
HAL Id: hal-02525847
https://hal.science/hal-02525847

Submitted on 27 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ABC method for Hysteresis Model Parameters
Identification

Dounia Sedira, Yasmine Gabi, Afef Kedous-Lebouc, K. Jacob, Bernd Wolter,
B. Strass

To cite this version:
Dounia Sedira, Yasmine Gabi, Afef Kedous-Lebouc, K. Jacob, Bernd Wolter, et al.. ABC method
for Hysteresis Model Parameters Identification. Journal of Magnetism and Magnetic Materials, 2020,
505, �10.1016/j.jmmm.2020.166724�. �hal-02525847�

https://hal.science/hal-02525847
https://hal.archives-ouvertes.fr


ABC method for Hysteresis Model Parameters Identification 
 

D. Sedira
1
,Y. Gabi

2
, A. Kedous-Lebouc

3
, K. Jacob

2
, B. Wolter

2
 and B.Straß

2
 

 
1
Laboratoire d’électrotechnique et d’électronique industrielle L2EI,  

Université Mohamed Seddik Ben Yahia, BP98, Jijel 18000, Algeria 
2
Fraunhofer Institute for Nondestructive Testing IZFP, Campus E3, 66123 Saarebruecken, Germany 
3
Univ. Grenoble Alpes, CNRS, Grenoble INP, G2Elab, 21 avenue des Martyrs CS 90624, Grenoble 

38031, France 
 

The paper deals with the application of the artificial bee colony (ABC) method for hysteresis parameters 

identification. For the first time, the ABC method will be applied on hysteresis model optimization. For this 

purpose, two hysteresis models are tested: the first is based on a physical magnetic material behavior, which 

is Jiles-Atherton and the second is simpler,  Fröhlich hysteresis model built on mathematical considerations. 

This method’s robustness will be assessed, by comparing the experimental signals to model results. 

 

I. INTRODUCTION 

Electrical engines and electromagnetic machines are designed according to the customer requests and safety norms. 

Furthermore, the advanced technologies have to target the optimized operating conditions. For this purpose,   it is necessary 

to build robust numerical modeling based on the magnetic material behavior. In literature, several models have been 

proposed and studied in large material application. It can be splitted into families: analytical ones: such as Rayleigh [1], 

Potter [2] or Fröhlich [3][4][5], which offer comfortable  implementation in finite element code, but still limited to low or 

high magnetization behavior description. The second family is based on physical considerations such as the Preisach model 

[6] and the Jiles-Atherton model [7]. These are considered as the most robust and reliable models can be applied on soft and 

hard magnetic materials by parameter identification process. This task remains complex due to the inter dependency of each 

parameter to the other. The first investigation realized in this topic is based on iterative procedure [8]. It leads to good 

approximation of parameter’s values but often presents convergence problems and can engender numerical instability. Other 

authors have proposed deterministic optimization methods [9][10], where  the results were successful but request a great time 

calculation. Since two decades, stochastic optimization methods like generic algorithms and neural network [11][12][13] 

have been investigated. Other works combined between generic algorithms and simulated annealing [14]. It results accurate 

solution in a very short time. 

Recently, swarm intelligence method is used in electromagnetic applications. The most famous one is the particle swarm 

optimization (PSO) [15], inspired by the collective behavior of birds and fishes. Many experts have investigated this method 



in Jiles -Atherton parameters and have assessed the ability of this technique to solve optimization problems [16][17]. In the 

same class a new method, so called “artificial bee colony method (ABC)’’, is introduced by D.Karaboga [18], based on the 

foraging behavior of honey bees. The algorithm offers a global optimization in constrained and unconstrained optimization 

problems. This algorithm proved its performance compared to other algorithms like GA and PSO [19][20]. 

During the last decade several studies focused on improving the convergence speed [21][22][23] and it is also  used to solve 

the dynamic optimization problems in[24]. 

For the first time, this method will be tested and applied for hysteresis model identification. This paper deals with the 

application of ABC method to estimate the parameter set of the Jiles-Atherton model.  The validation of the proposed 

procedure is firstly verified in the simple case of Fröhlich model, where the parameters can be derived analytically and then 

the optimization algorithm will be tested in the most complex case of Jiles-Atherton model. The calculated curves will be 

compared to the measured ones. 

II.JILES-ATHERTON MODEL  

 

In the original Jiles-Atherton model [7], the magnetization M is decomposed into its reversible components Mrev and its 

irreversible components Mirr as follows: 

         

  

The relationship between these two components Mrev, Mirr and the anhysteretic magnetization is obtained from physical 

considerations of the magnetization process and are given by: 

 

  

 

The anhysteretic magnetization Man in (2) and (3) follows the Langevin function, which is a nonlinear function of the 

effective field, He=H + α M : 
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With α is a factor that takes account for interdomain coupling; c is the proportionality constant that accounts for reversible 

motion; k is a coefficient accounting for the pinning energy;  δ is a directional parameter it  takes the value +1 for dH/dt >0 

and -1 for dH/dt <0; Ms is the saturation magnetization; a is a normalization constant of the H field. 

