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A quantum system interacts with its environment, if ever so slightly, no matter how much care is
put into isolating it. As a consequence, quantum bits (qubits) undergo errors, putting dauntingly
difficult constraints on the hardware suitable for quantum computation. New strategies are emerging
to circumvent this problem by encoding a qubit non-locally across the phase space of a physical
system. Since most sources of decoherence are due to local fluctuations, the foundational promise is
to exponentially suppress errors by increasing a measure of this non-locality. Prominent examples
are topological qubits which delocalize quantum information over real space and where spatial
extent measures non-locality. In this work, we encode a qubit in the field quadrature space of a
superconducting resonator endowed with a special mechanism that dissipates photons in pairs. This
process pins down two computational states to separate locations in phase space. As we increase
this separation, we measure an exponential decrease of the bit-flip rate while only linearly increasing
the phase-flip rate. Since bit-flips are continuously and autonomously corrected at the single qubit
level, only phase-flips are left to be corrected via a one-dimensional quantum error correction code.
This exponential scaling demonstrates that resonators with non-linear dissipation are promising
building blocks for universal fault-tolerant quantum computation with drastically reduced hardware
overhead.

Protecting quantum states against decoherence is a
fundamental problem in physics, and is pivotal for the
future of quantum computing. The theory of quantum
error correction (QEC) and its fault-tolerant implemen-
tation [1, 2] provides a solution. In QEC, groups of noisy
physical qubits are arranged together to encode qubits
with reduced noise, and fault-tolerance establishes that
noisy quantum computers can operate reliably if the noise
is below a threshold. A strong focus in quantum archi-
tecture design has been to increase this threshold to a
value within experimental reach, but the required hard-
ware overhead remains daunting [3]. Therefore, there is a
pressing need for new ideas to encode and protect quan-
tum information.

Let us start by understanding why classical informa-
tion is so stable. Consider a light switch, which has two
stable states labeled 0 and 1. Their stability is provided
by two properties. First, in order to change states one
needs to apply a force to overcome an energy barrier,
usually provided by the deformation of a spring. Second,
friction between mechanical parts is essential for stabil-
ity: when a perturbation randomly deviates the switch
from its stable state, the gained entropy must be dissi-
pated into a reservoir in order to recover the initial state.
Can these two properties be transposed to protect quan-
tum information?

The |0〉 and |1〉 states of a qubit, such as electronic or-
bitals of an ion or energy levels of a non-linear resonator,

often have overlapping supports in phase space. First,
one needs to isolate the two states so that they no longer
overlap [4, 5] and separate them by an energy barrier [6–
11]. The second property, friction (or dissipation) leaks
information about the system and therefore seems incom-
patible with the requirement for a qubit to adopt quan-
tum superpositions of states. Remarkably, there exists a
dissipative mechanism, known as two-photon dissipation,
which stabilizes the |0〉 and |1〉 states of a qubit without
affecting quantum superpositions of the two [12].

Recent superconducting circuit experiments [13, 14]
have demonstrated that a resonator endowed with two-
photon dissipation develops a manifold of steady states
spanned by two states |0〉α and |1〉α, lying in two distinct
locations of the resonator two-dimensional (2D) phase
space. The combination of dissipation and non-locality
should prevent random swaps between |0〉α and |1〉α (bit-
flips). However, the circuit architectures mediating the
two-photon dissipation impinged errors on the resonator.
These experiments fell short of crossing the demanding
threshold where the correction is faster than the occur-
rence of all errors, including those induced by the cor-
recting mechanism itself.

In this work, we measure an exponential decrease of
the bit-flip rate as we increase the separation between
states |0〉α and |1〉α, while only linearly increasing the
phase-flip rate (errors that scramble the phase of a super-
position of |0〉α and |1〉α). The bit-flip time reaches 1 ms,
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Figure 1. The cat-qubit (a) Quantum information is en-
coded in a resonator (blue mirrors) coupled to its environment
through a special apparatus (hatched mirror) where pairs of
photons are exchanged at rate κ2 (double arrows). (b) This
dynamics is illustrated by a pseudo-potential V (purple) de-
fined over the resonator quadrature phase space (β plane).
The cat-qubit states |0〉α and |1〉α lie in the minima of V and
are separated in phase space as shown by their Wigner rep-
resentations (stacked color plots). Bit-flip errors, which ran-
domly swap |0〉α and |1〉α, are exponentially suppressed by
increasing this separation. Crucially, this pseudo-potential
does not alter quantum superpositions of |0〉α and |1〉α such
as the Schrödinger cat state |+〉α.

a 300-fold improvement over the energy decay time of the
resonator. This was made possible by inventing a circuit
which mediates a pristine non-linear coupling between
the resonator and its environment, thus circumventing
the problems of previous implementations [13, 14]. Our
qubit combines two unique features: only phase-flips re-
main to be actively corrected [15], and its 2D phase space
can be accessed to perform gates [15–18], making it an
ideal building block for scalable fault-tolerant quantum
computation with a significant reduction in hardware
overhead [15].

We follow the paradigm of cat-qubits [16, 19] where
information is encoded in quantum superpositions of res-
onator states (see Fig. 1):

|0〉α =
1√
2

(|+〉α + |−〉α) = |+α〉+O(e−2|α|2)

|1〉α =
1√
2

(|+〉α − |−〉α) = |−α〉+O(e−2|α|2)

where |±〉α = N± (|α〉 ± |−α〉), |α〉 is a coher-
ent state with complex amplitude α, and N± =

1/
√

2(1± e−2|α|2). All these states contain an average
number of photons ≈ |α|2 for |α| > 1. A significant

source of errors in a resonator is energy decay which col-
lapses all states (|0〉α and |1〉α included) towards the
vacuum, thus erasing any encoded information. This
decay is balanced by a mechanism where the resonator
exchanges only pairs of photons with its environment
(Fig. 1a) [12], known as two photon dissipation. This
dynamics is modeled by the following loss operator

