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DISPERSIVE ESTIMATE FOR QUASI-PERIODIC SCHRÖDINGER

OPERATORS ON 1-d LATTICES

DARIO BAMBUSI AND ZHIYAN ZHAO

Abstract. Consider the one-dimensional discrete Schrödinger operator Hθ:

(Hθq)n = −(qn+1 + qn−1) + V (θ + nω)qn , n ∈ Z ,

with ω ∈ Rd Diophantine, and V a real-analytic function on Td = (R/2πZ)d. For
V sufficiently small, we prove the dispersive estimate: for every φ ∈ `1(Z),

(1) ‖e−itHθφ‖`∞ ≤ K0
| ln ε0|a(ln ln(2+〈t〉))2d

〈t〉 13
‖φ‖`1 , 〈t〉 :=

√
1 + t2 ,

with a and K0 two absolute constants and ε0 an analytic norm of V . The estimate
holds for every θ ∈ Td.

1. Introduction and main results

Consider the quasi-periodic Schrödinger operator Hθ : `2(Z)→ `2(Z), defined as

(2) (Hθq)n = −(qn+1 + qn−1) + V (θ + nω)qn , n ∈ Z ,

with V : Td → R an analytic potential, d ≥ 1, and ω ∈ Rd a Diophantine frequency
vector, it is well known that its spectrum, that we shall denote by Σ, is independent
of θ. It is also well known that when the potential function V is sufficiently small,
the operator Hθ has purely absolutely continuous spectrum (see e.g. [Avi08, Eli92],
see also [AD08]) and that for generic potential it is a Cantor set. Furthermore, the
time evolution e−itHθ presents ballistic transport (see [Zha16]).

In the present paper we prove that e−itHθ also fulfills the `1-`∞ dispersive esti-
mate (1). As usual, from this estimate one can deduce Strichartz estimates [KT98]
as well as decay and scattering for the small amplitude solutions of the nonlinear
Schrödinger equation

(3) iq̇n = (Hθq)n ± |qn|p−1 qn , n ∈ Z ,

provided p is large enough (see e.g. [SK05, KPS09]). Here we concentrate just on
initial data in `1 and dispersive decay in `∞ and give the result for p > 5.

We recall that for the free Schrödinger operator,

(4) (−∆q)n := −(qn+1 + qn−1) , n ∈ Z ,

the `1-`∞ estimate

(5) ‖eit∆φ‖`∞ ≤
C

〈t〉
1
3

‖φ‖`1 , ∀ φ ∈ `1(Z) , 〈t〉 :=
√

1 + t2 ,
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is well known (see [SK05], see also [MP10]). For the operator H : `2(Z)→ `2(Z),

(Hq)n = −(qn+1 + qn−1) + Vnqn , n ∈ Z ,

Pelinovsky-Stefanov [PS08] have shown that

(6) ‖e−itHPacφ‖`∞ ≤
C

〈t〉
1
3

‖φ‖`1 , ∀ φ ∈ `1(Z) ,

for “generic”1 potentials Vn decaying sufficiently fast at infinity. Here Pac denotes
the projection on the absolutely continuous part of the spectrum. For other related
works, one can refer to [KKK06, KPS09, CT09, Bam13, EKT15].

In all these examples the continuous spectrum is the union of disjoint intervals.
We emphasize that our result is the first one in which the continuous spectrum is a
Cantor set.

In order to state precisely our main theorem we need a few preliminaries.

Definition 1.1. A vector ω ∈ Rd will be said to be Diophantine if ∃ γ > 0 and
τ > d− 1, s.t,

(7) inf
j∈Z
|〈k, ω〉 − jπ| > γ

|k|τ
, ∀ k ∈ Zd \ {0} ,

where 〈·, ·〉 is the scalar product on Rd.

We will assume that there exists a positive r s.t. the potential extends to a
bounded complex analytic function on |=θ| < r. We will denote

(8) ε0 := |V |r := sup
|=θ|<r

|V (θ)| .

We will also denote this class of functions by Cωr (Td).
Our main result is the following theorem.

Theorem 1.2. There exists ε∗ = ε∗(r, γ, τ, d) > 0 and two absolute constants a,
K0 > 0 such that if ε0 < ε∗, then for any θ ∈ Td, any t ∈ R, the following estimate
holds:

(9) ‖e−itHθφ‖`∞ ≤ K0
| ln ε0|a(ln ln(2+〈t〉))2d

〈t〉
1
3

‖φ‖`1 , ∀ φ ∈ `1(Z) .

It is immediate to get the following

Corollary 1. Assume ε0 < ε∗, with ε∗ as in Theorem 1.2, then given any 0 < ζ < 1
3 ,

there exists K1 = K1(ε0, ζ) s.t. for any θ ∈ Td, any t ∈ R,

(10) ‖e−itHθφ‖`∞ ≤
K1

〈t〉ζ
‖φ‖`1 , ∀ φ ∈ `1(Z) .

One also has the following standard corollary on the `∞ decay of the solution of
(3) with p > 5 and small `1 initial datum.

Corollary 2. Consider Eq. (3) with p > 5, assume ε0 < ε∗ and fix ζ fulfilling

1

p− 2
< ζ <

1

3
.

1See Definition 1 of [PS08].
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Then there exists δ∗ > 0, with δ∗ = δ∗(r, γ, τ, d, ε0, ζ) such that if the initial datum
φ = q(0) fulfills

δ0 := ‖φ‖`1(Z) < δ∗ ,

then the solution q(t) of (3) fulfills

(11) ‖q(t)‖`∞ ≤
4K1

〈t〉ζ
‖φ‖`1(Z) ,

where K1 is the constant in Corollary 1.

For the sake of completeness, we will give the proof of Corollary 2 in Section 5.

From (9) one can also deduce, as in [SK05, KPS09], Strichartz estimates as well as
decay and scattering for all the solutions of the linear Schrödinger equation. From
this one can also deduce scattering for all solutions of (3) with small initial data in
the energy space `2, provided p > 7.

Scheme of the proof of Theorem 1.2. For the free Schrödinger operator (4), the
dispersive estimate is proved by using the Fourier transform which allows to write
eit∆φ as an oscillatory integral, which is estimated through the Van der Corput

lemma which gives the t−
1
3 decay. The variable of integration in the integral to be

estimated is the wave number.
In the presence of a quasi-periodic potential, generically, the spectrum is a Cantor

set and the object generalizing the wave number is the fibered rotation number of
the corresponding Schrödinger cocycle (see Appendix A for a precise definition).

Now, in the quasi-periodic case the fibered rotation number (rotation number for
short) can be approximated through a perturbative construction. After J steps of
such a construction, the approximate rotation number ρJ is a piecewise monotonic
function defined on the union of a very large number of intervals. More precisely,

there is a total number of intervals proportional to |ln ε0|2J
2d. The approximate

rotation number ρJ is of class Ck (in our case k = 3 is enough) in the interior of

each interval but it behaves as E
1
2 at the boundaries of each interval (E being the

spectral parameter), so that its derivatives diverges at such points, which in the
limit are dense in the spectrum.

