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Abstract

Carpooling has the potential to be a key component of the transport mix in post-carbon,
ecologically sustainable societies. In a world first, Ecov provides innovative carpooling ser-
vices where carpooling is transformed from an individualistic, private mode of transport to
a hybrid private-public mode. Passengers make carpooling requests at pre-selected meet-
ing points without a priori matched drivers, and these requests are stochastically matched in
real-time to the passing driver flow. Since drivers and passengers are constrained to converge
at meeting points along these trajectory segments, highly convenient door-to-door travel is
not feasible for the majority of users. The trade-off is that these meeting points act as ag-
gregators to reach a critical mass of closely matched passenger demand and driver supply
more quickly and more sustainably. Due to the innovative nature of stochastic carpooling,
off-the-shelf data science workflows are unable to provide pertinent analysis to guide the
service operator. We introduce a workflow, comprising of a combination of data science
and GIS (Geographic Information Systems), which processes driver GPS traces in order to
provide important indicators to guide the operational decision-making. We illustrate it on
a currently operational carpooling service in the outskirts of the city of Lyon, France. This
workflow provides evidence that relaxing deterministic door-to-door matching, and hence
expanding the potential pool of participating drivers, in a real-time stochastic carpooling
service, is a key factor to reduce passenger waiting times. Waiting times and other perfor-
mance indicators, comparable with high performance bus services in peri-urban areas, can
be in achieved at a significantly lower cost.

Keywords: data science-GIS, driver flow, driver participation rate, carpooling, passenger
waiting time

1 Introduction

The business model of current market leaders in carpooling, such as Uber, Lyft, Kapten and
others, involve constructing large fleets of professional drivers who respond to the passenger
requests. This model provides door-to-door carpooling services, where a passenger makes a
request at a given time to travel from a given origin to a given destination. This request is
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then matched deterministically from the database of available drivers. Whilst these door-to-
door services possess a high level of convenience as they respond closely to individual travel
requirements in both time and space. The fact that it satisfies these requirements makes the
door-to-door carpooling services incompatible with a large scale utilisation and is not ecological.
Thus these market leading carpooling service providers now recognise that large scale utilisation
of carpooling depends crucially on relaxing this door-to-door requirement by incentivising both
passengers and drivers towards pre-selected meeting points (Stiglic et al. 2015). For example,
"Suggested Pickup Points" are proposed by Uber (2019) to passengers so that the drivers avoid
taking inefficient and/or infrequent routes. This incentivisation is well-established for public
transport services where these predefined meeting points correspond to bus stops or train stations.
Thus large-scale utilisation of carpooling requires a paradigm shift from considering carpooling
as an exclusively individual means of transport to a closer alignment to mass public transport
models, as presaged in Cooper (2007).

In a world first, a range of hybrid public-private carpooling services are proposed by the
carpooling provider Ecov (Ecov.fr). Further following the public transport model, within Ecov’s
services, these meeting points and road segments are not defined informally between passengers
and drivers, but their placement are decided in consultation with local government authorities so
that they respond to the mobility requirements in the local area, which take into account various
factors such as aggregated traffic flow, socioeconomic characteristics, pedestrian accessibility,
local government regulations, etc. Since they are fixed, physical meeting points, we do not
require those matching algorithms which are concerned with the identification of dynamic meeting
hotspots between passengers and drivers (Schreieck et al. 2016). These meeting points are marked
with fixed, physical structures which are easily visible by drivers on the road, analogous to bus or
coach shelters. These meeting points are connected to each other to define route segments, which
have a large massification potential, like traditional bus lines. Unlike many of its competitors,
the Ecov carpooling services do not cater to densely populated, highly urbanised areas, but
rather to peri-urban or rural areas which are often marginalised by transport providers. The
lack of transport options in these areas is a key contributing factor in many social issues, like
chronic unemployment (Fransen et al. 2019). For these sparsely populated and less well digitally
connected areas, the physical meeting points provide local residents access to an economically
and ecologically sound transport service.

The other world leading innovation that Ecov carpooling services bring to the market is
the shift away from the deterministic matching between passengers and drivers to a stochastic
matching. Carpooling usually operates with the individual passenger request being matched
deterministically to a particular driver with an agreed departure, destination, and time frame.
This deterministic matching requires considerable planning and is well-adapted to infrequent,
long distance journeys and/or densely populated areas, e.g. as demonstrated by the market
penetration in France of the long-distance carpooling provider BlaBlaCar (www.blablacar.fr).
On the other hand, for frequent, short distance journeys (from 10 to 40 km roughly) in more
sparsely populated areas, which comprises the bulk of home-work commutes, this type of planned
carpooling is not adapted. Ecov’s carpooling approach removes these pre-planning requirements,
as it allows a passenger to make an immediate carpooling request without reservation at a meeting
point, since the service subsequently displays the desired destination on an electronic sign on the
side of a main road in order to alert the passing drivers of this request in real-time. Since the
actual driver who will collect the passenger is not known in advance, but is only known to be
drawn from the population of drivers, this is a stochastic matching. The innovations proposed by
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Ecov are only sparsely covered by the recent comprehensive review of the evolution of carpooling
services in the past two decades (Wang & Yang 2019).

