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A macroscopic model to reproduce self-organization at bottlenecks

We propose a model for self-organized trac ow at bottlenecks that consists of a scalar conservation law with a nonlocal constraint on the ux. The constraint is a function of an organization marker which evolves through an ODE depending on the upstream trac density and its variations. We prove well-posedness for the problem, construct and analyze a nite volume scheme, perform numerical simulations and discuss the model and related perspectives.

Introduction

The LWR framework is the simplest one that can be used to describe macroscopically pedestrian/road trac in a corridor or on a road. It takes the form

∂ t ρ + ∂ x (f (ρ)) = 0.
Above, ρ = ρ(x, t) ∈ [0, R] is the density of pedestrians/cars at (x, t). We assume that the ux function f : [0, R] → R is Lipschitz continuous and bell-shaped, which are commonly used assumptions in trac dynamics: f (ρ) ≥ 0, f (0) = f (R) = 0, ∃! ρ ∈ (0, R), f (ρ)(ρ -ρ) > 0 for a.e. ρ ∈ (0, R).

(1) Point constraints were introduced in [START_REF] Colombo | Pedestrian ows and non-classical shocks[END_REF][START_REF] Colombo | A well posed conservation law with a variable unilateral constraint[END_REF] in the LWR model in order to account for localized in space phenomena that may occur at exits such as trac lights or tollgates in the context of road trac and which act as obstacles. To do so, one can impose a localized constraint on the ux such as f (ρ)| x=0 ≤ q(t).

One of the typical features of both vehicle and pedestrian ows is self-organization, see [START_REF] Kerner | Experimental features of self-organization in trac ow[END_REF][START_REF] Cristiani | How can macroscopic models reveal self-organization in trac ow?[END_REF][START_REF] Cepolina | Phased evacuation: An optimisation model which takes into account the capacity drop phenomenon in pedestrian ows[END_REF] for empirical data that put in evidence this phenomenon. Here, we focus on self-organization near exits. We do not intend to model the dierent mechanisms behind self-organization, but only to reproduce its phenomenology. In [START_REF] Andreianov | Analysis and approximation of one-dimensional scalar conservation laws with general point constraints on the ux[END_REF] the authors attempted to reproduce self-organization with a model based on the LWR-ux constraint framework:

       ∂ t ρ + ∂ x (f (ρ)) = 0 R × (0, T ) ρ(x, 0) = ρ 0 (x) x ∈ R f (ρ)| x=0 ≤ p R ρ(x, t)µ(x)dx t ∈ (0, T ). (2) 
Above, µ ∈ W 1,1 (R) ∩ C 1 (R) is a weight function, supported in a compact neighborhood upstream the exit, used to average the density around the exit and the nonincreasing Lipschitz function p : [0, R] → R + models the exit eciency.

This kind of problems has been tremendously studied in the last decades [START_REF] Colombo | A well posed conservation law with a variable unilateral constraint[END_REF][START_REF] Andreianov | Finite volume schemes for locally constrained conservation laws[END_REF][START_REF] Chalons | General constrained conservation laws. application to pedestrian ow modeling[END_REF][START_REF] Andreianov | Crowd dynamics and conservation laws with nonlocal constraints and capacity drop[END_REF][START_REF] Delle Monache | Scalar conservation laws with moving constraints arising in trac ow modeling: an existence result[END_REF]. In particular, the authors of [START_REF] Andreianov | Qualitative behaviour and numerical approximation of solutions to conservation laws with non-local point constraints on the ux and modeling of crowd dynamics at the bottlenecks[END_REF][START_REF] Andreianov | Analysis and approximation of one-dimensional scalar conservation laws with general point constraints on the ux[END_REF] were able to reproduce the main eects linked to the capacity drop that are the Braess paradox and the "Faster Is Slower" eect, but not so much the self-organization. Our rst goal is to further advance in this direction. We introduce a model which interpolates between two states of the trac (organized and disorganized) which we represent by the presence of two levels of constraints and by an organization parameter which evolves through an ODE. This model admits a natural and ecient approximation strategy, relying on a combination of splitting, explicit Euler time integration and of a monotone nite volume scheme for LWR. In passing, we prove well-posedness for our model in Sections 1-2, but our main interest lies in the sections 3-4 where we perform a test to validate and discuss the model.