Following [Zha16], the idea of the proof is to stop the construction at some step,
say the J-th one, and to apply Van Der Corput lemma on each one of the small
intervals. Still one has to make a regularization at the boundaries of the intervals,
and this will be explained in a while. First, one has to know the improper eigen-
functions of Hθ. Now, it is known how to construct such improper eigenfunctions
perturbatively: they are the quasi-periodic solutions of the quasi-periodic cocycle
associated to Hθ. However, it is not known how to construct the spectral measure
and how to normalize the improper eigenfunctions. The idea is to choose an approx-
imate normalization, which in some sense is the most natural one, and to modify
it slightly in order to regularize the integrals to be estimated. It turns out that
this is possible, and that, if one uses such “normalized” eigenfunctions to define a
spectral transform, then such a transformation is not unitary, but it is bounded with
a bounded inverse and thus suffices to get the result. This was done and proved in
[Zha16]. Here we just recall the needed results.

In the present paper we use such a spectral transform in order to write down
an approximate representation formula for the solution of the Schrödinger equation
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in terms of oscillatory integrals that we estimate by approximating them through
integrals over intervals which in turn are estimated through the Van Der Corput
Lemma. In order to get the result, the last difficulty is to estimate the errors related
to the use of approximations. This is purely technical and consists in writing down
all the estimates taking into account the dependence on the approximation step and
on the other parameters and then to choose all the free parameters in a suitable
way. The main technical lemma of the paper gives this estimate and is Lemma 3.1.

The rest of paper is organized as follows. In Sect. 2 we recall some known facts on
the structure of the spectrum of the Schrödinger operator and on the construction of
the spectral transform. In Sect. 3 we prove the main technical lemma of the paper,
namely Lemma 3.1. In Sect. 4 we conclude the proof of the main theorem. In Sect.
5 we prove Corollary 2. We also add two Appendixes. In Appendix A we recall a
few facts on the rotation number, while in Appendix B we recall the version of the
Van Der Corput Lemma that we use in the paper.

2. Preliminaries on Schrödinger operator and Schrödinger cocycle

In this section, we recall some basic notions and some important results for the
spectrum of the quasi-periodic Schrödinger operator Hθ : `2(Z)→ `2(Z),

(Hθq)n = −(qn+1 + qn−1) + V (θ + nω)qn , n ∈ Z ,

with V and ω given as in the statement of Theorem 1.2. We will also consider the
Schrödinger cocycle (ω,A0 + F0):

(12)

(
qn+1

qn

)
= (A0(E) + F0(θ + nω))

(
qn
qn−1

)
,

with A0(E) :=

(
−E −1
1 0

)
and F0(·) :=

(
V (·) 0

0 0

)
. Note that (ω,A0 + F0) is

equivalent to the eigenvalue problem Hθq = Eq.

2.1. Structure of the spectrum.
We review here the KAM theory of Eliasson [Eli92] and Hadj Amor [HA09] for

the reducibility of the Schrödinger cocycle (ω,A0 + F0(·)). These works relate the
reducibility and the fibered rotation number (for the definition see Appendix A)
globally, and improve the previous works by Dinaburg-Sinai [DS75] and Moser-
Pöschel [MP84]. Here we will not prove the corresponding results (Theorem 2.1 and
2.2) referring to the work [Zha16] where a detailed proof was given. However, we
will explain the strategy of proof with the aim of making the paper as self contained
as possible, without adding too many details on known facts.

With ε0 = |V |r, σ = 1
200 , define, as in [HA09], the sequences:

εj+1 = ε1+σ
j , Nj = 4j+1σ| ln εj | , j ≥ 0 .

All along the paper we will denote

(13) 〈k〉ω :=
〈k, ω〉

2
, k ∈ Zd ,

and by |·|CkW (S) the Ck norm of a function which is Whitney smooth on a set S ⊂ R,

and for a function which is analytic on Td (or 2Td) and Whitney smooth on S, we
will denote by |·|CkW (S),Td or |·|CkW (S),2Td the supremum norm on Td (or 2Td) and CkW
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norm on S. In particular, if S is a union of finitely many intervals, we will omit the
subscript W in the above norms.

Furthermore, we denote the fibered rotation number of the Schrödinger cocycle
(ω,A0 + F0) by ρ ≡ ρ(ω,A0+F0). It is necessary to mention that ρ : R → [0, π] is a
non-decreasing function with

ρ(E)

 = 0 , E ≤ inf Σ
∈ (0, π) , E ∈ (inf Σ, sup Σ)
= π , E ≥ sup Σ

,

By the gap-labeling theorem [JM82], ρ is constant in a gap of Σ (i.e., an interval on
R in the resolvent set of Hθ), and each gap is labeled with k ∈ Zd such that ρ = 〈k〉ω
mod π in this gap.

Theorem 2.1. There exists ε∗ = ε∗(γ, τ, r, d) > 0 such that if |V |r = ε0 < ε∗,
then, for any j ∈ N, there exists a Borel set Σj ⊂ Σ, with {Σj}j mutually disjoint,
satisfying

|ρ (Σj+1) | ≤ 3| ln εj |2dεσj , j ≥ 0 ,∣∣∣Σ \ Σ̃
∣∣∣ = 0 , Σ̃ := ∪j≥0Σj

such that the following statements hold.

(1) The Schrödinger cocycle (ω,A0 + F0) is reducible on Σ̃. More precisely,

there exist Z and B, with Z : Σ̃ × 2Td → SL(2,R) analytic on 2Td and

B : Σ̃→ SL(2,R) s.t. Z conjugates A0 + F0 to B, namely

Z(·+ ω)−1(A0 + F0(·))Z(·) = B .

Furthermore B is C1 in the sense of Whitney on each Σj, and

(14) |B −A0|C1
W (Σ0) ≤ ε

1
3
0 ; |B|C1

W (Σj+1) ≤ N10τ
j , j ≥ 0 .

(2) The eigenvalues of B
∣∣
Σj

, are of the form e±iξ, with ξ ∈ R, and, for every

j ≥ 0, there is kj : Σ̃→ Zd, such that
• 0 < |kj | ≤ Nj on Σj+1, and kl = 0 on Σj for l ≥ j,
• ξ = ρ−

∑
l≥0〈kl〉ω and 0 < |ξ|Σj+1 < 2εσj .

Theorem 2.1 describes the result of a KAM procedure. If one stops the procedure
at a finite step one gets a picture that will be needed for our construction and which
is contained in the next theorem (which of course constitutes the main step for the
proof of Theorem 2.1).

Theorem 2.2. Let |V |r = ε0 < ε∗ be as in Theorem 2.1. Given any J ∈ N, for

0 ≤ j ≤ J , there exists Γ
(J)
j ⊂ [inf Σ, sup Σ], satisfying

• Σj ⊂ Γ
(J)
j for 0 ≤ j ≤ J ,

• {Γ(J)
j }Jj=0 are mutually disjoint and

⋃J
j=0 Γ

(J)
j = [inf Σ, sup Σ]

•
⋃J
j=0 Γ

(J)
j consists of at most | ln ε0|2J

2d open intervals,

• If J ≥ 1, then
∣∣∣ρ(Γ

(J)
j+1

)∣∣∣ ≤ 3| ln εj |2dεσj for 0 ≤ j ≤ J − 1.
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Furthermore, the following statements hold.

(S1) There exist


AJ : Γ

(J)
j → SL(2,R)

FJ : Γ
(J)
j × Td → gl(2,R) analytic on Td

ZJ : Γ
(J)
j × 2Td → SL(2,R) analytic on 2Td

, 0 ≤ j ≤ J ,

all of which are smooth on each connected component of Γ
(J)
j , such that

ZJ(·+ ω)−1(A0 + F0(·))ZJ(·) = AJ + FJ(·) ,

with |FJ |C3(Γ
(J)
j ),Td ≤ εJ , 0 ≤ j ≤ J , and

(15) |AJ −A0|C3(Γ
(J)
0 )
≤ ε

1
2
0 , |ZJ − Id.|C3(Γ

(J)
0 ),2Td ≤ ε

1
3
0 .