L2 =
√
κ2

(
a2 − α2

)
, (1)

where a is the annihilation operator of the resonator, κ2

is the rate at which pairs of photons are exchanged with
the environment and the term in α2 results from a drive
which inserts pairs of photons [20]. The cat-qubit states
|0〉α, |1〉α and all their superpositions are steady states of
this dynamics. A convenient tool to visualize the semi-
classical dynamics of (1) is the pseudo-potential V de-
fined over the complex plane as −∇V (β) = dβ

dt , where β
is the expectation value of a at time t in a semi-classical
approximation [20]. Stable steady states are local min-
ima of V (see Fig. 1b) and correspond to β = ±α. An
error process can disrupt the stability of these states and
induce transitions between them. By analogy with a par-
ticle in a double well potential, tunneling (or bit-flips)
from one well to another is exponentially suppressed in
the separation between the two wells (here defined as
|α|2), as long as the error process fulfills two criteria: it
has to be local and sufficiently weak. An error process
is local if it transforms a state into neighboring states
in phase space [21]. As an example, dominant errors
such as photon loss, gain and dephasing are local. More-
over, the effective error rate κerr must be weaker than
the confining rate κconf = 2|α|2κ2 [20] inherited from the
confining potential V , in order for the cat-qubit states
to remain localized near the potential minima. The out-
standing challenge to observe an exponential increase in
the bit-flip time is therefore to engineer κconf > κerr for
all dominant local error processes.

Two-photon exchange between a resonator and its en-
vironment does not occur spontaneously. Instead, it is
synthesized by engineering an interaction that exchanges
pairs of photons of the cat-qubit resonator with one pho-
ton of an intentionally lossy mode referred to as the buffer
[13]. The interaction Hamiltonian takes the form

Hi/~ = g2a
†2b + g∗2a

2b† , (2)

where b is the annihilation operator of the buffer and
g2 is the interaction strength. Adding a resonant drive
on the buffer, we recover (1) with κ2 ≈ 4|g2|2/κb and
α2 = −εd/g∗2 , where εd is the drive amplitude and κb is
the buffer energy decay rate, engineered to be larger than
g2 [13, 22]. Conveniently, the separation |α|2 between
the cat-qubit states is readily tunable in situ since it is
proportional to the buffer drive amplitude.

We implement our cat-qubit in a circuit quantum elec-
trodynamics architecture described in Fig 2a operated at
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Figure 2. Circuit diagram and implementation (a) The cat-qubit resonator (blue) is coupled on one end to a transmon
qubit and a readout resonator (green) to measure its Wigner function, and on the other end to the buffer (red), a lumped
element resonator connected to ground through a non-linear element coined the Asymmetrically Threaded SQUID (ATS). The
ATS consists of a SQUID shunted by an inductance, forming two loops. Pumping the ATS at frequency ωp = 2ωa−ωb (purple
arrow), where ωa,b are the cat-qubit and buffer frequencies, mediates the exchange of two photons of the cat-qubit (blue arrows)
with one photon of the buffer (red arrows) (b) False color optical image of the ATS. The shunt inductance is made of an array
of 5 Josephson junctions (marked by large red crosses). The left and right flux lines (purple) are connected to the same input
through an on-chip hybrid (not represented). They carry the radio-frequency pump and the DC current IΣ , which thread both
loops with flux ϕΣ . The bottom flux line (yellow) carries current I∆ and threads each loop with flux ±ϕ∆ . Combining these
two controls, we bias the ATS at the π/0 asymmetric DC working point. (c) Measured buffer frequency (color) as a function
of ϕΣ (x-axis) and ϕ∆ (y-axis), around the working point ϕΣ , ϕ∆ = π/2, π/2 (white dot). As expected, for ϕΣ = π/2 (open
SQUID), the buffer frequency does not depend on ϕ∆ . We operate the ATS by modulating the flux along the orthogonal
direction ϕΣ (purple arrow). From this measurement, we extract all the ATS parameters [20].

10 mK. It consists of a sputtered niobium film on a silicon
substrate patterned into coplanar waveguide resonators.
The cat-qubit mode resonates at ωa/2π = 8.0381 GHz,
has a single photon lifetime T1 = 3.0 µs and is probed
through a transmon qubit coupled to a readout resonator
followed by a parametric amplifier. At the flux operating
point, the buffer mode resonates at ωb/2π = 4.8336 GHz
and has an energy decay rate κb/2π = 13 MHz.

It is a technical challenge to engineer the interaction
(2) without inducing spurious effects which are detrimen-
tal for the protection of quantum information. Examples
of such effects are induced relaxation [23, 24], escape to
unconfined states [25] and quasiparticle generation [26].
To mitigate these effects, the interaction (2) is induced by
a novel non-linear dipole: the Asymmetrically Threaded
SQUID (ATS, Fig 2b). The ATS consists of a symmet-
ric SQUID (Superconducting Quantum Interference De-
vice) shunted in its center by a large inductance, thus
forming two loops. Here the inductance is built from an
array of 5 Josephson junctions. The ATS mediates an

interaction of the form U = −2EJ cos(ϕΣ) cos(ϕ + ϕ∆),
where EJ is the Josephson energy of the SQUID junc-
tions, ϕ is the phase across the dipole, and 2ϕ

