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Abstract

Carpooling has the potential to be a key component of the transport mix in post-carbon, eco-
logically sustainable societies. To achieve this potential, it is imperative that the carpooling
is transformed from an individualistic, private mode of transport to a hybrid private-public
mode. Door-to-door matches are highly convenient for individual, sporadic carpool jour-
neys, but hinder the development of carpooling as a mass transit service. The focus shifts to
matching trajectory segments which are highly frequented by both passengers and drivers.
Whilst this leads to a loss of personal convenience, as drivers and passengers are constrained
to converge at meeting points along the trajectory segments, these meeting points act as
aggregators to reach a critical mass of matched passenger demand and driver supply. In a
world first, Ecov provides innovative carpooling services where passengers make carpooling
requests without a priori matched drivers, and that these requests are stochastically matched
in real-time to the driver flow on the pre-selected road segments. The mathematical com-
plexity of stochastic carpooling matching greatly exceeds that of the traditional deterministic
services. To address this complexity, we introduce a workflow, comprising of a combination of
data science and GIS (Geographic Information Systems), which processes driver GPS traces
in order to provide important indicators (e.g. driver participation rate and passenger waiting
time) to guide the operational decision-making. We illustrate this workflow on a currently
operational carpooling service in the peri-urban region surrounding the city of Lyon, France.

Keywords: data science-GIS, driver flow, driver participation rate, ride-share, travel time,
passenger waiting time

1 Introduction

The business model of current market leaders in carpooling, such as Uber, Lyft, Kapten and
others, involve constructing large fleets of professional drivers who respond to the passenger
requests. This model provides door-to-door carpooling services, where a passenger makes a
request at a given time to travel from a given origin to a given destination. This request is
then matched deterministically from the database of available drivers. Whilst these door-to-
door services possess a high level of convenience as they respond closely to individual travel
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requirements in both time and space. The fact that it satisfies these requirements makes the
door-to-door carpooling services incompatible with a large scale utilisation and is not ecological.
Thus these market leading carpooling service providers now recognise that large scale utilisation
of carpooling depends crucially on relaxing this door-to-door requirement by incentivising both
passengers and drivers towards pre-selected meeting points (Stiglic et al. 2015). For example,
"Suggested Pickup Points" are proposed by Uber (2019) to passengers so that the drivers avoid
taking inefficient and/or infrequent routes. This incentivisation is well-established for public
transport services where these predefined meeting points correspond to bus stops or train stations.
Thus large-scale utilisation of carpooling requires a paradigm shift from considering carpooling
as an exclusively individual means of transport to a closer alignment to mass public transport
models, as presaged in Cooper (2007).

In a world first, a range of hybrid public-private carpooling services are proposed by the
carpooling provider Ecov (Ecov.fr). Further following the public transport model, within Ecov’s
services, these meeting points and road segments are not defined informally between passengers
and drivers, but their placement are decided in consultation with local government authorities so
that they respond to the mobility requirements in the local area, which take into account various
factors such as aggregated traffic flow, socioeconomic characteristics, pedestrian accessibility,
local government regulations, etc. Since they are fixed, physical meeting points, we do not
require those matching algorithms which are concerned with the identification of dynamic meeting
hotspots between passengers and drivers (Schreieck et al. 2016). These meeting points are marked
with fixed, physical structures which are easily visible by drivers on the road, analogous to bus or
coach shelters. These meeting points are connected to each other to define route segments, which
have a large massification potential, like traditional bus lines. Unlike many of its competitors,
the Ecov carpooling services do not cater to densely populated, highly urbanised areas, but
rather to peri-urban or rural areas which are often marginalised by transport providers. The
lack of transport options in these areas is a key contributing factor in many social issues, like
chronic unemployment (Fransen et al. 2019). For these sparsely populated and less well digitally
connected areas, the physical meeting points provide local residents access to an economically
and ecologically sound transport service.

The other world leading innovation that Ecov carpooling services bring to the market is
the shift away from the deterministic matching between passengers and drivers to a stochastic
matching. Carpooling usually operates with the individual passenger request being matched
deterministically to a particular driver with an agreed departure, destination, and time frame.
This deterministic matching requires considerable planning and is well-adapted to infrequent,
long distance journeys and/or densely populated areas, e.g. as demonstrated by the market
penetration in France of the long-distance carpooling provider BlaBlaCar (www.blablacar.fr).
On the other hand, for frequent, short distance journeys (from 10 to 40 km roughly) in more
sparsely populated areas, which comprises the bulk of home-work commutes, this type of planned
carpooling is not adapted. Ecov’s carpooling approach removes these pre-planning requirements,
as it allows a passenger to make an immediate carpooling request without reservation at a meeting
point, since the service subsequently displays the desired destination on an electronic sign on the
side of a main road in order to alert the passing drivers of this request in real-time. Since the
actual driver who will collect the passenger is not known in advance, but is only known to be
drawn from the population of drivers, this is a stochastic matching. The innovations proposed by
Ecov are only sparsely covered by the recent comprehensive review of the evolution of carpooling
services in the past two decades (Wang & Yang 2019).