The physical meeting points provided by Ecov require an integrated infrastructure to fa-
cilitate this real-time stochastic matching, as illustrated in Figure 1. Our example is the
“Lane” carpooling service (lanemove.com) operated by Ecov, in conjunction with Instant System
(instant-system.com), since May 2018 in the south-eastern peri-urban regions around Lyon,
France. The orange structure on the right functions like a bus shelter to provide (a) protection
from inclement weather whilst the passenger waits, and (b) a prominent visual point of reference
for drivers on the road. The passenger makes a carpooling request on the console (the green
device with a horizontal yellow stripe) close to the shelter. This request is displayed on the
electronic sign on the roadside. In this configuration, the electronic sign is located close to the
meeting point, but this can vary considerably according to the local geographical characteristics.
A driver who wishes to embark the passenger in response to their request is able to do so safely
in the reserved parking place.

Figure 1: Configuration of a physical meeting point for the “Lane” real-time carpooling service.
The orange structure functions like a bus shelter. A passenger notifies potential drivers of their
carpooling request using the console, which is then displayed on the roadside electronic sign. A
driver can safely embark the passenger in the reserved parking place. Reproduced with permission
from Ecov.

These meeting points are unable singly to provide a sufficiently high level of service for
passengers and drivers for stochastic matched carpooling. To assure this, they are organised
into carpooling lines where each line is made of at least two meeting points. The schematic of
the carpooling lines in the Lane network is shown in Figure 2. The visual similarities of the
schematic of this carpooling service with those associated with bus or train services is designed
to induce the perception of Ecov carpooling as a form of public transport. There are 5 physical
meeting points, denoted by the circles with the stylised L, which function analogously to bus
stops. According to mobility studies in this territory, the coloured lines connect the meeting
points that have a sufficient driver flow between them to maintain a carpooling service with
stochastic matching. These connected meeting points form a carpooling line, again analogous to
a bus line, where carpooling is only available between these pre-selected meeting points.
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Figure 2: Schematic diagram of the Lane carpooling service, which resembles the geographically
restrained trajectories of a public transport service. Reproduced with permission from Ecov.

In this carpooling service, minimal restrictions are placed on the passengers’ participation,
which consist mostly of arriving at a meeting point during the service operating hours, and
being prepared to not have a fixed departure time. On the other hand, the onus is placed on the
population of drivers since they collectively must be ready to respond to a passenger carpooling
request in a timely manner. Due to this asymmetry of the involvement of passengers and drivers,
according to several empirical studies, the constitution and the retention of a sufficiently sizeable
population of participating drivers who can respond to passenger carpool requests in a timely
manner is the key element of this stochastic carpooling service (Zhu 2017, 2018).

In this paper, firstly we present the theoretical reasons of why door-to-matching is insufficient
to ensure a regular carpooling service. Secondly we present a data science-GIS workflow which
we utilise to verify, based on observed data collected from an operational stochastic carpooling
service, that meeting point matching leads to reduced passenger waiting times.

2 Door-to-door matching as an obstacle to mass carpooling util-
isation

Carpooling has seen an explosion of utilisation in recent years. There are many underlying
reasons, with concerns ranging from greenhouse gas emissions to road congestion, air pollution,
land use, as well as economic costs. It is also attracting intense interest since carpooling is crucial
element of almost all developments plans for smart cities (Ghoseiri et al. 2010, Ghoseiri 2012).
As alluded in the introduction, door-to-door matching of complete trajectories from the origin
to the destination is a structural obstacle to the transformation of carpooling as a mass transit
service.

To illustrate the difficulties of spatio-temporal matching for door-to-door trajectories (i.e.
passenger-driver matching in space and in time), we can represent it with partition of a 3D
cube divided into smaller sub-cubes, where the x-axis is the longitude, the y-axis the latitude
and the z-axis the time, as shown in Figure 3. On the left, there are 9 sub-cubes, where each
sub-cube represents the origin/destination of a door-to-door trajectory. The blue sub-cube in
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the lower left represents all the trajectories whose origins are, say, within a 5 km radius around
a residential neighbourhood between 07.00 and 09:00 on Tuesday, and the green sub-cube the
trajectories whose destination are within a 5 km radius of the workplace between 08:00 and
10:00 on Tuesday. So for two trajectories to match spatio-temporally in a door-to-door sense,
they must share the same sub-cube for the origin, and similarly for the destination: this condition
is met only by the 1 pair of green and blue sub-cubes among all possible 27 pairs of sub-cubes.
On the right, the conditions for a door-to-door matching are stricter, say the origin is 1 km
within the residential neighbourhood during 07:00 to 07:30, and the destination is 1 km within
the workplace during 08:30 to 09:00. This represents 1 pair out of 125 pairs of sub-cubes.
Recall that Ecov’s carpooling services comprise non-professional drivers who do not create a
trajectory upon a passenger request, but rather mutualise their existing trajectories, so door-to-
door matching leads to a combinatorial dilution of spatio-temporal matches. Thus for Ecov, it is
crucial to avoid exact door-to-door matching and to move towards matching highly frequented
partial road segments of door-to-door trajectories.

Figure 3: Spatio-temporal door-to-door matching fragments the population of mutualisable tra-
jectories. (Left) Relaxed matching conditions. (Right) Restricted matching conditions. Blue
sub-cube represents the origin (residential neighbourhood), green the destination (workplace),
and trajectories which share the same origin and destination sub-cubes are considered to be
door-to-door matches.

