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1-D QUANTUM HARMONIC OSCILLATOR WITH TIME

QUASI-PERIODIC QUADRATIC PERTURBATION:

REDUCIBILITY AND GROWTH OF SOBOLEV NORMS

ZHENGUO LIANG, ZHIYAN ZHAO, AND QI ZHOU

Abstract. For a family of 1-d quantum harmonic oscillator with a perturbation
which is C2 parametrized by E ∈ I ⊂ R and quadratic on x and −i∂x with
coefficients quasi-periodically depending on time t, we show the reducibility (i.e.,
conjugation to time-independent) for a.e. E. As an application of reducibility,
we describe the behaviors of solution in Sobolev space:
• Boundedness w.r.t. t is always true for “most” E ∈ I.
• For “generic” time-dependent perturbation, polynomial growth and expo-

nential growth to infinity w.r.t. t occur for E in a “small” part of I.
Concrete examples are given for which the growths of Sobolev norm do occur.

Key words: 1-d quantum harmonic oscillator, time quasi-periodic, Weyl quanti-
zation, reducibility, growth of Sobolev norms

1. Introduction and main results

Consider the one-dimensional Schrödinger equation

(1) i∂tu =
ν(E)

2
H0u+W (E,ωt, x,−i∂x)u, x ∈ R,

where, we assume that

• the frequencies ω ∈ Rd, d ≥ 1, satisfy the Diophantine condition (denoted
by ω ∈ DCd(γ, τ) for γ > 0, τ > d− 1):

inf
j∈Z
|〈n, ω〉 − j| > γ

|n|τ
, ∀ n ∈ Zd \ {0},

• the parameter E ∈ I, an interval ⊂ R, and ν ∈ C2(I,R) satisfies

|ν ′(E)| ≥ l1, |ν ′′(E)| ≤ l2, ∀ E ∈ I,

for some l1, l2 > 0,
• H0 is the one-dimensional quantum harmonic operator, i.e.

(H0u)(x) := −(∂2
xu)(x) + x2 · u(x), ∀ u ∈ L2(R),
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• W (E, θ, x, ξ) is a quadratic form of (x, ξ):

W (E, θ, x, ξ) =
1

2

(
a(E, θ)x2 + 2b(E, θ)x · ξ + c(E, θ)ξ2

)
,

with a, b, c : I × Td → R, all of which are C2 w.r.t. E ∈ I and Cω w.r.t.
θ ∈ Td := (R/Z)d, and for every E ∈ I, for m = 0, 1, 2, |∂mE a(E, ·)|r :=
sup|=z|<r |∂mE a(E, z)|, |∂mE b(E, ·)|r, |∂mE c(E, ·)|r are small enough.

We will prove that, for almost every E in the interval I, Eq. (1) is reducible, i.e., via a
unitary transformation, Eq. (1) is conjugated to an equation which is independent
of time (while the transformation depends on time in an analytic quasi-periodic
way). According to the reducibility, we deduce the behavior of Sobolev norms for
the solutions to Eq. (1).

1.1. Reducibility for harmonic oscillators. Our main result is the following:

Theorem 1.1. There exists ε∗ = ε∗(γ, τ, r, d, l1, l2) > 0 such that if

max
m=0,1,2

{|∂mE a|r , |∂
m
E b|r , |∂

m
E c|r} =: ε0 ≤ ε∗, ∀ E ∈ I,

then for a.e. E ∈ I, Eq. (1) is reducible, i.e., there exists a time quasi-periodic
transformation U(ωt), unitary in L2 and analytically depending on t, such that Eq.
(1) is conjugated to i∂tv = Gv by the transformation u = U(ωt) v, with G a linear
operator independent of t.

More precisely, there exists a subset

Oε0 =
⋃
j∈N

Λj ⊂ I

with Λj’s being closed intervals 1 and Leb(Oε0) < ε
1
40
0 , such that the following holds.

(1) For a.e. E ∈ I \ Oε0, G is unitary equivalent to %H0 for some % = %E ≥ 0;
(2) If Leb(Λj) > 0, then

• for E ∈ intΛj, G is unitary equivalent to −λi
2 (x · ∂x + ∂x · x) for some

λ = λE > 0;
• for E ∈ ∂Λj \ ∂I, G is unitary equivalent to −κ

2x
2 for some κ = κE ∈

R \ {0}.
If Leb(Λj) = 0, then G = 0 for E ∈ Λj.

Before giving its application on the growth of Sobolev norm, let us first make a
review on previous works about the reducibility on harmonic oscillators as well as
the relative KAM theory.

For 1-d harmonic oscillators with time periodic smooth perturbations, Combes-
cure [11] firstly showed the pure point nature of Floquet operator (see also
[13, 17, 28]). For 1-d harmonic oscillators with time quasi-periodic bounded per-
turbations, we can refer to [22, 36, 37] for the reducibility and the pure point spec-
trum of Floquet operator. For 1-d harmonic oscillators with unbounded time quasi-
periodic perturbations, similar results can be found in [3, 4, 9, 30]. In investigating
the reducibility problems, KAM theory for 1-d PDEs has been well developed by
Bambusi-Graffi [6] and Liu-Yuan [32] in order to deal with unbounded perturbations.

1In this paper, the “closed interval” is interpreted in a more general sense, i.e., it can be degen-
erated to a point instead of a positive-measure subset of R.
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Reducibility for PDEs in higher-dimensional case was initiated by Eliasson-Kuksin
[15], based on their KAM theory [16]. We refer to [23] and [31] for any dimen-
sional harmonic oscillator with bounded potential. We mention that some higher-
dimensional results with unbounded perturbations have been recently obtained
[5, 18, 19, 20, 35]. However, a general KAM theorem for higher-dimensional PDEs
with unbounded perturbations is far from success.

Recently, Bambusi-Grébert-Maspero-Robert [7] built a reducibility result for the
harmonic oscillators on Rn, ,n ≥ 1, in which the perturbation is a polynomial of
degree at most two in x and −i∂x with coefficients quasi-periodically depending on
time. The proof in [7] exploits the fact that for polynomial Hamiltonians of degree
at most 2, there is an exact correspondence between classical and quantum mechan-
ics, so that the result can be proved by exact quantization of the classical KAM
theory which ensures reducibility of the classical Hamiltonian system. The exact
correspondence between classical and quantum dynamics of quadratic Hamiltonians
was already exploited in the paper [25] to prove stability and instability results for
one degree of freedom time periodic quadratic Hamiltonians. To prove our main
result, we use the same strategy as [7] and the reducibility result for the classical
Hamiltonian by Eliasson [14].

1.2. Growth of Sobolev norms. Besides reducibility, the construction of un-
bounded solutions in Sobolev space for Schrödinger equations attracts even more
attentions.

As an application of Theorem 1.1, we can study the long time behaviour of its
solution u(t) to Eq. (1) in Sobolev space. For s ≥ 0, we define Sobolev space

Hs :=
{
ψ ∈ L2(R) : H

s
2
0 ψ ∈ L

2(R)
}

and Sobolev norm ‖ψ‖s := ‖H
s
2
0 ψ‖L2(R). It is well known that, for s ∈ N, the above

definition of norm is equivalent to∑
α+β≤s
α,β∈N

‖xα · ∂βψ‖L2(R).

Remark 1.1. In view of Remark 2.2 of [9], we get that, for a given ψ ∈ Hs,
(2) ‖ψ‖s ' ‖ψ‖Hs + ‖xsψ‖L2 ,

replacing K0 = H0 in that remark by K0 = H
1
2
0 , where Hs means the standard

Sobolev space and ‖ · ‖Hs is the corresponding norm. Hence, to calculate the norm

‖ψ‖s, s ≥ 0, it is sufficient to focus on ‖xsψ‖L2 for s ≥ 0 and ‖ψ(s)‖L2 for s ∈ N.