Ecov.fr
www.blablacar.fr

The physical meeting points provided by Ecov require an integrated infrastructure to fa-
cilitate this real-time stochastic matching, as illustrated in Figure 1. Our example is the
“Lane” carpooling service (lanemove.com) operated by Ecov, in conjunction with Instant System
(instant-system.com), since May 2018 in the south-eastern peri-urban regions around Lyon,
France. The orange structure on the right functions like a bus shelter to provide (a) protection
from inclement weather whilst the passenger waits, and (b) a prominent visual point of reference
for drivers on the road. The passenger makes a carpooling request on the console (the green
device with a horizontal yellow stripe) close to the shelter. This request is displayed on the
electronic sign on the roadside. In this configuration, the electronic sign is located close to the
meeting point, but this can vary considerably according to the local geographical characteristics.
A driver who wishes to embark the passenger in response to their request is able to do so safely
in the reserved parking place.

Roadside electronic sign

Figure 1: Configuration of a physical meeting point for the “Lane” real-time carpooling service.
The orange structure functions like a bus shelter. A passenger notifies potential drivers of their
carpooling request using the console, which is then displayed on the roadside electronic sign. A
driver can safely embark the passenger in the reserved parking place. Reproduced with permission
from Ecov.

These meeting points are unable singly to provide a sufficiently high level of service for
passengers and drivers for stochastic matched carpooling. To assure this, they are organised
into carpooling lines where each line is made of at least two meeting points. The schematic of
the carpooling lines in the Lane network is shown in Figure 2. The visual similarities of the
schematic of this carpooling service with those associated with bus or train services is designed
to induce the perception of Ecov carpooling as a form of public transport. There are 5 physical
meeting points, denoted by the circles with the stylised £, which function analogously to bus
stops. According to mobility studies in this territory, the coloured lines connect the meeting
points that have a sufficient driver flow between them to maintain a carpooling service with
stochastic matching. These connected meeting points form a carpooling line, again analogous to
a bus line, where carpooling is only available between these pre-selected meeting points.

In this carpooling service, minimal restrictions are placed on the passengers’ participation,
which consist mostly of arriving at a meeting point during the service operating hours, and
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Figure 2: Schematic diagram of the Lane carpooling service, which resembles the geographically
restrained trajectories of a public transport service. Reproduced with permission from Ecov.

being prepared to not have a fixed departure time. On the other hand, the onus is placed on the
population of drivers since they collectively must be ready to respond to a passenger carpooling
request in a timely manner. Due to this asymmetry of the involvement of passengers and drivers,
according to several empirical studies, the constitution and the retention of a sufficiently sizeable
population of participating drivers who can respond to passenger carpool requests in a timely
manner is the key element of this stochastic carpooling service (Zhu 2017, 2018). Its feasibility
is relying on a comprehensive characterisation of the temporal profiles of the driver flow on the
road segments connecting the meeting points.

In this paper, firstly we present the complexities of the stochastic matching and the moti-
vations behind its organisation into pre-selected carpooling lines. Secondly, we propose a data
science-GIS workflow to characterise the carpooling driver supply using GPS traces, and elabo-
rate how it is utilised by Ecov to provide information to the passengers concerning their waiting
and travel times, for the Lane carpooling service. We end with some concluding remarks.

2 Door-to-door matching as an obstacle to mass carpooling util-
isation

Carpooling has seen an explosion of utilisation in recent years. There are many underlying
reasons, with concerns ranging from greenhouse gas emissions to road congestion, air pollution,
land use, as well as economic costs. It is also attracting intense interest since carpooling is crucial
element of almost all developments plans for smart cities (Ghoseiri et al. 2010, Ghoseiri 2012).
As alluded in the introduction, door-to-door matching of complete trajectories from the origin
to the destination is a structural obstacle to the transformation of carpooling as a mass transit
service.

