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. The case study illustrates how, starting from a nonminimum phase nonlinear system with a linear output, one goes about identifying the minimum phase zeros of the LTM model of the system, calculating a related dummy output, with respect to which the original nonlinear system is minimum phase. Regulation of the original output is thus possible using standard static feedback controls.

1. Case study: The bench-marking 4-tanks system Consider the case of a 4-tanks system given by ḣ = f (h) + Bu (1a) y = Ch (1b)

with h = col{h 1 , h 2 , h 3 , h 4 }, f (h) = 2F (h)h F (h) =    -p 1 (h 1 ) 0 A3 A1 p 3 (h 3 ) 0 0 -p 2 (h 2 ) 0 A4 A2 p 4 (h 4 ) 0 0 -p 3 (h 3 ) 0 0 0 0 -p 4 (h 4 )    B =      γ1k1 A1 0 0 γ2k2 A2 0 (1-γ2)k2 A3 (1-γ1)k1 A4 0      , C = κ t     1 0 0 1 0 0 0 0     p i (h i ) = ci √ 2ghi
2Aihi . For the sake of compactness, let b ij correspond to the element in position (i, j) of the input-state matrix B. In particular, h i , A i and c i are, respectively, the level of water in the i th -tank, its cross-section area and the cross-section of the outlet hole for i = 1, 2, 3, 4. The control signals u j with j = 1, 2 correspond to the voltage applied to j th -pump with k j u j being the corresponding flow. We consider the problem of locally asymptotically tracking the output of (1) to a desired y = (h 1 , h 2 ) corresponding to make h = (h 1 , h 2 , h 3 , h 4 ) with

h 3 = (c 1 γ 2 h 1 -c 2 (1 -γ 2 ) h 2 ) 2 c 2 3 a 2 3 γ 2 2 h 4 = (c 2 γ 1 h 2 -c 1 (1 -γ 1 ) h 1 ) 2 c 2 4 a 2 4 γ 2 1
for a 3 = γ2 1-γ2 -1-γ1 γ1 and a 4 = γ1 1-γ1 -1-γ2 γ2 a locally asymptotically stable equilibrium for the closed-loop system under nonlinear feedback.

Analysis of the zero-dynamics

The vector relative degree of (1) is well defined and given by r = (1 1) so that it exhibits a two-dimensional zero-dynamics. Accordingly, for investigating minimumphaseness of (1), one computes the linear tangent model (LTM) at h with x = h -h and A = 2F (h ) with corresponding transfer function matrix

G(s) = κ t b11 s+p1 b32 p3 (s+p1) (s+p3) b41 p4 (s+p2) (s+p4) b22 s+p2
(2) so that one can factorize z(s) = (s -z u )(s -z s ) for z u ∈ R + and z s ∈ R -. As a consequence, if b 11 b 22 -b 32 b 41 < 0, output regulation to y cannot be achieved through classical right-inversion even if the relative degree is well-defined.

p i = p i (h i ) > 0 for i = 1, 2, 3, 4 , Smith form as M (s) = diag{ 1 d(s) , z ( 
In the following we show how the factorization procedure detailed in the previous section allows to deduce a new output y s = C s h and a nonlinear feedback locally solving the regulation problem with stability for (1).

The new dummy output using matrix transfer function factorization

Because (A, B, C) possesses three distinct poles in general, one gets that the matrix G s (s) = diag{1, s -z s }diag{d(s), 1}R(s) is improper for all choices of (L(s), R(s)). However, for the pair

L(s) = - ψ1(s) b32 b41 2 p3 p4 2 (p2-p3) (p3-p4) -p2-p1+p4+s (p1-p2) (p1-p4) - ψ2(s) b32 b41 p3 p4 (p2-p3) (p3-p4) - b41 p4 b11 (p1-p2) (p1-p4) R(s) = b 41 p 4 (p 3 + s) - ψ3(s) b11 (p1-p2) (p1-p4) -b11 2 b22 (p1-p2) (p1-p4) b32 b41 p3 p4 (p2-p3) (p3-p4) ψ4(s) b32 b41 2 p3 p4 2 (p2-p3) (p3-p4)
where In the original state space coordinates, a suitable realization of G s (s) yeids;

ψ 1 (s) = b 11 (p 2 + s) (p 4 + s
y s = 1 0 0 0 -b32b41p4 2b11β b32 2 -b32(p3+p4) 2β -b22 2 -b22(p3+p4) 2β b32 p4 2β h (3) with β = (p 3 + p 4 ) 2 -4 p3p4 b11b22 (b 11 b 22 -b 32 b 41
) making the LTM model of (1a) minimum-phase.

