

On the right-inversion of partially minimum-phase systems: case study

Mohamed Elobaid, Mattia Mattioni, Salvatore Monaco, Dorothée

Normand-Cyrot

► To cite this version:

Mohamed Elobaid, Mattia Mattioni, Salvatore Monaco, Dorothée Normand-Cyrot. On the right-inversion of partially minimum-phase systems: case study. [Research Report] Sapienza University of Rome. 2020. hal-02526676v3

HAL Id: hal-02526676 https://hal.science/hal-02526676v3

Submitted on 14 Feb2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

REPORT

On the right-inversion of partially minimum-phase systems: case study

Mohamed Elobaid, Mattia Mattioni, Salvatore Monaco, Dorothee Normand Cyrot

ARTICLE HISTORY

Compiled January 31, 2022

ABSTRACT

This technical manuscript reports the detailed calculations, and simulations carried on the case study of the 4-tanks system based on the control procedure proposed in [2]. The case study illustrates how, starting from a nonminimum phase nonlinear system with a linear output, one goes about identifying the minimum phase zeros of the LTM model of the system, calculating a related dummy output, with respect to which the original nonlinear system is minimum phase. Regulation of the original output is thus possible using standard static feedback controls.

KEYWORDS

Contents

1 Case study: The bench-marking 4-tanks system			
	1.0.1	Analysis of the zero-dynamics	2
	1.0.2	The new dummy output using matrix transfer function factor-	
		ization	3
	1.0.3	The new dummy output using the normal form	4
	1.0.4	Asymptotic tracking with stability	5
	1.0.5	Simulations	5

1. Case study: The bench-marking 4-tanks system

Consider the case of a 4-tanks system given by

$$\dot{h} = f(h) + Bu \tag{1a}$$
$$u = Ch \tag{1b}$$

with $h = col\{h_1, h_2, h_3, h_4\}, f(h) = 2F(h)h$

$$F(h) = \begin{pmatrix} -p_1(h_1) & 0 & \frac{A_3}{A_1}p_3(h_3) & 0\\ 0 & -p_2(h_2) & 0 & \frac{A_4}{A_2}p_4(h_4)\\ 0 & 0 & -p_3(h_3) & 0\\ 0 & 0 & 0 & -p_4(h_4) \end{pmatrix}$$
$$B = \begin{pmatrix} \frac{\gamma_1 k_1}{A_1} & 0\\ 0 & \frac{\gamma_2 k_2}{A_2}\\ 0 & \frac{(1-\gamma_2)k_2}{A_3}\\ \frac{(1-\gamma_1)k_1}{A_4} & 0 \end{pmatrix}, \quad C = \kappa_t \begin{pmatrix} 1 & 0\\ 0 & 1\\ 0 & 0\\ 0 & 0 \end{pmatrix}^{\top}$$

 $p_i(h_i) = \frac{c_i \sqrt{2gh_i}}{2A_i h_i}$. For the sake of compactness, let b_{ij} correspond to the element in position (i, j) of the input-state matrix B. In particular, h_i , A_i and c_i are, respectively, the level of water in the i^{th} -tank, its cross-section area and the cross-section of the outlet hole for i = 1, 2, 3, 4. The control signals u_j with j = 1, 2 correspond to the voltage applied to j^{th} -pump with $k_j u_j$ being the corresponding flow. We consider the problem of locally asymptotically tracking the output of (1) to a desired $y_{\star} = (h_1^{\star}, h_2^{\star})^{\top}$ with

$$h_3^{\star} = \frac{(c_1\gamma_2\sqrt{h_1^{\star}} - c_2(1-\gamma_2)\sqrt{h_2^{\star}})^2}{c_3^2 a_3^2 \gamma_2^2}$$
$$h_4^{\star} = \frac{(c_2\gamma_1\sqrt{h_2^{\star}} - c_1(1-\gamma_1)\sqrt{h_1^{\star}})^2}{c_4^2 a_4^2 \gamma_1^2}$$

for $a_3 = \frac{\gamma_2}{1-\gamma_2} - \frac{1-\gamma_1}{\gamma_1}$ and $a_4 = \frac{\gamma_1}{1-\gamma_1} - \frac{1-\gamma_2}{\gamma_2}$ a locally asymptotically stable equilibrium for the closed-loop system under nonlinear feedback.

