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ABSTRACT
This technical manuscript reports the detailed calculations, and simulations carried
on the case study of the 4-tanks system based on the control procedure proposed
in [2]. The case study illustrates how, starting from a nonminimum phase nonlinear
system with a linear output, one goes about identifying the minimum phase zeros
of the LTM model of the system, calculating a related dummy output, with respect
to which the original nonlinear system is minimum phase. Regulation of the original
output is thus possible using standard static feedback controls.
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1. Case study: The bench-marking 4-tanks system

Consider the case of a 4-tanks system given by

ḣ = f(h) +Bu (1a)

y = Ch (1b)

with h = col{h1, h2, h3, h4}, f(h) = 2F (h)h
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>
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2Aihi
. For the sake of compactness, let bij correspond to the element in

position (i, j) of the input-state matrix B. In particular, hi, Ai and ci are, respectively,
the level of water in the ith-tank, its cross-section area and the cross-section of the
outlet hole for i = 1, 2, 3, 4. The control signals uj with j = 1, 2 correspond to the
voltage applied to jth-pump with kjuj being the corresponding flow. We consider the
problem of locally asymptotically tracking the output of (1) to a desired y? = (h?1, h
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for a3 = γ2
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and a4 = γ1
1−γ1 −
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γ2

a locally asymptotically stable equilibrium
for the closed-loop system under nonlinear feedback.

1.0.1. Analysis of the zero-dynamics

The vector relative degree of (1) is well defined and given by r = (1 1) so that it exhibits
a two-dimensional zero-dynamics. Accordingly, for investigating minimum-phaseness
of (1), one computes the linear tangent model (LTM) at h? of the form

ẋ = Ax+Bu, y = Cx (2)

with x = h− h? and A = 2F (h?) with corresponding transfer function matrix

P (s) = κt

(
b11
s+p1

b32 p3
(s+p1) (s+p3)

b41 p4
(s+p2) (s+p4)

b22
s+p2

)
(3)



with pi = pi(h
?
i ) > 0 for i = 1, 2, 3, 4 with Smith form as M(s) = diag{ 1

d(s) , z(s)}
with pole-polynomial d(s) = (s + p1)(s + p2)(s + p3)(s + p4) and zero-polynomial
z(s) = s2 + (p3 + p4)s + p3p4

b11b22
(b11b22 − b32b41). Thus, (1) is nonminimum-phase if

b11b22 − b32b41 < 0 so that one can factorize z(s) = (s − zu)(s − zs) for zu ∈ R+ and
zs ∈ R−. As a consequence, if b11b22 − b32b41 < 0, output regulation to y? cannot be
achieved through classical right-inversion even if the relative degree is well-defined.

In the following we show how the procedure detailed in Section III of [2] allows to
deduce a new output ys = Csh and a nonlinear feedback locally solving the regulation
problem with stability for (1).

1.0.2. The new dummy output

By virtue of Remark 3.1 in [2], because (A,B,C) possesses three distinct poles in
general, one gets that the matrix Ps(s) = diag{1, s− zs}diag{d(s), 1}R(s) is improper
for all choices of (L(s), R(s)). However, by suitably setting K(s)1 so to make P̃s(s) =
K(s)Ps(s) rational one gets the dummy output

ys =

(
1 0 0 0

− b32b41p4
2b11β

b32
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b32(p3+p4)
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h (4)

with β =
√

(p3 + p4)2 − 4 p3p4
b11b22

(b11b22 − b32b41) making the LTM model of (1)

minimum-phase.

1.0.3. Asymptotic tracking with stability

It is easily checked that, the nonlinear dynamics (1a) with output as in (4) possesses
a well-defined relative degree rs = (1, 2) at h?. Also, it is a matter of computations
to verify that (1a) with output as in (4) is locally minimum-phase with zero-dynamics

η̇s = qs(0, η
s) verifying ∂qs

∂ηs
(0, ηs?) = zs < 0. At this point, along the lines of Remark 4.3

in [2] and by exploiting the results in [1, Chapter 5], one gets that output tracking of (1)
can be solved over the dummy output (4) by setting the constant ys? = (ys1,?, y

s
2,?)
> ∈ R2

as solution to y? = Zu(d)y?s which is given by construction as ys? = Csh
?. Accordingly,

for all k0, k1 > 0 the feedback

u=−M−1s (h)

(
cs1f(h) + ys1 − ys1,?

Lfc
s
2f(h)+k1c

s
2f(h)+k0(y

s
2 − ys2,?)

)
(5)

with decoupling matrix

M−1s (h) =

(
cs1B

L2
fc
s
2f(h)B)

)
ensures local asymptotic tracking of y(t) to the desired y? while preserving internal
stability.



1.0.4. Simulations

For completeness, simulations are reported in Figure 1 for the closed-loop system under
the stabilizing feedback designed over the new dummy output highlighting the locally
minimum-phase components of (1). Simulations are performed for the parameters fixed
as in the Table below

A1 [cm2] 28 A3 [cm2] 28
A2 [cm2] 32 A4 [cm2] 32
c1 [cm2] 0.071 c3 [cm2] 0.071
c2 [cm2] 0.057 c4 [cm2] 0.057
kt [V/cm] 1 g [cm/s2] 981

γ1 0.43 γ2 0.34
k1 65.12 k2 94.12

and with y? = (7.1, 6.2)> corresponding to h? = (7.1, 6.2, 3.58, 1.632)>. In partic-
ular, with this choice of parameters, the plant is nonminum-phase with the zeros of
LTM model at the desired equilibrium provided by zu = 0.018 and zs = −0.0789. The
gains of the controller (5) are fixed as (k0, k1) = (1, 2). Simulations report the story of
the original and dummy outputs plus the internal dynamics (that is the water levels
of the third and fourth tank) while proving the effectiveness of the proposed control
design approach.
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Figure 1.: The four tank model under stable dynamic inversion.