Notion of solution and uniqueness

Our starting point is the model [START_REF] Andreianov | Qualitative behaviour and numerical approximation of solutions to conservation laws with non-local point constraints on the ux and modeling of crowd dynamics at the bottlenecks[END_REF] proposed by the authors of [START_REF] Andreianov | Crowd dynamics and conservation laws with nonlocal constraints and capacity drop[END_REF], see also [START_REF] Andreianov | Qualitative behaviour and numerical approximation of solutions to conservation laws with non-local point constraints on the ux and modeling of crowd dynamics at the bottlenecks[END_REF][START_REF] Andreianov | Analysis and approximation of one-dimensional scalar conservation laws with general point constraints on the ux[END_REF]. To go further, we introduce two levels of exit eciencies p min ≤ p max (both are required to be Lipschitz continuous nonincreasing functions) and set

q(t) = (1 -ω(t))p min (ξ(t)) + ω(t)p max (ξ(t)), ξ(t) = R ρ(x, t)µ(x)dx, (3) 
where ω(t) ∈ (0, 1) is an organization parameter which describes the state of the trac and evolves through the ODE

ω(t) = K ξ(t), ξ(t) ω(t)(1 -ω(t)). (4) 
Figure 1: Typical behavior of exit eciencies p min , p max (left) and organization-driving function K in (4) (right).

Mathematically speaking, we only suppose that K ∈ Lip loc (R 2 ). The idea behind phenomenologically relevant choices of K, see Figure 1(right), is to allow for progressive organization of trac with time, while keeping the possibility of return to disorganization when sudden and strong variations of the trac occur; see Section 4. For the sake of being denite, in simulations we will choose K under the form

K(ξ, χ) = C ξ ξ c -1 + 1 - χ + D + - χ - D - , (5) 
with some positive parameters ξ c , C, D + , D -and the notations z + = max{z, 0}, z -= |z| -z + . This choice will be discussed later. To summarize, q being given by ( 3)-( 4), we have the following constrained PDE to study:

∂ t ρ + ∂ x (f (ρ)) = 0 R × (0, T ) f (ρ)| x=0 ≤ q(t) t ∈ (0, T ). (6) 
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Frow now on, let us denote by Φ the entropy ux associated with the Kruºkov entropy ρ → |ρ -κ|, for all κ ∈ [0, R], see [START_REF] Kruºhkov | First order quasilinear equations with several independent variables[END_REF]. Following [START_REF] Colombo | A well posed conservation law with a variable unilateral constraint[END_REF][START_REF] Andreianov | Finite volume schemes for locally constrained conservation laws[END_REF][START_REF] Chalons | General constrained conservation laws. application to pedestrian ow modeling[END_REF], we give the following denition of solution.

Denition

1.1. A couple (ρ, ω) with ρ ∈ L ∞ (R × (0, T )) ∩ C([0, T ]; L 1 loc (R))
and ω ∈ W 1,∞ ((0, T )) is an admissible weak solution to the system (3) [START_REF] Andreianov | Finite volume schemes for locally constrained conservation laws[END_REF] with initial data (ρ 0 , ω 0 ) if (i) for all nonnegative test functions ϕ ∈ C ∞ c (R × [0, T )) and κ ∈ [0, R], the following entropy inequalities are veried:

T 0 R |ρ -κ|∂ t ϕ + Φ(ρ, κ)∂ x ϕ dxdt + R |ρ 0 (x) -κ|ϕ(x, 0)dx + 2 T 0 R(κ, q(t))ϕ(0, t)dt ≥ 0, (7) 
where R(κ, q(t)) = f (κ) -min {f (κ), q(t)};