To supplement the heuristic observations for door-to-door matching in Figure 3, we demon-
strate that the probability that two users (i.e. a driver and a passenger) share the same origin
and destination at the same time decreases rapidly as the spatio-temporal matching conditions
become more stringent. For the sake of simplicity, we suppose that the origin and destination
for a driver and a passenger are both represented by independent random variables which are
uniform over all sub-cubes in Figure 3. If we draw a random sample of 1000 each of drivers and
passengers, then the probability of any door-to-door match between these drivers and passen-
gers, as a function of the number of sub-cubes, is given in Figure 4. If there is only 1 sub-cube
(i.e. no spatio-temporal constraints) the probability of a match is 1. This probabilistic certainty
decreases rapidly as the spatio-temporal constraints are added: for 27 sub-cubes, this probability
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is 0.7, and for 125 sub-cubes, it falls to 0.26. Thus it is almost impossible for a carpooling service,
if it is based on complete door-to-door spatio-temporal matching, to evolve into a mass transit
service. Stiglic et al. (2015), Li et al. (2018) provide more complex synthetic models to affirm
that meeting points are essential to the feasibility of the mass carpooling services.

Figure 4: Probability of door-to-door matches for uniformly distributed drivers and passengers,
as a function of the number of sub-cube partition classes. Higher number of sub-cubes represent
more stringent spatio-temporal matching conditions.

Given that the probability of door-to-door matches diminishes rapidly, apart from increasing
the number of available drivers we propose also to enlarge the pool of potential matching by
relaxing the spatial conditions. In Figure 5, this is represented by extending the origin and
destination to cover 12 sub-cubes each in a horizontal layer, rather than as single sub-cubes.
This increases the probability of a match from 0.26 to 0.39.

Figure 5: Meeting points aggregate the spatio-temporal matching of mutualisable trajectories.
The green sub-cube represents the coverage area of the origin meeting point (residential neigh-
bourhood), the blue the destination meeting point (workplace).

6



The previous analysis was based on the uniformly distributed origin and destinations. To
offer a more realistic example, we analyse some data generated by an operational Ecov carpooling
service. Our main data source is the GPS traces of drivers who are registered with Ecov’s
services, which can be considered to be a form of crowd-sourced data collection (Lee & Liang
2011). Passenger GPS traces are more difficult to obtain, and as we are not able to replicate
exactly the synthetic example of passenger-driver matching above, we use door-to-door matching
of driver GPS traces to illustrate the diminishing probabilities. This supplements the results for
synthetic data experiments in Stiglic et al. (2015), Li et al. (2018) with empirical results.

Since these GPS traces provide highly detailed spatio-temporal information, we are able to
determine the number of empirical door-to-door matches, as well as the effect on the number of
matches when matching is carried out between two fixed, physical carpooling meeting points. For
an illustrative example in Figure 6, we analyse the n = 121 GPS traces of drivers who travelled
from the Bourgoin La Grive meeting point (solid black circle labelled B) to the Saint-Priest Parc
Technologique meeting point (solid black circle labelled S) in the Lane carpooling service during
the morning operating hours (06:30 to 09:00) during the work week 2019-11-25 to 2019-12-01.
We temporarily ignore the location of the carpooling meeting points, and focus on the GPS
traces and their origin and destinations. A hierarchical clustering with complete linkage was
carried out on the spatial locations of these origins and destinations. The dissimilarity matrix
used for this hierarchical clustering is composed of the Euclidean distance between the 4-vector
comprising the (origin longitude, origin latitude, destination longitude, destination latitude) of
each trajectory. This dissimilarity takes into account both the origin and the destination. On
the other hand, it does not take into account the intermediate GPS points as these actual route
taken is not critical for our purposes. We cut the dendrogram at h = 6000 to yield 9 spatial
clusters. These clusters are represented with the different colours: the origin and destinations
are the diamonds, and the GPS traces are the points. So GPS traces with the same colour can be
considered as door-to-door spatio-temporal matches. This fragmentation of the driver traces in
Figure 6 into different door-to-door clusters is the empirical equivalent to the theoretical division
of the unit cube into many sub-cubes in Figure 3.

The number of GPS traces per cluster is given in Table 1: whilst cluster 1 contains 75% of
the mutualisable traces, so this leaves the other 25% spread sparsely over the other 8 clusters,
fragmenting the supply of the carpooling trajectories.

Door-to-door cluster 1 2 3 4 5 6 7 8 9 Total
Number of GPS traces 76 15 7 9 4 1 7 1 1 121

Table 1: Spatio-temporal door-to-door matching fragments the number of mutualisable trajecto-
ries in the Bourgoin > St-Priest carpooling line, during its morning operating hours 06:30–09:00,
from 2018-11-25 to 2018-12-01. Door-to-door matches induced by hierarchical clustering of GPS
traces. The first line of the table contains the number of the clusters and the second line the
number of traces for each cluster.

To quantify the augmentation of the carpooling potential by relaxing door-to-door matching
for a given pair of carpooling meeting points, we compare the cluster with the largest cardinality,
since it contains the most number of trajectories that can be considered to be close door-to-
door spatio-temporal matches and whose trajectories coincide (mostly) with the Bourgoin > St-
Priest carpooling line, to the number of the trajectories which pass by both meeting points,
regardless of their true origin and destination. In the case for Table 1, there are 76 traces in the
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Figure 6: Spatio-temporal door-to-door matching fragments the number of mutualisable trajecto-
ries in the Bourgoin > St-Priest carpooling line, during its morning operating hours 06:30–09:00,
from 2018-11-25 to 2018-12-01. The clusters of GPS traces of door-to-door matches are colour
coded, with the GPS points as the solid circles, and the origins/destinations as the solid dia-
monds. The meeting points are the solid black circles: B = Bourgoin, S = St-Priest.

largest door-to-door cluster in blue, whereas there are a total of n = 121 traces which pass from
Bourgoin to St-Priest (i.e. aggregating all clusters). Thus meeting point matching represents an
increase 45 traces or 59% of the carpooling driver potential over door-to-door matching. This
increased number of observed meeting point matches to 121 (an increase of more than 50%) is
the empirical equivalent of the aggregation of the theoretical fragmented carpooling potential by
merging several sub-cubes in the unit cube in Figure 5.