For different types of reduced systems, Sobolev norm of solution exhibits different
behaviors.

Theorem 1.2. Under the assumption of Theorem 1.1, for any s ≥ 0, and any non-
vanishing initial condition u(0) ∈ Hs, the following holds true for the solution u(t)
to Eq. (1) for t ≥ 0.

(1) For a.e. E ∈ I \ Oε0, c ≤ ‖u(t)‖s ≤ C.
(2) If Leb(Λj) > 0, then

• for E ∈ intΛj, ce
λst ≤ ‖u(t)‖s ≤ Ceλst,

• for E ∈ ∂Λj \ ∂I, c|κ|sts ≤ ‖u(t)‖s ≤ C|κ|(1 + t2)
s
2 .



4 ZHENGUO LIANG, ZHIYAN ZHAO, AND QI ZHOU

If Leb(Λj) = 0, then for E ∈ Λj, ce
λst ≤ ‖u(t)‖s ≤ Ceλst.

Here λ = λE and κ = κE are the same with Theorem 1.1 and c, C > 0 are two
constants depending on s, E and u(0).

Let us make more comments on constructing solutions growing with time in
Schrödinger equations. Bourgain [10] built logarithmic lower and upper growth
bounds for linear Schrödinger equation on T by exploiting resonance effects. And
the optimal polynomial growth example was given by Delort [12] for 1-d harmonic
oscillator with a time periodic order zero perturbation. Maspero [34] reproved the
result of Delort by exploiting the idea in [21]. In [7], the authors also considered the
higher-dimensional harmonic oscillator with a linear perturbation in x and −i∂x with
time quasi-periodic coefficients. Under the Diophantine condition of frequencies, the
time-dependent equation can be reduced to a special “normal form” independent of
time (see Theorem 3.3 of [7]), which implies the polynomial growth of Sobolev norm.
There are also many literatures, e.g., [8, 33], which are relative to the upper growth
bound of the solution in Sobolev space.

From the above mentioned literatures, we can see that almost all the growth
results of lower growth bound of the solution are closely related to the resonance
phenomenon. However, it is not clear to us which kind of parameter set is connected
to the growth of Sobolev norm. Comparing with all the above results, we introduce
the parameter set

⋃
j∈N Λj following [14], in which the solutions has exponential

lower and upper growth bounds, while on the boundaries of this set the solutions
has polynomial lower and upper growth bounds. In the following, we will present
several concrete examples to show that the set

⋃
j∈N Λj is of positive measure.

1.3. Examples with Leb(Oε0) > 0. In view of Theorem 1.1 and 1.2, the growth
of Sobolev norm can be obtained via the reducibility if Leb(Oε0) > 0. We need
to point that the time-dependent quadratic perturbation W (E,ωt, x,−i∂x) with
Leb(Oε0) > 0 exists universally. In other words, it is a quite “extreme” case that

Leb(Λj) = 0, ∀ j ∈ N.

We have the following concrete examples.

For I = R, ν(E) = E, the equation

(3) i∂tu =
E

2
H0u+

(
a(ωt)

2
x2 − b(ωt)

2
(x · i∂x + i∂x · x)− c(ωt)

2
∂2
x

)
u,

satisfies the assumptions of Theorem 1.1 if a, b, c ∈ Cω(Td,R) are small enough.
Hence, for Eq. (3), the reducibility and the behaviors of Hs norm of solutions
described in Theorem 1.2 can be obtained.

Theorem 1.3. For generic a, b, c ∈ Cω(Td,R) with |a|r, |b|r, |c|r small enough (de-
pending on r, γ, τ, d), the conclusions of Theorem 1.1 and 1.2 hold for Eq. (3) for
I = R with Leb(Oε0) > 0.

For ν(E) =
√
E, consider the equation

(4) i∂tu =

√
E

2
H0u−

q(ωt)

2
√
E

(
x2 − x · i∂x − i∂x · x− ∂2

x

)
u.
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with q ∈ Cωr (Td,R). The equation is important, since as we will show later, it is
closely related to quasi-periodic Schrödinger operator.

Theorem 1.4. For generic q ∈ Cω(Td,R), the conclusions of Theorem 1.1 and 1.2
hold for Eq. (4) for I = [E0, E1] with Leb(Λj) > 0 for infinitely many j’s, where
E0 > 0 is large enough (depending on |q|r) and E1 <∞.

Theorem 1.3 gives the example that Leb(Λj) > 0 for at least one j, while Theorem
1.4 gives the example that Leb(Λj) > 0 for infinitely many j’s. Indeed, if the
dimension of the frequency d = 2, we could even gives Leb(Λj) > 0 for every j’s. To
construct such an example, we consider

(5) i∂tu =
ν(E)

2
H0u+

(
a(E,ωt)

2
x2 − b(E,ωt)

2
(x · i∂x + i∂x · x)− c(E,ωt)

2
∂2
x

)
u.

where ν(E) = cos−1(−E
2 ), I ⊂ [−2 + δ, 2 − δ] with δ a small numerical constant

(e.g., δ = 10−6). Then our result is the following:

Theorem 1.5. There exist a sub-interval I ⊂ [−2+δ, 2−δ] and a, b, c : I×T2 → R
with a(E, ·), b(E, ·), c(E, ·) ∈ Cω(T2,R) for every E ∈ I, such that the conclusions
of Theorem 1.1 and 1.2 hold for Eq. (5). Moreover, Leb(Λj) > 0 for every j ∈ N.

Remark 1.2. One can even further get precise size of Leb(Λj) according to [29].

The rest of paper will be organised as follows. In Section 2, which serves as a
preliminary section, we recall the definition of Weyl quantization and some known
results on the relation between classical Hamiltonian to quantum Hamiltonian. We
give an abstract theorem in Section 3 on the reducibility for quantum Hamiltonian,
provided that the reducibility for the corresponding classical Hamiltonian is known.
By applying this abstract theorem, we exploit the connection between reducibility
and property of Sobolev norm. The abstract theorem is proved in Section 4. In
Section 5, we prove the main result just by verifying the hypothesis of abstract
theorem. In Section 6, the proofs of Theorem 1.3 – 1.5 are given.

2. Classical Hamiltonian and quantum Hamiltonian

To give some preliminary knowledge, let us recall the definition of Weyl quanti-
zation, which relates the classical and quantum mechanics, and its properties. The
conclusions listed in this section can also be found in [7].

The Weyl quantization is the operator OpW : f 7→ fW for any symbol f = f(x, ξ),
with x, ξ ∈ Rn, where fW is the Weyl operator of f :(

fWu
)

(x) =
1

(2π)n

∫
y, ξ∈Rn

f

(
x+ y

2
, ξ

)
u(y) dy dξ, ∀ u ∈ L2(Rn).

In particular, if f is a polynomial of degree at most 2 in (x, ξ), then fW is exactly
f(x,−i∂x).

For the 1−parameter family of Hamiltonian χ(t, x, ξ), with t an external param-
eter, let φτ (t, x, ξ) be the time τ−flow it generates, precisely the solution of

dx

dτ
=
∂χ

∂ξ
(t, x, ξ),

dξ

dτ
= −∂χ

∂x
(t, x, ξ).



6 ZHENGUO LIANG, ZHIYAN ZHAO, AND QI ZHOU

The time-dependent coordinate transformation

(6) (x, ξ) = φ1
(
t, x̃, ξ̃

)
= φτ

(
t, x̃, ξ̃

)∣∣∣
τ=1

transforms a Hamiltonian system with Hamiltonian h into a system with Hamilton-
ian g given by

g(t, x̃, ξ̃) = h(φ1(t, x̃, ξ̃))−
∫ 1

0

∂χ

∂t
(t, φτ (t, x̃, ξ̃))dτ.