1.0.1. Analysis of the zero-dynamics

The vector relative degree of (1) is well defined and given by $r = (1 \ 1)$ so that it exhibits a two-dimensional zero-dynamics. Accordingly, for investigating minimumphaseness of (1), one computes the linear tangent model (LTM) at h^* with $x = h - h^*$ and $A = 2F(h^*)$ with corresponding transfer function matrix

$$G(s) = \kappa_t \begin{pmatrix} \frac{b_{11}}{s+p_1} & \frac{b_{32} p_3}{(s+p_1)(s+p_3)}\\ \frac{b_{41} p_4}{(s+p_2)(s+p_4)} & \frac{b_{22}}{s+p_2} \end{pmatrix}$$
(2)

 $p_i = p_i(h_i^{\star}) > 0$ for i = 1, 2, 3, 4, Smith form as $M(s) = \text{diag}\{\frac{1}{d(s)}, z(s)\}$, with pole-polynomial $d(s) = (s + p_1)(s + p_2)(s + p_3)(s + p_4)$ and zero-polynomial $z(s) = s^2 + (p_3 + p_4)s + \frac{p_3p_4}{b_{11}b_{22}}(b_{11}b_{22} - b_{32}b_{41})$. Thus, (1) is nonminimum-phase if $b_{11}b_{22} - b_{32}b_{41} < 0$

so that one can factorize $z(s) = (s - z_u)(s - z_s)$ for $z_u \in \mathbb{R}^+$ and $z_s \in \mathbb{R}^-$. As a consequence, if $b_{11}b_{22} - b_{32}b_{41} < 0$, output regulation to y_{\star} cannot be achieved through classical right-inversion even if the relative degree is well-defined.

In the following we show how the factorization procedure detailed in the previous section allows to deduce a new output $y_s = C_s h$ and a nonlinear feedback locally solving the regulation problem with stability for (1).

1.0.2. The new dummy output using matrix transfer function factorization

Because (A, B, C) possesses three distinct poles in general, one gets that the matrix $G_s(s) = \text{diag}\{1, s - z_s\}$ diag $\{d(s), 1\}R(s)$ is improper for all choices of (L(s), R(s)). However, for the pair

$$L(s) = \begin{pmatrix} -\frac{\psi_1(s)}{b_{32}b_{41}{}^2 p_3 p_4{}^2 (p_2 - p_3) (p_3 - p_4)} & -\frac{p_2 - p_1 + p_4 + s}{(p_1 - p_2) (p_1 - p_4)} \\ -\frac{\psi_2(s)}{b_{32}b_{41} p_3 p_4 (p_2 - p_3) (p_3 - p_4)} & -\frac{b_{41} p_4}{b_{11} (p_1 - p_2) (p_1 - p_4)} \end{pmatrix}$$

$$R(s) = \begin{pmatrix} b_{41} p_4 (p_3 + s) & -\frac{\psi_3(s)}{b_{12} b_{21} (p_1 - p_2) (p_1 - p_4)} \\ -\frac{b_{11}{}^2 b_{22} (p_1 - p_2) (p_1 - p_4)}{b_{32} b_{41} p_3 p_4 (p_2 - p_3) (p_3 - p_4)} & \frac{\psi_4(s)}{b_{32} b_{41}{}^2 p_3 p_4{}^2 (p_2 - p_3) (p_3 - p_4)} \end{pmatrix}$$