To illustrate the difficulties of spatio-temporal matching for door-to-door trajectories (i.e.
passenger-driver matching in space and in time), we can represent it with partition of a 3D
cube divided into smaller sub-cubes, where the z-axis is the longitude, the y-axis the latitude
and the z-axis the time, as shown in Figure 3. On the left, there are 9 sub-cubes, where each



sub-cube represents the origin/destination of a door-to-door trajectory. The blue sub-cube in
the lower left represents all the trajectories whose origins are, say, within a 5 km radius around
a residential neighbourhood between 7.00am and 9.00am on Tuesday, and the green sub-cube
the trajectories whose destination are within a 5 km radius of the workplace between 8.00am
and 10.00am on Tuesday. So for two trajectories to match spatio-temporally in a door-to-door
sense, they must share the same sub-cube for the origin, and similarly for the destination: this
condition is met only by the 1 pair of green and blue sub-cubes among all possible 27 pairs of
sub-cubes. On the right, the conditions for a door-to-door matching are stricter, say the origin
is 1 km within the residential neighbourhood during 7.00am to 7.30am, and the destination is
1 km within the workplace during 8.30m to 9.00am. This represents 1 pair out of 125 pairs of
sub-cubes. Recall that Ecov’s carpooling services comprise non-professional drivers who do not
create a trajectory upon a passenger request, but rather mutualise their existing trajectories, so
door-to-door matching leads to a combinatorial dilution of spatio-temporal matches. Thus for
Ecov, it is crucial to avoid exact door-to-door matching and to move towards matching highly
frequented partial road segments of door-to-door trajectories.
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awi]

Figure 3: Spatio-temporal door-to-door matching fragments the population of mutualisable tra-
jectories. (Left) Relaxed matching conditions. (Right) Restricted matching conditions. Blue
sub-cube represents the origin (residential neighbourhood), green the destination (workplace),
and trajectories which share the same origin and destination sub-cubes are considered to be
door-to-door matches.

To supplement the heuristic observations for door-to-door matching in Figure 3, we demon-
strate that the probability that two users (i.e. a driver and a passenger) share the same origin
and destination at the same time decreases rapidly as the spatio-temporal matching conditions
become more stringent. For the sake of simplicity, we suppose that the origin and destination
for a driver and a passenger are both represented by independent random variables which are
uniform over all sub-cubes in Figure 3. If we draw a random sample of 1000 each of drivers and
passengers, then the probability of any door-to-door match between these drivers and passen-
gers, as a function of the number of sub-cubes, is given in Figure 4. If there is only 1 sub-cube
(i.e. no spatio-temporal constraints) the probability of a match is 1. This probabilistic certainty



decreases rapidly as the spatio-temporal constraints are added: for 27 sub-cubes, this probability
is 0.7, and for 125 sub-cubes, it falls to 0.26. Thus it is almost impossible for a carpooling service,
if it is based on complete door-to-door spatio-temporal matching, to evolve into a mass transit
service. Stiglic et al. (2015), Li et al. (2018) provide more complex synthetic models to affirm
that meeting points are essential to the feasibility of the mass carpooling services.
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Figure 4: Probability of door-to-door matches for uniformly distributed drivers and passengers,
as a function of the number of sub-cube partition classes. Higher number of sub-cubes represent
more stringent spatio-temporal matching conditions.

Given that the probability of door-to-door matches diminishes rapidly, apart from increasing
the number of avalaible drivers we propose also to enlarge the pool of potential matching by
relaxing the spatial conditions. In Figure 5, this is represented by extending the origin and
destination to cover 12 sub-cubes each in a horizontal layer, rather than as single sub-cubes.
This increases the probability of a match from 0.26 to 0.39.

The previous analysis was based on the uniformly distributed origin and destinations. To
offer a more realistic example, we analyse some data generated by an operational Ecov carpooling
service. Our main data source is the GPS traces of drivers who are registered with Ecov’s
services, which can be considered to be a form of crowd-sourced data collection (Lee & Liang
2011). Passenger GPS traces are more difficult to obtain, and as we are not able to replicate
exactly the synthetic example of passenger-driver matching above, we use door-to-door matching
of driver GPS traces to illustrate the diminishing probabilities. This supplements the results for
synthetic data experiments in Stiglic et al. (2015), Li et al. (2018) with empirical results.