This hints at the potential of meeting point matching over door-to-door matching for a small-
scale data set of driver GPS traces. In the next section we introduce a workflow which allows
us to confirm this increased potentiality through the automated analysis of a large number of
GPS traces. Since a direct comparison of passenger waiting times is not possible since a door-
to-door carpooling service (which serves the same population as the Lane carpooling service) is
not operational, we propose an indirect comparison in three stages: (i) extract all driver GPS
traces on the Bourgoin > St-Priest line in the morning operating hours 06:30-09:00 to serve as the
meeting point matches, (ii) extract the largest hierarchical cluster of these GPS traces to serve as
the door-to-door matches, and (iii) compute the driver flows, for both sets of matches, and then
convert them using our model to passenger waiting time predictions. To be confident that the
predicted passenger waiting times are reasonable, we demonstrate the predicted waiting times
track closely the observed ones in the Lane service, and so we suppose that the predicted waiting
times for the door-to-door matches will have similar comparability to the observed waiting times
in a putative door-to-door carpooling service.
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3 Data science-GIS workflow for a stochastic carpooling service

The Data Science-GIS department of Ecov has developed many workflows in response to the
multiple challenges posed by the collection, storage and analysis of numerous, heterogeneous
data sources stochastic carpooling services: for brevity we focus on the GPS traces workflow,
as illustrated in Figure 7. The left part of the Figure 7 contains the main data sources: the
GPS traces, the meeting point locations, the origin-destination matrices, the route finder API
and the base maps. The first two are stored as PostGIS SQL databases on a secure server
owned by Ecov, the origin-destination matrices are provided by the French national statistical
agency (INSEE 2018), the route finder API is provided by the GPS navigation operator (Tom-
Tom 2019), and the base maps are accessed from the cartography provider OpenStreetMaps
(OpenStreetMap contributors 2019). There are specialised data wrangling techniques specific to
spatial databases, known collectively as geoprocessing, and these are carried out, in conjunction
with traditional data wrangling, in the central lozenge. The critical geoprocessing concerns the
topological simplification of the GPS traces onto its network map of carpooling meeting points
and lines. Whilst GPS traces are a rich source of information of driver behaviour, they are
voluminous and complex, and whose complexity can be highly variable depending on the GPS
technology deployed. Our approach is based on network analysis tools (Guidotti et al. 2017)
and complexity reduction/harmonisation algorithms (Douglas & Peucker 2011). This topolog-
ical simplification is essential to be able to mutualise GPS traces which share common arrival
times at the carpooling meeting points. Once these GPS traces are in a suitable format, we are
able to produce the required outputs, such as maps of the the geographical extent of the GPS
traces, the driver flow per route segment in the carpooling lines and/or per time interval, and
subsequently the corresponding waiting times and travel times, as outlined in the right lozenge.

Figure 7: Data science-GIS workflow for the analysis of driver GPS traces in stochastic carpooling
service. Left. Spatio-temporal input data sources. Centre. Data wrangling and geoprocessing.
Right. Generated outputs.
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3.1 Topological simplification of GPS traces on a carpooling line

The basis for the topological simplification of the GPS traces is the network of the Lane carpooling
network from Figure 2. This network is represented as a directed graph, where each node is a
meeting point and the edge connects two nodes if they form segment of a carpooling line, as
shown in Figure 8. For brevity, the node labels have been abbreviated to the first letter of
the name of the meeting point, i.e. L = Lyon Mermoz, S = St-Priest Parc Technologique,
A = Aéroport Lyon-St Exupéry, V = Villefontaine The Village, and B = Bourgoin La Grive
Sortie 7. Since the primary objective is to match passenger and driver trajectories on the arrival
times at the meeting points, then the actual route taken between these two meeting points is
of secondary interest so we can represent all routes connecting from one meeting point to the
other as a single directed edge. The identification of all GPS traces which share arrival times
at the two meeting points, by ignoring the intermediary routes taken, to a single directed edge
in the graph, is the mathematical abstraction which facilitates the massification of the driver
trajectories which are able to fulfil a passenger carpooling request which respects the latter’s
spatio-temporal conditions.

Figure 8: Network of carpooling lines represented as a directed graph. Nodes are the meeting
points, edges connect meeting points whenever a carpooling service between them is assured.

A GPS trace is displayed as the sequence of blue circles in Figure 9. It has a complex topology
since it is represented by 530 GPS points which follow (more or less) the road network. This
complex topology is simplified by retaining a small number of key indicators derived from the
complete GPS trace, following Lee & Liang (2011). In addition to the nodes associated with the
origin (first GPS point) and destination (last GPS point), we retain only those meeting place
nodes if the GPS trace contains a point within a 1 km radius of the nodes. The GPS trace in
Figure 9 passes within 1 km of the B, V and S meeting place nodes, so the resulting simplified
topology consists of the 5-node sequence: {origin > B > V > S > destination}. These simplified
topologies represent a considerable reduction in data complexity, whilst the crucial characteristics
with respect to the carpooling service are retained. The individual GPS locations are a secondary
detail since it is vastly more important to know if a driver (a) passes by a carpooling meeting
point and (b) travels in which direction to which other meeting point(s) in the network.This
approach contrasts with Tiakas et al. (2009) who attempt to match driver trajectories along the
entire length of the traces.