where

$$\begin{split} \psi_{1}(s) &= b_{11} \; (p_{2} + s) \; \left(b_{11} \, b_{22} \, s^{4} + b_{32} \, b_{41} \, p_{3}^{3} \, p_{4} + b_{11} \, b_{22} \, p_{2} \, s^{3} + b_{11} \, b_{22} \, p_{3} \, s^{3} + 2 \, b_{11} \, b_{22} \, p_{4} \, s^{3} \\ &- b_{32} \, b_{41} \, p_{3}^{2} \, p_{4}^{2} - b_{11} \, b_{22} \, p_{1}^{2} \, s^{2} + b_{11} \, b_{22} \, p_{1} \, p_{3} \, p_{4}^{2} - b_{11} \, b_{22} \, p_{1}^{2} \, p_{3} \, p_{4} - b_{32} \, b_{41} \, p_{1} \, p_{3} \, p_{4}^{2} \\ &+ b_{32} \, b_{41} \, p_{1}^{2} \, p_{3} \, p_{4} + b_{32} \, b_{41} \, p_{2} \, p_{3} \, p_{4}^{2} - b_{32} \, b_{41} \, p_{2} \, p_{3}^{2} \, p_{4} + b_{11} \, b_{22} \, p_{1} \, p_{2} \, s^{2} - b_{11} \, b_{22} \, p_{1}^{2} \, p_{3} \, s + b_{11} \, b_{22} \, p_{1} \, p_{3} \, s^{2} \\ &+ b_{11} \, b_{22} \, p_{1} \, p_{4}^{2} \, s + b_{11} \, b_{22} \, p_{3} \, s^{2} - b_{11} \, b_{22} \, p_{1}^{2} \, p_{3} \, p_{4} + b_{11} \, b_{22} \, p_{1} \, p_{2} \, p_{3} \, p_{4} \, s^{2} + b_{11} \, b_{22} \, p_{1} \, p_{2} \, p_{3} \, p_{4} \, s^{2} + b_{11} \, b_{22} \, p_{1} \, p_{2} \, p_{3} \, p_{4} \, s^{2} + b_{11} \, b_{22} \, p_{1} \, p_{2} \, p_{3} \, p_{4} \, s^{2} + b_{11} \, b_{22} \, p_{1} \, p_{2} \, p_{3} \, p_{4} \, s^{2} + b_{11} \, b_{22} \, p_{1} \, p_{2} \, p_{3} \, p_{4} \, s^{2} + b_{11} \, b_{22} \, p_{1} \, p_{2} \, p_{3} \, p_{4} \, s^{2} + b_{11} \, b_{22} \, p_{1} \, p_{2} \, p_{3} \, p_{4} \, s^{2} \, s^{2} \, b_{11} \, p_{2} \, p_{3} \, p_{4} \, s^{2} \, s^{2} \, b_{11} \, p_{2} \, p_{3} \, p_{4} \, s^{2} \, s^{2} \, b_{11} \, p_{2} \, p_{1} \, p_{2} \, p_{3} \, p_{4} \, s^{2} \, s^{2} \, b_{11} \, p_{2} \, p_{1} \, p_{2} \, p_{3} \, p_{4} \, s^{2} \, s^{2} \, b_{11} \, p_{2} \, p_{3} \, p_{4} \, s^{2} \, b_{11} \, b_{22} \, p_{1} \, p_{3} \, p_{4} \, s^{2} \, s^{2} \, s^{2} \, b_{11} \, b_{22} \, p_{1}^{2} \, p_{3} \, p_{4} \, s^{2} \, s^{2} \, b_{11} \, b_{22} \, p_{2} \, s^{2} \, b_{11} \, b_{22} \, p_{1} \, p_{3} \, p_{4} \, s^{2} \, b_{11} \, b_{22} \, p_{1} \, p_{3} \, s^{2} \, s^{2} \, b_{11} \, b_{22} \, p_{1} \, s^{2} \, s^{2} \, b_{11} \, b_{22} \, p_{1} \, s^{2} \, s^{2} \, b_{11} \, b_{22} \, p_{2} \, s^{2} \, b_{11} \, b_{22} \, p_{1} \, s^{2} \, b_{11} \, b_{22} \, p_{2} \, p_{1} \, s^{2} \, b_{11} \, b_{22} \, p_{2}$$

One can obtain a matrix K(s) so getting in the proper factorization for which the minimum phase proper component;

$$\tilde{G}_{s}(s) = \begin{pmatrix} \frac{b_{11}}{p_{1}+s} & \frac{b_{32} p_{3}}{(p_{1}+s) (p_{3}+s)} \\ \psi_{5}(s) & \psi_{6}(s) \end{pmatrix}$$