If J ≥ 1, then for 0 ≤ j ≤ J − 1,

(16) |AJ |C3(Γ
(J)
j+1)
≤ ε−

σ
6

j , |ZJ |C3(Γ
(J)
j+1),2Td ≤ ε

−σ
3

j ,

and, on Γ
(J)
j+1,

(17) ε
σ
4
j ≤ |(trAJ)′| ≤ N10τ

j .

Moreover, for 0 ≤ j ≤ J ,

(18) |AJ −B|C1
W (Σj)

≤ ε
1
4
J , |ZJ − Z|C1

W (Σj),2Td ≤ ε
1
4
J .

(S2) AJ has two eigenvalues e±iαJ with αJ ∈ R ∪ iR. For ξJ := <αJ , we have

• |ξJ − ξ|Σj ≤ ε
1
4
J , 0 ≤ j ≤ J .

• |ξJ − ρ|Γ(J)
0

≤ ε
1
4
J .

• If J ≥ 1, then
– |ξJ |Γ(J)

j+1

≤ 3
2ε
σ
j , 0 ≤ j ≤ J − 1.

– There is kj :
⋃J
l=0 Γ

(J)
l → Zd, 0 ≤ j ≤ J−1, constant on each connected

component of
⋃J
l=0 Γ

(J)
l , with 0 < |kj | ≤ Nj on Γ

(J)
j+1 and kl = 0 on Γ

(J)
j+1

for l ≥ j + 1 such that
∣∣∣ξJ +

∑J−1
l=0 〈kl〉ω − ρ

∣∣∣
Γ

(J)
j+1

≤ ε
1
4
J .

(S3)
⋃J
j=0{Γ

(J)
j : | sin ξJ | > 3

2ε
1
20
J } has at most 2| ln ε0|2J

2d connected components, on

which ξJ is smooth with ξ′J = − (trAJ )′

2 sin ξJ
. If J ≥ 1, then, on {Γ(J)

j+1 : | sin ξJ | > 3
2ε

1
20
J },

0 ≤ j ≤ J − 1,

(19)
1

3
< ξ′J ≤

N10τ
j

| sin ξJ |
,

ε
3σ
4
j

4| sin ξJ |3
< |ξ′′J | ≤

N20τ
j

| sin ξJ |3
.

(S4) |ρ({(inf Σ, sup Σ) : | sin ξJ | ≤ 3
2ε

1
20
J })| ≤ ε

1
24
J and for 0 ≤ j ≤ J , |ξJ(Γ

(J)
j \Σj)| ≤

ε
7σ
8
J .
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From now on, we denote ρJ := ξJ +
∑J−1

l=0 〈kl〉ω, which gives an approximation of
ρ. In particular, ρ0 = ξ0, and

(20) |ρJ − ρ|Σj ≤ ε
1
4
j .

Scheme of the proof of Theorems 2.1 and 2.2. The procedure of proof is a KAM
procedure in which one increases iteratively the order of the time dependent part of
the cocycle. The main point is that, in order to get a quite complete description of
the spectrum, one has to do the construction for a set of E’s which is of full measure
(not only of large measure). It is well known that the conjugacy of A0 +F0 to a time
independent cocycle can be obtained through a close to identity transformation
only if some non-resonant relations are fulfilled and this is typically true only in
sets of large measure. To describe the non-resonance condition, consider first the
eigenvalues of A0: they can be written in the form e±iρ0 , with ρ0 = ρ0(E) :=
arcos

(
−E

2

)
, |E| ≤ 2. The relevant non-resonance condition in order to construct

the first transformation is

(21) |ρ0(E)− 〈k〉ω| ≥
εσ0
|k|τ

; 0 < |k| ≤ N0 .

For the values of E s.t. (21) is fulfilled, the classical construction of the KAM step
produces a close to identity transformation which conjugates A0 + F0 to A1 + F1

with |F1| ∼ ε1 and A1 ∈ SL(2,R) having eigenvalues of the form e±iρ1 , with ρ1 close

to ρ0. Such a set of E’s is Γ
(1)
0 .

Now, let k with 0 < |k| ≤ N0 be s.t. there exists a segment Ik, on which equation
(21) is violated, then it is known how to construct a time dependent matrix Hk,A0

(which is not close to identity) conjugating A0 +F0 to a new cocycle Ã0 + F̃0, where

Ã0 has eigenvalues e±iρ̃0 , with ρ̃0 := ρ0 − 〈k〉ω. Furthermore, by the fact that ω is

Diophantine, there are no k̃ with k̃ 6= k s.t. (21) is violated for E ∈ Ik. It follows

that (21) is fulfilled by ρ̃0 and therefore, on Ik one can conjugate Ã0 + F̃0 to a new
cocycle A1 + F1 with |F1| ∼ ε1, and A1 having eigenvalues of the form e±iα1 , with
α1 close to ρ̃0, which in turn is close to 0. It follows that for some values of E, the
quantity α1 can fail to be real. The values of E s.t. α1(E) is purely imaginary are
outside the approximate spectrum of Hθ, while the others belong to the approximate
spectrum. We put ξ1(E) := <(α1(E)) and ρ1(E) := ξ1(E) + 〈k〉ω.

The union of the intervals Ik is the set Γ
(1)
1 .

In order to iterate we proceed as follows. For E ∈ Γ
(1)
0 one considers the non-

resonance condition

(22) |ρ1(E)− 〈k〉ω| ≥
εσ1
|k|τ

; ∀ 0 < |k| ≤ N1 .

The set of the E ∈ Γ
(1)
0 for which (22) is satisfied is Γ

(2)
0 and here one can construct

a close to identity transformation conjugating A1 + F1 to A2 + F2 with |F2| ∼ ε2

and A2 ∈ SL(2,R) having eigenvalues of the form e±iρ2 , with ρ2 close to ρ1.

Consider an element E ∈ Γ
(1)
0 s.t. (22) is violated for some k. Such E’s are the

first part of Γ
(2)
2 . For such E’s, one proceed as we did at the first step in Γ

(1)
1 .

Consider now Γ
(1)
1 . For these values of E the relevant non-resonance condition is

(23) |ξ1(E)− 〈k〉ω| ≥
εσ1
|k|τ

; ∀ 0 < |k| ≤ N1 .
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If it is fulfilled one proceeds as in Γ
(1)
0 , namely, one constructs a close to identity

transformation conjugating A1 + F1 to A2 + F2 with |F2| ∼ ε2 and A2 ∈ SL(2,R)

having eigenvalues of the form e±iξ2 , with ξ2 close to ξ1. Such E’s constitute Γ
(2)
1 .

Consider now the E ∈ Γ
(1)
1 s.t. ∃ k with 0 < |k| ≤ N1 s.t. (23) is violated. The

union of such E’s is the remaining part of Γ
(2)
2 . Here one proceeds as we did for the

first step in Γ
(1)
1 . Iterating and adding the estimates one gets the proof of Theorem

2.2.
In order to get Theorem 2.1 one has simply to pass to the limit J → ∞. We

do not discuss such a limit, which is standard, but just recall that the sets Σj are
defined as

(24) Σj :=
⋂

J :J≥j
Γ

(J)
j \

⋃
k∈Zd

ρ−1(〈k〉ω) .