(ii) for all nonnegative test functions ψ ∈ C ∞ c ((0, T )) and some given ϕ ∈ C ∞ c (R) which veries ϕ(0) = 1, the following weak constraint inequalities are veried:

- T 0 R + ρ∂ t (ϕψ) + f (ρ)∂ x (ϕψ) dxdt ≤ T 0 q(t)ψ(t)dt; (8) 
(iii) the following weak ODE formulation is veried for all t ∈ [0, T ]:

ω(t) = ω 0 + t 0 K ξ(s), ξ(s) ω(s)(1 -ω(s))ds. (9) 
Remark 1.1. Let us underline that the formulation (7) (9) above is stable with respect to the a.e. convergence of ρ.

Before we prove stability with respect to initial data and uniqueness for admissible weak solutions to the system (3) (6), let us note that we can directly integrate the ODE (4). This feature is not crucial but it is practical.

Lemma 1.2. Fix (ρ, ω) an admissible weak solution to the system (3) [START_REF] Andreianov | Finite volume schemes for locally constrained conservation laws[END_REF]. Then for all t ∈ [0, T ],

ω(t) = exp(W (t)) 1 + exp(W (t)) , W (t) = ln ω 0 1 -ω 0 + t 0 K ξ(s), ξ(s) ds. Theorem 1.3. Suppose that f satises (1). Fix ρ 1 0 , ρ 2 0 ∈ L 1 (R; [0, R])
and ω 1 0 , ω 2 0 ∈ (0, 1). We denote by (ρ 1 , ω 1 ) and (ρ 2 , ω 2 ) two admissible weak solutions to the system (3) (6) corresponding to the initial data (ρ 1 0 , ω 1 0 ) and (ρ 2 0 , ω 2 0 ), respectively. Then there exist constants A, α, β, γ such that if we note G(z) = exp βz + γz 2 /2 , we have for a.e. t ∈ (0, T ),

ρ 1 (t) -ρ 2 (t) L 1 ≤ ρ 1 0 -ρ 2 0 L 1 G(t) + α|W 1 (0) -W 2 (0)| t 0 G(s)ds (10) 
and

∀t ∈ [0, T ], |ω 1 (t) -ω 2 (t)| ≤ |W 1 (0) -W 2 (0)| 4 + A t 0 α|W 1 (0) -W 2 (0)|(t -s) + ρ 1 0 -ρ 2 0 L 1 G(s)ds, (11) 
where W 1 and W 2 are dened as in Lemma 1.2. In particular, the system (3) ( 6) admits at most one admissible weak solution.

Proof. First, a stability estimate [6, Prop. 2.10] characteristic of (2) yields Lipschitz continuous dependence q → ρ for q ∈ L 1 (0, T ) and ρ ∈ C([0, T ]; L 1 (R)). Moreover, the map ω → q for ω, q ∈ C([0, T ]) is obviously Lipschitz. Finally, by exploiting Lemma 1.2 and the fact that for a.e. t ∈ (0, T ), ξ(t) = R f (ρ)µ (x)dx, one can obtain Lipschitz dependence ρ → ω, and Gronwall's lemma concludes.
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2 Finite volume approximation of the model Here, we prove the existence of admissible weak solutions to the system (3) (6). To do that, we construct and prove the convergence of an explicit Euler in time scheme for the ODE (4) combined with a monotone nite volume scheme for the constrained LWR [START_REF] Andreianov | Finite volume schemes for locally constrained conservation laws[END_REF]. Fix ρ 0 ∈ L 1 (R; [0, R]) and ω 0 ∈ (0, 1). For a xed spatial mesh size ∆x and time mesh size ∆t, let x j = j∆x, t n = n∆t. We dene the grid cells and N ∈ N such that T ∈ [N ∆t, (N + 1)∆t). We write Initialization:

R × [0, T ] ⊂ N n=0 j∈Z P n j+ 1 2 , P n j+ 1 2 = (x j , x j+1 ) × [t n , t n+1 ).
w 0 = ω 0 and ξ 0 = j∈Z ρ 0 j+ 1 2 µ j+ 1 2 ∆x
Induction. Fix n ∈ {0, . . . , N }.