The new dummy output using the normal form

At this point, one can also verify that the dummy output can be obtained directly using the normal form through an iterative procedure. To this end, note that the coordinates change

T =     1 0 0 0 0 1 0 0 b 41 0 0 -b 11 0 b 32 -b 22 0    
puts the LTM at h of the 4-tanks system into the normal form;

ż1 = R 1 z + S 1 η + a 1,1 u 1 + a 1,2 u 2 ż2 = R 2 z + S 2 η + a 2,1 u 1 + a 2,2 u 2 η = P z + Q η y 1 = z 1 , y 2 = z 2 where a 1,1 = b 11 , a 2,2 = b 22 , a 1,2 = a 2,1 = 0 and R 1 = -p 1 b32 p3 b22 , R 2 = b41 p4 b11 -p 2 , S 1 = 0 -p3 b22 , S 2 = -p4 b11 0 P = -b 41 (p 1 -p 4 ) b32 b41 p3 b22 b32 b41 p4 b11 -b 32 (p 2 -p 3 ) , Q = -p 4 -b41 p3 b22 -b32 p4 b11 -p 3
The transformation V putting Q in Jordan canonical form is;

V = β-b11 b22 p3+b11 b22 p4 2 b22 b32 p4 -β+b11 b22 p3-b11 b22 p4 2 b22 b32 p4 1 1 =⇒ Q = V QV -1 = z s 0 0 z u
Step 1: Fix the first output as ỹs 1 = h 1 and for the second output the ỹs 2 = η 2 corresponding to z u in original h coordinates. Namely, let

ỹs 2 = Cs 2 h Cs 2 = 0 0 -b22 b32 p4 β β-b11 b22 p3+b11 b22 p4 2 β T -1 = -b32b41p4 2b11β b32 2 -b32(p3+p4) 2β -b22 2 -b22(p3+p4) 2β b32 p4 2β
and testing this output, it has relative degree r = (1 2) and with respect to which only z s is the corresponding zero. In fact this output ỹs = (ỹ s 1 ỹs

2 ) is precisely that found in (3). Consequently, no need to reiterate and the procedure terminates.

Asymptotic tracking with stability

It is easily checked that, the nonlinear dynamics (1a) with output as in (3) possesses a well-defined relative degree r s = (1, 2) at h . Also, it is a matter of computations to verify that (1a) with output (3) is locally minimum-phase with zero-dynamics ηs = q s (0, η s ) verifying ∂qs ∂ηs (0, η s ) = z s < 0. At this point, along the lines the previous section and by exploiting the results in [1, Chapter 5], one gets that output tracking of (1) can be solved over the dummy output (3) by setting the constant y s = (y s 1, , y s 2, ) ∈ R 2 as solution to y = Z u (d)y s which is given by construction as y s = C s h . Accordingly, for all k 0 , k 1 > 0 the feedback

u=-M -1 s (h) c s 1 f (h) + y s 1 -y s 1, L f c s 2 f (h)+k 1 c s 2 f (h)+k 0 (y s 2 -y s 2, ) (4) 
with decoupling matrix

M -1 s (h) = c s 1 B L 2 f c s 2 f (h)B)
ensures local asymptotic regulation of y to the desired y while preserving internal stability.

Simulations

For completeness, simulations are reported in Figure 1 for the closed-loop system under the stabilizing feedback designed over the new dummy output highlighting the locally minimum-phase components of (1). Simulations are performed for the parameters fixed as in the Table below and with y = (7.1, 6.2) corresponding to h = (7.1, 6.2, 3.58, 1.632) . In particular, with this choice of parameters, the plant is nonminum-phase with the zeros of LTM model at the desired equilibrium provided by z u = 0.018 and z s = -0.0789. The gains of the controller (4) are fixed as (k 0 , k 1 ) = (1, 2). Simulations report the story of the original and dummy outputs plus the internal dynamics (that is the water levels of the third and fourth tank) while proving the effectiveness of the proposed control design approach.