Since these GPS traces provide highly detailed spatio-temporal information, we are able to
determine the number of empirical door-to-door matches, as well as the effect on the number
of matches when matching is carried out between two fixed, physical carpooling meeting points.
For an illustrative example in Figure 6, we analyse the n = 121 GPS traces of drivers who
travelled from the Bourgoin La Grive meeting point (solid black circle labelled B) to the Saint-
Priest Parc Technologique meeting point (solid black circle labelled S) in the Lane carpooling
service during the morning operating hours (06:30am to 09:00am). We temporarily ignore the
location of the carpooling meeting points, and focus on the GPS traces and their origin and
destinations. A hierarchical clustering with complete linkage was carried out on the spatial
locations of these origins and destinations. The dissimilarity matrix used for this hierarchical
clustering is composed of the Euclidean distance between the 4-vector comprising the (origin
longitude, origin latitude, destination longitude, destination latitude) of each trajectory. This
dissimilarity takes into account both the origin and the destination. On the other hand, it does
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Figure 5: Meeting points aggregate the spatio-temporal matching of mutualisable trajectories.
The green sub-cube represents the coverage area of the origin meeting point (residential neigh-
bourhood), the blue the destination meeting point (workplace).

not take into account the intermediate GPS points as these actual route taken is not critical for
our purposes. We cut the dendrogram at h = 6000 to yield 9 spatial clusters. These clusters
are represented with the different colours: the origin and destinations are the diamonds, and the
GPS traces are the points. So GPS traces with the same colour can be considered as door-to-
door spatio-temporal matches. Upon visual inspection, all 121 GPS traces share the segment
between the Bourgoin and St-Priest meeting points, even though the routes on the road network
are different. If we take into account the door-to-door matching, then these 121 trajectories are
fragmented into 9 groups.
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Figure 6: Spatio-temporal door-to-door matching fragments the number of mutualisable trajecto-
ries in a carpooling service. The clusters of GPS traces of door-to-door matches are colour coded,
with the GPS points as the solid circles, and the origins/destinations as the solid diamonds. The
meeting points are the solid black circles: B = Bourgoin, S = St-Priest.

The number of GPS traces per cluster is given in Table 1: whilst cluster 1 contains 75% of
the mutualisable traces, so this leaves the other 25% spread sparsely over the other 8 clusters,
fragmenting the supply of the carpooling trajectories. Moreover all 121 trajectories share the
central Bourgoin to St-Priest segment.

Door-to-door cluster 1 2

3 4 5 6 7 8 9 Total
Number of GPS traces 76 15 7 9 4 1 7 1 1 121

Table 1: Spatio-temporal door-to-door matching fragments the number of mutualisable trajec-
tories in a carpooling service. Door-to-door matches induced by hierarchical clustering of GPS
traces. The first line of the table contains the number of the clusters and the second line the
number of traces for each cluster.

3 Data science-GIS workflow for a stochastic carpooling service

The Data Science-GIS department of Ecov has developed many workflows in response to the
multiple challenges posed by the collection, storage and analysis of numerous, heterogeneous
data sources stochastic carpooling services: for brevity we focus on the GPS traces workflow,
as illustrated in Figure 7. The left part of the Figure 7 contains the main data sources: the
GPS traces, the meeting point locations, the origin-destination matrices, the route finder API
and the base maps. The first two are stored as PostGIS SQL databases on a secure server
owned by Ecov, the origin-destination matrices are provided by the French national statistical



agency (INSEE 2018), the route finder API is provided by the GPS navigation operator (Tom-
Tom 2019), and the base maps are accessed from the cartography provider OpenStreetMaps
(OpenStreetMap contributors 2019). There are specialised data wrangling techniques specific to
spatial databases, known collectively as geoprocessing, and these are carried out, in conjunction
with traditional data wrangling, in the central lozenge. The critical geoprocessing concerns the
topological simplification of the GPS traces onto its network map of carpooling meeting points
and lines. Whilst GPS traces are a rich source of information of driver behaviour, they are
voluminous and complex, and whose complexity can be highly variable depending on the GPS
technology deployed. Our approach is based on network analysis tools (Guidotti et al. 2017)
and complexity reduction/harmonisation algorithms (Douglas & Peucker 2011). This topolog-
ical simplification is essential to be able to mutualise GPS traces which share common arrival
times at the carpooling meeting points. Once these GPS traces are in a suitable format, we are
able to produce the required outputs, such as maps of the the geographical extent of the GPS
traces, the driver flow per route segment in the carpooling lines and/or per time interval, and
subsequently the corresponding waiting times and travel times, as outlined in the right lozenge.
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Figure 7: Data science-GIS workflow for the analysis of driver GPS traces in stochastic carpooling
service.Left. Spatio-temporal input data sources. Centre. Data wrangling and geoprocessing.
Right. Generated outputs.