At each time step, we rst dene a constraint level q n :

q n = (1 -w n )p min (ξ n ) + w n p max (ξ n ). (12) 
We use this value to update the approximate trac density with the marching formula

∀j ∈ Z, ρ n+1 j+ 1 2 = ρ n j+ 1 2 - ∆t ∆x F n j+1 ρ n j+ 1 2 , ρ n j+ 3 2 -F n j ρ n j-1 2 , ρ n j+ 1 2 , (13) 
where, given F = F(x, y) a monotone and Lipschitz numerical ux consistent with f , following the recipe of [START_REF] Andreianov | Finite volume schemes for locally constrained conservation laws[END_REF][START_REF] Chalons | General constrained conservation laws. application to pedestrian ow modeling[END_REF], we set

F n j (a, b) = min {F(a, b), q n } if j = 0 F(a, b) if j = 0. (14) 
Then, setting ξ n+1 = j∈Z ρ n+1 j+ 1 2 µ j+ 1 2 ∆x, we update the organization parameter

χ n+1 = ξ n+1 -ξ n ∆t , θ n+1 = K ξ n+1 , χ n+1 w n (1 -w n ), w n+1 = w n + θ n+1 ∆t. (15) 
Conclusion. Dene the functions

∀(x, t) ∈ R × (0, T ), ρ ∆ (x, t) = N n=0 j∈Z ρ n j+ 1 2 1 P n j+ 1 2 (x, t) ∀t ∈ (0, T ), q ∆ (t), χ ∆ (t), θ ∆ (t) = N n=0 q n , χ n+1 , θ n+1 1 [t n ,t n+1 ) (t) ∀t ∈ (0, T ), ξ ∆ (t) = ξ 0 + t 0 χ ∆ (s)ds, ω ∆ (t) = w 0 + t 0 θ ∆ (s)ds.
Let ∆ = (∆x, ∆t). For the convergence analysis, we will assume that ∆ → 0, with λ = ∆t/∆x verifying the CFL condition

λL ≤ 1, L = ∂F ∂x L ∞ + ∂F ∂y L ∞ . (16) 
page 4

2.1 Stability and discrete entropy inequalities Proposition 2.1 (L ∞ stability). Given q n to dene the constrained ux in [START_REF] Chalons | General constrained conservation laws. application to pedestrian ow modeling[END_REF], the scheme ( 13) is stable: We now derive discrete entropy inequalities. These inequalities contain terms that will help to pass to the limit in the constrained formulation of the conservation law, as soon as the sequence (q ∆ ) ∆ of constraints is proved convergent as well.

∀n ∈ {0, . . . , N }, ∀j ∈ Z, ρ n j+ 1 2 ∈ [0, R]. (17 
Let us note from now a ∨ b = max{a, b} and a ∧ b = min{a, b}.

Proposition 2.2 (Discrete entropy inequalities). The numerical scheme (12) (15) fullls the following inequalities for all n ∈ {0, . . . , N -1}, j ∈ Z and κ ∈ [0, R]:

|ρ n+1 j+ 1 2 -κ| -|ρ n j+ 1 2 -κ| ∆x + Φ n j+1 -Φ n j ∆t ≤ R(κ, q n )∆t δ j∈{-1,0} + Φ n 0 -Φ n 0 ∆t (δ j=-1 -δ j=0 ) , (18) 
where

Φ n j = F(ρ n j-1 2 ∨ κ, ρ n j+ 1 2 ∨ κ) -F(ρ n j-1 2 ∧ κ, ρ n j+ 1 2 ∧ κ) Φ n 0 = min{F(ρ n -1 2 ∨ κ, ρ n 1 2 ∨ κ), q n } -min{F(ρ n -1 2 ∧ κ, ρ n 1 2 ∧ κ), q n }.
Proof. This is a consequence of the scheme monotonicity. When the constraint does not enter the calculations i.e. j / ∈ {-1, 0}, the proof follows [START_REF] Eymard | Finite Volume Methods, volume VII of Handbook of Numerical Analysis[END_REF]Lemma 5.4]. When the constraint enters the calculations, the constants κ ∈ [0, R] are no longer stationary solutions of the scheme. Then, calculations make appear the term R(κ, q n ).

