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Abstract

We propose a model for self-organized tra�c �ow at bottlenecks that consists of a scalar conservation law with a
nonlocal constraint on the �ux. The constraint is a function of an organization marker which evolves through an ODE
depending on the upstream tra�c density and its variations. We prove well-posedness for the problem, construct and
analyze a �nite volume scheme, perform numerical simulations and discuss the model and related perspectives.

Introduction

The LWR framework is the simplest one that can be used to describe macroscopically pedestrian/road tra�c in a corridor
or on a road. It takes the form

∂tρ+ ∂x (f(ρ)) = 0.

Above, ρ = ρ(x, t) ∈ [0, R] is the density of pedestrians/cars at (x, t). We assume that the �ux function f : [0, R]→ R is
Lipschitz continuous and bell-shaped, which are commonly used assumptions in tra�c dynamics:

f(ρ) ≥ 0, f(0) = f(R) = 0, ∃! ρ ∈ (0, R), f ′(ρ)(ρ− ρ) > 0 for a.e. ρ ∈ (0, R). (1)

Point constraints were introduced in [17, 16] in the LWR model in order to account for localized in space phenomena that
may occur at exits � such as tra�c lights or tollgates in the context of road tra�c � and which act as obstacles. To do so,
one can impose a localized constraint on the �ux such as

f(ρ)|x=0 ≤ q(t).

One of the typical features of both vehicle and pedestrian �ows is self-organization, see [22, 18, 13] for empirical data that
put in evidence this phenomenon. Here, we focus on self-organization near exits. We do not intend to model the di�erent
mechanisms behind self-organization, but only to reproduce its phenomenology. In [3] the authors attempted to reproduce
self-organization with a model based on the LWR-�ux constraint framework:

∂tρ+ ∂x (f(ρ)) = 0 R× (0, T )

ρ(x, 0) = ρ0(x) x ∈ R

f(ρ)|x=0 ≤ p
(∫

R
ρ(x, t)µ(x)dx

)
t ∈ (0, T ).

(2)
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1 NOTION OF SOLUTION AND UNIQUENESS

Above, µ ∈ W1,1(R) ∩ C1(R) is a weight function, supported in a compact neighborhood upstream the exit, used to
average the density around the exit and the nonincreasing Lipschitz function p : [0, R] → R+ models the exit e�ciency.
This kind of problems has been tremendously studied in the last decades [16, 6, 14, 4, 19]. In particular, the authors of
[2, 3] were able to reproduce the main e�ects linked to the �capacity drop� that are the Braess paradox and the "Faster Is
Slower" e�ect, but not so much the self-organization. Our �rst goal is to further advance in this direction. We introduce
a model which interpolates between two states of the tra�c (organized and disorganized) which we represent by the
presence of two levels of constraints and by an organization parameter which evolves through an ODE. This model admits
a natural and e�cient approximation strategy, relying on a combination of splitting, explicit Euler time integration and
of a monotone �nite volume scheme for LWR. In passing, we prove well-posedness for our model in Sections 1-2, but our
main interest lies in the sections 3-4 where we perform a test to validate and discuss the model.

1 Notion of solution and uniqueness

Our starting point is the model (2) proposed by the authors of [4], see also [2, 3]. To go further, we introduce two levels
of exit e�ciencies pmin ≤ pmax (both are required to be Lipschitz continuous nonincreasing functions) and set

q(t) = (1−ω(t))pmin (ξ(t)) +ω(t)pmax (ξ(t)), ξ(t) =

∫
R
ρ(x, t)µ(x)dx, (3)

where ω(t) ∈ (0, 1) is an organization parameter which describes the state of the tra�c and evolves through the ODE

ω̇(t) = K
(
ξ(t), ξ̇(t)

)
ω(t)(1−ω(t)). (4)

Figure 1: Typical behavior of exit e�ciencies pmin , pmax (left) and organization-driving function K in (4) (right).

Mathematically speaking, we only suppose that K ∈ Liploc(R2). The idea behind phenomenologically relevant choices of
K, see Figure 1(right), is to allow for progressive organization of tra�c with time, while keeping the possibility of return
to disorganization when sudden and strong variations of the tra�c occur; see Section 4. For the sake of being de�nite, in
simulations we will choose K under the form

K(ξ, χ) = C

(
ξ

ξc
− 1

)+(
1− χ+

D+
− χ−

D−

)
, (5)

with some positive parameters ξc, C,D+, D− and the notations z+ = max{z, 0}, z− = |z| − z+. This choice will be
discussed later. To summarize, q being given by (3)-(4), we have the following constrained PDE to study:{

∂tρ+ ∂x (f(ρ)) = 0 R× (0, T )

f(ρ)|x=0 ≤ q(t) t ∈ (0, T ).
(6)
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1 NOTION OF SOLUTION AND UNIQUENESS

Frow now on, let us denote by Φ the entropy �ux associated with the Kruºkov entropy ρ 7→ |ρ− κ|, for all κ ∈ [0, R], see
[23]. Following [16, 6, 14], we give the following de�nition of solution.