Lemma 2.1 (Remark 2.6 of [7]). If the Weyl operator χW (t, x,−i∂x) is self-adjoint
for any fixed t, then the transformation

(7) ψ = eiχW (t,x,−i∂x)ψ̃

transforms the equation i∂tψ = Hψ into i∂tψ̃ = Gψ̃ with

G := eiχW (t,x,−i∂x)He−iχW (t,x,−i∂x)

−
∫ 1

0
eiτχW (t,x,−i∂x)

(
∂tχ

W (t, x,−i∂x)
)
e−iτχW (t,x,−i∂x)dτ.

Proposition 2.1 (Proposition 2.9 of [7]). Let χ(t, x, ξ) be a polynomial of degree at
most 2 in (x, ξ) with smooth time-dependent coefficients. If the transformation (6)
transforms a classical system with Hamiltonian h into a system with Hamiltonian g,
then the transformation (7) transforms the quantum Hamiltonian system hW into
gW .

Now, let us focus on the case n = 1.

Lemma 2.2 (Lemma 2.8 of [7]). Let χ(θ, x, ξ) be a polynomial of degree at most 2
in (x, ξ) with real coefficients depending in a C∞−way on θ ∈ Td. For every θ ∈ Td,
the Weyl operator χW (θ, x,−i∂x) is self-adjoint in L2(R) and e−iτχW (θ,x,−i∂x) is
unitary in L2(Rn) for every τ ∈ R. Furthermore, if the coefficients of χ(θ, x, ξ) are
uniformly bounded w.r.t. θ ∈ Td, then for any s ≥ 0, there exist c′, C ′ > 0 depending
on ‖[Hs

0 , χ
W (θ, x,−i∂x)]H−s0 ‖L2 7→L2 and s, such that

(8) c′‖ψ‖s ≤ ‖e−iτχW (θ,x,−i∂x)ψ‖s ≤ C ′‖ψ‖s, τ ∈ [0, 1], θ ∈ Td.

3. Reducibility and growth of Sobolev norm

3.1. An abstract theorem on reducibility. Consider the 1-d time-dependent
equation

(9) i∂tu = LW (ωt, x,−i∂x)u, x ∈ R,
where LW (ωt, x,−i∂x) is a linear differential operator, ω ∈ Td, d ≥ 1, and the symbol
L(θ, x, ξ) is a quadratic form of (x, ξ) with coefficients analytically depending on
θ ∈ Td. More precisely, we assume that

(10) L(θ, x, ξ) =
1

2

(
a(θ)x2 + b(θ)x · ξ + b(θ)ξ · x+ c(θ)ξ2

)
,

with coefficients a, b, c ∈ Cω(Td,R).
Through Weyl quantization, the reducibility for the time-dependent PDE can be

related to the reducibility for the sl(2,R)−linear system (ω, A(·)):

X ′ = A(ωt)X, A ∈ Cω(Td, sl(2,R)).
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Given A1, A2 ∈ Cω(Td, sl(2,R)), if there exists Y ∈ Cω(2Td,SL(2,R)) such that

d

dt
Y (ωt) = A1(ωt)Y (ωt)− Y (ωt)A2(ωt),

we say that (ω, A1(·)) is conjugated to (ω, A2(·)) by Y . If (ω, A(·)) can be conju-
gated to (ω, B) with B ∈ sl(2,R), we say that (ω, A(·)) is reducible.

Now let A(·) :=

(
b(·) c(·)
−a(·) −b(·)

)
∈ Cω(Td, sl(2,R)) with a, b, c coefficients given

in (10).

Theorem 3.1. Assume that there exist B ∈ sl(2,R) and Zj ∈ Cω(2Td, sl(2,R)),

j = 0, · · · ,K, such that (ω, A(·)) is conjugated to (ω, B) by
∏K
j=0 e

Zj . Then Eq.

(9) is reducible, i.e., there exists a time quasi-periodic map U(ωt), unitary in L2

and analytic on t, satisfying

(11) c′‖ψ‖s ≤ ‖U(ωt)ψ‖s ≤ C ′‖ψ‖s, ∀ ψ ∈ Hs,
for constants c′, C ′ > 0 depending on s and ψ, such that Eq. (9) is conjugated to

(12) i∂tv = Gv

by the transformation u = U(ωt)v, with G an operator independent of time.
More precisely,

(I) G is unitary equivalent to
√

detB
2 H0 if

(13) detB > 0 or B =

(
0 0

0 0

)
.

(II) G is unitary equivalent to − i
√
−detB

2 (x · ∂x + ∂x · x) if

(14) detB < 0.

(III) G is unitary equivalent to −κ
2x

2 if

(15) B is similar to

(
0 0

κ 0

)
with κ 6= 0.

3.2. Growth of Sobolev norm via reducibility. As an corollary of Theorem
3.1, we have:

Theorem 3.2. Under the assumption of Theorem 3.1, we consider the solution
u(t) = u(t, ·) to Eq. (9) with the non-vanishing initial condition u(0) ∈ Hs, s ≥ 0.
There exists c, C > 0, depending on s and u(0), such that, for any t ≥ 0,

• If (13) holds, then c ≤ ‖u(t)‖s ≤ C.

• If (14) holds, then ce
√
−detBst ≤ ‖u(t)‖s ≤ Ce

√
−detBst.

• If (15) holds, then c|κ|sts ≤ ‖u(t)‖s ≤ C|κ|s
√

1 + t2
s
2 .

According to (11), to precise the growth of Sobolev norms for the solution to Eq.
(9), it is sufficient to study the reduced quantum Hamiltonian G(x,−i∂x) obtained
in (12), or more simply, the unitary equivalent forms of types (I)−(III) listed in
Theorem 3.1.

If (13) holds, then G is unitary equivalent to
√

detB
2 H0. Since the Hs−norm of

e−it
√
detB
2

H0ψ0 is conserved for any ψ0 ∈ Hs, the boundedness of Sobolev norm is
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shown. We focus on the cases where (14) and (15) hold, in which the growth of
Sobolev norm occurs.

Proposition 3.1. For the equation

(16) ∂tv(t, x) = −λ
2
x · ∂xv(t, x)− λ

2
∂x(x · v(t, x)), λ > 0,

with non-vanishing initial condition v(0, ·) = v0 ∈ Hs, s ≥ 0, there exist two con-

stants c̃, C̃ > 0, depending on s, λ and v0, such that the solution satisfies

(17) c̃eλst ≤ ‖ψ(t, ·)‖s ≤ C̃eλst, ∀ t ≥ 0.

Remark 3.1. This conclusion is also given in Remark 1.4 of [33].

Proof. Through a straightforward computation, we can verify that, for the initial
condition v(0, ·) = v0(·) ∈ Hs, the solution to Eq. (16) satisfies

v(t, x) = e−
λ
2
tv0(e−λtx).

For any s ≥ 0,∫
R
x2s|v(t, x)|2 dx =

∫
R
x2s|v0(e−λtx)|2 d(e−λtx)

= e2λst

∫
R

(e−λtx)2s|v0(e−λtx)|2 d(e−λtx)

= e2λst

∫
R
x2s|v0(x)|2 dx.(18)

and for s ∈ N,

(19)

∫
R
|∂sxv(t, x)|2 dx = e−2λst

∫
R
|v(s)

0 (e−λtx)|2 d(e−λtx) = e−2λst

∫
R
|v(s)

0 (x)|2 dx.