Starting from the marching formula [START_REF] Cepolina | Phased evacuation: An optimisation model which takes into account the capacity drop phenomenon in pedestrian ows[END_REF] and the discrete entropy inequalities [START_REF] Cristiani | How can macroscopic models reveal self-organization in trac ow?[END_REF], we can derive approximate versions of ( 7) and [START_REF] Aw | Resurrection of "second order" models of trac ow[END_REF]. The proofs can be adapted from the ones of [START_REF] Cancès | Error estimate for godunov approximation of locally constrained conservation laws[END_REF]Lemma 4.4] or [START_REF] Sylla | Inuence of a slow moving vehicle on trac: Well-posedness for a mildly nonlocal model[END_REF]Proposition 3.3].

Proposition 2.3 (Approximate entropy/constraint inequalities). (i) Fix

ϕ ∈ C ∞ c (R × [0, T ); R + ), κ ∈ [0, R]. Then there exists a constant C ϕ 1 = C ϕ 1 (R, T, L)
, nondecreasing with respect to its arguments, such that

T 0 R |ρ ∆ -κ|∂ t ϕ + Φ ∆ ρ ∆ , κ ∂ x ϕdxdt + R |ρ ∆ 0 (x) -κ|ϕ(x, 0)dx + 2 T 0 R(κ, q ∆ (t))ϕ(0, t)dt ≥ -C ϕ 1 (∆t + ∆x). ( 19 
) (ii) Fix ψ ∈ C ∞ c ((0, T ); R + ) and ϕ ∈ C ∞ c (R) such that ϕ(0) = 1.
Then there exists a constant C ϕ,ψ 2 = C ϕ,ψ 2 (R, T, L, f L ∞ ), nondecreasing with respect to its arguments, such that

- T 0 R + ρ ∆ ∂ t (ϕψ) + F ∆ (ρ ∆ )∂ x (ϕψ) dxdt ≤ T 0 q ∆ (t)ψ(t)dt + C ϕ,ψ 2 (∆x + ∆t), (20) 
where

Φ ∆ ρ ∆ , κ = N -1 n=0 j∈Z Φ n j 1 P n j+ 1 2 (x, t), F ∆ (ρ ∆ ) = N -1 n=0 j∈Z F(ρ n j-1 2 , ρ n j+ 1 2 )1 P n j+ 1 2 (x, t).
The nal step is to obtain compactness for the sequences (ρ ∆ ) ∆ and (ω ∆ ) ∆ in order to pass to the limit in ( 19)-(20).

Compactness and convergence

Exploiting the compact embedding of W 1,∞ ((0, T )) in C([0, T ]), we can prove the existence of ξ, ω ∈ C([0, T ]) such that (up to the extraction of a subsequence) (ξ ∆ ) ∆ and (ω ∆ ) ∆ converge uniformly to ξ and ω, respectively. There are many ways to prove compactness of the sequence (ρ ∆ ) ∆ . For example, one can derive weak BV estimates ( [START_REF] Andreianov | Finite volume schemes for locally constrained conservation laws[END_REF][START_REF] Eymard | Finite Volume Methods, volume VII of Handbook of Numerical Analysis[END_REF]) or use the singular mapping technique ( [START_REF] Adimurthi | Godunov-type methods for conservation laws with a ux function discontinuous in space[END_REF][START_REF] Coclite | Conservation laws with time dependent discontinuous coecients[END_REF]). Here, since the conservation law in ( 6) is invariant under a translation in time, we derive local BV bounds, following [10, Lemma 4.2].

