the second output the ỹs2 = η2?
corresponding to zu in original h coordinates. Namely, let

ỹs2 = C̃s2h

C̃s2 =
(

0 0 − b22 b32 p4
β

β−b11 b22 p3+b11 b22 p4
2β

)
T−1

=
(
− b32b41p4

2b11β
b32
2 −

b32(p3+p4)
2β − b22

2 −
b22(p3+p4)

2β
b32 p4
2β

)
and testing this output, it has relative degree r = (1 2) and with respect to which
only zs is the corresponding zero. In fact this output ỹs = (ỹs1 ỹs2)> is precisely that
found in (3). Consequently, no need to reiterate and the procedure terminates.

1.0.4. Asymptotic tracking with stability

It is easily checked that, the nonlinear dynamics (1a) with output as in (3) possesses
a well-defined relative degree rs = (1, 2) at h?. Also, it is a matter of computations
to verify that (1a) with output (3) is locally minimum-phase with zero-dynamics η̇s =

qs(0, η
s) verifying ∂qs

∂ηs
(0, ηs?) = zs < 0. At this point, along the lines the previous section

and by exploiting the results in [1, Chapter 5], one gets that output tracking of (1) can
be solved over the dummy output (3) by setting the constant ys? = (ys1,?, y

s
2,?)
> ∈ R2

as solution to y? = Zu(d)y?s which is given by construction as ys? = Csh
?. Accordingly,

for all k0, k1 > 0 the feedback

u=−M−1s (h)

(
cs1f(h) + ys1 − ys1,?

Lfc
s
2f(h)+k1c

s
2f(h)+k0(y

s
2 − ys2,?)

)
(4)

with decoupling matrix

M−1s (h) =

(
cs1B

L2
fc
s
2f(h)B)

)
ensures local asymptotic regulation of y to the desired y? while preserving internal
stability.

1.0.5. Simulations

For completeness, simulations are reported in Figure 1 for the closed-loop system under
the stabilizing feedback designed over the new dummy output highlighting the locally
minimum-phase components of (1). Simulations are performed for the parameters fixed
as in the Table below

A1 [cm2] 28 A3 [cm2] 28
A2 [cm2] 32 A4 [cm2] 32
c1 [cm2] 0.071 c3 [cm2] 0.071
c2 [cm2] 0.057 c4 [cm2] 0.057
kt [V/cm] 1 g [cm/s2] 981

γ1 0.43 γ2 0.34
k1 65.12 k2 94.12

and with y? = (7.1, 6.2)> corresponding to h? = (7.1, 6.2, 3.58, 1.632)>. In partic-
ular, with this choice of parameters, the plant is nonminum-phase with the zeros of
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Figure 1.: The four tank model under stable dynamic inversion.

LTM model at the desired equilibrium provided by zu = 0.018 and zs = −0.0789. The
gains of the controller (4) are fixed as (k0, k1) = (1, 2). Simulations report the story of
the original and dummy outputs plus the internal dynamics (that is the water levels
of the third and fourth tank) while proving the effectiveness of the proposed control
design approach.
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