3.1 Topological simplification of GPS traces on a carpooling line

The basis for the topological simplification of the GPS traces is the network of the Lane carpooling
network from Figure 2. This network is represented as a directed graph, where each node is a
meeting point and the edge connects two nodes if they form segment of a carpooling line, as
shown in Figure 8. For brevity, the node labels have been abbreviated to the first letter of
the name of the meeting point, i.e. L = Lyon Mermoz, S = St-Priest Parc Technologique,
A = Aéroport Lyon-St Exupéry, V = Villefontaine The Village, and B = Bourgoin La Grive
Sortie 7. Since the primary objective is to match passenger and driver trajectories on the arrival



times at the meeting points, then the actual route taken between these two meeting points is
of secondary interest so we can represent all routes connecting from one meeting point to the
other as a single directed edge. The identification of all GPS traces which share arrival times
at the two meeting points, by ignoring the intermediary routes taken, to a single directed edge
in the graph, is the mathematical abstraction which facilitates the massification of the driver
trajectories which are able to fulfil a passenger carpooling request which respects the latter’s
spatio-temporal conditions.

¢e ®
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Figure 8: Network of carpooling lines represented as a directed graph. Nodes are the meeting
points, edges connect meeting points whenever a carpooling service between them is assured.

A GPS trace is displayed as the sequence of blue circles in Figure 9. It has a complex topology
since it is represented by 530 GPS points which follow (more or less) the road network. This
complex topology is simplified by retaining a small number of key indicators derived from the
complete GPS trace, following Lee & Liang (2011). In addition to the nodes associated with the
origin (first GPS point) and destination (last GPS point), we retain only those meeting place
nodes if the GPS trace contains a point within a 1 km radius of the nodes. The GPS trace in
Figure 9 passes within 1 km of the B, V and S meeting place nodes, so the resulting simplified
topology consists of the 5-node sequence: {origin > B > V > S > destination}. These simplified
topologies represent a considerable reduction in data complexity, whilst the crucial characteristics
with respect to the carpooling service are retained. The individual GPS locations are a secondary
detail since it is vastly more important to know if a driver (a) passes by a carpooling meeting
point and (b) travels in which direction to which other meeting point(s) in the network.This
approach contrasts with Tiakas et al. (2009) who attempt to match driver trajectories along the
entire length of the traces.

Recall that a carpooling service is assured between Bourgoin and St-Priest since edge connects
the two nodes in Figure 8. So if the directed graph of the simplified topology of a GPS trace
contains {B >V > S} or {B > S} as a subgraph, then this driver’s GPS trace is able to participate
in this carpooling line. This is the case for all 121 GPS traces under consideration. Furthermore,
n = 31 (out of 121) GPS traces have an arrival time at Bourgoin within 08:00 am to 08:30 am,
i.e., around 26% of the GPS traces are a close spatio-temporal match for a passenger request
for departure at the Bourgoin meeting point (in a residential neighbourhood) between 08:00 and
08:30 am, with a destination at the St-Priest meeting point (in a neighbourhood with a high
employment density). In comparison to the door-to-door matches in Figure 6, for the largest
cluster of 76 GPS traces, only 14 of these share a departure time from their origins in the same

10
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Figure 9: Topological simplification of a GPS trace. The complete GPS trace are the 530 blue
circles; the sequence of five nodes, as its simplified topology, are the orange arrows, and the
orange diamonds are the origin, carpooling meeting points, destination nodes. The meeting
points are S = St-Priest, V = Villefontaine, and B = Bourgoin.

interval of 08:00 am to 08:30 am, i.e. around 12% of the 121 GPS traces under consideration.
Moreover, all 14 of these door-to-door matches are a subset of the previous 31 Bourgoin to
St-Priest meeting place matches. The simplified traces of these 14 traces which are both door-
to-door and meeting place matches are blue arrows and diamonds in Figure 10. This implies
that 17 of the meeting place only matches (orange arrows and diamonds) can be added to the
14 door-to-door matches to reinforce the number of potential matches, i.e. allowing for meeting
place matches increases the proportion of potential spatio-temporal matches from 12% to 26%.

3.2 Driver flow estimation

These simplified GPS traces with timestamps, in addition to being direct means of aggregating
driver GPS traces to augment the number of possible spatio-temporal matches to a passenger
carpooling request, they also greatly facilitate the calculation of detailed temporal profiles of
the driver flows on each of the segments in the carpooling service. Table 2 displays the average
driver flow for 15 minute intervals during 06:30 to 09:00 (morning operating hours). Intervals
of 15 minutes correspond roughly to the maximum time that passengers are willing to wait
in a real-time stochastic matching carpooling service. Moreover, Smith & Demetsky (1997),
McShane & Roess (1990) indicated that these 15 minutes intervals are an optimal choice because
the variation in driver flows for shorter intervals is less stable.

