Roberto Di Cosmo
email: roberto@dicosmo.org

Archiving and referencing source code with Software Heritage

Keywords: Software source code, archival, reference, reproducibility

Software, and software source code in particular, is widely used in modern research. It must be properly archived, referenced, described and cited in order to build a stable and long lasting corpus of scienti c knowledge. In this article we show how the Software Heritage universal source code archive provides a means to fully address the rst two concerns, by archiving seamlessly all publicly available software source code, and by providing intrinsic persistent identi ers that allow to reference it at various granularities in a way that is at the same time convenient and e ective. We call upon the research community to adopt widely this approach.

Introduction

Software source code is an essential research output, and there is a growing general awareness of its importance for supporting the research process [START_REF] Borgman | Who's Got the Data? Interdependencies in Science and Technology Collaborations[END_REF][START_REF] Stodden | Reproducible Research for Scienti c Computing: Tools and Strategies for Changing the Culture[END_REF][START_REF] Hinsen | Software Development for Reproducible Research[END_REF]. Many research communities focus on the issue of scienti c reproducibility and strongly encourage making the source code of the artefact available by archiving it in publicly-accessible long-term archives; some have even put in place mechanisms to assess research software, like the Artefact Evaluation process introduced in 2011 and now widely adopted by many computer science conferences [START_REF] Bruce | Artifact Evaluation for Publications (Dagstuhl Perspectives Workshop 15452)[END_REF], and the Artifact Review and Badging program of the ACM [START_REF]Artifact Review and Badging[END_REF]. Other raise the complementary issues of making it easier to discover existing research software, and giving academic credit to authors [START_REF] Arfon | Software citation principles[END_REF][START_REF] Howison | Software in the scienti c literature: Problems with seeing, nding, and using software mentioned in the biology literature[END_REF][START_REF] Lamprecht | Towards FAIR principles for research software[END_REF].

These are important issues that are similar in spirit to those that led to the current FAIR data move-ment~ [START_REF] Mark | The FAIR Guiding Principles for scienti c data management and stewardship[END_REF], and as a rst step it is important to clearly identify the di erent concerns that come into play when addressing software, and in particular its source code, as a research output. They can be classi ed as follows:

Archival: software artifacts must be properly archived, to ensure we can retrieve them at a later time; Reference: software artifacts must be properly referenced to ensure we can identify the exact code, among many potentially archived copies, used for reproducing a speci c experiment; Description: software artifacts must be equipped with proper metadata to make it easy to nd them in a catalog or through a search engine; Citation: research software must be properly cited in research articles in order to give credit to the people that contributed to it.

As already pointed out in the literature, these are not only di erent concerns, but also separate ones. Establishing proper credit for contributors via citations or providing proper metadata to describe the artifacts requires a curation process [START_REF] Bönisch | swMATH -A New Information Service for Mathematical Software[END_REF][START_REF] Allen | Looking Before Leaping: Creating a Software Registry[END_REF][START_REF] Di | Curated Archiving of Research Software Artifacts : lessons learned from the French open archive (HAL)[END_REF] and is way more complex than simply providing stable, intrinsic identi ers to reference a precise version of a software source code for reproducibility purposes [START_REF] Howison | Software in the scienti c literature: Problems with seeing, nding, and using software mentioned in the biology literature[END_REF][START_REF] Alliez | Attributing and Referencing (Research) Software: Best Practices and Outlook From Inria[END_REF][START_REF] Di | Referencing Source Code Artifacts: a Separate Concern in Software Citation[END_REF]. Also, as remarked in [START_REF] Hinsen | Software Development for Reproducible Research[END_REF][START_REF] Alliez | Attributing and Referencing (Research) Software: Best Practices and Outlook From Inria[END_REF], resarch software is often a thin layer on top of a large number of software dependencies that are developed and maintained outside of academia, so the usual approach based on institutional archives is not su cient to cover all the software that is relevant for reproducibility of research.

In this article, we focus on the rst two concerns, archival and reference, showing how they can be adressed fully by leveraging the Software Heritage universal archive [START_REF] Abramatic | Building the Universal Archive of Source Code[END_REF], and also mention some recent evolutions in best practices for embedding metadata in software development repositories.

In Section 2 we brie y recall what is Software Heritage and what makes it special; in Section 3 we show how researchers can easily ensure that any relevant source code is archived; in Section 4 we explain how to use the intrinsic identi ers provided by Software Heritage to enrich research articles, making them more useful and appealing for the readers, and providing stable links between articles and source code in the web of scienti c knowledge we are all building. Finally, we point to ongoing collaborations and future perspectives in Section 5.