2.2. Spectral transform.
For E ∈ Σ, let K(E) and J (E) be two linearly independent generalized eigen-

vectors of Hθ and consider the spectral transform Sq defined as follows: for any
q ∈ `2(Z), put

(25) (Sq)(E) :=

( ∑
n qnKn(E)∑
n qnJn(E)

)
.

Given any matrix of measures on R, namely dϕ =

(
dϕ11 dϕ12

dϕ21 dϕ22

)
, let L2(dϕ) be

the space of the vectors G = (gj)j=1,2, with gj functions of E ∈ R satisfying

(26) ‖G‖2L2(dϕ) :=

2∑
j,k=1

∫
R
gj ḡk dϕjk <∞ .

Theorem 2.3 (Chapter 9 of [CL55]). There exists a Hermitian matrix of measures
µ = (µjk)j,k=1,2, with µjk non-decreasing functions, such that S : `2(Z)→ L2(dµ) is
unitary.

Remark that by this theorem the spectral transform is invertible. As anticipated
in the introduction it is not known how to construct the measure dµ, however in
[Zha16] a procedure to construct an approximate measure was developed.

Recall that σ = 1
200 , |V |r = ε0 < ε∗ (as in Theorems 2.1 and 2.2) and the sequence

{εj}j is defined by εj+1 = ε1+σ
j .

Proposition 2.4. On the full measure subset Σ̃ :=
⋃
j≥0 Σj of the spectrum, for any

fixed θ ∈ Td, any E ∈ Σ̃, there exist two linearly independent generalized eigenvectors
K(E) and J (E) of Hθ with the following properties: define the spectral transform
according to (25) and consider the matrix of measures dϕ given by

dϕ|Σ :=
1

π

(
ρ′ 0

0 ρ′

)
dE , dϕ|R\Σ := 0 ,

then we have, for any q ∈ `2(Z),

(27)

(
1− ε

σ2

10
0

)
‖q‖2`2(Z) ≤ ‖Sq‖

2
L2(dϕ) ≤

(
1 + ε

σ2

10
0

)
‖q‖2`2(Z) ,
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and also

(28)

∣∣∣∣ 1π
∫

Σ
(g1(E)Kn(E) + g2(E)Jn(E)) ρ′dE − qn

∣∣∣∣ ≤ εσ2

10
0 ‖q‖`∞ .

Furthermore, the functions K(E) and J (E) have the following properties:
(29)

Kn(E) =
∑

n∆=n,n±1

βn,n∆(E) sinn∆ρ(E) , Jn(E) =
∑

n∆=n,n±1

βn,n∆(E) cosn∆ρ(E) ,

with ρ the fibered rotation number of the cocycle (ω,A0 + F0) and

|βn,n∆ − δn,n∆ |Σ0 ≤ ε
1
4
0 , |βn,n∆ |Σj+1 ≤ εσj , j ≥ 0 .

Given any J ∈ N, there exist βJn,n∆
, smooth on each connected component of Γ

(J)
j ,

satisfying

(30)
∣∣βJn,n∆

− δn,n∆

∣∣
C2(Γ

(J)
0 )
≤ ε

1
4
0 ,

and if J ≥ 1, then

(31) |βJn,n∆
|C1(Γ

(J)
j+1)
≤ ε3σ

j , 0 ≤ j ≤ J − 1 .

Moreover,

(32)
∣∣βn,n∆ − β

J
n,n∆

∣∣
Σj
≤ 10ε

1
4
J , 0 ≤ j ≤ J .

Idea of the proof. The construction and the estimates of S are actually given in
Section 4.2 of [Zha16]. The generalized eigenvectors K and J are constructed as
Bloch waves exploiting the reducibility procedure and in particular the matrices
Z and B of Theorems 2.1 and 2.2. The construction naturally leads to a family of
generalized eigenfunctions which do not depend in a smooth way on E (in particular
Eq. (30) and (31) do not hold) so one modifies the normalization in order to get
such properties. The price to pay is that S is no more unitary, but turns out to be
just a bounded transformation with bounded inverse. For completeness we add now
the details of the construction of K and J , while we refer to [Zha16] for the details
of the proofs of the estimates.

First we remark that one can construct Bloch-waves of Schrödinger operatorHθ on

Σ̃ using the reducibility of Schrödinger cocycle. Indeed, with an additional transform

(see (3.17) of [Zha16]), one can find Z̃ : Σ̃× 2Td → SL(2,C) and B : Σ̃→ SL(2,C),
with two eigenvalues e±iρ, such that

Z̃(·+ ω)−1(A0 + F0(·)) Z̃(·) = B̃ .

With the matrices Z̃ =

(
Z̃11 Z̃12

Z̃21 Z̃22

)
and B̃ =

(
B̃11 B̃12

B̃21 B̃22

)
, one can easily see

that, defining

f̃n(θ) :=
[
Z̃11(θ − ω + nω)B̃12 − Z̃12(θ − ω + nω)B̃11

]
e−iρ + Z̃12(θ − ω + nω)

ψ̃n = einρf̃n(θ) ,
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then such a ψ̃ fulfills Hθψ̃ = Eψ̃ for E ∈ Σ̃. In order to get smooth dependence on
E we modify its normalization in Σj for j ≥ 1, defining

ψn = einρfn with fn =

{
f̃n , E ∈ Σ0

f̃n sin5 ξ, E ∈ Σj+1 , j ≥ 0
.

Then we define Kn := =(einρfnf̄0) and Jn := <(einρfnf̄0) on Σ̃ and Kn|R\Σ̃ =

Jn|R\Σ̃ := 0. By a direct calculation, we see

einρfnf̄0 =
∑

n∆=n,n±1

βn,n∆e
in∆ρ ,

with some βn,n∆ which can be shown to fulfill the estimates claimed in the state-
ment (for the details see [Zha16]). Thus one gets Kn =

∑
n∆
βn,n∆ sinn∆ρ,

Jn =
∑

n∆
βn,n∆ cosn∆ρ.

Finally one has to show the important estimates (27) and (28). They were proved
in [Zha16]. Here we just recall that the main step for its proof are the following
inequalities ∣∣∣∣ 1π

∫
Σ

(
K2
n(E) + J 2

n (E)
)
ρ′dE − 1

∣∣∣∣ ≤ ε
σ2

8
0 ,

∣∣∣∣ 1π
∫

Σ
(Km(E)Kn(E) + Jm(E)Jn(E)) ρ′dE

∣∣∣∣ ≤ ε
σ2

8
0

|m− n|1+σ
6

, m 6= n ,

the second of which is obtained from an estimate of an oscillatory integral (Lemma
4.1 of [Zha16]) which is very close to the estimate given in Lemma 3.3 of the present
paper. �

3. An oscillatory integral on the spectrum

In this section, by using the division of [inf Σ, sup Σ] given in Theorem 2.2, we
estimate an integral on the spectrum. This will be applied in analyzing the time
evolution, and deducing dispersion in the next section.

Recall that σ = 1
200 , |V |r = ε0 ≤ ε∗ and the sequence {εj}j≥0 is defined by

εj+1 = ε1+σ
j .