3.3 Waiting time prediction

From the passenger point-of-view, a key quality measure of a carpooling service is the driver
arrival in a suitable time frame. The estimation of the time of arrival (ETA) is a vast subject

11
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Figure 10: Matching on meeting points increases the number of driver spatio-temporal matches
in comparison to door-to-door matching. The orange arrows are the GPS traces which are a
meeting point match but not a door-to-door match (n = 17), and the blue arrows are the GPS
traces which are both meeting point and door-to-door matches (n = 14). The diamonds are the
origin/destination points. The solid black circles are the meeting points: S = St-Priest, V =
Villefontaine, and B = Bourgoin.

Driver flow
06:30- 06:45— 07:00- 07:15— 07:30— 07:45—
Line 06:45 07:00 07:15 07:30 07:45 08:00
B >S 1 1.5 2.5 1.5 3 1.5

08:00- 08:15- 08:30- 08:45- 09:00- 09:15-
Line 08:15 08:30 08:45 09:00 09:15  09:30
B>S 2 2 2 1 1 1

Table 2: Average driver flow on the Bourgoin > St-Priest carpooling line, per 15 minute intervals,
during the morning operating hours 06:30 am to 09:00 am. For sake of simplicity, the average is
taken over a period of two weeks.

of active research in itself, see Wang & Yang (2019) for a recent review of these methods within
the larger context of the characterisation of carpooling services. For deterministic matching
carpooling, the problem of waiting time prediction is the estimation of the travel time of the
matched driver to reach the given passenger. For stochastic matching, since a specific driver
is not matched to the given passenger, the problem is different since it is the estimation of the
arrival time of the first driver from the population of available drivers. Given that we have
already established a highly detailed spatio-temporal profile of the average driver flow on the
segments between meeting points (in Table 2), with the added hypothesis of driver arrivals as a
Poisson point process, then it is straightforward to convert these driver flows into an estimation

12



of the waiting time. It is a reasonable assumption that the first geolocated driver will pick up the
passenger: according to unpublished figures supplied by Ecov, the majority of regular carpooling
journeys are assured by motivated drivers who are willing to share their geolocation, and only a
minority by unregistered and/or non-geolocated drivers.

Suppose that a passenger makes a carpool request at 08:10 am at the Bourgoin meeting point
to travel to St-Priest. Then the expected waiting time is the length of the interval divided by
the average driver flow in the interval 08:00 — 08:15, i.e. 7.5 minutes from Table 3.

Predicted waiting time (mins)
06:30- 06:45- 07:00- 07:15—- 07:30— 07:45-
Line 06:45 07:00 07:15 07:30 07:45  08:00
B>S 15.0 10.0 6.0 10 6.0 5.0

08:00- 08:15- 08:30- 08:45- 09:00- 09:15-
Line 08:15 08:30 08:45 09:00 09:15  09:30
B>S 7.5 7.5 7.5 15 15 15

Table 3: Waiting time predictions for a carpool request on the Bourgoin > St-Priest carpooling
line, per 15 minute intervals, during the morning operating hours 06:30 am to 09:00 am for an
ordinary day of the week.

More formally let W (i,t) be the waiting time until the first driver arrival for a carpool request
made at time ¢ made for carpooling line segment i, ¢ € 1,...,ng. Assuming a Poissonian driver
arrival process, the waiting time and the driver flow are inversely proportional to each other, i.e.
W (i, t) f(i,7) o< const, where f(i,j) is the driver flow for segment ¢ and time interval 7;. Then
Wi, t) o len(r;)/f(i,5) where j = {k : t € 7,k € 1,...,nr} implies that ¢ is contained in
the time interval 7;, len(-) returns the length of a time interval, ng is the number of carpooling
line segments and np is the number of time intervals. For simplicity, we set the constant of
proportionality to one as this corresponds to the assumption that all geolocated drivers are
willing to respond to a carpooling request, then the predicted waiting time until the first driver
arrival for a carpool request made at time ¢ made for carpooling line segment 7,7 = 1,...,ng is
thus calculated as

~ A~

W (i,t) = len(7;)/ f (i, j)

where j = {k:t €,k e1,...,np} and f(i,) is an estimate of the driver flow using the sliding
window sample mean as outlined in Table 2.