2 Software Heritage: the universal archive of software source code Software Heritage [START_REF] Di | Software Heritage: Why and How to Preserve Software Source Code[END_REF][START_REF] Abramatic | Building the Universal Archive of Source Code[END_REF] is a non pro t initiative started by Inria in partnership with UNESCO, to build a long term universal archive speci cally designed for software source code, and able to store not only a software artifact, but also its full development history. Software Heritage's mission is to collect, preserve, and make easily accessible the source code of all publicly available software. Among the strategies designed for collecting the source code there is the development of a large scale automated crawler for source code, whose architecture is shown in Figure 1. The sustainability plan is based on several pillars. The rst one is the support of Inria, a national research institution that is involved for the long term. A second one is the fact that Software Heritage provides a common infrastructure catering to the needs of a variety of stakeholders, ranging from industry to academia, from cultural heritage to public administrations. As a consequence, funding comes from a diverse group of sponsors, ranging from IT companies to public institutions.

Finally, an extra layer of security is provided by a network of independed, international mirrors that maintain a full copy of the archive1 .

We recall here a few key properties that set Software Heritage apart from all other scholarly infrastructures:

it proactively archives all software, making it possible to store and reference any piece of publicly available software relevant to a research result, independently from any speci c eld of endeavour, and even when the author(s) did not take any step to have it archived [START_REF] Di | Software Heritage: Why and How to Preserve Software Source Code[END_REF][START_REF] Abramatic | Building the Universal Archive of Source Code[END_REF];

it stores the source code with its development history in a uniform data structure, a Merkle DAG [START_REF] Ralph | A Digital Signature Based on a Conventional Encryption Function[END_REF], that allows to provide uniform, intrinsic identi ers for the billions of software artifacts of the archive, independently of the version control system or package format used [START_REF] Di | Referencing Source Code Artifacts: a Separate Concern in Software Citation[END_REF].

At the time of writing this article, the Software Heritage archive contains over 7 billions unique source code les, from more than 100 million di erent software origins 2 .

It provides the ideal place to preserve research software artifacts, and o ers powerful mechanisms to enhance research articles with precise references to relevant fragments of your source code. Using Software Heritage is straightforward and involves very simple steps, that we detail in the following sections.

Archiving and self archiving

In a research article one may want to reference di erent kinds of source code artifacts: some may be popular open source components, some may be general purpose libraries developed by others, and some may be one's own software projects.

All these di erent kinds of software artifacts can be archived extremely easily in Software Heritage: it's enough that their source code is hosted on a publicly accessible repository (Github, Bitbucket, any GitLab instance, an institutional software forge, etc.) using one of the version control systems supported by Software Heritage, currently Subversion, Mercurial and Git3 .

For source code developed on popular development platforms, chances are that the code one wants to reference is already archived in Software Heritage, but one can make sure that the archived version history is fully up to date, as follows:

go to https://save.softwareheritage.org, pick the right version control system in the drop-down list, enter the code repository url 4 , click on the Submit button (see Figure 2). If it is hosted on one of the major forges we already know, this process will take just a few hours; if it is in a location we never saw before, it can take longer, as it will need to be manually screened 5 .

Preparing source code for self archiving

In case the source code is one own's, before requesting its archival it is important to structure the software repository following well established good practices for release management [START_REF] Raymond | Software Release Practice HOWTO[END_REF]. In particular one should add README and AUTHORS les as well as licence information following industry standard terminology [START_REF]REUSE Software[END_REF][START_REF]Software Package Data Exchange Licence List[END_REF].

Future users that nd the artifact useful might want to give credit by citing it. To this end, one might want to provide instructions on how one prefers the artifact to be cited. We would recommend to also provide structured metadata information in machine readable formats. While practices in this area are still evolving, one can use the CodeMeta generator available at https://codemeta.github.io /codemeta-generator/ to produces metadata conformant to the CodeMeta schema: the JSON-LD output can be put at the root of the project in a codemeta.json le. Another option is to use the Citation File Format, CFF (usually in a le named citation.c).