Σ,∆ are
the sum and differences of flux threading the two loops
[20]. We bias the ATS at ϕΣ = ϕ∆ = π/2, or equiv-
alently, we thread the left and right loops with flux π
and 0, respectively. In addition, we drive the sum port
with a radio-frequency flux pump ε(t). At this bias point
U = −2EJ sin(ε(t)) sin(ϕ). The ATS is coupled to the
buffer and cat-qubit, so that ϕ is a linear combination of
a,a†, b, b†, and sin(ϕ) contains only odd powers of these
operators. The desired interaction (2) is present in the
expansion of sin(ϕ), and is resonantly selected by a flux
pump frequency ωp = 2ωa − ωb [27]. In contrast with
previous strategies [13, 14], the ATS mediates a pristine
two-photon coupling, since (2) is the only leading order
non-rotating term, the presence of the inductive shunt
prevents instabilities [28], and the device operates at a
first order flux insensitive point (Fig 2c). These features
are key in order not to introduce inherent error processes
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Figure 3. Exponential increase of the bit-flip time with the cat size. (a) The bit-flip time (y-axis) is measured (open
circles) as a function of the cat size defined as |α|2 (x-axis). Up to |α|2 ≈ 3.5, Tbit-flip undergoes an exponential increase to
≈ 0.8 ms, rising by a factor of 4.2 per added photon (solid line). The bit-flip time then saturates (dashed line is a guide for
the eye) for |α|2 ≥ 5 at 1 ms, a factor of 300 larger than the cat-qubit resonator lifetime T1 in the absence of the pump and
drive. Each circle is obtained from measurements such as in (b) for the circle indicated by the blue arrow. (b) The cat-qubit is
initialized in |0〉α, for a cat size |α|2 = 5.4. After applying the pump and drive for a variable duration (x-axis), the population
P (y-axis) of |0〉α (top curve) and |1〉α (bottom curve) is measured. The data (open circles) are fitted to decaying exponential
functions (solid lines) from which we extract the bit-flip time. (c) Each panel displays the measured Wigner function of the
cat-qubit after a pump and drive duration indicated on the right of each plot. Labels 1-5 mark the correspondence with (b).
The cat-qubit is initialized in |0〉α (top panel) and over a millisecond timescale, the population escapes towards |1〉α (lower
panels). The two-photon dissipation ensures that the cat-qubit resonator state remains entirely in the steady state manifold
spanned by |0〉α and |1〉α.

that cannot be corrected by two-photon dissipation.

The root advantage of the cat-qubit is that its com-
putational states |0〉α and |1〉α can be made arbitrarily
long-lived simply by increasing the cat size |α|2, pro-
vided that κconf > κerr. In this experiment, the dom-
inant error is due to energy decay so that κerr/2π =
(2πT1)−1 = 53 kHz [20], and κconf = 2|α|2κ2 with a
measured κ2/2π = 40 kHz (from which we infer g2/2π =
360 kHz). Hence, we enter the regime κconf > κerr as
soon as |α|2 > 0.6. We have measured that for each
added photon in the cat-qubit state, the bit-flip time is
multiplied by 4.2. This exponential scaling persists up to
|α|2 ≈ 3.5, and the bit-flip time saturates for |α|2 ≥ 5 at
1 ms, a 300-fold improvement over the resonator intrinsic
lifetime (see Fig. 3). We expect a saturation when the
corrected bit flip rate reaches the rate of residual errors
which are not correctable, such as non-local errors. In the
present experiment, we attribute this saturation to the
coupling with the transmon employed for the resonator
tomography [20], which has a thermal occupation of 1%,
a lifetime T1,q = 5 µs and is dispersively coupled to the
cat-qubit resonator with a rate χ/2π = 720 kHz. Over a
timescale in the millisecond range, the transmon acquires
a thermal excitation that shifts the cat-qubit resonator
frequency by χ. This triggers a rotation of the resonator
states which overcomes the confining potential since in
this experiment χ � κconf/2 [20] (note that tomogra-
phy protocols compatible with smaller values of χ have

been recently demonstrated [5, 29]). During an average
time T1,q, the resonator states acquire an angle of order
χT1,q � 2π. When the transmon excitation decays, the
rotation stops and the two-photon dissipation brings the
resonator state back into the cat-qubit computational ba-
sis. By virtue of the dissipative nature of the protection
mechanism, this process may result in a bit-flip but does
not cause any leakage.

Schrödinger cat states like |±〉α living in a resonator
with a lifetime T1, lose their coherence at a rate 2|α|2/T1

[30]. In the cat-qubit paradigm, this translates into a
phase-flip rate which increases linearly with the cat size
|α|2. In addition, our cat-qubit undergoes a flux pump,
a drive and non-linear interactions, which could further
increase the phase-flip rate. We measure the phase-
flip rate for increasing |α|2 and confirm a linear scal-
ing (Fig. 4a). Moving towards three dimensional cav-
ities and engineering ever-improving non-linear interac-
tions should decrease the phase-flip rate below a thresh-
old where a line repetition code can actively correct re-
maining errors [15].

In conclusion, we have observed the exponential de-
crease of the bit-flip rate between our cat-qubit states
|0〉α and |1〉α, as a function of their separation in phase
space, while only linearly increasing their phase-flip rate.
Such an exponential scaling is necessary to bridge the
gap between the modest performance of quantum hard-
ware and the exquisite performance needed for quantum
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Figure 4. Linear increase of the phase-flip rate with the cat size. (a) The phase-flip rate (y-axis) is measured as
a function of the cat size |α|2. The data (open circles) follow a linear trend (solid line) as expected for the decay rate of a
Schrödinger cat coherence Γphase-flip = 2|α|2/T1,eff . We measure T1,eff = 2.0 µs, comparable to the intrinsic resonator lifetime of
3.0 µs. Each circle is obtained from measurements such as in (b) for the circle indicated by the blue arrow. (b) The cat-qubit is
prepared in the initial states |±〉α, for a cat size |α|2 = 2.6. After applying the pump and drive for a variable duration (x-axis),
〈σαx 〉± is measured for each initial state and the difference is represented on the y-axis. The X Pauli operator of the cat-qubit
σαx corresponds to the photon number parity. The data (open circles) are fitted to a decaying exponential (solid line) from
which we extract the phase-flip rate. (c) Each panel displays the measured Wigner function of the cat-qubit after a pump and
drive duration indicated on the right of each plot. Labels 1-5 mark the correspondence with (b). The cat-qubit is initialized
in the |+〉α state and the positive and negative fringes demonstrate the quantum nature of this initial state (top panel). The
fringe contrast is reduced by single photon loss which mixes |+〉α with |−〉α.