Lemma 3.1. Let h : Σ̃→ R be a function s.t. for any J ≥ 0 there exists a function

hJ :
⋃

0≤j≤J Γ
(J)
j → R which is C1 on each connected component of Γ

(J)
j , and satisfies

the following assumptions

(E0) |hJ − h|Σj ≤ 10ε
1
4
J for 0 ≤ j ≤ J and |hJ − h|Σj ≤ 2 for j ≥ J + 1,

(E1) |hJ |C1(Γ
(J)
0 )
≤ 16

15
,

(E2) |hJ |C1(Γ
(J)
j+1)
≤ ε3σ

j , 0 ≤ j ≤ J − 1, if J ≥ 1.

Then, there exists a positive constant a < 80802 s.t. for any M ∈ R, one has

(33)

∣∣∣∣∫
Σ
he−iEt cosMρ · ρ′ dE

∣∣∣∣ ≤ 526| ln ε0|a(ln ln(2+〈t〉))2d

〈t〉
1
3

.
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The rest of the section is devoted to the proof of such a lemma.
From now on we assume that ε∗ is such that all the smallness conditions that we

will assume are satisfied.
We denote

IM (S) :=

∫
S
he−iEt cosMρ · ρ′ dE, S ⊂ R ,

and

IJM (S) :=

∫
S
hJe

−iEt cosMρ · ρ′ dE, S ⊂ R .

We first give three lemmas, the first of which allows to approximate IM through
IJM . For the estimate of IJM , we have to separate the cases of small M and large M :
they are treated in two different lemmas. Finally we will summarize the results and
deduce Lemma 3.1.

Lemma 3.2. For any positive J and any M ∈ R, under the assumptions of Lemma
3.1, one has

(34)
∣∣IM (Σ)− IJM (Σ)

∣∣ ≤ ε 3σ
4
J .

Proof. By the fact that |ρ(Σj+1)| ≤ 3| ln εj |2dεσj , we have

J∑
j=0

∣∣∣∣∣
∫

Σj

(h− hJ) cos(Mρ) · e−iEtρ′ dE

∣∣∣∣∣ ≤ 10ε
1
4
J

J∑
j=0

∫
Σj

∣∣ρ′∣∣ dE
= 10ε

1
4
J

J∑
j=0

∫
Σj

ρ′dE

≤ 10ε
1
4
J

J∑
j=0

|ρ(Σj)|

≤ 10ε
1
4
J

2π +
∑
j≥0

3εσj |ln εj |
2d


≤ 10ε

1
4
J (2π + 4εσ0 )

≤ 1

2
ε

1
6
J

and ∑
j≥J+1

∣∣∣∣∣
∫

Σj

(h− hJ) cos(Mρ) · e−iEtρ′ dE

∣∣∣∣∣ ≤ 1

2
ε

3σ
4
J .

Hence we get that the error is bounded by

(35)
1

2
ε

1
6
J +

1

2
ε

3σ
4
J ≤ ε

3σ
4
J . �

Lemma 3.3. Assume that for some positive J ≥ 0 the function hJ fulfills (E2) and
(E3), then for every M ∈ R \ {0} and t ∈ R, we have

(36)
∣∣IJM (Σ)

∣∣ ≤ 32

15

1

|M |
|ln ε0|2J

2d +
32

15

1

|M |
(sup Σ− inf Σ)〈t〉 .
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Proof. Since ρ′ = 0 on [inf Σ, sup Σ] \ Σ, then we have

IJM (Σ) =

∫ sup Σ

inf Σ
hJe

−iEt cosMρ · ρ′ dE .

The above integral on the right hand side is indeed the sum of integrals over the con-

nected component (E∗, E∗∗) ⊂ Γ
(J)
j . Since ρ is absolutely continuous, by integrating

by parts on each connected component, we obtain∫ sup Σ

inf Σ
hJe

−iEt cosMρ · ρ′ dE

=
1

M

J∑
j=0

∑
(E∗, E∗∗)⊂Γ

(J)
j

connected component

hJe
−iEt sinMρ

∣∣
(E∗,E∗∗)

− 1

M

J∑
j=0

∑
(E∗, E∗∗)⊂Γ

(J)
j

connected component

∫ E∗∗

E∗

(hJe
−iEt)′ sinMρdE .

Since there are at most | ln ε0|2J
2d connected components of

⋃J
j=0 Γ

(J)
j , we have

1

|M |

∣∣∣∣∣∣∣∣
J∑
j=0

∑
(E∗, E∗∗)⊂Γ(J)j

connected component

hJe
−iEt sinMρ

∣∣
(E∗,E∗∗)

∣∣∣∣∣∣∣∣ ≤
32

15|M |
| ln ε0|2J

2d

and

1

|M |

∣∣∣∣∣∣∣∣∣
J∑
j=0

∑
(E∗, E∗∗)⊂Γ

(J)
j

connected component

∫ E∗∗

E∗

(hJe
−iEt)′ sinMρdE

∣∣∣∣∣∣∣∣∣ ≤
32|t|

15|M |
(sup Σ− inf Σ) . �

Lemma 3.4. Assume that for some positive J ≥ 0 the function hJ fulfills (E2) and
(E3), then for every M ∈ R and t ∈ R, we have

(37)
∣∣IJM (Σ)

∣∣ ≤ 512
|ln ε0|2J

2d

〈t〉
1
3

+
1

2
ε

3σ
4
J + 2 |M | ε

1
4
J .

Proof. The proof is divided into three parts.

Step 1. Approximation

We will consider the sum of integrals

J∑
j=0

∫{
Γ

(J)
j :| sin ξ|>ε

1
20
J

} hJe−iEt cosMρJ · ρ′J dE
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instead of IJM (Σ). The error is estimated by∣∣∣∣∣∣IJM (Σ)−
J∑
j=0

∫{
Γ

(J)
j :| sin ξ|>ε

1
20
J

} hJe−iEt cosMρJ · ρ′J dE

∣∣∣∣∣∣(38)

≤

∣∣∣∣∣∣
J∑
j=0

∫{
Σj :| sin ξ|>ε

1
20
J

} hJe−iEt
(
cosMρJ · ρ′J − cosMρ · ρ′

)
dE

∣∣∣∣∣∣(39)

+

∣∣∣∣∣∣
J∑
j=0

∫{
Γ

(J)
j \Σj :| sin ξ|>ε

1
20
J

} hJe−iEt cosMρJ · ρ′J dE

∣∣∣∣∣∣(40)

+

∣∣∣∣∣∣
J∑
j=0

∫{
Σj :| sin ξ|≤ε

1
20
J

} hJe−iEt cosMρ · ρ′ dE

∣∣∣∣∣∣(41)

+

∣∣∣∣∣∣
∑
j≥J+1

IJM (Σj)

∣∣∣∣∣∣ .(42)

• Since |ρ(Σj+1)| ≤ 3| ln εj |2dεσj , the term in (42) is bounded by

32

5
| ln εJ |2dεσJ ≤

1

4
ε

3σ
4
J .

• On Σj , 0 ≤ j ≤ J , we have |ξJ − ξ| ≤ ε
1
4
J . So | sin ξ| ≤ ε

1
20
J implies that

| sin ξJ | ≤ 3
2ε

1
20
J . By the assertion (S4) of Theorem 2.2, the term in (41) is

bounded by
16

15
ε

1
24
J ≤ ε

5σ
J .

• By the fact that |ρJ(Γ
(J)
j \Σj)| ≤ ε

7σ
8
J , 0 ≤ j ≤ J , the term in (40) is bounded

by
16

15
(J + 1) · ε

7σ
8
J ≤

1

4
ε

3σ
4
J .