Referencing

Once the source code has been archived, the Software Heritage intrinsic identi ers, called SWH-ID, fully documented online and shown in Figure 3, can be used to reference with great ease any version of it. Fig. 3: Schema of the core Software Heritage identi ers SWH-IDs are URIs with a very simple schema: the swh pre x makes explicit that these identi ers are related to Software Heritage; the colon (:) is used as separator between the logical parts of identi ers; the schema version (currently 1) is the current version of this identi er schema; then follows the type of the objects identi ed and nally comes a hex-encoded (using lowercase ASCII characters) cryptographic signature of this object, computed in a standard way, as detailed in [START_REF] Di | Identi ers for Digital Objects: the Case of Software Source Code Preservation[END_REF][START_REF] Di | Referencing Source Code Artifacts: a Separate Concern in Software Citation[END_REF].

These core identi ers may be equipped with the quali ers that carry contextual extrinsic information about the object: origin : the software origin where an object has been found or observed in the wild, as an URI; visit : persistent identi er of a snapshot corresponding to a speci c visit of a repository containing the designated object;

anchor : a designated node in the Merkle DAG relative to which a path to the object is speci ed;

path : the absolute le path, from the root directory associated to the anchor node, to the object; lines : line number(s) of interest, usually within a content object

The combination of the core SWH-IDs with these quali ers provides a very powerful means of referring in a research article to all the software artefacts of interest.

To make this concrete, in what follows we use as a running example the article A "minimal disruption" skeleton experiment: seamless map and reduce embedding in OCaml by Marco Danelutto and Roberto Di Cosmo [START_REF] Danelutto | A "Minimal Disruption" Skeleton Experiment: Seamless Map & Reduce Embedding in OCaml[END_REF] published in 2012. This article introduced Parmap[12], an elegant library for multicore parallel programming that was distributed via the gitorious.org collaborative development platform, at gitorious.org/parmap. Since Gitorious has been shut down a few years ago, like Google Code and CodePlex, this example is particularly t to show why pointing to an archive of the code is better than pointing to the collaborative development platform where it is developed.

Speci c version

The Parmap article describes a speci c version of the Parmap library, the one that was used for the experiments reported in the article, so in order to support reproducibility of these results, we need to be able to pinpoint precisely the state(s) of the source code used in the article.

The exact revision of the source code of the library used in the article has the following SWH-ID:

swh:1:rev:0064fbd0ad69de205ea6ec6999f3d3895e9442c2; origin=https://gitorious.org/parmap/parmap.git; visit=swh:1:snp:78209702559384ee1b5586df13eca84a5123aa82

This identi er can be turned into a clickable URL by prepending to it the pre x https://archiv e.softwareheritage.org/ (one can try it by clicking on this link).

Code fragment

Having a link to the exact archived revision of a software project is important in all research articles that use software, and the core SWH-IDs allow to drill down and point to a given directory or even a le content, but sometimes, like in our running example, one would like to do more, and pinpoint a fragment of code inside a speci c version of a le. This is possible using the lines= quali er available for identi ers that point to le content.

Let's see this feature at work in our running example, showing how the experience of studying or reviewing an article can be greatly enhanced by providing pointers to code fragments.

In Figure 1 of [START_REF] Danelutto | A "Minimal Disruption" Skeleton Experiment: Seamless Map & Reduce Embedding in OCaml[END_REF], which is shown here as Figure 4a, the authors want to present the core part of the code implementing the parallel functionality that constitutes the main contribution of their article. The usual approach is to typeset in the article itself an excerpt of the source code, and let the reader try to nd it by delving into the code repository, which may have evolved in the mean time. Finding the exact matching code can be quite di cult, as the code excerpt is often edited a bit with respect to the original, sometimes to drop details that are not relevant for the discussion, and sometimes due to space limitations.

In our case, the article presented 29 lines of code, slightly edited from the 43 actual lines of code in the Parmap library: looking at 4a, one can easily see that some lines have been dropped (102-103, 118-121), one line has been split (117) and several lines simpli ed (127, 132-133, 137-142).

Using Software Heritage, the authors can do a much better job, because the original code fragment can now be precisely identi ed by the following Software Heritage identi er: This identi er will always point to the code fragment shown in Figure 4b.

The caption of the original article shown in Figure 4a can then be signi cantly enhanced by incorporating a clickable link containing the SWH-ID shown above: it's all is needed to point to the exact source code fragment that has been edited for inclusion in the article, as shown in Figure 5. The link contains, thanks to the SWH-ID quali ers, all the contextual information necessary to identify the context in which this code fragment is intended to be seen.