Since these GPS traces are drawn from an operational carpooling service, we also have access
to observed waiting times for roughly 1 500 successful carpooling requests on the Bourgoin > St-
Priest carpooling line during a period of one year. So we are able to evaluate the accuracy of
these predicted waiting times with respect to these observed ones, as illustrated in Figure 11.
Each box plot covers a 15 minute interval during the opening hours with at least one observed
waiting time. The blue box plots represent the observed waiting times and the predicted waiting
times are the horizontal red lines. During the morning opening hours, the direction of travel is
from Bourgoin to St-Priest, whilst in the evening it is the reverse from St-Priest to Bourgoin.
The predicted waiting time as the reciprocal of the average driver flow is fairly reliable, especially
in the morning operating hours.
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Figure 11: Comparison of predicted and observed waiting times for the Bourgoin <> St-Priest
carpooling line. The blue box plots are the observed waiting times, and the predicted waiting
times are the horizontal red line, for each 15 minute interval. The black dashed vertical line
separates the morning and evening opening hours.

3.4 Travel time estimation

For a passenger, in addition to the waiting time in response to a carpooling request, the travel
time from the meeting point to the destination is another important measure of the quality of
the carpooling service for a passenger. Since GPS traces contain the timestamps for each of the
constituent GPS point, it is straightforward to compute an estimate of the travel time as the
sample average of the difference of the origin and destination timestamps, as shown in Figure 12.
The box plots reveal that the travel time in the morning peak hours from Bourgoin to St-Priest
is longer to than the afternoon peak hours for the return trajectory from St-Priest to Bourgoin.
This is due to the fact that these drivers tend to wish to arrive in a restrained time period around
09:00am in the morning peak hour, and thus creating more congestion than in the evening, when
the journeys are more dispersed over a longer time interval.

3.5 Driver participation rate estimation

For any carpooling service, the availability of drivers who are able to respond in a timely manner
to the passenger requests is crucial. For deterministic matching, this involves dispatching the
closest available driver to the passenger’s location: since these locations can be anywhere, this
usually involves a large fleet of drivers to provide a rapid response. For stochastic matching to
a fixed passenger location, the total number of drivers required for a similar response time can
be much lower since the closest available driver is drawn from the existing driver flow. A key
question for Ecov is what driver participation rate leads to passenger waiting times around 5 to
10 minutes, as observed in the Lane carpooling line in Figure 117

The driver participation rate is P = N/Ny where N is the total number of the drivers who are
motivated to carpool in response to a passenger request, and Ny is the total numbers of drivers

14



~837 -7 18 8 ° o o
g Lo I"‘TQ—E o o °
E '|: I::' o 0 1
E I'|D I'I: o - 1
e T+ i ! 1 ) 1
wo | oo oo
2 o ° - - I o T .
- — i -rl 1 |T o
E ! IQ _: HBB II i
m | | !
o =

= _;_:-l;.l B D“' ElEIB QI;I

o T T -
g~ . - I_L_:__L_L—-—'I__A_I_LI

|
I [

I [ 1 I
08h15 0Bh4S 0%h13 0%h43  10h15  17h30  18h15  18h45  19h15  20h00

Time interval (15 minutes)

Figure 12: Travel time estimation for the Bourgoin <> St-Priest carpooling line for each 15
minute interval. The black dashed vertical line separates the morning and evening opening
hours.

who undertake journeys in the same geographical region as the carpooling service. Both NV and Ny
are difficult to define and to estimate precisely. We propose that the number of drivers who share
their geolocation with Ecov be our proxy for N, even though Ecov’s carpooling service allows for
passengers to carpool with unregistered and /or non-geolocated drivers. From anecdotal evidence,
the majority of regular carpooling journeys are assured by motivated drivers who are willing to
share their geolocation, and only a minority by unregistered and/or non-geolocated drivers. It is
also difficult to enumerate those drivers in the same geographical region as the carpooling meeting
points, since the GPS traces for all drivers in general are not available. Our proxy is derived from
inferring likely trajectories from the reference origin-destination matrix available for home-work
journeys. In our case, a county-level origin-destination matrix is provided by the French official
statistical agency (INSEE 2018). Since the county level data are insufficiently detailed to decide
if the drivers with these origins-destinations travel on the same pre-selected road segments of the
carpooling service, we infer likely trajectories. These inferred likely trajectories are determined
by the TomTom route finder API (TomTom 2019) as the fastest route starting on Tuesday 8am
from the origins (county centroids) to the destinations (county centroids), as shown in Figure 13.
We employ a route finder API rather than an explicit model-based methodology, e.g. Tang
et al. (2016), to infer these most likely routes. Thus Ny is the sum of the driver flow from the
origin-destination pairs whose likely trajectories includes road segments in the carpooling service.
There are Ny = 3821 drivers whose likely trajectories for the Bourgoin > St-Priest carpooling
line. From Table 2, there are N = 20 between 06:30 and 09:30. This yields a driver participation
rate of P = N/Ny = 0.52%. Even with this low driver participation rate, average waiting times
for passengers of 5—10 minutes are observed for these time intervals in Table 3. This demonstrates
that a small number of regular drivers assure the punctuality of the carpooling service, and the
potential for stochastic carpooling to rival the waiting times proposed by traditional mass transit
services does not require infeasible elevated driver participation rates.
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Figure 13: Likely driver itineraries from the TomTom route finder API in the same geographical
region as the Bourgoin > St-Priest carpooling line. The origins and destinations (county cen-
troids) are the orange diamonds. The solid black circles are the meeting points: S = St-Priest,
B = Bourgoin.