In view of the equivalent definition (2) of the Hs−norm given in Remark 1.1, we get
(17) by combining (18) and (19). �

Proposition 3.2. For the equation

(20) i∂tv(t, x) = −κ
2
x2 · v(t, x), κ ∈ R,

with non-vanishing initial condition v0 ∈ Hs, s ≥ 0, there exists constants c̃, C̃ > 0,
depending on s, κ and v0, such that the solution satisfies

(21) c̃|κ|s|t|s ≤ ‖v(t, ·)‖s ≤ C̃|κ|s(1 + t2)
s
2 , ∀ t ∈ R.

Proof. With the initial condition v(0, ·) = v0(·) ∈ Hs, the solution to Eq. (20) is

v(t, x) = eiκ
2
x2tv0(x).

For any s ≥ 0,

‖xsv(t, x)‖L2 = ‖xseiκ
2
x2tv0(x)‖L2 = ‖xsv0(x)‖L2 ,
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and for s ∈ N,

∂sx(v(t, x)) = ∂sx(eiκ
2
x2tv0(x))

=

s∑
α=0

Cαs (eiκ
2
x2t)(α)v

(s−α)
0 (x)

= eiκ
2
x2t

s∑
α=0

Cαs ((iκt)αxα + Pα(iκt, x)) v
(s−α)
0 (x)

= (iκt)sxseiκ
2
x2t · v0(x) + Ps(iκt, x)eiκ

2
x2t · v0(x)

+xαeiκ
2
x2t

s−1∑
α=0

Cαs ((iκt)αxα + Pα(iκt, x)) v
(s−α)
0 (x),

where, for α ≥ 2, Pα(iκt, x) is a polynomial of degree α−2 of x, with the coefficients
being monomials of iκt of degree ≤ α − 1 and P1 = P0 = 0. Then, there exists a
constant D > 0 such that

|‖∂sx(v(t, x))‖L2 − |κt|s‖xsv0(x)‖L2 | ≤ D|κt|s−1‖v0(x)‖s.

In view of the equivalent definition (2) of norm in Remark 1.1, we get (21). �

Proof of Theorem 3.2. From Theorem 3.1, we know that Eq. (9) is conjugated
to i∂tv = Gv by the transformation u = U(ωt)v, with G = G(x,−i∂x) the operator
independent of t given in (25).

Recall Proposition 3.1 and 3.2. Given s ≥ 0, for any non-vanishing v0 ∈ Hs, for
the three types of unitary equivalence of G, there are three different behaviours of
the solution to the equation i∂tv = Gv as t→∞.

• If G is unitary equivalent to
√

detB
2 H0 (under (13)), then ‖e−iGtv0‖s = O(1).

• If G is unitary equivalent to − i
√
−detB

2 (x · ∂x + ∂x · x) (under (14)), then

‖e−iGtv0‖s = O(e
√
−detBst).

• If G is unitary equivalent to −κ
2x

2 (under (15)), then ‖e−iGtv0‖s = O(|κ|sts).
Moreover, according to (11), for s ≥ 0, there exist constants c′, C ′ > 0 such that

c′‖v‖s ≤ ‖U(ωt)v‖s ≤ C ′‖v‖s, ∀ v ∈ Hs.

Hence Theorem 3.2 is shown. �

4. Reducibility in classical Hamiltonian system and Proof of
Theorem 3.1

4.1. Conjugation between classical hamiltonians. Given two quadratic classi-
cal Hamiltonians

hj(ωt, x, ξ) =
1

2

(
aj(ωt)x

2 + 2bj(ωt)x · ξ + cj(ωt)ξ
2
)
, j = 1, 2,

which can be presented as

hj(ωt, x, ξ) =
1

2

(
x
ξ

)>
JAj(ωt)

(
x
ξ

)
, j = 1, 2
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with J :=

(
0 −1
1 0

)
and Aj(·) =

(
bj(·) cj(·)
−aj(·) −bj(·)

)
∈ Cω(Td, sl(2,R)). The

corresponding equations of motion are given by

x′ =
∂hj
∂ξ

, ξ′ = −∂hj
∂x

, j = 1, 2,

which are the linear systems (ω, Aj):(
x(t)
ξ(t)

)′
= Aj(ωt)

(
x(t)
ξ(t)

)
.

Proposition 4.1. If the linear system (ω, A1(·)) is conjugated to (ω, A2(·)) by a
time quasi-periodic SL(2,R)−transformation, i.e.,

(22)
d

dt
eZ(ωt) = A1(ωt)eZ(ωt) − eZ(ωt)A2(ωt), Z ∈ Cω(2Td, sl(2,R)),

then the classical Hamiltonian h1(ωt, x, ξ) is conjugated to h2(ωt, x, ξ) via the time−1
flow φ1

χ(t, x, ξ) generated by the Hamiltonian

(23) χ(ωt, x, ξ) =
1

2

(
x
ξ

)>
JZ(ωt)

(
x
ξ

)
.

Proof. Note that the equation of motion of the classical Hamiltonian h1 is the linear
system (ω, A1(·)): (

x
ξ

)′
= A1(ωt)

(
x
ξ

)
.

In view of (22), the transformation

(24)

(
x
ξ

)
= eZ(ωt)

(
x̃

ξ̃

)
, Z ∈ Cω(2Td, sl(2,R)),

conjugates (ω, A1(·)) to (ω, A2(·)). More precisely,(
x̃

ξ̃

)′
= e−Z(ωt)A1(ωt)

(
x
ξ

)
− e−Z(ωt) d

dt
eZ(ωt)

(
x̃

ξ̃

)
= e−Z(ωt)A1(ωt)eZ(ωt)

(
x̃

ξ̃

)
− e−Z(ωt) d

dt
eZ(ωt)

(
x̃

ξ̃

)
= A2(ωt)

(
x̃

ξ̃

)
,

for which the corresponding Hamiltonian is h2(ωt, x̃, ξ̃). As in (3-35) of [7], the
time−1 map between the two Hamiltonians is generated by (23) since there is only
quadratic terms in the Hamiltonian in our case. �

4.2. Proof of Theorem 3.1. We consider the classical Hamiltonian

L(ωt, x, ξ) =
a(ωt)

2
x2 +

b(ωt)

2
(x · ξ + ξ · x) +

c(ωt)

2
ξ2

=
1

2
X>JA(ωt)X, X :=

(
x
ξ

)
.

with a, b, c ∈ Cω(Td) given in Eq. (9), and A :=

(
b c
−a −b

)
∈ Cω(Td, sl(2,R)).
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By the hypothesis of Theorem 3.1, the linear system (ω, A(·)) can be reduced

to the constant system (ω, B), with B =

(
B11 B12

−B21 −B11

)
∈ sl(2,R), via finitely

many transformations (eZj )Kj=0 with Zj ∈ Cω(2Td, sl(2,R)). Hence the reduced
classical Hamiltonian is

g(x, ξ) =
1

2
X>JBX =

B21

2
x2 +

B11

2
(x · ξ + ξ · x) +

B12

2
ξ2.

By Proposition 2.1, we see that LW (ωt, x,−i∂x) is conjugated to

(25) G(x,−i∂x) := gW (x,−i∂x) =
B21

2
x2 − B11

2
(x · i∂x + i∂x · x)− B12

2
∂2
x

via the product of unitary (in L2(R)) transformations

U(ωt) :=
K∏
j=0

e−iχWj (ωt,x,−i∂x)

where χWj is the Weyl quantization of

χj(ωt, x, ξ) =
1

2
X>JZj(ωt)X.

Then (11) is deduced from (8) in Lemma 2.2. The following diagram gives a s-
traightforward explanation for the above proof.