computation [3]. This was made possible by inventing
a Josephson circuit which mediates a pristine non-linear
coupling between our cat-qubit mode and its environ-
ment. Further improving the lifetime of the cavity to the
state of the art of a millisecond [31] and a cat size of
|α|2 ≈ 5 (resp. 10) should lead to a bit-flip time of ≈ 1
second (resp. 0.5 hour), and a phase-flip time of ≈ 100 µs
(resp. 50 µs). With such a long bit-flip time, the entire
effort of active QEC will be focused on correcting the only
significant error: phase-flips. In addition, conditional ro-
tations in the 2D phase space of our cat-qubit form a
universal set of gates, thus bypassing the need for magic
states. These features suggest a significant reduction in
hardware overhead for QEC [15].
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SUPPLEMENTARY MATERIALS

Full device and wiring

The circuit consists of a sputtered niobium film with a thickness of 120 nm deposited on a 280 µm-thick wafer of
intrinsic silicon. The main circuit is etched after an optical lithography step. The Josephson junctions are made of
evaporated aluminum through a PMMA/MAA resist mask patterned in a distinct e-beam lithography step. A single
Dolan bridge is used to make the small junctions of the ATS and of the transmon, and a series of 3 Dolan bridges
delimit the 5-junction array which serves as the ATS inductor. The full device layout and the experiment wiring are
displayed in Figs. S1, S2.

Readout

Transmon

Cat-Qubit

�I�I�� I�, Pump

Buffer Filters

Buffer port

Cat-Qubit portTomo port

Buffer

Cat-Qubit

25 µm

150 µm

1 mm

(a)

(b)

(c)

Figure S1. Full device layout. (a) False color optical image of the ATS. Note that the 5 junction symbols are separated for
clarity, the actual junctions are much closer and centered in the middle of the arm. (b) False color optical image of the buffer.
The buffer (red) is strongly coupled to its transmission line via an interdigitated capacitor (top). It is also capacitively coupled
to the cat-qubit resonator (blue). This is actually a picture of a twin sample where this coupling was smaller. In panel (c),
the real size of the coupling capacitor is shown. (c) Full device layout. The cat-qubit resonator is coupled on its other side
to a transmon qubit, itself coupled to a readout resonator which together enable to perform the cat-qubit tomography. After
the interdigitated capacitor, the buffer input is filtered via three λ/4-stub filters. These stop-band filters are centered at the
cat-qubit resonance frequency to mitigate its direct coupling to the input line of the buffer [S8] (b). The on-chip hybrid along
the pump path (purple), equally splits the pump tone to RF-flux bias the ATS with the right symmetry. The black lines linking
two dots are a schematic representation of the crucial wirebonds of the device. The wirebonds linking the pump input to the
on-chip hybrid where implemented to reduce the area of the loop delimited by the center conductor and the ground plane,
leading to a reduced sensitivity to flux noise.

Hamiltonian derivation

In this section, we derive the potential energy of the ATS dipole alone, and then calculate the full system Hamiltonian
when the ATS mediates a non-linear coupling between the buffer and cat-qubit modes.
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Figure S2. RF and DC wiring of the dilution refrigerator. Note that the pump and drive tones are attenuated at the
base plate via directional couplers so that the attenuated power is dissipated at higher fridge stages, far from the sample. The
IΣ DC current and the RF pump signal are combined at 20 mK with a bias-tee. We have used a homemade “Snail Parametric
Amplifier” (SPA) [S5].

The potential energy of the ATS dipole element

Let us first derive the potential energy of the ATS element alone. Its equivalent circuit is represented in red in
Fig. S3 and the phase across its inductor ϕ is the only degree of freedom (here we assume that the coupling capacitor
to the cat-qubit mode is replaced by an open circuit). The potential energy of the ATS reads

U(ϕ) =
1

2
EL,bϕ

2 − EJ,1 cos(ϕ+ ϕext,1)− EJ,2 cos(ϕ− ϕext,2) . (S1)

Due to fabrication imperfections, the ATS junctions are not symmetric. We introduce EJ and ∆EJ such that
EJ,1 = EJ + ∆EJ and EJ,2 = EJ −∆EJ . We obtain

U(ϕ) =
1

2
EL,bϕ

2 − 2EJ cos(ϕ
Σ

) cos(ϕ+ ϕ
∆

) + 2∆EJ sin(ϕ
Σ

) sin(ϕ+ ϕ
∆

) , (S2)
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EJ, 1     EL, b          EC, b      EJ, 2

EC, c

Buffer

EL, a          EC, a

Cat-Qubit

ext, 1 ext, 2

Figure S3. Equivalent circuit diagram. The cat-qubit (blue), a linear resonator, is capacitively coupled to the buffer (red). One
recovers the circuit of Fig. 2 by replacing the buffer inductance with a 5-junction array and by setting ϕΣ = (ϕext,1 +ϕext,2)/2
and ϕ∆ = (ϕext,1−ϕext,2)/2. Not shown here: the buffer is capacitively coupled to a transmission line, the cat-qubit resonator
is coupled to a transmon qubit

where ϕΣ = (ϕext,1 + ϕext,2)/2 and ϕ∆ = (ϕext,1 − ϕext,2)/2. We DC bias the ATS at the asymmetric flux bias point
ϕΣ = ϕ∆ = π/2 (this is a saddle point of the buffer frequency map). In addition, an RF flux bias on ϕΣ is applied,
so that

ϕ
Σ

= π/2 + ε(t) , with ε(t) = ε0 cos(ωpt) (S3)
ϕ

∆
= π/2 . (S4)

The time-dependent potential at first order in ε(t) then reads

U(ϕ) =
1

2
EL,bϕ

2 − 2EJε(t) sin(ϕ) + 2∆EJ cos(ϕ) . (S5)

This potential is an unbounded function of ϕ, which prevents the system from escaping towards higher energy states
in the presence of the pump [S6, S7]. In practice, with the 5-junction array replacing the inductance, the confining
part of the potential is replaced by 5EJ,L cos(ϕ/5) where EJ,L = 5EL,b is the Josephson energy of each individual
junction of the array. This potential is no longer unbounded, however the bound is high enough (5EJ,L � 2EJε0) for
our pump power regime.