Combining the irreversible and the reversible components of magnetization, the differential equation for the rate of change of 

the total magnetization is given by: 

 

 

III. FRÖHLICH HYSTERESIS MODEL 

 

The Fröhlich model gives an approximation of the relation between the magnetic induction B and the excitation field H. The 

following relations allow the representation of the hysteresis curve. 

For initial magnetization 

 

For upward curve 



For downward curve 



Where and are defined from the characteristic points of an experimental hysteresis curve given in Fig. I: 
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Where    is the coercitive magnetic field,    the saturation magnetic field,    the remanent flux density and    the saturation 

flux density. 

 

Fig.  1. Characteristic points of hysteresis loop 

 

IV. ARTIFICIAL BEE COLONY ALGORITHM 

A. Principles 

The first study of the ABC method is from Karaboga [18] in optimization of mathematical problems. The machine-learning 

algorithm is based on the bees’ behavior during the nectar collection. The bees are divided in three groups: employed bees, 

onlookers and the scouts. 

The first group, called the “employed bees” is associated to food sources they are exploiting. They carry information like the 

distance from the hive to their food source and the profitability of it. Coming back to the hive, they indicate the qualitative 

and quantitative food sources position, by accomplishing a specific dance. The onlooker bees collect the given information 

and choose the most interesting sources for the exploitation. If a source is exhausted, the employed bee assigned to it 

becomes a scout looking for other sources. The number of the employed bees is the same as the number of food sources and 

is about half the swarm size. 

B. Algorithm 

In the optimization algorithm, the potential optima represent the food sources and the quality of the nectar is the fitness cost. 

The onlooker bees chose food sources according to a selection probability. If an employed bee is unable to improve its 
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solution in a given number      of time steps, a new solution is randomly assigned. The definition of this iteration control 

parameter      is very important in the optimization process. 

The general algorithm of ABC method is given by [25]: 

1. Initialize 

2. Repeat 

1. Execute employed bees working step 

2. Execute onlookers working step 

3. Execute scouts working step 

4. Save best solution achieved so far as approximation for global optimum 

3. Until maximum number of iterations is reached 

 

In practical, four steps are required in order to apply ABC method optimization. The inputs are the swarm size  , the number 

  of parameters to optimize over, the total iteration number        and the number of iterations      for every employed bee  

it abandons its actual food source if its solution hasn’t improved.  

Step 1: An initial solution is obtained randomly for the employed bees by: 

 

where                                  and          are the  lower and upper limit values for the parameter indexed 

by   and   is a random number uniformly distributed in the interval      . 

For each solution, a fitness value is calculated according to: 

 

where   is the function to optimize. 

 

Step 2.1: For each employed bee, an additional solution is calculated: 
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Where the index   is chosen randomly from          , the index   is chosen randomly from             and  
   

 is a 

random number uniformly distributed in the interval       . The best solution is selected between      and       based on their 

fitness values.  

Step 2.2: For each onlooker bee a new solution    from the employed bees is selected with probability: 

 

Again, a neighbor solution      is build according to equation (13). In the same way as for the employed bees, the best 

solution is selected and saved.   

Step 2.3: If a solution of an employed bee is not improved until the limit of iterations is reached, the corresponding solution 

is then replaced by a new one obtained via equation (11). 

Step 2.4: Save best solution found so far for output. 

The process is completed when the total number of iterations        is reached hence the optimal solution can be recovered. 

V. ARTIFICIAL BEE COLONY ALGORITHM FOR MAGNETIC HYSTERESIS PARAMETER IDENTIFICATION 

The aim is to find the optimal parameters for accurate hysteresis description. The ABC method is tested on two different 

hysteresis models; simpler Fröhlich model and more complex Jiles-Atherton model.  

The objective function is defined for one loop identification as: 

Where   is the number of measured points of the hysteresis loop,        denotes the    measured value of the magnetic flux 

density and         corresponds to the     value of magnetic flux density predicted by the magnetic hysteresis model. 

For several loops identification the area per cycle between measurements and simulation is also taken into account [16].  In 

this case the total objective function is given by: 
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Where    is  the objective function corresponding to each hysteresis loop  and s is the number of used loops. 

 

VI. Results 

For this first step in ABC method investigation, we will focus on Fröhlich model. For this model the solution can be 

computed analytically too. Finally, Jiles-Atherton with 5 parameters will be tested. The comparison will be made on 

numerical signal and then measured ones. 