Proposition 2.4. Assume that ρ 0 ∈ BV(R). Fix 0 < ε < X and let Ω(ε, X) be the open subset Ω(ε, X) = (-X, -ε) ∪ (ε, X).

There exist two constants C 3 and C 4 > 0 such that for all t ∈ [0, T -∆t),

TV(ρ

∆ (t) |Ω(ε,X) ) ≤ TV(ρ 0 ) + C 3 ε , Ω(ε,X) |ρ ∆ (x, t + ∆t) -ρ ∆ (x, t)|dx ≤ C 4 ∆t.
Therefore, up to a subsequence, (ρ ∆ ) ∆ converges a.e. on R × (0, T ) to some ρ ∈ L ∞ (R × (0, T )).
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Remark 2.1. At this point, the link between ξ and ρ is established: for a.e. t ∈ (0, T ), ξ(t) = R ρ(x, t)µ(x)dx.

Theorem 2.5. Fix ρ 0 ∈ L 1 (R; [0, R])∩BV(R) and ω 0 ∈ (0, 1). Suppose that f satises [START_REF] Adimurthi | Godunov-type methods for conservation laws with a ux function discontinuous in space[END_REF] and that µ ∈ W 2,1 (R)∩C 2 (R).

Then under the CFL condition [START_REF] Colombo | A well posed conservation law with a variable unilateral constraint[END_REF], the scheme (12) [START_REF] Coclite | Conservation laws with time dependent discontinuous coecients[END_REF] converges to an admissible weak solution to the system (3) (6).

Proof. We show that the couple (ρ, ω) is a solution in the sense of Denition 1.1. First, let apply inequality [START_REF] Delle Monache | Scalar conservation laws with moving constraints arising in trac ow modeling: an existence result[END_REF] with

ϕ ∈ C ∞ c (R * × [0, T ); R + ) and κ ∈ [0, R] to obtain T 0 R |ρ ∆ -κ|∂ t ϕ + Φ ∆ (ρ ∆ , κ)∂ x ϕdxdt + R |ρ ∆ 0 -κ|ϕ(x, 0)dx ≥ -C ϕ 1 (∆x + ∆t).
Then when letting ∆ → 0, the a.e. convergence of (ρ ∆ ) ∆ to ρ ensures that ρ veries [START_REF] Andreianov | An hybrid LWR model to reproduce self-organization of trac[END_REF] 

in R * × (0, T ) to ∂ t ρ + ∂ x (f (ρ)) = 0, ξ dened in Remark 2.1 is actually in W 1,∞ ((0, T ))
and veries for a.e. t ∈ (0, T ),

ξ(t) = R f (ρ)µ (x)dx.
We now pass to the limit in [START_REF] Delle Monache | Scalar conservation laws with moving constraints arising in trac ow modeling: an existence result[END_REF] and [START_REF] Eymard | Finite Volume Methods, volume VII of Handbook of Numerical Analysis[END_REF]. The uniform convergence of both (ξ ∆ ) ∆ and (ω ∆ ) ∆ ensures the existence of q ∈ C([0, T ]) such that (q ∆ ) ∆ converges to q a.e. on (0, T ). Consequently, for a.e. t ∈ (0, T ),

q(t) = (1 -ω(t))p min (ξ(t)) + ω(t)p max (ξ(t)),
and this equality actually holds for all t ∈ [0, T ] by continuity. Then by letting ∆ → 0 in ( 19)-( 20), we obtain that (ρ, ω)

veries the entropy inequalities [START_REF] Andreianov | An hybrid LWR model to reproduce self-organization of trac[END_REF] and the weak constraint inequalities [START_REF] Aw | Resurrection of "second order" models of trac ow[END_REF].

An important step towards the assessment of the weak ODE formulation for ω is to show that (χ ∆ ) ∆ converges a.e. to ξ. One way to do that is by using a discrete integration by parts, assuming that µ ∈ W 2,1 (R) ∩ C 2 (R).