De�nition 1.1. A couple (ρ,ω) with ρ ∈ L∞(R × (0, T )) ∩ C([0, T ];L1
loc(R)) and ω ∈ W1,∞((0, T )) is an admissible

weak solution to the system (3) � (6) with initial data (ρ0,ω0) if

(i) for all nonnegative test functions ϕ ∈ C∞c (R× [0, T )) and κ ∈ [0, R], the following entropy inequalities are veri�ed:∫ T

0

∫
R
|ρ− κ|∂tϕ+ Φ(ρ, κ)∂xϕ dxdt+

∫
R
|ρ0(x)− κ|ϕ(x, 0)dx+ 2

∫ T

0

R(κ, q(t))ϕ(0, t)dt ≥ 0, (7)

where R(κ, q(t)) = f(κ)−min {f(κ), q(t)};
(ii) for all nonnegative test functions ψ ∈ C∞c ((0, T )) and some given ϕ ∈ C∞c (R) which veri�es ϕ(0) = 1, the following
weak constraint inequalities are veri�ed:

−
∫ T

0

∫
R+

ρ∂t(ϕψ) + f(ρ)∂x(ϕψ) dxdt ≤
∫ T

0

q(t)ψ(t)dt; (8)

(iii) the following weak ODE formulation is veri�ed for all t ∈ [0, T ]:

ω(t) = ω0 +

∫ t

0

K
(
ξ(s), ξ̇(s)

)
ω(s)(1−ω(s))ds. (9)

Remark 1.1. Let us underline that the formulation (7) � (9) above is stable with respect to the a.e. convergence of ρ.

Before we prove stability with respect to initial data and uniqueness for admissible weak solutions to the system (3) � (6),
let us note that we can directly integrate the ODE (4). This feature is not crucial but it is practical.

Lemma 1.2. Fix (ρ,ω) an admissible weak solution to the system (3) � (6). Then for all t ∈ [0, T ],

ω(t) =
exp(W (t))

1 + exp(W (t))
, W (t) = ln

(
ω0

1−ω0

)
+

∫ t

0

K
(
ξ(s), ξ̇(s)

)
ds.

Theorem 1.3. Suppose that f satis�es (1). Fix ρ1
0, ρ

2
0 ∈ L1(R; [0, R]) and ω1

0,ω
2
0 ∈ (0, 1). We denote by (ρ1,ω1) and

(ρ2,ω2) two admissible weak solutions to the system (3) � (6) corresponding to the initial data (ρ1
0,ω

1
0) and (ρ2

0,ω
2
0),

respectively. Then there exist constants A,α, β, γ such that if we note G(z) = exp
(
βz + γz2/2

)
, we have

for a.e. t ∈ (0, T ), ‖ρ1(t)− ρ2(t)‖L1 ≤ ‖ρ1
0 − ρ2

0‖L1G(t) + α|W1(0)−W2(0)|
∫ t

0

G(s)ds (10)

and

∀t ∈ [0, T ], |ω1(t)−ω2(t)| ≤
(
|W1(0)−W2(0)|

4

)
+A

∫ t

0

(
α|W1(0)−W2(0)|(t− s) + ‖ρ1

0 − ρ2
0‖L1

)
G(s)ds, (11)

where W1 and W2 are de�ned as in Lemma 1.2. In particular, the system (3) � (6) admits at most one admissible weak
solution.