In the ideal case (∆EJ = 0), this potential only produces odd powers of ϕ from the sine non-linearity. A small
asymmetry of the junctions produces small even powers of ϕ, leading to parasitic Kerr non-linearities. Typically
|∆EJ/EJ | ≈ 10%. In the following we assume ∆EJ = 0 for simplicity.

The coupled buffer and cat-qubit resonators

We now consider the buffer and cat-qubit modes, and their coupling through the ATS dipole element. The full
Hamiltonian reads

H = ~ωa,0a†a + ~ωb,0b†b− 2EJε(t) sin (ϕb + ϕa) (S6)
with ϕa = ϕa(a + a†) , ϕb = ϕb(b + b†) (S7)

where a/b are the annihilation operators of the cat-qubit and buffer modes, ωa/b,0 their resonant frequencies, and
ϕa/b their zero point phase fluctuations across the ATS dipole. Due to the circuit geometry, we expect ϕb � ϕa.
When expanding the sine up to third order in ϕ = ϕb + ϕa we get

H = ~ωa,0a†a + ~ωb,0b†b− 2EJε(t)ϕb(b + b†)− 2EJε(t)ϕa(a + a†)

+
1

3
EJε(t) (ϕb + ϕa)

3
(S8)
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The first two terms of the expansion are drives at frequency ωp on the buffer and cat-qubit respectively. They can be
absorbed in the frame displaced by ξa(t) = ξae

−iωpt and ξb(t) = ξbe
−iωpt for a and b respectively, where

ξa/b −−−−−−→
t�1/κa/b

i(EJ/~)ε0ϕa/b

κa/b/2 + i(ωa/b,0 − ωp)
(S9)

In this displaced frame, the Hamiltonian reads

Hdisp = ~ωa,0a†a + ~ωb,0b†b

+
1

3
EJε(t)

(
ϕb(b + b† + ξbe

−iωpt + ξ∗b e
iωpt) + ϕa(a + a† + ξae

−iωpt + ξ∗ae
iωpt)

)3

(S10)

In practice, the buffer mode is driven with an additional microwave drive at frequency ωd, not included here for
simplicity. We place ourselves in the frame rotating at (ωp + ωd)/2 and ωd for a and b respectively. In this rotated
frame, the Hamiltonian reads

Hrot = ~
(
ωa,0 −

ωp + ωd
2

)
a†a + ~ (ωb,0 − ωd) b†b

+
1

3
EJε(t)

(
ϕb(be

−iωdt + b†eiωdt + ξbe
−iωpt + ξ∗b e

iωpt) + ϕa(ae−i
ωp+ωd

2 t + a†ei
ωp+ωd

2 t + ξae
−iωpt + ξ∗ae

iωpt)
)3

Performing the rotating wave approximation (RWA), we get

HRWA/~ =

(
ωa −

ωp + ωd
2

)
a†a + (ωb − ωd) b†b + g∗2a

2b† + g2a
†2b , (S11)

where the modes frequencies are AC-Stark shifted to ωa/b = ωa/b,0 −∆a/b and

~∆a/b =
1

3
EJϕ

2
a/b (Re(ξb)ϕb + Re(ξa)ϕa) (S12)

with ~g2 = EJε0ϕ
2
aϕb/2. When we verify the frequency matching condition

ωd = ωb, ωp = 2ωa − ωb ,

we recover Eq. (2), which we recall here

Hi/~ = g∗2a
2b† + g2a

†2b .

Circuit parameters

Most of the circuit parameters can be readily deduced from standard circuit-QED measurements and are gathered
in Table S1. Here we explain the methodology we used to deduce the 6 dipole parameters of Fig. S3 (see Table S2) and
the mapping of (I

Σ
, I

∆
) to (ϕ

Σ
, ϕ

∆
). Independently of this mapping, the ATS saddle point is unambiguously found.

At this flux point, EJ cos(ϕ
Σ

) = 0, and we directly measure ωa0
and ωb,0. The energies EJ and EL,b are computed

from the Ambegaokar-Baratoff and the room temperature measurements of neighbouring test junction resistances.
The general linear transformation mapping (I

Σ
, I

∆
) to (ϕ

Σ
, ϕ

∆
) is found by fitting the measured buffer frequency as a

function of (IΣ , I∆) (see Fig. S4c,d). The impedance Za of the cat-qubit resonator is estimated from the aspect ratio
of the coplanar waveguide geometry. The energy EC,c is adjusted to match the measured anti-crossing of the buffer
and cat-qubit mode when I

Σ
is varied (see Fig. S4b).

Semi-classical analysis

In this section, we compute the semi-classical dynamics of the cat-qubit resonator in the presence of various
imperfections (single photon loss and detuning). We gain insight into these dynamics by introducing a pseudo-
potential function. For a more complete approach, we refer the reader to Refs. [S9, S10].
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Cat-qubit mode
ωa/2π 8.03805 GHz

ωa,0/2π 8.0389 GHz

T1 3 µs

κa/2π 53 kHz

χaa/2π −7 kHz

Buffer
ωb/2π 4.8336 GHz

ωb,0/2π 4.886 GHz

κb/2π 13 MHz

χbb/2π −32 MHz

χba/2π 0.79 MHz

Pump
ωp/2π 11.2425 GHz

Transmon
ωq/2π 4.4156 GHz

T1,q 5 µs

T2,q 8 µs

χqq/2π 180 MHz

χqa/2π 720 kHz

π/χqa 0.69 µs

Readout
ωr/2π 6.4598 GHz

κr/2π 1.47 MHz

Table S1. Measured system parameters at the ATS working point. The pump shifts the cat-qubit resonator and buffer
frequencies. The frequencies in the absence of the pump are noted ωa/b,0 and those in its presence are denoted ωa/b. The Kerr
couplings χmn enter the full Hamiltonian in the form −χmnm†mn†n when m 6= n and −χmm

2
m†

2
m2, where m,n denote the

mode indices.