For the GPS trace in Figure 9, the complete trace contains 530 GPS points whereas the trace
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Figure 9: Topological simplification of a GPS trace in the Bourgoin > Bourgoin carpooling line,
during its morning operating hours 06:30–09:00, on 2019-11-28. The complete GPS trace are the
530 blue circles; the sequence of five nodes, as its simplified topology, are the orange arrows, and
the orange diamonds are the origin, carpooling meeting points, destination nodes. The meeting
points are S = St-Priest, V = Villefontaine, and B = Bourgoin.

for the simplified topology contains only 5 points (the origin, the Bourgoin meeting point, the
Villefontaine meeting point, the St-Priest meeting point and the destination). This represents a
data compression rate of over 99% yet the latter retains the important information to decide the
matching potential of this GPS driver trace with a passenger carpooling request on the Bourgoin
> St-Priest carpooling line. In Table 2 are the data compression performance for all the GPS
traces on the Bourgoin > St-Priest line from 2019-07-25 to 2020-02-17. The first column is the
average number of GPS points in the complete driver traces, the second is the average number
of GPS points of the simplified topologies of the complete GPS traces, and the last column is
the average data compression rate (1−# points in simplified trace/# points in complete trace).

Line #points in complete
GPS traces

#points in simplified
GPS traces % compression

B > S 313 5 98.3

Table 2: Data compression rate on the Bourgoin > St-Priest carpooling line, during the morning
operating hours 06:30 am to 09:00 am, for all driver GPS traces from 2019-07-25 to 2020-02-17.
The first column is the average number of GPS points in the complete driver traces, the second
is the average number of points of the simplified GPS traces, and the third column is the average
data compression rate.
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3.2 Driver flow estimation

Recall that a carpooling service is assured between Bourgoin and St-Priest since edge connects
the two nodes in Figure 8. So if the directed graph of the simplified topology of a GPS trace
contains {B > V > S} or {B > S} as a subgraph, then this driver’s GPS trace is able to
participate in this carpooling line. This is the case for all 121 GPS traces under consideration.
Furthermore, n = 31 GPS traces have an arrival time at Bourgoin within 08:00 am to 08:30 am,
i.e., a close spatio-temporal match for a passenger request for departure at the Bourgoin meeting
point (in a residential neighbourhood) between 08:00 and 08:30 am, with a destination at the
St-Priest meeting point (in a neighbourhood with a high employment density). Of these 31 GPS
traces, only 17 of them are door-to-door matches (as defined as belonging to the largest door-
to-door cluster of GPS traces in Table 1) share a departure time from their origins in the same
interval of 08:00 am to 08:30 am. These are both door-to-door and meeting point matches and
their simplified traces are displayed in Figure10 as the orange diamonds/arrows. The simplified
traces of the remaining 14 meeting point only matches are the blue diamonds/arrows. The latter
represent an 82% increase in the number of drivers who can potentially respond to a passenger
carpooling request for the Bourgoin > St-Priest line.

Figure 10: Matching on meeting points increases the number of driver spatio-temporal matches
in comparison to door-to-door matching, during a single 30 minute period (08:00-08:30), on 2019-
11-28. The orange arrows are the GPS traces which are both meeting point and door-to-door
(n = 14), and the blue arrows are the GPS traces which are meeting point matches but not
door-to-door match matches (n = 17). The diamonds are the origin/destination points. The
solid black circles are the meeting points: S = St-Priest, V = Villefontaine, and B = Bourgoin.

Table 3 summarises the impact of meeting point matching over door-to-door matching. The
first three columns focus on the entire period of the morning operating hours of the Lane car-
pooling service (06:30–09:00) whereas the second set of three columns on the single 30 minutes
period (08:00–08:30) as this latter, restricted period is a more realistic time frame that potential

12



passengers are willing to wait for a driver to arrive. The first column contains the number of door-
to-door matches, the second the number of meeting point matches, and the third is the percent-
age increase, i.e. (#meeting point matches−# door-to-door matches)/# door-to-door matches.
These percentage increases in the carpooling driver potential can be considered to be empiri-
cal verification of the expected theoretical increase in carpooling potential when incorporating
meeting point matches in Figure 5 in comparison to a carpooling potential based solely on door-
to-door matches in Figure 4.

06:30–09:00 08:00–08:30

Week n◦ #Door-to-
door

#Meeting
point % increase #Door-to-

door
#Meeting

point % increase

2019W36 54 100 85 18 24 33
2019W37 67 99 48 20 21 5
2019W38 81 122 51 20 27 35
2019W39 72 119 65 20 28 40
2019W40 43 94 119 9 19 111
2019W41 48 106 120 12 29 141
2019W42 50 103 106 18 33 83
2019W43 30 85 183 11 27 145
2019W44 43 63 47 9 14 56
2019W45 48 102 113 14 28 100
2019W46 41 71 73 12 22 83
2019W47 60 110 83 15 30 100
2019W48 76 121 59 17 31 82
2019W49 58 94 62 19 32 68
2019W50 47 99 111 5 22 340
2019W51 82 103 26 21 27 29
2020W01 12 23 92 4 6 50
2020W02 53 96 81 14 23 64
2020W03 63 100 59 14 27 93
2020W04 74 105 42 16 23 44
2020W05 55 104 89 16 23 44
2020W06 44 110 150 14 27 93
2020W07 57 96 68 13 23 77

Table 3: Weekly driver flow increase of meeting point matching compared to door-to-door match-
ing in the Bourgoin > St-Priest carpooling line, during the morning operating hours 06:30–09:00,
from 2019-09-02 to 2020-02-17. The first column contains the number of door-to-door matches,
the second the number of meeting point matches, and the third is the percentage increase from
the door-to-door matches.