We have only shown the results for the driver flow, the passenger waiting time, the travel time
and the driver participation rate, for a single carpooling line (Bourgoin > St-Priest) within the
Lane carpooling network, since this the most frequented origin-destination. The results for the
return origin-destination (St-Priest > Bourgoin) and the origin-destination pairs involving the
other meeting points (Villefontaine, Aéroport, Lyon), defined by the network graph in Figure 8,
are produced for internal reporting with in Ecov, but are not shown here for brevity.

3.6 Software

The workflow, since it proposes a novel combination of data science and GIS, draws on software
from both of these domains. The GPS traces are stored in the time-aware polyline format
(Attam 2016) in a PostGreSQL database. Whilst this format allows for efficient storage of
the GPS coordinates and the timestamps, it is not compliant with any standard format for
spatial databases. Thus it is transformed into a PostGIS encoding (PostGIS Project Steering
Committee 2019) which is one of the standard formats and is fully compatible with PostGreSQL
database clients. For the data processing and analysis, e.g. to create the simplified topology of
a GPS trace, a combination of R and Python packages are employed. We cite only the main
ones which are focused on processing and analysing spatial databases, such as the sf package
(Pebesma 2018) in R, and the GeoPandas (GeoPandas Developers 2019) and PyGeos (van der
Wel 2019) packages in Python. Whilst these packages are able to handle most geoprocessing
tasks, they are not complete, interactive GIS platforms in the strict sense like ArcGIS (ESRI
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2019) or QGIS (QGIS Development Team 2019). The data science-GIS platform hosted at Ecov
thus is a savvy combination of all of these tools in order to provide the computing infrastructure
which is capable of agile responses to the analysis requirements for real-time stochastic matching
carpooling services.

4 Conclusions and future work

In this paper we introduced a data science-GIS workflow to facilitate the stochastic matching
between drivers and passengers on pre-selected road segments in the real-time carpooling ser-
vices proposed by Ecov. These differ from competing services which offer door-to-door matching
for complete trajectories. Whilst the latter offer a high level of personal convenience in highly
urbanised regions, door-to-door matching structurally inhibits a large-scale adoption of carpool-
ing. The mutualisation of high throughput road segments resolves this obstacle, especially in
peri-urban and rural regions. The crucial mathematical abstraction in this workflow is to reduce
the complexity of driver GPS traces to a graph-based topology which represents the pre-selected
road segments of the carpooling service. With the data reduction accomplished, we were able
to produce several key performance indicators (KPI), including the driver flow, waiting time,
travel time, and participation rate with suitable spatio-temporal resolutions, which then inform
the operational strategies to achieve critical market penetration. We illustrated this workflow on
a carpooling service currently operated by Ecov in a peri-urban region in south-eastern France.
The physical meeting points, by facilitating the convergence of a critical mass of drivers and
passengers drawn from a much larger geographical area, forms the foundation of the high level
of user satisfaction of a real time carpooling service as designed by Ecov.

This workflow represents only a small fraction of the envisaged, complete data platform.
Nonetheless, it details a functioning prototype for the combination of two closely related, but
historically separate, disciplines of data science and GIS into a single workflow which responds to
the complex questions arising from addressing mobility requirements in previously neglected peri-
urban and rural regions. In addition to the Lane carpooling service presented here, Ecov currently
operates 6 other carpooling services across France. Ecov has recently been awarded substantial
public-private partnerships (PPP) grants by government authorities to facilitate the expansion
its operations in France, in Europe and in the rest of the world. Carpooling, as proposed by
Ecov, based on stochastic matching of passengers to a driver flow, has a transformative potential
within ecologically sustainable economies: to fulfil its potential it requires to be supported by an
agile, comprehensive and scalable data platform.
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