Circuit parameters
ωa,0/2π 8.0389 GHz

Za 90 Ω

ωb,0/2π 4.886 GHz

EC,c/h 720 MHz

EL,b/h 45 GHz

EJ/h 90 GHz

Dipole parameters
EL,a/h 96.6 GHz

EC,a/h 92.7 MHz

EC,b/h 73.5 MHz

EC,c/h 720 MHz

EL,b/h 45 GHz

EJ/h 90 GHz

Table S2. Measured and estimated circuit parameters (left), and their corresponding dipole energies (right).

Two-photon dynamics

Under two-photon dissipation, the cat-qubit resonator state ρ undergoes the following dynamics

d

dt
ρ = κ2D[a2 − α2]ρ , (S13)

where the Lindblad operator D is defined for any operator O as D[O]ρ = OρO†− 1
2ρO

†O− 1
2O
†Oρ. Any combination

of the states |0, 1〉α is a steady state of this dynamics. Moreover, these steady states are global attractors. To gain
insight, we restrict this dynamics to the set of coherent states ρ(t) = |β(t)〉 〈β(t)|, and introduce the pseudo-potential
V defined over the resonator phase space as −∇V (β) = dβ

dt . This pseudo-potential depicts in which direction of the
phase space a coherent state |β〉 evolves, and coherent steady states of the dynamics are the minima of V . Following
ref. [S1], we have

dβ

dt
= −κ2β

∗(β2 − α2) . (S14)

In the following we introduce x = Re(β) and y = Im(β) and we consider α real. Separating the real and imaginary
part of equation (S14), we get

dx

dt
= −κ2

(
x3 + xy2 − xα2

)
dy

dt
= −κ2

(
y3 + yx2 + yα2

)
.

The velocity of a coherent state |β〉 in phase space is (dxdt ,
dy
dt ) (see Fig. S5a,S6a). By integrating this velocity over

space, we get the pseudo-potential

V (x, y) = κ2

(
1

4
(x4 + y4) +

1

2
x2y2 − α2(x2 − y2)

)
(S15)
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Figure S4. Flux dependence. (a) Buffer spectroscopy. Phase of the reflected probe signal (colormap) on the buffer port as a
function of IΣ (x-axis) and probe frequency (y-axis). The buffer frequency follows an arch-like pattern typical of SQUID-based
devices. The probing frequency range is limited to 3-8 GHz due to the 4-8 GHz circulator on the output line. The black
dashed line represents the expected buffer/cat-qubit frequency for the best fitting parameter set. The slight aperiodicity may
be explained by small asymmetries in the loop areas of the ATS. (b) Cat-qubit resonator two-tone spectroscopy. A continuous
probe is applied on the cat-qubit resonator at various frequencies (y-axis) and a second tone attempts to π-pulse the qubit
on resonance. When the probe populates the cat-qubit, the qubit shifts in frequency due to the cross-Kerr coupling, and is
insensitive to the π-pulse. The resulting qubit state is plotted in color and we repeat the experiment for various values of IΣ

(x-axis). The black dashed line represents the expected buffer/cat-qubit frequency for the best fitting parameter set. The black
vertical line corresponds to a flux bias were the buffer is at the qubit frequency resulting in a strong decrease in the qubit
lifetime. (c) For each value of IΣ (x-axis) and I∆ (y-axis), we extract the buffer frequency from a spectroscopy measurement
(panel a) and report it in color (white is when the resonance frequency is beyond the measurement range). Contrary to what
they were designed for, the two flux lines do not perfectly apply symmetric (IΣ) and antisymmetric (I∆) bias on the ATS. We
compensate for this imbalance while taking the data by shifting the IΣ span for each value of I∆ as indicated on the x-axis
label. Data were only taken on the area outside the hatched regions to prevent the heating of the dilution refrigerator beyond
a tolerable temperature. The grey dashed-rectangle corresponds to the flux range presented in Fig. 2 of the main text. (d)
Simulated flux dependence of the buffer mode for the best fitting parameter set.

depicted in Fig. 1b of the main text. It has two minima in −α and α. Analyzing the evolution of small deviations δx
and δy around these minima, we find

d

dt
δx = −κconfδx

d

dt
δy = −κconfδy ,

where the confinement rate κconf is defined as

κconf = 2κ2α
2 . (S16)

This confinement pins down a computational state at each potential minimum, and protects the cat-qubit against
errors. Next, we analyze the effect of errors on the cat-qubit resonator.

Single photon loss

When added, most Hamiltonian or dissipative mechanisms (such as detuning, single photon loss or gain, and
dephasing) will perturb the system so that the two-dimensional cat-qubit space is no longer a steady-manifold of the
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overall dynamics. Instead, only one mixed state is a steady-state. However, this steady-state is exponentially (in |α|2)
long to reach from the cat-qubit computational states |0〉α and |1〉α [S9, S10]. We refer to these states as metastable
states. We will now use the pseudo-potential representation to visulalize the main effects of single photon loss and
detuning.

Let us calculate V in the presence of single photon loss at rate κa. The loss operator is L1 =
√
κaa and the overall

dynamics reads

d

dt
ρ = κ2D[a2 − α2]ρ+ κaD[a]ρ . (S17)

Following the same computation as previously, we have
dβ

dt
= −κ2β

∗(β2 − α2)− 1

2
κaβ

so that
dx

dt
= −κ2

(
x3 + xy2 − xα2

)
− 1

2
κax

dy

dt
= −κ2

(
y3 + yx2 + yα2

)
− 1

2
κay . (S18)

This velocity field is represented in Fig. S5a for κa = κ2 and α = 2. By integrating it over space we get

V (x, y) = κ2

(
1

4
(x4 + y4) +

1

2
x2y2 − α2(x2 − y2)

)
+

1

4
κa
(
x2 + y2

)
. (S19)

Cuts that pass through the two minima are plotted in Fig. S5b for various values of κa and α.
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Figure S5. Dynamics under single photon loss. (a) This colormap represents the magnitude of the velocity field (S18)
over phase space (β plane) for κa = κ2 and α = 2. The black arrows represent the velocity at various locations. The two stable/
one unstable steady-states are indicated with full/open red circles (the stability is infered from the direction of the arrows).
The white dotted line represents the cut along which we plot the potential. (b) Cuts (Re(β) = 0) of the potential (S19) with
α = (1, 2, 3) (left to right) and κa = (0, κ2, 10κ2) (top to bottom). The top row represents the unperturbed potential and the
steady states are −α and α (red circles). As we increase κa, the amplitude α∞ of the metastable states (red circles) decreases
until reaching 0. However for a given value of κa, we can always find a value of α to recover two metastable states (bottom
row).