Corollary 2.6. Fix ρ 0 ∈ L 1 (R; [0, R])∩BV(R) and ω 0 ∈ (0, 1). Suppose that f satises [START_REF] Adimurthi | Godunov-type methods for conservation laws with a ux function discontinuous in space[END_REF] and that µ ∈ W 2,1 (R)∩C 2 (R).

Then the system (3) (6) admits a unique admissible weak solution.

Proof. Uniqueness comes from Theorem 1.3, existence comes from Theorem 2.5, with a constructive proof.

Remark 2.2. Adopting the formalism proposed in [START_REF] Andreianov | Analysis and approximation of one-dimensional scalar conservation laws with general point constraints on the ux[END_REF], one could also prove well-posedness with xed point arguments.

Numerical simulations

We report on numerical experiments with the scheme described in Section 2. We take the normalized uniformly concave ux f (ρ) = ρ(1 -ρ). We choose to use the Godunov ux at the interface (j = 0 in ( 14)) and the Rusanov ux away from the interface (j = 0 in ( 14)). A regularization of the function

x → 2n x + 1 n )1 [-1/n,0] (x) (with n = 3) is issued
as weight function. Following [3, Section 7], the setup for our simulation is as follows.

We consider the domain of computation [-5, 1], the initial data ρ 0 (x) = 1 [-4,-2] (x), ω 0 = 0.2 and the eciencies of the exit p min , p max are represented in Figure 1(left). For the simulations, we have xed a locally Lipschitz prefactor K in (4) with behaviour depicted in Figure 1(right) and parameters ξ c = 1/3, C = 2/3, D + = 1/10 and D -= D + /2. The phenomenological features encoded in this choice will be addressed in Section 4.

We rst address the error analysis in the above setup. Introduce the relative error

E ∆ = ρ ∆ -ρ ∆/2 L 1 ((0,T );L 1 (R)) .
In Table 1, we computed this error for dierent number of space cells at the nal time T = 17. We deduce that the order of convergence is approximately 0.852. page 6 Table 1: Measured errors at time T = 17.

Now, let us comment on qualitative features of the simulated trac ow and provide its interpretation in terms of agents' behaviors. First, as we can see in Figure 3, the introduction of the organization parameter favors the evacuation time. Figure 4 highlights the fact that the model reproduces some features expected from self-organization. At rst, the exit ux increases until it reaches the maximum level of the exit eciency. As trac densies, the exit ux falls down to the lowest value of this eciency, which reects rapid disorganization, i.e., predominance of agents' individualistic strategies over the rational collective behavior. Then, in the time interval [START_REF] Andreianov | Finite volume schemes for locally constrained conservation laws[END_REF][START_REF] Colombo | A well posed conservation law with a variable unilateral constraint[END_REF], the elevated density upstream has very small variations which leads to the emergence of a coherent collective behavior of the agents. This is witnessed through the increase of both the organization marker and the exit ux. We stress out that without self-organization, the exit ux keeps its minimal value in this time interval. Then a notable phenomenon seems to take place. In the time interval [15.5, 16.3], the jam upstream the exit starts to resorb, and the exit eciency (which is monitored by the exit ux) slightly falls down while the organization level regresses signicantly. In other words, the agents abandon collective strategies in rapidly evolving environments, but this does not aect the trac dramatically because densities are also strongly decreased.
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Conclusions and perspectives

The model we propose here permits a rigorous analysis of well-posedness as well as a robust and simple numerical approximation. It enriches the qualitative behavior of the simple LWR-based models for bottlenecks ( [START_REF] Colombo | A well posed conservation law with a variable unilateral constraint[END_REF][START_REF] Andreianov | Crowd dynamics and conservation laws with nonlocal constraints and capacity drop[END_REF][START_REF] Andreianov | Analysis and approximation of one-dimensional scalar conservation laws with general point constraints on the ux[END_REF]), due to its ability to reproduce a few self-organization features. Let us deeper discuss the model construction, in particular the role of the function K whose behavior is depicted in Figure 1(right). Its key features are as follows:

• invariance of the organization marker ω in the region of low densities;

• rapid decrease of ω for moderate and particularly for high densities, under strong density variations;

• progressive increase of ω in dense and very dense trac with small density variations.