X ′ = A(ωt)X

∏K
j=0 e

Zj(ωt)

−→ X ′ = BX Zj ∈ Cω(2Td, sl(2,R))xy xy
L(ωt) = 1

2X
>JA(ωt)X

Φ1
χ0(ωt)

◦···◦Φ1
χK (ωt)−→ g = 1

2X
>JBX χj = 1

2X
>JZjXxy xy

i∂tu = LW (ωt)u

∏K
j=0 e

−iχWj (ωt)

−→ i∂tu = gWu

If (13) holds, i.e., detB > 0 or B =

(
0 0
0 0

)
, then there exists CB ∈ sl(2,R)

such that

(26) B = eCB
(

0
√

detB

−
√

detB 0

)
e−CB .

If (14) holds, i.e., detB < 0, then there exists CB ∈ sl(2,R) such that

(27) B = eCB
( √

−detB 0
0 −

√
−detB

)
e−CB .

If (15) holds, then there exists CB ∈ sl(2,R) such that

(28) B = eCB
(

0 0
κ 0

)
e−CB .
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Therefore, for Eq. (9), the three types of unitary equivalence of G = G(x,−i∂x) are
shown by (26)−(28) respectively. �

5. Proof of Theorem 1.1 and 1.2

In view of Theorem 3.1, to show the reducibility of Eq. (1), it is sufficient to show
the reducibility of the corresponding sl(2,R)−linear system.

For E ∈ I, the symbol of the quantum Hamiltonian (1) is

hE(ωt, x, ξ) =
ν(E)

2
(ξ2 + x2) +W (E,ωt, x, ξ)

which corresponds the quasi-periodic linear system (ω, A0 + F0)

(29)

(
x
ξ

)′
=

[(
0 ν(E)

−ν(E) 0

)
+

(
b(E,ωt) c(E,ωt)
−a(E,ωt) −b(E,ωt)

)](
x
ξ

)
,

where, for every E ∈ I,

A0(E) :=

(
0 ν(E)

−ν(E) 0

)
∈ sl(2,R),

F0(E, ·) :=

(
b(E, ·) c(E, ·)
−a(E, ·) −b(E, ·)

)
∈ Cωr (Td, sl(2,R))

with |∂mE F0|r < ε0, m = 0, 1, 2, sufficiently small.
The reducibility of linear system (29) is exploited by Eliasson [14] (see also [24] for

results about SL(2,R)-cocycles). We summarise the needed results in the following
proposition. To make the paper as self-contained as possible, we give a short proof
without adding too many details on known facts. Since every quantity depends on
E, we do not always write this dependence explicitly in the statement of proposition.

Before stating the precise result, we introduce the concept of rotation number.
The rotation number of quasi-periodic sl(2,R)−linear system (29) is defined as

ρ(E) = ρ(ω, A0(E) + F (E,ωt)) = lim
t→∞

arg(Φt
EX)

t
, ∀ X ∈ R2 \ {0}

where Φt
E is the basic matrix solution and arg denotes the angle. The rotation

number ρ is well-defined and it does not depend on X [27].

Proposition 5.1. There exists ε∗ = ε∗(r, γ, τ, d, l1, l2) > 0 such that if

(30) max
m=0,1,2

|∂mE F0|r =: ε0 < ε∗,

then the following holds for the quasi-periodic linear system (ω, A0 + F0).

(1) For a.e. E ∈ I, (ω, A0 + F0(·)) is reducible. More precisely, there exist
B ∈ sl(2,R) and Zj ∈ Cω(2Td, sl(2,R)), j = 0, 1, · · · ,K, such that

(31)
d

dt

 K∏
j=0

eZj(ωt)

 = (A0 + F0(ωt))

 K∏
j=0

eZj(ωt)

−
 K∏
j=0

eZj(ωt)

B.

(2) The rotation number ρ = ρ(E) is monotonic on I. For any k ∈ Zd,

Λ̃k :=

{
E ∈ I : ρ(E) =

〈k, ω〉
2

}
2

2Λ̃k can be empty for some k ∈ Zd if the closed interval ρ−1
(
〈k,ω〉

2

)
does not intersect I.
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is a closed interval, and we have

(32)
∑
k∈Zd

Leb(Λ̃k) < ε
1
40
0 .

(3) For every E ∈ Λ̃k =: [ak, bk], (ω, A0 + F0(·)) is reducible and the matrix
B ∈ sl(2,R) in (31) satisfies

• if ak = bk, then B =

(
0 0
0 0

)
;

• if ak < bk, then
– detB < 0 for E ∈ (ak, bk),
– detB = 0 for E = ak, bk and E 6∈ ∂I.

(4) For a.e. E ∈ I \
⋃
k Λ̃k, (ω, A0 + F0(·)) is reducible and the matrix B ∈

sl(2,R) in (31) satisfies detB > 0.

Proof. Since ν is a strictly monotonic real-valued function of E ∈ I and |ν ′| ≥ l1,
|ν ′′| ≤ l2, (30) implies that |∂mE F0(ν−1(E), ·)|r, m = 0, 1, 2, is also small enough.
Hence, to prove the above arguments, we can simply consider the case where ν(E) =
E ∈ I = R and then obtain Proposition 5.1 by replacing E by ν(E).

Proof of (1). The almost reducibility has already been shown by Eliasson [14] for
every E ∈ R. Indeed, if maxm=0,1,2 |∂mE F0|r is small enough (depending on r, γ, τ, d),

then there exists sequences (Yj)j∈N ⊂ Cω(2Td,SL(2,R)), (Aj)j∈N ⊂ sl(2,R),

and (Fj)j∈N ⊂ Cω(2Td, sl(2,R)), all of which are piecewise C2 w.r.t. E, with

maxm=0,1,2 |∂mE Fj |Td < εj := ε
(1+σ)j

0 for σ = 1
33 , such that

d

dt
Yj(ωt) = (Aj + Fj(ωt))Yj(ωt)− Yj(ωt) (Aj+1 + Fj+1(ωt)) .

More precisely, at the j−th step, for ±iξj ∈ R ∪ iR, the two eigenvalues of Aj , and

Nj :=
2σ

rj − rj+1
ln

(
1

εj

)
with (rj)j∈N a decreasing sequence of positive numbers such that rj−rj+1 ≥ 2−(j+1)r
for each j,

• (non-resonant case) if for every n ∈ Zd with 0 < |n| ≤ Nj , we have

(33) |2ξj − 〈n, ω〉| ≥ εσj ,

then Yj = eZ̃j for some Z̃j ∈ Cω(2Td, sl(2,R)) with |Z̃j |2Td < ε
2
3
j , and

|Aj+1 −Aj | < ε
2
3
j ;

• (resonant) if for some nj ∈ Zd with 0 < |nj | ≤ Nj , we have

(34) |2ξj − 〈nj , ω〉| < εσj ,

then Yj+1(·) = e
〈nj,·〉
2ξj

Aj
eZ̃j+1 for some Z̃j ∈ Cω(2Td, sl(2,R)) with |Z̃j |2Td <

ε
2
3
j and |Aj+1| < ε

σ
2
j .

As j goes to∞, the time-dependent part Fj tends to vanish. Hence (ω, A0(E)+F0)
is almost reducible. For the detailed proof, we can refer to Lemma 2 of [14] and its
proof.
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In view of Lemma 3 b) of [14], if the rotation number ρ(E) of (ω, A0(E) + F0)
is Diophantine or rational w.r.t. ω, which corresponds to a.e. E ∈ R, then the
resonant case occurs for only finitely many times. Therefore, for a.e. E ∈ R, there
exists a large enough J∗ ∈ N∗, depending on E, such that

(35) Yj = eZ̃j with |Z̃j |2Td < ε
2
3
j , ∀ j ≥ J∗.

This implies that
∏∞
j=0 |Yj |2Td is convergent. As explained in the proof of Lemma 3.5

of [7], (35) also implies that there exists S ∈ Cω(2Td, sl(2,R)) such that
∏∞
j=J∗

Yj =

eS , since ε0 is sufficiently small. Hence (31) is shown, i.e., the reducibility is realized

via finitely many transformations of the form eZj(ωt) with Zj ∈ Cω(2Td, sl(2,R)).