The minima of V are located in ±α∞ with

α∞ =

{√
α2 − κa/(2κ2) if α2 ≥ κa/(2κ2)

0 otherwise
(S20)

In this semi-classical analysis, we find that two metastable states form when the error rate κa is below the threshold

κa < κconf = 2|α|2κ2 .



14

Detuning

In the main text, we discussed the causes of the bit-flip time saturation and blamed the random frequency shifts of
the cat-qubit resonator induced by the transmon thermal excitations. Let us see how a detuning ∆ of the cat-qubit
frequency affects the two-photon stabilization. In this case, we have

dβ

dt
= −κ2β

∗(β2 − α2)− i∆β (S21)

so that
dx

dt
= −κ2

(
x3 + xy2 − xα2

)
+ ∆y

dy

dt
= −κ2

(
y3 + yx2 + yα2

)
−∆x . (S22)

Note that rot(dxdt ,
dy
dt ) = −2∆ 6= 0 so we cannot perform the spatial integration to find V (x, y). We can obtain the

steady states directly by analyzing the velocity field (Fig. S6a) but there exists a direction in phase-space parametrized
by a real parameter λ such that y = λx and dy

dt = λdxdt along which the integration is meaningful. Plugging in this
relation into (S22) we get the following condition on λ

λ2∆ + 2λκ2α
2 + ∆ = 0

λ = −κconf
2∆

+

√
(
κconf
2∆

)2 − 1 (S23)

with κconf = 2κ2α
2. We have chosen the solution λ which approaches 0 when ∆ → 0 and for which the chosen

direction crosses the steady states. Along this cut indexed by β′, we have

dβ′

dt
=

(√(κconf
2

)2

−∆2

)
β′ − κ2β

′3 (S24)

leading to

V (β′) = −1

2

(√(κconf
2

)2

−∆2

)
β′2 +

1

4
κ2β

′4 (S25)

that is plotted in Fig. S6b. There are two minima located along the direction β′ in

|α∞| =


(
α4 −

(
∆
κ2

)2
) 1

4

if ∆ < κconf
2

0 otherwise
(S26)

In this semi-classical analysis, we find that two metastable states form provided ∆ is below the threshold

∆ < κconf/2 = |α|2κ2 .

In our experiment, the detuning induced by a thermal photon entering the transmon is ∆/2π = χ/2π = 720 kHz
which is larger than κconf/2/2π = 7κ2/2π ≈ 280 kHz for the largest |α|2 = 7.

Bit-flip time simulation

In the previous part, we gained insight on how single photon loss and detuning affect the cat-qubit protection. In
the following, we perform a full master equation simulation of the system with the measured system parameters. The
system consists of three relevant modes: the buffer and cat-qubit resonator, and the transmon qubit. We can write
the Hamiltonian and loss operators (in the rotating frame for each mode)

H3/~ =
(
g∗2(a2 − α2)b† + h.c

)
− χaa

2
a†2a2 − χqaa†aq†q (S27)

La =
√
κaa, Lb =

√
κbb, Lq =

√
κq(1 + nth)q, Lq† =

√
κqnthq

†
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Figure S6. Dynamics under detuning. (a) This colormap represents the magnitude of the velocity field (S22) over the
phase space (β plane) for ∆ = κ2 and α = 2. The black arrows represent the velocity at various locations. The two stable/ one
unstable steady-states are indicated with full/open red circles (the stability is infered from the knowledge of the direction of the
arrows). The white dotted line represents the cut along which we represent the potential. (b) Cuts (Im(β) = λRe(β)) of the
potential (S25) with α = (1, 2, 3) (left to right) and ∆ = (0, κ2, 8κ2) (top to bottom). The top row represents the unperturbed
potential and the steady states are −α and α (red circles). As we increase ∆, the amplitude |α∞| of the metastable states (red
circles) decreases until reaching 0. However for a given value of ∆, we can always find a value of α to recover two metastable
states (bottom row).
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Figure S7. Simulated bit-flip time as a function of the cat-qubit size |α∞|2. We simulate the experiment displayed in Fig. 3 of
the main text given the measured system parameters (Tables S1 and S2) with a master equation solver (QuTiP) for various
values of α2. The cat-qubit size is given by |α∞|2 = |〈a2〉| after a time t � κ−1

2 . We simulate three models of increasing
complexity: a one, two and three modes model. The green curve corresponds to the simulation of the equivalent dynamics of
the cat-qubit resonator alone (S29). We get an exponential increase of the bit-flip time with a dependence on the cat size close
to the theoretical prediction exp(2|α∞|2) [S9] (dashed black line is a guide for the eye). The orange curve corresponds to the
simulation of the dynamics of the buffer and cat-qubit together (S28). The good agreement between these two curves indicates
that the adiabatic elimination of the buffer is valid (indeed g2 � κb). Finally the blue solid curve is the simulation including
the transmon with its thermal occupation (S27). In this case, the bit-flip time saturates at around 0.5 ms which is compatible
to the experimentally measured value (1 ms). This saturation follows a prior exponential increase where the bit-flip time is
multiplied by 3.7 for each added photon (experimentally 4.2). We also simulate for χqa = χqa,exp/3 (dashed blue line) and
χqa,exp/10 = 72 kHz (dotted blue line) and as expected, the curve approaches the exponential scaling when χqa is low enough.