Simple of the distribution, fork, and recollection phases in Parmap (slightly simpli ed from the the actual code in the version of Parmap used for this article) Fig. 5: A caption text with the link to the code fragment and its contextual information

Getting the SWH-ID

A fully quali ed SWH-ID is rather long, and it needs to be, as it contains quite a lot of information that is essential to convey. In order to make it easy to use SWH-IDs, we provide a very simple way of getting the right SWH-ID without having to type it by hand. Just browse the archived code in Software Heritage and navigate to the software artifact of interest. Clicking on the permalinks vertical red tab that is present on all pages of the archive, opens up a tab that allows to select the identi er for the object of interest: an example is shown in Figure 6.

The two buttons on the botton right allow to copy the identi er or the full permalink in the clipboard, and to paste it in an article as needed. Version 1 of the SWH-IDs uses git-compatible hashes, so if the source code that one wants to reference uses git as a version control system, one can create the right SWH-ID by just prepending swh:1:rev: to the commit hash. This comes handy to automate the generation of the identi ers to be included in an article, as one will always have code and article in sync.

Perspectives for the scholarly world

We have shown how Software Heritage and the associated SWH-IDs enables the seamless archival of all publicly available source code. It provides for all kind of software artifacts the intrinsic identi ers that are needed to establish long lasting, resilient links between research articles and the software they use or describe.

All researchers can use right now the mechanisms presented here to produce improved and enhanced research articles. More can be achieved by establishing collaborations with academic journals, registries and institutional repositories and registries, in particular in terms of description and support for software citation. Among the initial collaborations that have been already established, we are happy to mention the cross linking with the curated mathematical software descriptions maintained by the swMath.org portal [START_REF] Bönisch | swMATH -A New Information Service for Mathematical Software[END_REF], and the curated deposit of software artefacts into the HAL french national open access portal [START_REF] Di | Curated Archiving of Research Software Artifacts : lessons learned from the French open archive (HAL)[END_REF], which is performed via a standard SWORD protocol inteface, an approach that is currently being explored by other academic journals.

We believe that the time has come to see software become a rst class citizen in the scholarly world, and Software Heritage provides a unique infrastructure to support an open, non pro t, long term and resilient web of scienti c knowledge.

Fig. 1 :

 1 Fig. 1: Architecture of the Software Heritage crawler

Fig. 2 :

 2 Fig. 2: The Save Code Now form

Fig. 4 :

 4 Fig. 4: Code fragment from the published article compared to the content in the Software Heritage archive

Fig. 6 :

 6 Fig. 6: Obtaining a Software Heritage identi er using the permalink box on the archive Web user interface

More details can be found at https://www.softwareheritage.org/support/sponsors and https://www.softwareheritage.org/mirrors.

See https://archive.softwareheritage.org for the up to date gures.

For up to date information, see https://archive.softwareheritage.org/browse/origin/s ave/

Make sure to use the clone/checkout url as given by the development platform hosting your code. It can easily be found in the web interface of the development platform.

It is also possible to request archival programmatically, using the Software Heritage API, which can be quite handy to integrate in a Make le; see https://archive.softwareheritage.org/api/1/origin/sa ve/ for details.

Acknowledgements

This article is a major evolution of the research software archival and reference guidelines available on the Software Heritage website [11] resulting from extensive discussions that took place over several years with many people. Special thanks to Alain Girault, Morane Gruenpeter, Antoine Lambert, Julia Lawall, Arnaud Legrand, Nicolas Rougier and Stefano Zacchiroli for their precious feedback on these issues and/or earlier versions of this document.

When clicking on the hyperlinked text in the caption shown above, the reader is brought seamlessly to the Software Heritage archive on a page showing the corresponding source code archived in Software Heritage, with the relevant lines highlighted (see Figure 4b).

Software bibliographies with biblatex-software

Another way to enrich an article with precise pointers to software source code is by adding entries for it in the bibliography. Unfortunately, standard bibliography styles do not treat software as a rst class citizen, and for example BibTeX users often resort to the @misc entry to this end, which is really unsatisfactory.

Since April 2020, users of the BibLaTeX package can leverage the biblatex-software package [10], available on CTAN [START_REF]CTAN: the Comprehensive TeX Archive Network[END_REF], to produce rich software bibliographies.

This package support four kind of di erent entries:

-@software for describing the general information about a software project -@softwareversion for describing a speci c version or release of a software project -@softwaremodule for describing a module that is part of a larger software project -@codefragment for describing a fragment of code (full le, or selected lines of a le)

Using these special BibTeX entries, the various examples presented in the previous sections above can be described as follows The result can be seen in the bibliography of this article as [START_REF] Sw | The Parmap library version 0.9[END_REF] and [14].