Proof. First, a stability estimate [6, Prop. 2.10] characteristic of (2) yields Lipschitz continuous dependence q 7→ ρ for
q ∈ L1(0, T ) and ρ ∈ C([0, T ];L1(R)). Moreover, the map ω 7→ q for ω, q ∈ C([0, T ]) is obviously Lipschitz. Finally, by

exploiting Lemma 1.2 and the fact that for a.e. t ∈ (0, T ), ξ̇(t) =

∫
R
f(ρ)µ′(x)dx, one can obtain Lipschitz dependence

ρ 7→ ω, and Gronwall's lemma concludes. �
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2 FINITE VOLUME APPROXIMATION OF THE MODEL

2 Finite volume approximation of the model

Here, we prove the existence of admissible weak solutions to the system (3) � (6). To do that, we construct and prove the
convergence of an explicit Euler in time scheme for the ODE (4) combined with a monotone �nite volume scheme for the
constrained LWR (6). Fix ρ0 ∈ L1(R; [0, R]) and ω0 ∈ (0, 1). For a �xed spatial mesh size ∆x and time mesh size ∆t, let
xj = j∆x, tn = n∆t. We de�ne the grid cells and N ∈ N such that T ∈ [N∆t, (N + 1)∆t). We write

R× [0, T ] ⊂
N⋃
n=0

⋃
j∈Z
Pnj+ 1

2
, Pnj+ 1

2
= (xj , xj+1)× [tn, tn+1).

Denote by
(
ρ0
j+ 1

2

)
j∈Z

and
(
µj+ 1

2

)
j∈Z

suitable discretizations of the initial data ρ0 and of the weight function µ; for

instance their mean values on each cell (xj , xj+1).

Initialization:

w0 = ω0 and ξ0 =
∑
j∈Z

ρ0
j+ 1

2
µj+ 1

2
∆x

Induction. Fix n ∈ {0, . . . , N}.
At each time step, we �rst de�ne a constraint level qn:

qn = (1− wn)pmin(ξn) + wnpmax(ξn). (12)

We use this value to update the approximate tra�c density with the marching formula

∀j ∈ Z, ρn+1
j+ 1

2

= ρnj+ 1
2
− ∆t

∆x

(
Fnj+1

(
ρnj+ 1

2
, ρnj+ 3

2

)
−Fnj

(
ρnj− 1

2
, ρnj+ 1

2

))
, (13)

where, given F = F(x, y) a monotone and Lipschitz numerical �ux consistent with f , following the recipe of [6, 14], we
set

Fnj (a, b) =

{
min {F(a, b), qn} if j = 0

F(a, b) if j 6= 0.
(14)

Then, setting ξn+1 =
∑
j∈Z

ρn+1
j+ 1

2

µj+ 1
2
∆x, we update the organization parameter

χn+1 =
ξn+1 − ξn

∆t
, θn+1 = K

(
ξn+1, χn+1

)
wn(1− wn), wn+1 = wn + θn+1∆t. (15)

Conclusion. De�ne the functions

∀(x, t) ∈ R× (0, T ), ρ∆(x, t) =

N∑
n=0

∑
j∈Z

ρnj+ 1
2
1Pn

j+1
2

(x, t)

∀t ∈ (0, T ), q∆(t), χ∆(t), θ∆(t) =

N∑
n=0

(
qn, χn+1, θn+1

)
1[tn,tn+1)(t)

∀t ∈ (0, T ), ξ∆(t) = ξ0 +

∫ t

0

χ∆(s)ds, ω∆(t) = w0 +

∫ t

0

θ∆(s)ds.

Let ∆ = (∆x,∆t). For the convergence analysis, we will assume that ∆→ 0, with λ = ∆t/∆x verifying the CFL condition

λL ≤ 1, L =

(∥∥∥∥∂F∂x
∥∥∥∥
L∞

+

∥∥∥∥∂F∂y
∥∥∥∥
L∞

)
. (16)

page 4



2 FINITE VOLUME APPROXIMATION OF THE MODEL

2.1 Stability and discrete entropy inequalities

Proposition 2.1 (L∞ stability). Given qn to de�ne the constrained �ux in (14), the scheme (13) is stable:

∀n ∈ {0, . . . , N}, ∀j ∈ Z, ρnj+ 1
2
∈ [0, R]. (17)

Proof. One can follow the argumentation in [24, Proposition 3.1], or borrow elements from [20, Lemma 5.1] and [6,
Proposition 4.2]. �

We now derive discrete entropy inequalities. These inequalities contain terms that will help to pass to the limit in the
constrained formulation of the conservation law, as soon as the sequence (q∆)∆ of constraints is proved convergent as well.
Let us note from now a ∨ b = max{a, b} and a ∧ b = min{a, b}.