Proof of (2). For k ∈ Zd, Λ̃k is obtained after several resonant KAM-steps, saying
j1, · · · , jL, where nji ∈ Zd with 0 < |nji | ≤ Nji , i = 1, · · · , L, satisfies

|2ξji − 〈nji , ω〉| < εσji ,

and k = nj1 + · · ·+ njL . We will show that

(36)
10|njL |

11
≤ |k| ≤ 12|njL |

11
.

Assume that L ≥ 2 (otherwise we have already k = njL). After the (ji−1 + 1)−th

step, i = 2, · · · , L, the eigenvalues ±iξji−1+1 satisfies |ξji−1+1| < 2ε
σ
2
ji−1

. On the

other hand, before the (ji+ 1)−th step, the resonant condition (34) implies that the
eigenvalues ±iξjL satisfy that

|2ξji − 〈nji , ω〉| ≤ εσji .

Since the steps between these two successive resonant steps are all non-resonant,
and ω ∈ DCd(γ, τ), we have that

γ

|nji |τ
≤ |〈nji , ω〉| ≤ 2|ξji−1+1|+ 2ε

1
3
ji−1+1 + εσji < 3ε

σ
2
ji−1

,

which implies that

|nji | >
(γ

3

) 1
τ
ε
− σ

2τ
ji−1

> 12|Nji−1 | ≥ 12|nji−1 |.

Hence, we get (36).

Λ̃k is firstly formed at the jL−th step, with the initial measure smaller than ε2σ
jL

.

Since all the succedent steps are non-resonant, the measure of Λ̃k varies up to ε2σ
jL

.

Then, for ς := ln(1+σ)
ln(8+8σ) , we have

Leb(Λ̃k) < 2ε2σ
jL
< 2εσ0e

−( 12
11)

ς
Nς
jL ≤ 2εσ0e

−( 12
11)

ς |njL |
ς
.
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Indeed, recalling that rj − rj+1 ≥ 2−(j+1)r for every j, we have

εjL = exp{−| ln ε0|(1 + σ)jL}

= exp

{
−| ln ε0|1−ς(1 + σ)jL(1−ς)(rjL − rjL+1)ς

(2σ)ς
N ς
jL

}

≤ exp

{
−| ln ε0|1−ςrς

(4σ)ς

(
(1 + σ)1−ς

2ς

)jL
N ς
jL

}

< exp

{
−
(

12

11

)ς N ς
jL

σ

}
,

since ε0 is small enough and

(1 + σ)1−ς

2ς
= exp

{
ln(1 + σ)

ln(8 + 8σ)
(ln 8− ln 2)

}
> 1.

Therefore, by (36), we get Leb(Λ̃k) < 2εσ0e
−|k|ς , which implies (32). For detailed

proof of the measure estimate of Λ̃k, we can also refer to Corollary 1 of [24].

Proof of (3) and (4). It can be deduced from Lemma 5 of [14]. �

Proof of Theorem 1.1 and 1.2. Theorem 1.2 can be seen as a corollary of
Theorem 3.2. According to Theorem 3.1, the reducibility of Eq. (1) for a.e. E ∈ I
is deduced from Proposition 5.1-(1). Let {Λj}j∈N be the intervals Λ̃k’s intersecting
I and let

Oε0 :=
⋃
j∈N

Λj =
⋃
k∈Zd

Λ̃k.

Proposition 5.1-(2) gives the measure estimate of Oε0 . The unitary equivalences of
the reduced quantum Hamiltonian follow from Proposition 5.1-(3) and (4). Hence
Theorem 1.1 is shown. �

6. Proof of Theorem 1.3 – 1.5

In this section, we show that the measure of the subset Oε0 is positive for the
equations (3) – (5), which implies the growths of Sobolev norm.

6.1. Proof of Theorem 1.3. For Eq. (3), E ∈ R, the corresponding linear system
is (

x
ξ

)′
=

[(
0 E
−E 0

)
+

(
b(ωt) c(ωt)
−a(ωt) −b(ωt)

)](
x
ξ

)
.

In view of Lemma 5 of [14], for “generic” a, b, c ∈ Cω(Td,R), there is at least one

non-degenerate Λ̃k, k ∈ Zd. More precisely, at the resonant step of KAM scheme
described in the proof of Proposition 5.1-(1), the condition (34) defines a resonant
interval of E, on which the two eigenvalues ±iξj of Aj are purely imaginary since
ξj is bounded frow below. After this resonant step, the two new eigenvalues ±iξj+1

of Aj+1 can be real or still purely imaginary for E in this resonant interval, since

|ξj+1| is close to zero. We say that a, b, c ∈ Cω(Td,R) are generic if, for at least one
resonant step in the KAM scheme, the two new eigenvalues ±iξj+1 become real on
a sub-interval of the resonant interval.
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6.2. Proof of Theorem 1.4. For Eq. (4) with E ∈ I = [E0, E1] with E0 > 0 large
enough, and E1 < ∞, Theorem 1.1 and 1.2 hold. The corresponding linear system
(ω, A0 + F0) of Eq. (4) is(

x
ξ

)′
=

[(
0

√
E

−
√
E 0

)
+
q(ωt)

2
√
E

(
−1 −1
1 1

)](
x
ξ

)
.

Then, through the change of variables(
x
ξ

)
=

1

2
√
E

( √
E −1√
E 1

)(
x̃

ξ̃

)
,

(ω, A0 + F0) is conjugated to(
x̃

ξ̃

)′
= CEq (ωt)

(
x̃

ξ̃

)
:=

(
0 1

−E + q(ωt) 0

)(
x̃

ξ̃

)
.

The quasi-periodic linear system (ω, CEq (·)) corresponds exactly to the eigenvalue
problem of the quasi-periodic continuous Schrödinger operator Lω,q:

(Lω,qy)(t) = −y′′(t) + q(ωt)y(t).

By Gap labeling Theorem [27], if Λ̃k is not empty for k ∈ Zd, then it is indeed a
“spectral gap” of Lω,q intersecting [E0, E1], i.e., a connected component of [E0, E1]\
Σω,q with Σω,q denoting the spectrum of Lω,q. In view of Theorem C of [14], for a
generic potential q (in the |q|r-topology), for E0 > 0 large enough, [E0,∞[∩Σω,q is

a Cantor set. Hence there are infinitely many Λ̃k’s satisfying Leb(Λ̃k) > 0.

6.3. Proof of Theorem 1.5. For Eq. (5) with ν(E) = cos−1(−E
2 ), E ∈ [−2 +

δ, 2− δ] with δ > 0 a sufficiently small numerical constant (e.g. δ := 10−6), we can
apply Theorem 1.1 and 1.2. if a, b, c : [−2+δ, 2−δ]×T2 → sl(2,R) are small enough
as assumed in Theorem 1.1.

For the quasi-periodic Schrödinger cocycle (α, SλE)

Xn+1 = SλE(θ + nα)Xn =

[(
−E −1
1 0

)
+

(
2λ cos(θ + nα) 0

0 0

)]
Xn,

with α ∈ DC1(γ, τ), |λ| small enough, it can be written as

Xn+1 = eB(E)eG(E,θ+nα)Xn,

for eB(E) :=

(
−E −1
1 0

)
and some G(E, ·) ∈ sl(2,R). This cocycle is related to

the almost-Mathieu operator Hλ,α,θ on `2(Z):

(Hλ,α,θψ)n = −(ψn+1 + ψn−1) + 2λ cos(θ + nα)ψn, n ∈ Z.