The idea behind these features is: rapidly changing trac conditions, at considerable densities, promote individual behavior and rapidly lead to a somewhat chaotic interactions among agents, thus lowering the exit eciency; while persistent coercive trac conditions, such as a jam, help to emerge and promote a collective behavior like formation of well-organized queues,

the alternate in the order of passage through the bottleneck, and a higher degree of mutual courtesy among agents; thus the exit eciency improves accordingly, which enhances the jam evacuation. The form (5) provides a simple example of such behavior, which is conrmed by the simulations of Section 3. The parameter ξ c has the meaning of activation threshold for organization/disorganization of the trac at bottleneck; D + , D -indicate thresholds of transition from cooperative (low variations of ξ) to individualistic (higher ones) dynamics of agents.

One way to improve this model would be to take into account unexpected/rash behavior of certain agents. Let us recall that unlike uid mechanics models, trac models deal with a relatively small number of agents. In consequence, we would expect the dynamics to be greatly impacted by the behavior of a few agents. An idea to model such rash behaviors is to introduce a stochastic term in the denition of the prefactor K, for example

K(t, ξ, χ) = C ξ ξ c -1 + 1 - χ + D + - χ - D - -X(t) ,
where X is a stochastic process modeling the harmful impact of a random number of mindless agents on the collective dynamics. We plan to study numerically this variant of the model and provide indications concerning the impact of undisciplined agents on the evacuation time.

In the forthcoming work [START_REF] Andreianov | An hybrid LWR model to reproduce self-organization of trac[END_REF], we will take inspiration from second-order macroscopic models of trac [START_REF] Aw | Resurrection of "second order" models of trac ow[END_REF][START_REF] Zhang | A non-equilibrium trac model devoid of gas-like behavior[END_REF] to model self-organization globally on the road; note that bottlenecks can be as well modelled with non-local point constraints within such models, see, e.g., [START_REF] Andreianov | A second-order model for vehicular tracs with local point constraints on the ow[END_REF]. Mimicking the key elements (3)-( 4) of the model we addressed in the present note, we will introduce two fundamental graphs f min ≤ f max to describe the two states of the trac and make the space-and-time dependent organization parameter act both on the constraint levels (3) and on the fundamental graphs. We will then have to study a variant of nonlocal LWR model, cf. [START_REF] Blandin | Well-posedness of a conservation law with non-local ux arising in trac ow modeling[END_REF][START_REF] Goatin | Well-posedness and nite volume approximations of the lwr trac ow model with non-local velocity[END_REF] for related mathematical and numerical issues.
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  the initial data ρ 0 and of the weight function µ; for instance their mean values on each cell (x j , x j+1 ).

  ) Proof. One can follow the argumentation in [24, Proposition 3.1], or borrow elements from [20, Lemma 5.1] and [6, Proposition 4.2].

Figure 2 :

 2 Figure 2: Rate of convergence.

Figure 3 :

 3 Figure 3: The numerically computed solution x → ρ ∆ (x, t) at dierent xed times t; dashed lines correspond to the reference solution in absence of self-organization ω = 0 in (3).

Figure 4 :

 4 Figure 4: Left: subjective density ξ and organization marker ω. Right: exit ux f (ρ)| x=0 -; dashed lines correspond to the reference solution in absence of self-organization ω = 0 in (3).

  

  away from the interface. Consequently, ρ ∈ C([0, T ]; L 1 loc (R * )), see [11, Theorem 1.2]. Moreover, since ρ is bounded and {x = 0} has a Lebesgue measure 0, ρ ∈ C([0, T ]; L 1 loc (R)). This ensures that the equality in Remark 2.1 actually holds for all t ∈ [0, T ]. Moreover, since ρ is an entropy solution