• On

{
Σj : | sin ξ| > ε

1
20
J

}
, 0 ≤ j ≤ J , we have |ξJ − ξ| ≤ ε

1
4
J , which implies

| sin ξJ | ≥ 1
2ε

1
20
J . Then, by (15)–(18), we get

|ρ′J − ρ′| =
1

2

∣∣∣∣(trAJ)′

sin ξJ
− (trB)′

sin ξ

∣∣∣∣
=
|(trAJ)′ sin ξ − (trB)′ sin ξJ |

2| sin ξ|| sin ξJ+1|

≤ |(trAJ)′|| sin ξ − sin ξJ |+ | sin ξJ ||(trB)′ − (trAJ)′|
2| sin ξ|| sin ξJ |

≤ 2ε
− 1

10
J ·

(
2ε

1
4
JN

10τ
J + 2ε

1
4
J

)
≤ ε

1
10
J ,
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and, using

| cosMρJ − cosMρ| = 2

∣∣∣∣sin M2 (ρJ + ρ)

∣∣∣∣ ∣∣∣∣sin M2 (ρJ − ρ)

∣∣∣∣ ≤ 2|M | · ε
1
4
J

we bound of the term (39).

Hence, by combining the above estimates, the error given in (38) is less than

1

2
ε

3σ
4
J + 2 |M | ε

1
4
J .

Step 2. Change of variable

Recall that there are at most 2| ln ε0|2J
2d connected components of

J⋃
j=0

{
E ∈ Γ

(J)
j : | sin ξJ | >

3

2
ε

1
20
J

}
.

Let (E∗, E∗∗) be one of these components, on which ρJ(E) is strictly increasing. So
E = E(ρJ) is well-defined with

(43)
dE

dρJ
=

1

ρ′J
,

d2E

dρ2
J

= −
ρ′′J

(ρ′J)3
,

d3E

dρ3
J

=
3(ρ′′J)2

(ρ′J)5
−

ρ′′′J
(ρ′J)4

.

Since ρ′J = ξ′J >
1
3 , we have | dEdρJ | < 3. Then, for F (ρJ) := (hJ ◦ E)(ρJ), in view of

the condition (E2) and (E3) for hJ , we can get

(44) |F |C1(ρJ (Γ
(J)
0 ))
≤ 16

5
; |F |C1(ρJ (Γ

(J)
j+1))

≤ 3ε3σ
j , 0 ≤ j ≤ J − 1 (if J ≥ 1) .

By the change of variable, we get∫ E∗∗

E∗

hJe
−iEt cosMρJ · ρ′J dE

=
1

2

∫ ρJ (E∗∗)

ρJ (E∗)
F (ρJ)

(
e−it[E(ρJ )+M

t
ρJ ] + e−it[E(ρJ )−M

t
ρJ ]
)
dρJ .(45)

Step 3. Van der Corput lemma on each component

We first prove that, for any E ∈ (E∗, E∗∗) ⊂ Γ
(J)
0 , we have

(46) either

∣∣∣∣d2E

dρ2
J

∣∣∣∣ or

∣∣∣∣d3E

dρ3
J

∣∣∣∣ ≥ 1− ε
1
3
0 .

By (15) and the fact that A0 =

(
−E −1
1 0

)
, we can see

|(trAJ)′ + 1| , |(trAJ)′′| , |(trAJ)′′′| ≤ 2ε
1
2
0 on Γ0 .

Since ρJ = ξJ on Γ
(J)
0 and ξ′J = − (trAJ )′

2 sin ξJ
, combining with (43), we have

d2E

dρ2
J

= −4(trAJ)′′ sin2 ρJ
(trAJ)′3

− 2 cos ρJ
(trAJ)′

d3E

dρ3
J

= −24(trAJ)′′2 sin3 ρJ
(trAJ)′5

+
8(trAJ)′′′ sin3 ρJ

(trAJ)′4
− 12(trAJ)′′ cos ρJ sin ρJ

(trAJ)′3
+

2 sin ρJ
(trAJ)′

,
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and hence∣∣∣∣d2E

dρ2
J

∣∣∣∣+

∣∣∣∣d3E

dρ3
J

∣∣∣∣ ≥ 2

|(trAJ)′|
(| cos ρJ |+ | sin ρJ |)− 40ε

1
2
0 ≥ 2(1− ε

1
3
0 ) ,

which implies (46).
Let J ⊂ (E∗, E∗∗) be the subset such that∣∣∣∣d3E

dρ3
J

∣∣∣∣ ≥ 1− ε
1
3
0 on J ;

∣∣∣∣d3E

dρ3
J

∣∣∣∣ < 1− ε
1
3
0 on (E∗, E∗∗) \ J .

Since ∣∣∣∣d3E

dρ3
J

− 2 sin ρJ

∣∣∣∣
≤ | sin ρJ |

2

 1

1− 2ε
1
2
0

− 1

+
96ε0

(1− 2ε
1
2
0 )5

+
16ε

1
2
0

(1− 2ε
1
2
0 )4

+
24ε

1
2
0

(1− 2ε
1
2
0 )3


≤ ε

1
3
0 | sin ρJ | ,

and ρJ ∈
(
−ε

1
4
J , π + ε

1
4
J

)
, one has that J ⊂ (E∗, E∗∗) is composed at most by one

sub interval (maybe empty) and (E∗, E∗∗) \ J consists of at most two sub-intervals,
saying S1 and S2.

On J , we apply Van der Corput lemma (Corollary B.2) with k = 3, and get (for
|t| ≥ 1)∣∣∣∣∣
∫
ρJ (J )

F (ρJ)e−it[E(ρJ )±M
t
ρJ ] dρJ

∣∣∣∣∣ ≤ 18(1− ε
1
3
0 )−

1
3 · 16

5
(1 + π)|t|−

1
3 ≤ 240|t|−

1
3 .

On S1 and S2, we have |d2E
dρ2
J
| ≥ 1− ε

1
3
0 in view of (47), then, by applying Corollary

B.2 with k = 2, we get, for l = 1, 2, and |t| ≥ 1∣∣∣∣∣
∫
ρJ (Sl)

F (ρJ)e−it[E(ρJ )±M
t
ρJ ] dρJ

∣∣∣∣∣ ≤ 8(1− ε
1
3
0 )−

1
2 · 16

5
(1 + π)|t|−

1
2 ≤ 108|t|−

1
2 .

Hence, the integral in (45) is bounded by 456|t|−
1
3 for every connected component

(E∗, E∗∗) contained in Γ0. Recalling that there are | ln ε0|2J
2d connected components

in Γ0, we get∣∣∣∣∣∣
∫{

Γ0:| sin ξ|>ε
1
20
J

} hJe−iEt cosMρJ · ρ′J dE

∣∣∣∣∣∣ ≤ | ln ε0|2J
2d · 456 |t|−

1
3

≤ 2
1
6 · 456| ln ε0|2J

2d〈t〉−
1
3 ,(47)

since
√

1+t2

|t| ≤ 2
1
2 for |t| ≥ 1.

If J ≥ 1, then for (E∗, E∗∗) ⊂ Γ
(J)
j+1, 0 ≤ j ≤ J − 1, (19) implies that

|ρ′J | = |ξ′J | ≤
N10τ
j

| sin ξJ |
, |ρ′′J | = |ξ′′J | ≥

ε
3σ
4
j

4| sin ξJ |3
,
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Hence the second derivative of the inverse function satisfies

(48)

∣∣∣∣d2E

dρ2
J

∣∣∣∣ =
|ρ′′J |
|ρ′J |3

≥
ε

3σ
4
j

4| sin ξJ |3
· | sin ξJ |

3

N60τ
j

> ε
7σ
8
j .