Proposition 2.2 (Discrete entropy inequalities). The numerical scheme (12) � (15) ful�lls the following inequalities for
all n ∈ {0, . . . , N − 1}, j ∈ Z and κ ∈ [0, R]:(

|ρn+1
j+ 1

2

− κ| − |ρnj+ 1
2
− κ|

)
∆x+

(
Φnj+1 − Φnj

)
∆t ≤ R(κ, qn)∆t δj∈{−1,0} +

(
Φn0 − Φ

n

0

)
∆t (δj=−1 − δj=0) , (18)

where
Φnj = F(ρnj− 1

2
∨ κ, ρnj+ 1

2
∨ κ)−F(ρnj− 1

2
∧ κ, ρnj+ 1

2
∧ κ)

Φ
n

0 = min{F(ρn− 1
2
∨ κ, ρn1

2
∨ κ), qn} −min{F(ρn− 1

2
∧ κ, ρn1

2
∧ κ), qn}.

Proof. This is a consequence of the scheme monotonicity. When the constraint does not enter the calculations i.e.
j /∈ {−1, 0}, the proof follows [20, Lemma 5.4]. When the constraint enters the calculations, the constants κ ∈ [0, R] are
no longer stationary solutions of the scheme. Then, calculations make appear the term R(κ, qn). �

Starting from the marching formula (13) and the discrete entropy inequalities (18), we can derive approximate versions
of (7) and (8). The proofs can be adapted from the ones of [12, Lemma 4.4] or [24, Proposition 3.3].

Proposition 2.3 (Approximate entropy/constraint inequalities). (i) Fix ϕ ∈ C∞c (R× [0, T );R+), κ ∈ [0, R]. Then there
exists a constant Cϕ1 = Cϕ1 (R, T,L), nondecreasing with respect to its arguments, such that∫ T

0

∫
R
|ρ∆ − κ|∂tϕ+ Φ∆

(
ρ∆, κ

)
∂xϕdxdt+

∫
R
|ρ∆

0 (x)− κ|ϕ(x, 0)dx+ 2

∫ T

0

R(κ, q∆(t))ϕ(0, t)dt ≥ −Cϕ1 (∆t+ ∆x). (19)

(ii) Fix ψ ∈ C∞c ((0, T );R+) and ϕ ∈ C∞c (R) such that ϕ(0) = 1. Then there exists a constant Cϕ,ψ2 = Cϕ,ψ2 (R, T,L, ‖f‖L∞),
nondecreasing with respect to its arguments, such that

−
∫ T

0

∫
R+

ρ∆∂t(ϕψ) + F∆(ρ∆)∂x(ϕψ) dxdt ≤
∫ T

0

q∆(t)ψ(t)dt+ Cϕ,ψ2 (∆x+ ∆t), (20)

where

Φ∆
(
ρ∆, κ

)
=
∑N−1

n=0

∑
j∈Z

Φnj 1Pn

j+1
2

(x, t), F∆(ρ∆) =
∑N−1

n=0

∑
j∈Z
F(ρnj− 1

2
, ρnj+ 1

2
)1Pn

j+1
2

(x, t).

The �nal step is to obtain compactness for the sequences (ρ∆)∆ and (ω∆)∆ in order to pass to the limit in (19)-(20).

2.2 Compactness and convergence

Exploiting the compact embedding of W1,∞((0, T )) in C([0, T ]), we can prove the existence of ξ,ω ∈ C([0, T ]) such that
(up to the extraction of a subsequence) (ξ∆)∆ and (ω∆)∆ converge uniformly to ξ and ω, respectively. There are many
ways to prove compactness of the sequence (ρ∆)∆. For example, one can derive weak BV estimates ([6, 20]) or use the
singular mapping technique ([1, 15]). Here, since the conservation law in (6) is invariant under a translation in time, we
derive local BV bounds, following [10, Lemma 4.2].

Proposition 2.4. Assume that ρ0 ∈ BV(R). Fix 0 < ε < X and let Ω(ε,X) be the open subset Ω(ε,X) = (−X,−ε) ∪ (ε,X).
There exist two constants C3 and C4 > 0 such that for all t ∈ [0, T −∆t),

TV(ρ∆(t)|Ω(ε,X)) ≤ TV(ρ0) +
C3

ε
,

∫
Ω(ε,X)

|ρ∆(x, t+ ∆t)− ρ∆(x, t)|dx ≤ C4∆t.

Therefore, up to a subsequence, (ρ∆)∆ converges a.e. on R× (0, T ) to some ρ ∈ L∞(R× (0, T )).
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3 NUMERICAL SIMULATIONS

Remark 2.1. At this point, the link between ξ and ρ is established: for a.e. t ∈ (0, T ), ξ(t) =

∫
R
ρ(x, t)µ(x)dx.