It is known that its spectrum, denoted by Σλ,α, is a Cantor set [1], which is well-
known as Ten Martini Problem. In fact, Avila-Jitomirskaya [2] further show that
all spectral gaps are “open” , which means that, for every k ∈ Z,

Λ̃k :=

{
E ∈ R : ρ̃(α, SλE) =

kα

2
mod Z

}
has positive measure. Indeed, the size of Λ̃k decays exponentially with respect to
|k|, as was shown in [29]. Here, ρ̃(α, SλE) is the fibered rotation number of cocycle
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(α, SλE). Recall that for any A : Td → SL(2,R) is continuous and homotopic to the
identity, fibered rotation number of (α,A) is defined as

ρ̃(α,A) =

∫
ψ dµ̃ mod Z

where ψ : Td+1 → R is lift of A such that

A(x) ·
(

cos 2πy
sin 2πy

)
= u(x, y)

(
cos 2π(y + ψ(x, y))
sin 2π(y + ψ(x, y))

)
,

and µ̃ is invariant probability measure of (x, y) 7→ (x+α, y+ψ(x, y)) (according to
[26], it does not depend on the choices of ψ, µ̃).

Note that (α, SλE) is a discrete dynamical system, however, with the help of Local

Embedding Theorem (Theorem 6.1), we can embed the cocycle (α, SλE) into a quasi-
periodic linear system (ω, B(E) + F (E, ·)). For an individual cocycle, the Local
Embedding Theorem was already shown in [38]. Nevertheless, the crucial point here
is that we really need a parameterized version of Local Embedding Theorem, that
means the embedded system (ω, B(E) + F (E, ·)) should have smooth dependence
on E.

To show the parameterized version of Local Embedding Theorem, let us first
introduce more notations. Given f ∈ C2(I), define

|f |∗ =
∑

0≤m≤2

sup
E∈I
|f (m)|.

For any f(E, θ) =
∑

k∈Zd f̂k(E)e2πi〈k,θ〉 which is C2 w.r.t. E ∈ I, Cω w.r.t. θ ∈ Td,
denote

‖f‖h :=
∑
k∈Zd
|f̂k(E)|∗e2π|k|h <∞,

and we denote by Cωh (I×Td,C) all these functions with ‖f‖h <∞. Then our result
is the following:

Theorem 6.1. [Local Embedding Theorem] Given d ≥ 2, h > 0 and G ∈ Cωh (I ×
Td−1, sl(2,R)), suppose that µ ∈ Td−1 such that (1, µ) is rationally independent.
Then, for any ν ∈ C2(I) satisfying

(37) sup
E∈I
|ν ′(E)| · |I| < 1

6
,

there exist ε = ε(|ν|∗, h, |µ|) > 0, c = c(|ν|∗, h, |µ|) > 0, and F ∈ Cω h
1+|µ|

(I ×

Td, sl(2,R)) such that the cocycle (µ, e2πνJeG(·)) is the Poincaré map of linear system(
x
ξ

)′
= (νJ + F (ωt))

(
x
ξ

)
, ω = (1, µ)(38)

provided that ‖G‖h < ε. Moreover, we have ‖F‖ h
1+|µ|

≤ 2c‖G‖h.

We postpone the proof of Theorem 6.1 to Appendix A.

Now let us show how we can apply Theorem 6.1 to finish the proof of Theorem
1.5. First note the constant matrix eB can be rewritten as

eB :=

(
−E −1
1 0

)
= M

(
cos(ν) − sin(ν)
sin(ν) cos(ν)

)
M−1,
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where

M :=
1√

sin(ν)

(
cos(ν) − sin(ν)

1 0

)
,

recalling that

cos(ν(E)) = −E
2
, sin(ν(E)) =

√
4− E2

2
, E ∈ [−2 + δ, 2− δ].

Hence, by noting (
cos(ν) − sin(ν)
sin(ν) cos(ν)

)
= exp

{(
0 −ν
ν 0

)}
,

we see that B can be written as B = M · (νJ) ·M−1.

For ν(E) = cos−1(−E
2 ), there exists I ⊂ [−2 + δ, 2− δ] such that (37) is satisfied.

For example, we can take I =] − 2√
37
, 2√

37
[. Therefore, according to Theorem 6.1,

for ω ∈ (1, α), we have a quasi-periodic linear system (ω, B(E) + F (E, ·)) from the
quasi-periodic Schrödinger cocycle (α, SλE):

(39)

(
x
ξ

)′
= (B(E) + F (E,ωt))

(
x
ξ

)
,

Through the change of variables(
x
ξ

)
= M

(
x̃

ξ̃

)
,

(ω, B(E) + F (E, ·)) is conjugated to(
x̃

ξ̃

)′
=

((
0 −ν
ν 0

)
+MF (E,ωt)M−1

)(
x̃

ξ̃

)
.

Then by Theorem 1.1 and 1.2, Theorem 1.5 is shown with(
b(E, ·) c(E, ·)
−a(E, ·) −b(E, ·)

)
= MF (E, ·)M−1.

Finally we point out that ρ(ω,B(E)+F (E,·)) = ρ̃(α, SλE(·)), since (α, SλE) is the

Poincaré map of linear system (ω, B(E) + F (E, ·)). Let

Λ̃(−p,k) :=

{
E ∈ I : ρ(ω,B(E)+F (E,·)) =

kα− p
2

= min
j∈Z

∣∣∣∣kα2 − j
∣∣∣∣} ,

then by well-known result of Avila-Jitomirskaya [2], Leb(Λ̃(−p,k)) > 0, for every

k ∈ Z such that Λ̃k intersect with I.

Appendix A. Proof of Theorem 6.1

The main ideas of the proof will follow Theorem 3.2 of [38], we sketch the proof
and point out the differences. First we need the following key observations.

Lemma A.1. For any k ∈ Zd−1, and for any ν ∈ C2(I) satisfying (37), there exists

k̃ = k̃(k) ∈ Z which is independent of E, such that

|〈k, µ〉+ 2ν + k̃| ∈
[
0,

5

6

]
, ∀ E ∈ I.
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Proof. For any given E, we can define k̃ = k̃(k,E) ∈ Z by

(40) |〈k, µ〉+ 2ν(E) + k̃| = inf
j∈Z
|〈k, µ〉+ 2ν(E) + j|,

we only need to show that k̃ can be chosen independent of E.
To do this, we only need to consider two extreme cases. If there exists E0 ∈ I

such that infk∈Z |〈k, µ〉 + 2ν(E0) + k| = 0, then k̃(k) is uniquely defined, and by
assumption (37),

|〈k, µ〉+ 2ν(E) + k̃| ≤ 2|ν(E)− ν(E0)| ≤ 2 sup
E∈I
|ν ′(E)| · |I| < 1

3
.

If there exists E0 ∈ I such that infk∈Z |〈k, µ〉 + 2ν(E0) + k| = 1
2 , then k̃(k) is not

uniquely defined, and one can choose k̃(k) to be the smaller one which satisfies (40).
By assumption (37), one has

|〈k, µ〉+ 2ν(E) + k̃| ≤ |〈k, µ〉+ 2ν(E0) + k̃|+ 2|ν(E)− ν(E0)|

≤ 1

2
+ 2 sup

E∈I
|ν ′(E)| · |I|

<
5

6
. �

Once we have Lemma A.1, we can define the resonance sites S ⊂ Zd as follows

S :=
{

(k̃, k) : k ∈ Zd−1
}
.

For any f(E, θ1, θ̃) =
∑

k∈Zd−1 f̂k̃,k(E)e2πi(k̃θ1+〈k,θ̃〉) ∈ Cωh (I × Td,C), we define its

weighted norm by

‖f‖µν,h :=
∑

k∈Zd−1

|f̂k̃,k(E)|∗e2π|k|(1+|µ|)h,

and then we can define the linear sub-space Bµν,h(I × Td,C) of Cωh (I × Td,C)

Bµν,h(I × Td,C) :=

f : f(E, θ1, θ̃) =
∑

k∈Zd−1

f̂k̃,k(E)e2πi(k̃θ1+〈k,θ̃〉), ‖f‖µν,h <∞

 .