These simplified GPS traces with timestamps, in addition to being direct means of aggregating
driver GPS traces to augment the number of possible spatio-temporal matches to a passenger
carpooling request, they also greatly facilitate the calculation of detailed temporal profiles of
the driver flows on each of the segments in the carpooling service. Table 4 displays the average
driver flow for 15 minute intervals during 06:30 to 09:00 (morning operating hours). Intervals
of 15 minutes correspond roughly to the maximum time that passengers are willing to wait
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in a real-time stochastic matching carpooling service. Moreover, Smith & Demetsky (1997),
McShane & Roess (1990) indicated that these 15 minutes intervals are an optimal choice because
the variation in driver flows for shorter intervals is less stable.

Driver flow
06:30- 06:45– 07:00– 07:15– 07:30–

Line 06:45 07:00 07:15 07:30 07:45
B > S 1 1.5 2.5 1.5 3

07:45– 08:00– 08:15– 08:30- 08:45–
Line 08:00 08:15 08:30 08:45 09:00

B > S 1.5 2 2 2 1

Table 4: Driver flow on the Bourgoin > St-Priest carpooling line, per 15 minute intervals, during
the morning operating hours 06:30–09:00 for a typical week.

3.3 Waiting time prediction

From the passenger point-of-view, a key quality measure of a carpooling service is the driver
arrival in a suitable time frame. The estimation of the time of arrival (ETA) is a vast subject
of active research in itself, see Wang & Yang (2019) for a recent review of these methods within
the larger context of the characterisation of carpooling services. For deterministic matching
carpooling, the problem of waiting time prediction is the estimation of the travel time of the
matched driver to reach the given passenger. For stochastic matching, since a specific driver
is not matched to the given passenger, the problem is different since it is the estimation of the
arrival time of the first driver from the population of available drivers. Given that we have
already established a highly detailed spatio-temporal profile of the average driver flow on the
segments between meeting points (in Table 4), with the added hypothesis of driver arrivals as a
Poisson point process, then it is straightforward to convert these driver flows into an estimation
of the waiting time. It is a reasonable assumption that the first geolocated driver will pick up the
passenger: according to unpublished figures supplied by Ecov, the majority of regular carpooling
journeys are assured by motivated drivers who are willing to share their geolocation, and only a
minority by unregistered and/or non-geolocated drivers.

Suppose that a passenger makes a carpool request at 08:10 am at the Bourgoin meeting point
to travel to St-Priest. Then the expected waiting time is the length of the interval divided by
the average driver flow in the interval 08:00 – 08:15, i.e. 7.5 minutes from Table 5.

Since these GPS traces are drawn from an operational carpooling service, we also have access
to observed waiting times for roughly 1 500 carpooling requests with a recorded waiting time
on the Bourgoin > St-Priest carpooling line from 2019-07-25 to 2020-02-17. So we are able to
evaluate the accuracy of these predicted waiting times with respect to these observed ones, as
illustrated in Figure 11. Each box plot covers a 15 minute interval during the opening hours
with at least one observed waiting time. The blue box plots represent the observed waiting times
and the predicted waiting times are the horizontal red lines. During the morning opening hours,
the direction of travel is from Bourgoin to St-Priest, whilst in the evening it is the reverse from
St-Priest to Bourgoin. The predicted waiting time as the reciprocal of the average driver flow is
fairly reliable, especially in the morning operating hours. In Figure 12 are the box plots of the
RMSE error for the morning opening hours from Bourgoin to St-Priest for each interval.
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Predicted waiting time (min)
06:30- 06:45– 07:00– 07:15– 07:30–

Line 06:45 07:00 07:15 07:30 07:45
B > S 15.0 10.0 6.0 10 6.0

07:45– 08:00– 08:15– 08:30- 08:45–
Line 08:00 08:15 08:30 08:45 09:00

B > S 5.0 7.5 7.5 7.5 15

Table 5: Waiting time predictions for a carpool request on the Bourgoin > St-Priest carpooling
line, per 15 minute intervals, during the morning operating hours 06:30–09:00 for a typical week.

Figure 11: Comparison of predicted and observed waiting times for the Bourgoin <> St-Priest
carpooling line for a typical day. The blue box plots are the observed waiting times, and the
predicted waiting times are the horizontal red line, for each 15 minute interval.