So we apply Corollary B.2 with k = 2, and get∣∣∣∣∣
∫ ρ(E∗∗)

ρ(E∗)
F (ρJ)e−it[E(ρJ )±M

t
ρJ ] dρJ

∣∣∣∣∣ ≤ 8ε
− 7σ

16
j · 3ε3σ

j (1 + π)|t|−
1
2 ≤ ε

5σ
2
j |t|

− 1
2 .

Hence, we have∣∣∣∣∣∣
J−1∑
j=0

∫{
Γ

(J)
j+1:| sin ξ|>ε

1
20
J

} hJe−iEt cosMρJ · ρ′J dE

∣∣∣∣∣∣ ≤ | ln ε0|2J
2dε

5σ
2

0 |t|
− 1

2

≤ | ln ε0|2J
2dε2σ

0 〈t〉−
1
3 .(49)

By combining (47) and (49), we get, for |t| ≥ 1,∣∣∣∣∣∣
J∑
j=0

∫{
Γ

(J)
j :| sin ξ|>ε

1
20
J

} hJe−iEt cosMρJ · ρ′J dE

∣∣∣∣∣∣ ≤
(

2
1
6 · 456 + ε2σ

0

)
| ln ε0|2J

2d〈t〉−
1
3

≤ 512| ln ε0|2J
2d〈t〉−

1
3 .

Since the above inequality holds trivially for |t| ≤ 1, this concludes the proof of
Lemma 3.4. �

We are now ready for the
Proof of Lemma 3.1. Fix t, and choose J in such a way that the error in Lemma
3.2 satisfies

ε
3σ
4
J ≤

1

〈t〉
1
3

.

this gives

(50) J ≥ J∗ :=
1

ln(1 + σ)
ln

(
4

9σ

ln〈t〉
|ln ε0|

)
.

Taking J] to be the smallest integer fulfilling (50), one has that, provided ε0 is small
enough, one has

(51) J] ≤ J∗ + 1 <
1

ln(1 + σ)
ln ln(2 + 〈t〉) ≤ 201 ln ln(2 + 〈t〉) .

If |M | ≥ 32
5 〈t〉

4
3 , then we use the estimate (36). In such a case, the second term

at r.h.s of (36) is estimated by 5
3

1

〈t〉
1
3

. The first term (with J = J]) is estimated by

|ln ε0|
2J2
] d

3〈t〉
4
3

. Summing up we get the result for the considered values of M .

Consider now |M | < 32
5 〈t〉

4
3 and use (37). The first two terms at r.h.s. are

immediately estimated. For the third one just remark that

2 |M | ε
1
4
J ≤

64

5
〈t〉

4
3

(
ε

3σ
4
J

) 1
3σ

≤ 64

5
〈t〉

4
3
− 1

9σ =
64

5

1

〈t〉
200
9
− 1

3

≤ 64

5

1

〈t〉20
.

Summing up one gets the result. �
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4. Proof of dispersive estimates

Fix any θ ∈ Td. Given φ ∈ `1(Z), let q(t) = e−itHθφ. It solves the dynamical
equation iq̇ = Hθq with q(0) = φ. Let

G(E, t) ≡
(
g1(E, t)
g2(E, t)

)
:= S(q(t)).

For a.e. E ∈ Σ, we have

(
g1(E, t)

g2(E, t)

)
= e−iEt

(
g1(E, 0)

g2(E, 0)

)
.

In view of eq. (28), we have
(52)

|qn(t)| ≤ 1

π

∣∣∣∣∫
Σ

(g1(E, t)Kn(E) + g2(E, t)Jn(E)) ρ′dE

∣∣∣∣+ ε
σ2

10
0 ‖q(t)‖`∞ , ∀ n ∈ Z .

To estimate ‖q(t)‖`∞ , it is sufficient to control the above integral. By a straightfor-
ward computation, we have∫

Σ
(g1(E, t)Kn(E) + g2(E, t)Jn(E)) ρ′dE

=

∫
Σ
e−iEt (g1(E, 0)Kn(E) + g2(E, 0)Jn(E)) ρ′dE

=

∫
Σ
e−iEt

∑
m∈Z

φm (Km(E)Kn(E) + Jm(E)Jn(E)) ρ′dE

=

∫
Σ
e−iEt

∑
m∈Z

φm
∑

m∆,n∆

(βm,m∆βn,n∆ cos(m∆ − n∆)ρ) ρ′dE .(53)

Lemma 4.1. Assume that |V |r = ε0 ≤ ε∗ with ε∗ in Theorem 2.1. For any
m,m∆, n, n∆,∣∣∣∣∫

Σ
βm,m∆βn,n∆ cos(m∆ − n∆)ρ · e−iEt ρ′dE

∣∣∣∣ ≤ 526| ln ε0|a(ln ln(2+〈t〉))2d

〈t〉
1
3

, ∀ t ∈ R .

Proof. We just apply Lemma 3.1 with h = βm,m∆βn,n∆ , M = m∆ − n∆ and hJ =
βJm,m∆

βJn,n∆
. The result immediately follows. �

End of the proof of Theorem 1.2. According to (53) and Lemma 4.1, we get, for
every n ∈ Z,∣∣∣∣∫

Σ
(g1(E, t)Kn(E) + g2(E, t)Jn(E)) ρ′dE

∣∣∣∣ ≤ 9 · 526| ln ε0|a(ln ln(2+〈t〉))2d

〈t〉
1
3

‖q(0)‖`1 .

Finally, by (52), we get, for every t ∈ R,

‖q(t)‖`∞ ≤ 9 · 526

π

(
1− ε

σ2

10
0

) | ln ε0|a(ln ln(2+〈t〉))2d

〈t〉
1
3

‖q(0)‖`1

≤ 1507
| ln ε0|a(ln ln(2+〈t〉))2d

〈t〉
1
3

‖q(0)‖`1 . �
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5. Proof of Corollary 2

Fix any 0 < ζ < 1
3 , p > 5 and θ ∈ Td. Assume that |V |r < ε∗ with ε∗ as in

Theorem 1.2. We prove Corollary 2 for t ≥ 0, the case t < 0 being totally similar.
First remark that ‖Hθφ‖`∞ ≤ 3 ‖φ‖`∞ . Denote by f the map

f : (qj)j 7→ (∓i|qj |p−1qj)j ,

which describes the nonlinearity in (3); one has

‖f(q)‖`∞ ≤ ‖q‖
p
`∞ ,(54)

‖f(q)‖`1 =
∑
j∈Z
|qj |p ≤

(
sup
j
|qj |p−2

)∑
j

|qj |2 = ‖q‖p−2
`∞ ‖q‖

2
`2 .(55)

In particular, from (54) it follows that (3) is locally well posed in `∞. Furthermore,
since the solution of equation (3) fulfills

(56) ‖q(t)‖`2 = ‖φ‖`2 ,

it is also globally well posed in `2.
Finally we recall the following well known lemma.

Lemma 5.1. Let 0 < ζ ≤ 1 and µ > 1 be fixed, then ∃ C1 > 0 s.t.

(57)

∫ t

0

1

〈t− s〉ζ
1

〈s〉µ
ds <

∫ ∞
0

1

〈t− s〉ζ
1

〈s〉µ
ds ≤ C1

〈t〉ζ
, ∀ t > 0 .