In the following, we will show that Bµ
ν, h

1+|µ|
(I × Td,C) is actually isomorphic to

Cωh (I ×Td−1,C), therefore a Banach space. The space will be used to construct the
embedded linear system.

Proposition A.1. For any ν ∈ C2(I) satisfying (37), the linear operator

T : Bµ
ν, h

1+|µ|
(I × Td,C) → Cωh (I × Td−1,C)

f(E, θ) 7→
∫ 1

0
f(E, t, θ̃ + tµ)e4πiν(E)t dt

is bounded. Moreover, there exists numerical constant c > 0 such that

T−1 : Cωh (I × Td−1,C)→ Bµ
ν, h

1+|µ|
(I × Td,C)

is also bounded with estimate ‖T−1‖ ≤ c|ν|∗.
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Before giving the proof of Proposition A.1, we introduce the following auxiliary
function, which is quite important for the proof.

Lemma A.2. For the function

H(x) =

{
e2πix−1

2πix , x 6= 0

1, x = 0
,

we have H, 1
H ∈ C

∞[−5
6 ,

5
6 ] and

(41) |H(x)| ∈
[

3

5π
, 1

]
∀ |x| ≤ 5

6
.

Proof. By Taylor expansions, one can easily check that H ∈ C∞[−5
6 ,

5
6 ]. Since

|H(x)| =
∣∣∣∣sin(πx)

πx

∣∣∣∣ ,
then (41) follows from the simple fact

2

π
|t| < | sin(t)| ≤ |t|, t ∈

[
0,
π

2

]
.

Consequently, H−1 is also a C∞ function. �

Proof of Proposition A.1. For any f ∈ Bµ
ν, h

1+|µ|
(I × Td,C), direct computations

show that

Tf(E, θ) =
∑

k∈Zd−1

∑
(k̃,k)∈S

f̂k̃,k(E)H(〈k, µ〉+ 2ν(E) + k̃)e2πi〈k,θ〉.

Here we shall use the crucial fact that k̃ is independent of E, thus by Lemma A.1,
〈k, µ〉+2ν(E)+ k̃ ∈ C2(I), and |〈k, µ〉+2ν(E)+ k̃| ≤ 5

6 . By Lemma A.2, H(〈k, µ〉+
2ν(E) + k̃) is well defined and H(〈k, µ〉+ 2ν(E) + k̃) ∈ C2(I). Consequently, there
exists numerical constant c such that

‖Tf‖h =
∑

k∈Zd−1

|(T̂ f)k|∗e2π|k|h ≤ c|ν|∗‖f‖µν, h
1+|µ|

.

Hence T is a bounded linear operator.
On the other hand, for any ϕ ∈ Cωh (I × Td−1,C), we write

ϕ(E, θ) =
∑

k∈Zd−1

ϕ̂k(E)e2πi〈k,θ〉.

Define f̂k1,k(E) by

f̂k1,k(E) =

{
ϕ̂k(E)

H(〈k,µ〉+2ν(E)+k̃)
, k1 = k̃

0, k1 6= k̃

where (k̃, k) ∈ S. Then one can check that

f(E, θ1, θ̃) =
∑

k∈Zd−1

f̂k1,k(E)e2πi(k1θ1+〈k,θ̃〉) ∈ Bµν,h(I × Td,C)
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is uniquely defined and it satisfies Tf(E, 0, θ̃) = ϕ(E, θ̃). By Lemma A.1 and Lemma

A.2, H−1(〈k, µ〉+ 2ν(E) + k̃) ∈ C2(I), consequently, we have

‖f‖µ
ν, h

1+|µ|
≤ c|ν|∗‖ϕ‖h.

Hence ‖T−1‖ ≤ c|ν|∗.
For any ν ∈ C2(I), we then can define the Banach space

B =

{(
if g
ḡ −if

) ∣∣∣f ∈ Bµ
0, h

1+|µ|
(I × Td,R), g ∈ Bµ−ν, h

1+|µ|
(I × Td,C)},

then B ⊂ Cω h
1+|µ|

(I × Td, su(1, 1)). Note the algebra su(1, 1) and sl(2,R) are isomor-

phic with isomorphism given by B → M̄−1BM̄ where

M̄ =

(
1 −i
1 i

)
.

Therefore, we have B := M̄−1BM̄ ⊂ Cω h
1+|µ|

(I × Td, sl(2,R)). �

As a corollary of Proposition A.1, we have the following:

Corollary A.1. For any ν ∈ C2(I) satisfying (37), then the linear operator

L : B → Cωh (I × Td−1, sl(2,R))

F 7→
∫ 1

0
e−2πνJsF (s, θ + sµ)e2πνJs ds

is bounded. Moreover, there exists numerical constant c > 0 such that

L−1 : Cωh (I × Td−1, sl(2,R))→ B
is bounded with ‖L−1‖ ≤ c|ν|∗.

Proof. It is an immediate corollary of corollary of Proposition A.1, similar proof can
be found in Corollary 3.1 of [38]. We omit the details. �

Proof of Theorem 6.1. Now we can finish the whole proof of Theorem 6.1. We
will use quantitative Implicit Function Theorem (c.f. Theorem 3.1 of [38]) to prove
the result. Suppose that Φt(E, θ) is the fundamental solution matrix of (38),

Φt(E, θ) = e2πν(E)Jt

(
Id +

∫ t

0
e−2πν(E)JsF (E, θ + sω)Φs(E, θ)ds

)
,

where Id denotes the identity matrix.

We will show that the cocycle (µ, e2πνJeG(E,θ̃)) can be embedded into the linear

system (38), which means Φ1(E, 0, θ̃) = e2πν(E)JeG(E,θ̃), i.e.,

e2πνJ

(
Id +

∫ 1

0
e−2πνJsF (E, s, θ̃ + sµ)Φs(E, 0, θ̃)ds

)
= e2πνJeG(E,θ̃).

We then construct the nonlinear functional

Ψ : B × Cωh (I × Td−1, sl(2,R))→ Cωh (I × Td−1, gl(2,R))

by defining

Ψ(F,G) := Id +

∫ 1

0
e−2πνJsF (E, s, θ̃ + sµ)Φs(E, 0, θ̃)ds− eG(E,θ̃)

Immediate check shows that Ψ(0, 0) = 0, ‖Ψ(0, G)‖ ≤ ‖G‖h, and
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DFΨ(F,G)(F̃ ) =

∫ 1

0
e−2πνJsF̃ (E, s, θ̃ + sω)Φs(E, 0, θ̃)ds

+

∫ 1

0
e−2πνJsF (E, s, θ̃ + sµ)DFΦs(0, θ̃)F̃ (E, s, θ̃ + sµ)ds.

Consequently, we have

DFΨ(0, 0)(F̃ ) =

∫ 1

0
e−2πνJsF̃ (E, s, θ̃ + sµ)e2πνJsds.

By Corollary A.1, DFΨ(0, 0)−1 : Cωh (I × Td−1, sl(2,R)) → B is a bounded linear
operator with estimate ‖DFΨ(0, 0)−1‖ ≤ c|ν|∗.

The rest proof are quite standard, one can consult Theorem 3.2 of [38] for details,
we omit the details. �
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[12] Delort, J.-M.: Growth of Sobolev norms for solutions of time dependent Schrödinger operators
with harmonic oscillator potential. Comm. Partial Differential Equations, 39(1), 1–33 (2014).
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