where we have (from left to right) in the Hamiltonian, the two-to-one photon exchange factored with a drive on the
buffer with strength εd = −g∗2α2, the Kerr of the cat-qubit, the cross-Kerr between the cat-qubit and the transmon.
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The two last loss operators model the decay rate of the transmon (rate κq), and its thermal occupation measured to
be nth ∼ 1% in the presence of the pump and drive. In order to determine the effect of the transmon on the cat-qubit,
it is useful to remove the transmon from the simulation. We simulate the dynamics generated by

H2/~ =
(
g∗2(a2 − α2)b† + h.c

)
− χaa

2
a†2a2 (S28)

La =
√
κaa, Lb =

√
κbb

Finally by adiabatically eliminating the buffer [S1] we reduce to the following equivalent Hamiltonian and loss operator
(provided g2 � κb)

H1/~ = −χaa
2

a†2a2 (S29)

La =
√
κaa, L2 =

√
κ2(a2 − α2)

with κ2 = 4|g2|2/κb.
For each of these models, we numerically solve the master equation for the cat-qubit resonator prepared in state

|+α〉 for various α. By fitting the decay of 〈a〉 to an exponential decay, we extract Tbit−flip that we reported in
Fig. S7 (full lines). For the last two models, we recover the exponential increase of the bit-flip time which scales as
∼ exp(2α2). The three modes model reproduces the saturation we have in the experiment and associates it with the
thermal excitation of the transmon. Indeed one transmon excitation detunes the cat-qubit by χ which exceeds κconf/2
when α2 < 29, well above cat sizes we could achieve experimentally. In future experiment, we plan on reducing χ.
By dividing χ by 10, we expect to fully circumvent this saturation (dotted lines in Fig. S7).

Tuning the cat-qubit

As explained in the main text, the flux point at which the ATS should operate is a saddle point of the buffer
frequency map. It is very simple to find experimentally as we do not need to know the full mapping between (I

Σ
, I

∆
)

and (ϕ
Σ
, ϕ

∆
) to recognize a saddle point. There are actually two types of saddle points as one can see on Fig. S4,

the ones that are tilted to the left and the ones tilted to the right. If the two junctions forming the SQUID of the
ATS were perfectly symmetric, these points would be equivalent. Otherwise, the buffer acquires a Kerr non-linearity
and the two-points differ by the sign of this Kerr.

Once we find the buffer and cat-qubit frequencies we perform two-tone spectroscopy on the buffer (Fig. S8). A
weak tone, referred to as the drive, probes the buffer resonance and the pump is swept in the relevant frequency
range (around 2ωa − ωb). When the two-to-one exchange occurs between the buffer and the cat-qubit, we observe a
sharp feature within the buffer resonance (Fig. S8a,b). The width of this feature depends on the weak tone strength
and more importantly on the pump power. The pump power is pushed until before this feature becomes ill defined,
when other non-linear dynamics start to play a significant role. On the cat-qubit side, within this feature the drive
combined with the pump should populate the cat-qubit resonator. We check so by measuring the parity of the cat-
qubit resonator and verify that it is indeed displaced. We tune the pump and buffer frequency in the middle of the
displacement area (Fig. S8c). The width along ∆ of this region enables us to determine κ2.

We perform the cat-qubit resonator full tomography after a long (20 µs � κ−1
a ) pump and drive pulse (Fig. S9a)

and we set the drive amplitude to produce the desired cat size (Fig. S9b). The experiment is now tuned and the
cat-qubit characteristics (Tbit-flip,Γphase-flip, time evolution of the Wigner function) can be measured.
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Figure S8. Tuning the pump and drive frequencies. (a) Reflected relative drive amplitude (VNA measurement) as a
function of drive frequency (x-axis) and pump frequency (y-axis). When ωp = 2ωa − ωd, a sharp feature indicates that the
two-to-one photon exchange is resonant and as expected, it has a slope −1. To observe this feature, we switch to the basis
∆ = (∆pump + ∆drive)/2, ∆b = (∆pump−∆drive)/2. (b,c) Reflected relative drive amplitude (color) and parity of the cat-qubit
resonator (red) as a function of ∆ (x-axis) and ∆b (y-axis) for increasing drive amplitude (top to bottom). The drive amplitude
is expressed in units of the cat-size |α∞|2 which is calibrated using the data of Fig S9. (c) When the two-to-one photon
exchange is resonant, the cat-qubit resonator is displaced and the parity drops to 0 if we measure after a time greater than
κ−1
a . We also perform the cat-qubit resonator tomography and verify that the resonator is in a balanced mixture of |0〉α and
|1〉α. In all these plots, the white circles correspond to the chosen pump and drive frequencies. We verify that for all used
drive amplitudes, this point remains centered in the resonant range. Therefore, we do not need to adapt the drive and pump
frequencies when increasing the cat size. (d) Cut of the color plot (c) at ∆b = 0 representing the parity (open circle) of the
cat-qubit steady state as a function of ∆. The relation (S26) shows that the frequency window over which a non-trivial state
is stabilized in the cavity scales as 2κ2|α|2. This enables us to determine κ2 assuming photon loss is the main loss mechanism.
We fit (solid line) the measured parity with the expected steady-state parity (QuTiP) where the two fitting parameters are the
parity contrast and κ2. We find κ2/2π = 40 kHz.
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Figure S9. Increasing the cat-qubit size. (a) Measured Wigner distribution of the cat-qubit state as a function of drive
amplitude (left to right, top to bottom) after a pump and drive pulse duration of 20 µs. (b) Fitted cat size |α∞|2 (open
circles) as a function of the drive amplitude εd. The drive amplitude is expressed in terms of the square root of the photon
number the buffer would contain without the conversion process. For each Wigner distribution of panel (a), we fit a sum of
two 2D-Gaussian functions (coherent states) diametrically opposed which are separated by a distance 2|α∞|. Note that for
simplicity, in the main text, we use |α|2 instead of |α∞|2. In the presence of single photon loss at rate κa, we expect |α∞|2 to
follow the relation (S20) (dashed line): a linear dependence on εd shifted by κa/(2κ2). By fitting this relation to the data, we
calibrate the x-axis scaling.
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