where

$$\begin{split} \psi_5(s) &= \frac{b_{32} \, b_{41} \, p_4 \, \left(\beta + 2 \, b_{11} \, b_{22} \, p_2 - b_{11} \, b_{22} \, p_3 + b_{11} \, b_{22} \, p_4 + 2 \, b_{11} \, b_{22} \, s\right)}{2 \, \beta \, \left(p_2 + s\right) \, \left(p_4 + s\right)} - \frac{b_{11} \, b_{22} \, b_{32} \, b_{41} \, p_4}{\beta \, \left(p_1 + s\right)} \\ \psi_6(s) &= \frac{b_{22} \, b_{32} \, \left(\beta - b_{11} \, b_{22} \, p_3 + b_{11} \, b_{22} \, p_4\right)}{2 \, \beta \, \left(p_2 + s\right)} \\ &- \left(\frac{b_{32} \beta(p_1 + s) b_{22} \, \left(\beta - b_{11} \, b_{22} \, p_3 + b_{11} \, b_{22} \, p_4\right) - 2 b_{32} b_{22} \, b_{32} \, b_{41} \, p_3 \, p_4}{2 \, \beta \, \left(p_1 + s\right) \left(p_3 + s\right)}\right) \end{split}$$

In the original state space coordinates, a suitable realization of $G_s(s)$ yields;

$$y_s = \begin{pmatrix} 1 & 0 & 0 & 0\\ -\frac{b_{32}b_{41}p_4}{2b_{11}\beta} & \frac{b_{32}}{2} - \frac{b_{32}(p_3 + p_4)}{2\beta} & -\frac{b_{22}}{2} - \frac{b_{22}(p_3 + p_4)}{2\beta} & \frac{b_{32}p_4}{2\beta} \end{pmatrix} h$$
(3)

with $\beta = \sqrt{(p_3 + p_4)^2 - 4\frac{p_3p_4}{b_{11}b_{22}}(b_{11}b_{22} - b_{32}b_{41})}$ making the LTM model of (1a) minimum-phase.

1.0.3. The new dummy output using the normal form

At this point, one can also verify that the dummy output can be obtained directly using the normal form through an iterative procedure. To this end, note that the coordinates change

$$T = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ b_{41} & 0 & 0 & -b_{11} \\ 0 & b_{32} & -b_{22} & 0 \end{pmatrix}$$

puts the LTM at h^* of the 4-tanks system into the normal form;

$$\begin{aligned} \dot{z}_1 &= R_1 z + S_1 \eta_\star + a_{1,1} u_1 + a_{1,2} u_2 \\ \dot{z}_2 &= R_2 z + S_2 \eta_\star + a_{2,1} u_1 + a_{2,2} u_2 \\ \dot{\eta}_\star &= P z + Q_\star \eta_\star \\ y_1 &= z_1, \qquad y_2 = z_2 \end{aligned}$$

where $a_{1,1} = b_{11}$, $a_{2,2} = b_{22}$, $a_{1,2} = a_{2,1} = 0$ and

$$R_{1} = \begin{pmatrix} -p_{1} & \frac{b_{32} p_{3}}{b_{22}} \end{pmatrix}, \quad R_{2} = \begin{pmatrix} \frac{b_{41} p_{4}}{b_{11}} & -p_{2} \end{pmatrix}, \quad S_{1} = \begin{pmatrix} 0 & -\frac{p_{3}}{b_{22}} \end{pmatrix}, \quad S_{2} = \begin{pmatrix} -\frac{p_{4}}{b_{11}} & 0 \end{pmatrix}$$
$$P = \begin{pmatrix} -b_{41} & (p_{1} - p_{4}) & \frac{b_{32} b_{41} p_{3}}{b_{22}} \\ \frac{b_{32} b_{41} p_{4}}{b_{11}} & -b_{32} & (p_{2} - p_{3}) \end{pmatrix}, \quad Q_{\star} = \begin{pmatrix} -p_{4} & -\frac{b_{41} p_{3}}{b_{22}} \\ -\frac{b_{32} p_{4}}{b_{11}} & -p_{3} \end{pmatrix}$$

The transformation V putting Q_{\star} in Jordan canonical form is;

$$V = \begin{pmatrix} \frac{\beta - b_{11} b_{22} p_3 + b_{11} b_{22} p_4}{2 b_{22} b_{32} p_4} & -\frac{\beta + b_{11} b_{22} p_3 - b_{11} b_{22} p_4}{2 b_{22} b_{32} p_4} \\ 1 & 1 \end{pmatrix} \implies \tilde{Q} = V Q V^{-1} = \begin{pmatrix} z_s & 0 \\ 0 & z_u \end{pmatrix}$$