The main step for the proof of the Corollary 2 is the next lemma.

Lemma 5.2. Define M := 4K1 and δ∗ := (C1M
p−2)

− 1
p−1 . Assume that the initial

datum q(0) = φ for (3) fulfills δ0 = ‖φ‖`1(Z) < δ∗, then, if for some T > 0 one has

(58) sup
0≤t≤T

〈t〉ζ ‖q(t)‖`∞ ≤Mδ0 ,

the solution still fulfills the above inequality with M replaced by M
2 .

Proof. By Duhamel formula the solution of (3) fulfills

(59) q(t) = e−itHθφ+

∫ t

0
e−i(t−s)Hθf(q(s))ds .

Under the assumption (58), we have, for 0 < s ≤ T ,

‖q(s)‖`∞ ≤
δ0M

〈s〉ζ
.
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In view of (55), for 0 ≤ t ≤ T , the integral is estimated by∥∥∥∥∫ t

0
e−i(t−s)Hθf(q(s))ds

∥∥∥∥
`∞
≤
∫ t

0

∥∥∥e−i(t−s)Hθf(q(s))
∥∥∥
`∞
ds

≤
∫ t

0

K1

〈t− s〉ζ
‖f(q(s))‖`1 ds

≤
∫ t

0

K1

〈t− s〉ζ
‖q(s)‖p−2

`∞ ‖q(s)‖
2
`2 ds

≤
∫ t

0

K1

〈t− s〉ζ
δp−2

0 Mp−2

〈s〉ζ(p−2)
‖φ‖2`2 ds

= ‖φ‖2`2 δ
p−2
0 Mp−2K1

∫ t

0

1

〈t− s〉ζ
1

〈s〉ζ(p−2)
ds

≤ δp0M
p−2K1

C1

〈t〉ζ
,

where we used the fact that, under the assumption of the Corollary 2, one has
ζ(p − 2) > 1. Using again (10) in order to estimate the term e−itHθφ at r.h.s. of
(59), one gets

sup
0≤t≤T

‖q(t)‖`∞ ≤
K1δ0

〈t〉ζ
[
1 + C1M

p−2δp−1
0

]
.

The choice of the constants M and δ∗ made in the statement of the lemma ensures
that the square bracket is smaller than 2 and therefore the proof is completed. �

End of the proof of Corollary 2. First remark that, by local well-posedness in `∞,
there exists T > 0 s.t. (58) holds. Assume that there exists a finite T∗ which is
the largest time for which (58) holds, then from Lemma 5.2, there exists T1 > T∗
s.t. the estimate holds (the `∞ norm takes some time to move from δ0M

2〈T∗〉ζ to δ0M
〈T∗〉ζ )

against the assumption that T∗ is the largest time for which the inequality holds.
Thus the solution fulfills (58) with T =∞. �

Appendix A. The fibered rotation number

Related to the Schrödinger cocycle (ω,A0 +F0), we can define the fibered rotation
number ρ = ρ(ω,A0+F0). It was introduced originally by Herman [Her83] in this
discrete case (see also Johnson-Moser [JM82]). For the precise definition, we follow
the same presentation as in [HA09].

Given A ∈ C(Td, SL(2,R)) with A(·) =

(
a(·) b(·)
c(·) d(·)

)
, we define the map

T(ω,A) : Td × 1

2
T → Td × 1

2
T

(θ, ϕ) 7→ (θ + ω, φ(ω,A)(θ, ϕ))
,

where 1
2T := R/πZ and φ(ω,A)(θ, ϕ) = arctan

(
c(θ)+d(θ) tanϕ
a(θ)+b(θ) tanϕ

)
. Assume that A(θ)

is homotopic to identity, then the same is true for the map T(ω,A) and therefore it
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admits a continuous lift

T̃(ω,A) : Td × R → Td × R

(θ, ϕ) 7→ (θ + ω, φ̃(ω,A)(θ, ϕ))

such that φ̃(ω,A)(θ, ϕ) mod π = φ(ω,A)(θ, ϕ mod π). The function

(θ, ϕ) 7→ φ̃(ω,A)(θ, ϕ)− ϕ

is (2π)d−periodic in θ and π−periodic in ϕ. We define now ρ(φ̃(ω,A)) by

ρ(φ̃(ω,A)) = lim sup
n→+∞

1

n
(p2 ◦ T̃n(ω,A)(θ, ϕ)− ϕ) ∈ R ,

where p2(θ, ϕ) = ϕ. This limit exists for any θ ∈ Td, ϕ ∈ R, and the convergence
is uniform in (θ, ϕ) (For the existence of this limit and its properties we can refer

to [Her83]). The class of number ρ(φ̃(ω,A)) in 1
2T, independent of the chosen lift, is

called the fibered rotation number of the skew-product system

(ω,A) : Td × R2 → Td × R2

(θ, y) 7→ (θ + ω, A(θ)y)
,

and we denote it by ρ(ω,A). For further elementary properties, we refer to Appendix
of [HA09].

Appendix B. Van der Corput lemma

For the convenience of readers, we give here the statement of the Van der Corput
lemma and its corollary which are used in this paper, even though they can be found
in many textbooks on Harmonic Analysis (see, e.g., Chapter VIII of [Ste93]).

Lemma B.1. Suppose that ψ is real-valued and Ck in (a, b) for some k ≥ 2, and

(60) |ψ(k)(x)| ≥ 1, ∀ x ∈ (a, b) .

For any λ ∈ R+, we have∣∣∣∣∫ b

a
eiλψ(x)dx

∣∣∣∣ ≤ (5 · 2k−1 − 2)λ−
1
k .

If the hypothesis (60) in the above lemma is replaced by

(61) “|ψ(k)(x)| ≥ c, ∀ x ∈ (a, b)”

for some c > 0 independent of x, then we can derive from Lemma B.1 that∣∣∣∣∫ b

a
eiλψ(x)dx

∣∣∣∣ ≤ (5 · 2k−1 − 2)c−
1
kλ−

1
k , ∀ λ ∈ R+ .

Moreover, since (61) also holds for −ψ, Lemma B.1 implies that∣∣∣∣∫ b

a
eiλψ(x)dx

∣∣∣∣ ≤ (5 · 2k−1 − 2)c−
1
k |λ|−

1
k , ∀ λ ∈ R \ {0} .

Corollary B.2. Suppose that ψ is real-valued and Ck in (a, b) for some k ≥ 2, and

that |ψ(k)(x)| ≥ c for all x ∈ (a, b). Let h be C1 in (a, b). Then∣∣∣∣∫ b

a
eiλψ(x)h(x)dx

∣∣∣∣ ≤ (5·2k−1−2)c−
1
k

[
|h(b)|+

∫ b

a
|h′(x)|dx

]
|λ|−

1
k , ∀ λ ∈ R\{0} .
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This corollary is proved by writing

∫ b

a
eiλψ(x)h(x)dx as

∫ b

a
F ′(x)ψ(x)dx with

F (x) :=

∫ x

a
eiλψ(t)dt, integrating by parts, and using the previous estimate

|F (x)| ≤ (5 · 2k−1 − 2)c−
1
kλ−

1
k , ∀ x ∈ [a, b] .

Acknowledgments. The authors would like to thank Hakan Eliasson for fruitful
discussions. D. Bambusi acknowledges the support of GNFM. Z. Zhao is grateful
to the support from Laboratoire International Associé (LIA) Laboratoire Ypatia
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