More formally letW (i, t) be the waiting time until the first driver arrival for a carpool request
made at time t made for carpooling line segment i, i ∈ 1, . . . , nS . Assuming a Poissonian driver
arrival process, the waiting time and the driver flow are inversely proportional to each other, i.e.
W (i, t)f(i, j) ∝ const, where f(i, j) is the driver flow for segment i and time interval τj . Then
W (i, t) ∝ len(τj)/f(i, j) where j = {k : t ∈ τk, k ∈ 1, . . . , nT } implies that t is contained in
the time interval τj , len(·) returns the length of a time interval, nS is the number of carpooling
line segments and nT is the number of time intervals. For simplicity, we set the constant of
proportionality to one as this corresponds to the assumption that all geolocated drivers are
willing to respond to a carpooling request, then the predicted waiting time until the first driver
arrival for a carpool request made at time t made for carpooling line segment i, i = 1, . . . , nS is
thus calculated as

Ŵ (i, t) = len(τj)/f̂(i, j)

where j = {k : t ∈ τk, k ∈ 1, . . . , nT } and f̂(i, j) is an estimate of the driver flow using the sliding
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Figure 12: The RMSE error between the observed and predicted waiting times for the Bourgoin
<> St-Priest carpooling line for a typical day.

window sample mean as outlined in Table 4.
In Table 6 are the predicted waiting times based on the driver flows from Table 3. Since

our predicted passenger waiting times, especially in the morning operating hours, resemble the
observed waiting times, then we can be confident that the decreases in the predicted waiting
times with meeting-point matches in Table 6 in comparison to those for door-to-door matches
will be indeed perceived by passengers.

From a passenger point of view, whilst the magnitude of waiting time is important as a
perception of the service quality, it is equally important that these predicted waiting times be as
close to the observed ones, whatever their magnitude. In this case, a prediction of 15 minutes is
better than 5 minutes since the former is closer to, but longer than, the observed waiting time
than the latter. Therefore we propose the following metric to measure these discrepancies for a
given threshold δ:

PE(W (i, t), Ŵ (i, t)); δ) =
1

Nτj

Nτj∑
k=1

1{|W (i, t)− w(k)
i,t | < δ} (1)

where w(k)
i,t is the kth observed waiting time for the time interval τj and Nτj is the number of

observed waiting times for this interval. This metric, as a function of δ, illustrated in Figure 13
for the 15 minutes interval for 06:30–09:00 for the same day of Figure 11.

3.4 Driver participation rate estimation

We have focused mostly on the impact of meeting point matches over the door-to-matches as a
means to in decreasing the passenger waiting times, and now we turn to a brief examination of
the role of the driver participation rate. For any carpooling service, the availability of drivers
who are able to respond in a timely manner to the passenger requests is crucial. For deterministic
matching, this involves dispatching the closest available driver to the passenger’s location: since
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Predicted waiting time 06:30–09:00 Predicted waiting time 08:00–08:30

Week n◦ Door-to-
door (min)

Meeting
point (min) %decrease Door-to-

door (min)
Meeting

point (min) %decrease

2019W36 13.9 7.5 -46 8.3 6.2 -25
2019W37 11.2 7.6 -32 7.5 7.1 -5
2019W38 9.3 6.1 -34 7.5 5.6 -26
2019W39 10.4 6.3 -39 7.5 5.4 -29
2019W40 17.4 8.0 -54 16.7 7.9 -53
2019W41 15.6 7.1 -55 12.5 5.2 -59
2019W42 15.0 7.3 -51 8.3 4.5 -45
2019W43 25.0 8.8 -65 13.6 5.6 -59
2019W44 17.4 11.9 -32 16.7 10.7 -36
2019W45 15.6 7.4 -53 10.7 5.4 -50
2019W46 18.3 10.6 -42 12.5 6.8 -45
2019W47 12.5 6.8 -45 10 5.0 -50
2019W48 9.9 6.2 -37 8.8 4.8 -45
2019W49 12.9 8.0 -38 7.9 4.7 -41
2019W50 16 7.6 -53 30.0 6.8 -77
2019W51 9.1 7.3 -20 7.1 5.6 -22
2020W01 14.2 7.8 -45 10.7 6.5 -39
2020W02 11.9 7.5 -37 10.7 5.6 -48
2020W03 10.1 7.1 -30 9.4 6.5 -30
2020W04 13.6 7.2 -47 9.4 6.5 -30
2020W05 17.0 6.8 -60 10.7 5.6 -48
2020W06 13.2 7.8 -41 11.5 6.5 -43
2020W07 53.6 41.7 -22 30 30 0

Table 6: Passenger waiting time decrease for meeting point matching compared to door-to-
door matching in the Bourgoin > St-Priest carpooling line, during the morning operating hours
06:30–09:00 and for 8:00–08:30, from 2019-09-02 to 2020-02-17.

these locations can be anywhere, this usually involves a large fleet of drivers to provide a rapid
response. For stochastic matching to a fixed passenger location, the total number of drivers
required for a similar response time can be much lower since the closest available driver is drawn
from the existing driver flow. A key question for Ecov is what driver participation rate leads
to passenger waiting times around 5 to 10 minutes, as observed in the Lane carpooling line in
Figure 11?

The driver participation rate is P = N/N0 where N is the total number of the drivers who are
motivated to carpool in response to a passenger request, and N0 is the total numbers of drivers
who undertake journeys in the same geographical region as the carpooling service. BothN andN0

are difficult to define and to estimate precisely. We propose that the number of drivers who share
their geolocation with Ecov be our proxy for N , even though Ecov’s carpooling service allows for
passengers to carpool with unregistered and/or non-geolocated drivers. From anecdotal evidence,
the majority of regular carpooling journeys are assured by motivated drivers who are willing to
share their geolocation, and only a minority by unregistered and/or non-geolocated drivers. It is
also difficult to enumerate those drivers in the same geographical region as the carpooling meeting

17



Figure 13: Evolution of the PE metric of the observed and predicted waiting times per interval
of 15 minutes for 6:30–09:00 for a typical day, as a function of the threshold δ.