Step 1: Fix the first output as $\tilde{y}_1^s = h_1$ and for the second output the $\tilde{y}_2^s = \eta_{\star}^2$ corresponding to z_u in original h coordinates. Namely, let

$$\begin{split} \tilde{y}_2^s &= \tilde{C}_2^s h \\ \tilde{C}_2^s &= \begin{pmatrix} 0 & 0 & -\frac{b_{22}b_{32}p_4}{\beta} & \frac{\beta - b_{11}b_{22}p_3 + b_{11}b_{22}p_4}{2\beta} \end{pmatrix} T^{-1} \\ &= \begin{pmatrix} -\frac{b_{32}b_{41}p_4}{2b_{11}\beta} & \frac{b_{32}}{2} - \frac{b_{32}(p_3 + p_4)}{2\beta} & -\frac{b_{22}}{2} - \frac{b_{22}(p_3 + p_4)}{2\beta} & \frac{b_{32}p_4}{2\beta} \end{pmatrix} \end{split}$$

and testing this output, it has relative degree $r = (1 \ 2)$ and with respect to which only z_s is the corresponding zero. In fact this output $\tilde{y}^s = (\tilde{y}_1^s \ \tilde{y}_2^s)^\top$ is precisely that found in (3). Consequently, no need to reiterate and the procedure terminates.

1.0.4. Asymptotic tracking with stability

It is easily checked that, the nonlinear dynamics (1a) with output as in (3) possesses a well-defined relative degree $r_s = (1, 2)$ at h^* . Also, it is a matter of computations to verify that (1a) with output (3) is locally minimum-phase with zero-dynamics $\dot{\eta}^s = q_s(0, \eta^s)$ verifying $\frac{\partial q_s}{\partial \eta_s}(0, \eta^s_\star) = z_s < 0$. At this point, along the lines the previous section and by exploiting the results in [1, Chapter 5], one gets that output tracking of (1) can be solved over the dummy output (3) by setting the constant $y^s_\star = (y^s_{1,\star}, y^s_{2,\star})^\top \in \mathbb{R}^2$ as solution to $y_\star = Z_u(d)y^*_s$ which is given by construction as $y^s_\star = C_s h^*$. Accordingly, for all $k_0, k_1 > 0$ the feedback

$$u = -M_s^{-1}(h) \begin{pmatrix} c_1^s f(h) + y_1^s - y_{1,\star}^s \\ L_f c_2^s f(h) + k_1 c_2^s f(h) + k_0 (y_2^s - y_{2,\star}^s) \end{pmatrix}$$
(4)

with decoupling matrix

$$M_s^{-1}(h) = \begin{pmatrix} c_1^s B \\ \mathcal{L}_f^2 c_2^s f(h) B) \end{pmatrix}$$

ensures local asymptotic regulation of y to the desired y^* while preserving internal stability.

1.0.5. Simulations

For completeness, simulations are reported in Figure 1 for the closed-loop system under the stabilizing feedback designed over the new dummy output highlighting the locally minimum-phase components of (1). Simulations are performed for the parameters fixed as in the Table below

$A_1 \ [cm^2]$	28	$A_3 \ [cm^2]$	28
$A_2 \ [cm^2]$	32	$A_4 \ [cm^2]$	32
$c_1 \ [cm^2]$	0.071	$c_3 \ [cm^2]$	0.071
$c_2 \ [cm^2]$	0.057	$c_4 \ [cm^2]$	0.057
$k_t \ [V/cm]$	1	$g \ [cm/s^2]$	981
γ_1	0.43	γ_2	0.34
k_1	65.12	k_2	94.12

and with $y_{\star} = (7.1, \ 6.2)^{\top}$ corresponding to $h^{\star} = (7.1, \ 6.2, \ 3.58, 1.632)^{\top}$. In particular, with this choice of parameters, the plant is nonminum-phase with the zeros of

Figure 1.: The four tank model under stable dynamic inversion.

LTM model at the desired equilibrium provided by $z_u = 0.018$ and $z_s = -0.0789$. The gains of the controller (4) are fixed as $(k_0, k_1) = (1, 2)$. Simulations report the story of the original and dummy outputs plus the internal dynamics (that is the water levels of the third and fourth tank) while proving the effectiveness of the proposed control design approach.

References

- [1] Alberto Isidori, Nonlinear Control Systems, Springer-Verlag, 1995.
- [2] M. Elobaid, M. Mattioni, S. Monaco and D. Normand-Cyrot, On the right-inversion of partially minimum phase systems, submitted for review to the CDC 2020.