Theorem 2.5. Fix ρ0 ∈ L1(R; [0, R])∩BV(R) and ω0 ∈ (0, 1). Suppose that f satis�es (1) and that µ ∈W2,1(R)∩C2(R).
Then under the CFL condition (16), the scheme (12) � (15) converges to an admissible weak solution to the system (3) �
(6).

Proof. We show that the couple (ρ,ω) is a solution in the sense of De�nition 1.1. First, let apply inequality (19) with
ϕ ∈ C∞c (R∗ × [0, T );R+) and κ ∈ [0, R] to obtain∫ T

0

∫
R
|ρ∆ − κ|∂tϕ+ Φ∆(ρ∆, κ)∂xϕdxdt+

∫
R
|ρ∆

0 − κ|ϕ(x, 0)dx ≥ −Cϕ1 (∆x+ ∆t).

Then when letting ∆ → 0, the a.e. convergence of (ρ∆)∆ to ρ ensures that ρ veri�es (7) away from the interface.
Consequently, ρ ∈ C([0, T ];L1

loc(R∗)), see [11, Theorem 1.2]. Moreover, since ρ is bounded and {x = 0} has a Lebesgue
measure 0, ρ ∈ C([0, T ];L1

loc(R)). This ensures that the equality in Remark 2.1 actually holds for all t ∈ [0, T ]. Moreover,
since ρ is an entropy solution in R∗ × (0, T ) to ∂tρ + ∂x (f(ρ)) = 0, ξ de�ned in Remark 2.1 is actually in W1,∞((0, T ))
and veri�es for a.e. t ∈ (0, T ),

ξ̇(t) =

∫
R
f(ρ)µ′(x)dx.

We now pass to the limit in (19) and (20). The uniform convergence of both (ξ∆)∆ and (ω∆)∆ ensures the existence of
q ∈ C([0, T ]) such that (q∆)∆ converges to q a.e. on (0, T ). Consequently, for a.e. t ∈ (0, T ),

q(t) = (1−ω(t))pmin (ξ(t)) +ω(t)pmax (ξ(t)),

and this equality actually holds for all t ∈ [0, T ] by continuity. Then by letting ∆→ 0 in (19)-(20), we obtain that (ρ,ω)
veri�es the entropy inequalities (7) and the weak constraint inequalities (8).

An important step towards the assessment of the weak ODE formulation for ω is to show that (χ∆)∆ converges a.e. to
ξ̇. One way to do that is by using a discrete integration by parts, assuming that µ ∈W2,1(R) ∩C2(R). �

Corollary 2.6. Fix ρ0 ∈ L1(R; [0, R])∩BV(R) and ω0 ∈ (0, 1). Suppose that f satis�es (1) and that µ ∈W2,1(R)∩C2(R).
Then the system (3) � (6) admits a unique admissible weak solution.

Proof. Uniqueness comes from Theorem 1.3, existence comes from Theorem 2.5, with a constructive proof. �

Remark 2.2. Adopting the formalism proposed in [3], one could also prove well-posedness with �xed point arguments.

3 Numerical simulations

We report on numerical experiments with the scheme described in Section 2. We take the normalized uniformly concave
�ux f(ρ) = ρ(1 − ρ). We choose to use the Godunov �ux at the interface (j = 0 in (14)) and the Rusanov �ux away

from the interface (j 6= 0 in (14)). A regularization of the function x 7→ 2n

(
x+

1

n

)
)1[−1/n,0](x) (with n = 3) is issued

as weight function. Following [3, Section 7], the setup for our simulation is as follows.
We consider the domain of computation [−5, 1], the initial data ρ0(x) = 1[−4,−2](x), ω0 = 0.2 and the e�ciencies of the
exit pmin , pmax are represented in Figure 1(left). For the simulations, we have �xed a locally Lipschitz prefactor K in
(4) with behaviour depicted in Figure 1(right) and parameters ξc = 1/3, C = 2/3, D+ = 1/10 and D− = D+/2. The
phenomenological features encoded in this choice will be addressed in Section 4.

We �rst address the error analysis in the above setup. Introduce the relative error E∆ = ‖ρ∆ − ρ∆/2‖L1((0,T );L1(R)). In
Table 1, we computed this error for di�erent number of space cells at the �nal time T = 17. We deduce that the order of
convergence is approximately 0.852.
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3 NUMERICAL SIMULATIONS

Figure 2: Rate of convergence.