points, since the GPS traces for all drivers in general are not available. Our proxy is derived from
inferring likely trajectories from the reference origin-destination matrix available for home-work
journeys. In our case, a county-level origin-destination matrix is provided by the French official
statistical agency (INSEE 2018). Since the county level data are insufficiently detailed to decide
if the drivers with these origins-destinations travel on the same pre-selected road segments of the
carpooling service, we infer likely trajectories. These inferred likely trajectories are determined
by the TomTom route finder API (TomTom 2019) as the fastest route starting on Tuesday 8am
from the origins (county centroids) to the destinations (county centroids), as shown in Figure 14.
We employ a route finder API rather than an explicit model-based methodology, e.g. Tang
et al. (2016), to infer these most likely routes. Thus N0 is the sum of the driver flow from the
origin-destination pairs whose likely trajectories includes road segments in the carpooling service.
There are N0 = 3821 drivers whose likely trajectories for the Bourgoin > St-Priest carpooling
line. From Table 4, there are N = 20 between 06:30 and 09:30. This yields a driver participation
rate of P = N/N0 = 0.52%. Even with this low driver participation rate, average waiting times
for passengers of 5–10 minutes are observed for these time intervals in Table 5. This demonstrates
that a small number of regular drivers assure the punctuality of the carpooling service, and the
potential for stochastic carpooling to rival the waiting times proposed by traditional mass transit
services does not require infeasible elevated driver participation rates.

Whilst as first glance, the current driver participation rate of 0.52% appears to be too low, it is
already able to ensure a reasonable regularity for passenger requests on the Bourgoin > St-Priest
line during its morning operating hours. If we were able to increase this driver participation
rate modestly, then predicted passenger waiting times would fall substantially, as illustrated in
Figure 15, approaching those of a high frequency metro/subway train systems, and exceeding
those of traditional bus lines. The methods for increasing driver participation, as they lie largely
outside of data science, are out of scope of this paper. Nonetheless they are of intense interest
to Ecov and it has already carried out some behavioural economics experiments to understand
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Figure 14: Likely driver itineraries from the TomTom route finder API in the same geographical
region as the Bourgoin > St-Priest carpooling line. The origins and destinations (county cen-
troids) are the orange diamonds. The solid black circles are the meeting points: S = St-Priest,
B = Bourgoin.

driver motivations to participate in a non-profit carpooling service (Zhu 2017, 2018).

3.5 Software

The workflow, since it proposes a novel combination of data science and GIS, draws on software
from both of these domains. The GPS traces are stored in the time-aware polyline format
(Attam 2016) in a PostGreSQL database. Whilst this format allows for efficient storage of
the GPS coordinates and the timestamps, it is not compliant with any standard format for
spatial databases. Thus it is transformed into a PostGIS encoding (PostGIS Project Steering
Committee 2019) which is one of the standard formats and is fully compatible with PostGreSQL
database clients. For the data processing and analysis, e.g. to create the simplified topology of
a GPS trace, a combination of R and Python packages are employed. We cite only the main
ones which are focused on processing and analysing spatial databases, such as the sf package
(Pebesma 2018) in R, and the GeoPandas (GeoPandas Developers 2019) and PyGeos (van der
Wel 2019) packages in Python. Whilst these packages are able to handle most geoprocessing
tasks, they are not complete, interactive GIS platforms in the strict sense like ArcGIS (ESRI
2019) or QGIS (QGIS Development Team 2019). The data science-GIS platform hosted at Ecov
thus is a savvy combination of all of these tools in order to provide the computing infrastructure
which is capable of agile responses to the analysis requirements for real-time stochastic matching
carpooling services.
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Figure 15: The decrease of the predicted passenger waiting time as a function of the driver
participation rate in the Bourgoin > St-Priest carpooling line, during the morning operating
hours 06:30 am to 09:00 am from 2019-07-25 to 2020-02-17.

4 Conclusions and future work

In this paper we introduced a data science-GIS workflow to facilitate the stochastic matching
between drivers and passengers on pre-selected road segments in the real-time carpooling services
proposed by Ecov. These differ from competing services which offer door-to-door matching for
complete trajectories. Whilst the latter offer a high level of personal convenience in highly ur-
banised regions, door-to-door matching structurally inhibits a large-scale adoption of carpooling.
The mutualisation of high throughput road segments via meeting point matching resolves this
obstacle, especially in peri-urban and rural regions. The crucial mathematical abstraction in this
workflow is to reduce the complexity of driver GPS traces to a graph-based topology which rep-
resents the pre-selected road segments of the carpooling service. We illustrated this workflow on
a carpooling service currently operated by Ecov in a peri-urban region in south-eastern France.
The physical meeting points, by facilitating the convergence of a critical mass of drivers and
passengers drawn from a much larger geographical area, forms the foundation of the high level
of user satisfaction of a real time carpooling service. This high customer satisfaction depends
crucially on the passenger waiting times which can be comparable to or be even lower than
those with traditional bus services in these peri-urban regions. These reduced waiting times are
achieved at a modest financial cost by abandoning the door-to-door matching of their competi-
tors, and employing instead their innovative stochastic meeting point matching. The presented
workflow represents only a small fraction of the envisaged, complete data platform. Nonetheless,
it already details a functioning prototype for the combination of two closely related, but histor-
ically separate, disciplines of data science and GIS into a single workflow which responds to the
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complex questions arising from addressing mobility requirements in the neglected peri-urban and
rural regions. This workflow lays solid foundations of an agile data platform which is able to
accompany Ecov’s anticipated expansion of the scope and quality of its carpooling services into
the future.
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