A 1 [cm 2 ] 28 A 3 [cm 2 ] 28 A 2 [cm 2 ] 32 A 4 [cm 2 ] 32 c 1 [cm 2 ] 0.071 c 3 [cm 2 ] 0.071 c 2 [cm 2 ] 0.057 c 4 [cm 2 ] 0.057 k t [V /cm] 1 g [cm/s 2 ]

  s)}, with polepolynomial d(s) = (s + p 1 )(s + p 2 )(s + p 3 )(s + p 4 ) and zero-polynomial z(s) = s 2 + (p 3 +p 4 )s+ p3p4 b11b22 (b 11 b 22 -b 32 b 41 ). Thus, (1) is nonminimum-phase if b 11 b 22 -b 32 b 41 < 0

2 ++ b 11 b 22 p 2 p 4 2 + 2 b 2 ++ b 32 b 41 p 3 2 p 4 -b 32 b 41 p 3 p 4 2 -b 32 b 41 p 3 p 4 s -b 32 b 41 p 2 p 3 p 4 + b 11 b 22 p 4 2 s + 2 b 11 b 22 p 4 s 2 + b 11 b 22 p 2 p 4 s + b 11 b 22 s 3 + b 11 b 22 p 2 s 2

 2222222 ) b 11 b 22 s 4 + b 32 b 41 p 3 3 p 4 + b 11 b 22 p 2 s 3 + b 11 b 22 p 3 s 3 + 2 b 11 b 22 p 4 s 3 -b 32 b 41 p 3 2 p 4 2 -b 11 b 22 p 1 2 s 2 + b 11 b 22 p 4 2 s 2 + b 11 b 22 p 1 p 3 p 4 2 -b 11 b 22 p 1 2 p 3 p 4 -b 32 b 41 p 1 p 3 p 4 b 32 b 41 p 1 2 p 3 p 4 + b 32 b 41 p 2 p 3 p 4 2 -b 32 b 41 p 2 p 3 2 p 4 + b 11 b 22 p 1 p 2 s 2 -b 11 b 22 p 1 2 p 3 s + b 11 b 22 p 1 p 4 s 2 + b 11 b 22 p 1 p 4 2 s + b 11 b 22 p 2 p 3 s 2 -b 11 b 22 p 1 2 p 4 s + b 11 b 22 p 2 p 4 s 2 + 2 b 11 b 22 p 3 p 4 s 2 + b 11 b 22 p 3 p 4 2 s -b 32 b 41 p 3 p 4 s 2 -b 32 b 41 p 3 p 4 2 s + b 11 b 22 p 1 p 2 p 3 p 4 -b 32 b 41 p 1 p 2 p 3 p 4 + b 11 b 22 p 1 p 2 p 3 s + b 11 b 22 p 1 p 2 p 4 s + b 11 b 22 p 1 p 3 p 4 s + b 11 b 22 p 2 p 3 p 4 s -b 32 b 41 p 2 p 3 p 4 s ψ 2 (s) = (p 1 + s) (p 3 + s) b 32 b 41 p 3 2 p 4 -b 32 b 41 p 3 p 4 2 -b 32 b 41 p 3 p 4 s -b 32 b 41 p 2 p 3 p 4 + b 11 b 22 p 4 2 s 11 b 22 p 4 s 2 + 2 b 11 b 22 p 2 p 4 s + b 11 b 22 s 3 + b 11 b 22 p 2 s 2 ψ 3 (s) = (p 4 + s) b 11 b 22 s 3 -b 11 b 22 p 1 2 p 3 -b 11 b 22 p 1 2 s + b 11 b 22 p 2 s 2 + b 11 b 22 p 3 s 2 + b 11 b 22 p 4 s b 11 b 22 p 1 p 2 p 3 + b 11 b 22 p 1 p 3 p 4 -b 32 b 41 p 2 p 3 p 4 + b 11 b 22 p 1 p 2 s + b 11 b 22 p 1 p 4 s + b 11 b 22 p 2 p 3 s + b 11 b 22 p 3 p 4 s -b 32 b 41 p 3 p 4 s ψ 4 (s) = b 11 b 22 -b 11 b 22 p 1 2 p 4 -b 11 b 22 p 1 2 s + b 11 b 22 p 1 p 4 2 + b 11 b 22 p 1 p 4 s + b 11 b 22 p 2 p 1 p 4 + b 11 b 22 p 2 p 1 s One can obtain a matrix K(s) so getting in the proper factorization for which the minimum phase proper component; b 32 b 41 p 4 (β + 2 b 11 b 22 p 2 -b 11 b 22 p 3 + b 11 b 22 p 4 + 2 b 11 b 22 s) 2 β (p 2 + s) (p 4 + s) -b 11 b 22 b 32 b 41 p 4 β (p 1 + s) ψ 6 (s) = b 22 b 32 (β -b 11 b 22 p 3 + b 11 b 22 p 4 ) 2 β (p 2 + s) -b 32 β(p 1 + s)b 22 (β -b 11 b 22 p 3 + b 11 b 22 p 4 ) -2b 32 b 22 b 32 b 41 p 3 p 4 2 β (p 1 + s) (p 3 + s)
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 1 Figure 1.: The four tank model under stable dynamic inversion.