Number of cells E∆

640 1.863× 10−1

1280 1.158× 10−1

2560 6.507× 10−2

5120 3.335× 10−2

10240 2.105× 10−2

20480 9.501× 10−3

Table 1: Measured errors at time T = 17.

Now, let us comment on qualitative features of the simulated tra�c �ow and provide its interpretation in terms of agents'
behaviors. First, as we can see in Figure 3, the introduction of the organization parameter favors the evacuation time.

Figure 3: The numerically computed solution x 7→ ρ∆(x, t) at di�erent �xed times t; dashed lines correspond to the
reference solution in absence of self-organization ω = 0 in (3).

Figure 4 highlights the fact that the model reproduces some features expected from self-organization. At �rst, the exit �ux
increases until it reaches the maximum level of the exit e�ciency. As tra�c densi�es, the exit �ux falls down to the lowest
value of this e�ciency, which re�ects rapid disorganization, i.e., predominance of agents' individualistic strategies over
the rational collective behavior. Then, in the time interval [6, 16], the elevated density upstream has very small variations
which leads to the emergence of a coherent collective behavior of the agents. This is witnessed through the increase of both
the organization marker and the exit �ux. We stress out that without self-organization, the exit �ux keeps its minimal
value in this time interval. Then a notable phenomenon seems to take place. In the time interval [15.5, 16.3], the jam
upstream the exit starts to resorb, and the exit e�ciency (which is monitored by the exit �ux) slightly falls down while
the organization level regresses signi�cantly. In other words, the agents abandon collective strategies in rapidly evolving
environments, but this does not a�ect the tra�c dramatically because densities are also strongly decreased.
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4 CONCLUSIONS AND PERSPECTIVES

Figure 4: Left: subjective density ξ and organization marker ω. Right: exit �ux f(ρ)|x=0− ; dashed lines correspond to
the reference solution in absence of self-organization ω = 0 in (3).

4 Conclusions and perspectives

The model we propose here permits a rigorous analysis of well-posedness as well as a robust and simple numerical
approximation. It enriches the qualitative behavior of the simple LWR-based models for bottlenecks ([16, 4, 3]), due to
its ability to reproduce a few self-organization features. Let us deeper discuss the model construction, in particular the
role of the function K whose behavior is depicted in Figure 1(right). Its key features are as follows:

• invariance of the organization marker ω in the region of low densities;

• rapid decrease of ω for moderate and particularly for high densities, under strong density variations;

• progressive increase of ω in dense and very dense tra�c with small density variations.

The idea behind these features is: rapidly changing tra�c conditions, at considerable densities, promote individual behavior
and rapidly lead to a somewhat chaotic interactions among agents, thus lowering the exit e�ciency; while persistent coercive
tra�c conditions, such as a jam, help to emerge and promote a collective behavior like formation of well-organized queues,
the alternate in the order of passage through the bottleneck, and a higher degree of mutual courtesy among agents; thus the
exit e�ciency improves accordingly, which enhances the jam evacuation. The form (5) provides a simple example of such
behavior, which is con�rmed by the simulations of Section 3. The parameter ξc has the meaning of activation threshold
for organization/disorganization of the tra�c at bottleneck; D+, D− indicate thresholds of transition from cooperative
(low variations of ξ) to individualistic (higher ones) dynamics of agents.

One way to improve this model would be to take into account unexpected/rash behavior of certain agents. Let us recall
that unlike �uid mechanics models, tra�c models deal with a relatively small number of agents. In consequence, we would
expect the dynamics to be greatly impacted by the behavior of a few agents. An idea to model such rash behaviors is to
introduce a stochastic term in the de�nition of the prefactor K, for example

K(t, ξ, χ) = C

(
ξ

ξc
− 1

)+(
1− χ+

D+
− χ−

D−
−X(t)

)
,

where X is a stochastic process modeling the harmful impact of a random number of mindless agents on the collective
dynamics. We plan to study numerically this variant of the model and provide indications concerning the impact of
undisciplined agents on the evacuation time.

In the forthcoming work [7], we will take inspiration from second-order macroscopic models of tra�c [8, 25] to model
self-organization globally on the road; note that bottlenecks can be as well modelled with non-local point constraints
within such models, see, e.g., [5]. Mimicking the key elements (3)-(4) of the model we addressed in the present note, we
will introduce two fundamental graphs fmin ≤ fmax to describe the two states of the tra�c and make the space-and-time
dependent organization parameter act both on the constraint levels (3) and on the fundamental graphs. We will then have
to study a variant of nonlocal LWR model, cf. [9, 21] for related mathematical and numerical issues.
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