A. Fröhlich Model 

For this calculation the swarm size: m = 300 and the maximum number of iterations is set at 40. The analytical solution of 

both parameters: α  and β are obtained using Eq. 9 and Eq.10. From measured signal Bs=1.65 Tesla, Hs=3414 A/m, Br= 0.93 

tesla and Hc= 417.8A/m. This solution is also used to define the interval variation of the both parameters in the initialization 

state of the ABC algorithms. 

Fig.2 denotes the comparison between experimental hysteresis loop and modeled curves obtained respectively via ABC 

method and the analytical calculation. It is noticed that ABC method, shows lower error with 1.75%. 

 

Fig.  2.Measured and simulated hysteresis curves generated with Fröhlich model 
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The optimized parameters are detailed in TABLE.I.  

TABLE  I. Frôhlich parameters obtained by ABC method  

using experimental hysteresis loop 

 

 

 

 

 

 

 

The Fig.3 shows the error evolution f with the iteration number. The algorithms converged quickly and the error is decreasing 

in the first iteration steps. 

 

Fig.  3. Error evolution with iteration number for  Fröhlich parameters identification 

 

A good estimation of Fröhlich parameters allows using it in applications which require a very expensive computing time such 

as finite element method integration. 
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Variable 
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Analytical 

method 

ABC 
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α 0-400 195.55 244.42 

β 0-1 0.60 0.53 



B. Jiles- Atherton Model 

At the beginning, the optimization is carried out on the generated hysteresis loop via parameters from literature [8] (Ms, a, α, 

k, c). The swarm size m=300 and the number of iteration is set at 200. Fig.4 shows the simulated hysteresis curves built via 

values of reference [8] and via optimized parameters (ABC method). The results are quite good and offer a total mean error 

of 1.3%. 

 

Fig.  4. Calculated and theoretical hysteresis curves generated by the Jiles- Atherton model 

The values of calculated parameters are detailed in Table II. 

TABLE  II. Jiles Atherton parameters obtained by ABC method 
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Xsol via ABC method

Xvalues from [8]

JA parameters 
Variable 

range 
Values of literature [8] 

ABC 

method   

Ms 1.6 ×10
6
  -  1.8×10

6
 1.7×10

6
 1.75×10

6
 

a 800 - 1500 1000 1337 

α 1×10
-3  

- 1.5×10
-3

 1×10
-3

 1.5×10
-3

 

k 400 - 800 500 490 

c 0.05 -0.5 0.1 0.08 



validation of the proposed method with experimental data is illustrated in Fig.5. The measured hysteresis loop is the same as 

that presented in Fröhlich model. The number of bees is taken 300 and the iteration number is 200. The range of parameters 

is chosen after several trials. The number of bees plays a very important role in the optimization process. 

 

Fig.  5. Measured and hysteresis curves generated by the Jiles- Atherton model for the first experimental loop 
 

The obtained parameters are presented in Table III. 

 

TABLE  III. Jiles Atherton parameters obtained by ABC method  

using first experimental loop 
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JA parameters 
Variable 

range 

ABC 

method   

Ms 1.6 ×10
6
  -  1.7×10

6
 1.61×10

6
 

a 200 - 1500 882.55 

α 1×10
-3  

- 8×10
-3

 1.34×10
-3

 

k 200 - 800 742.64 

c 0.1 -0.9 0.373 



A good representation of hysteresis loop is run via ABC optimization method. The error evolution is presented in Fig.6, the 

convergence is slower in this case because of the large number of parameters to identify.  

 

Fig.  6. Error evolution with iteration number for  Jiles-Atherton parameter  identification for the first experimental loop 

 
 

To see the efficiency of the ABC method, it is applied for the identification of six loops with different maximum flux  

densities. Fig.7 shows comparison between three measured loops and modeled ones. The corresponding parameters are 

given in TableIV. 
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Fig.  7. Measured and hysteresis curves generated by the Jiles- Atherton model for different maximum  

flux  densities for the first experimental loop 

 

The application of the ABC method for the identification of several measured loops gives  correct results, accuracy can be  

 

improved by adding the number of measured loops. 

 
 

TABLE IV. Jiles Atherton parameters obtained by ABC method 

using several measured loops with different maximum flux  densities for first experimental loops 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

JA parameters 
Variable 

range 

ABC  

method   

Ms 1.5 ×10
6
  -  1.7×10

6
 1.54×10

6
 

a 200 - 1500 658.55 

α 1×10
-3  

- 8×10
-3

 1.1×10
-3

 

k 500 - 800 613.152 

c 0.1 -0.9 0.35 
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In Fig.8 the procedure is also validated by comparing experimental and simulated hysteresis loop for Fe-Si material. 

 

 
 

Fig.  8. Measured and hysteresis curves generated by the Jiles- Atherton model for Fe-Si material 
 

 

The obtained parameters are presented in Table V. 

 
TABLE  V. Jiles Atherton parameters obtained by ABC method  

using Fe-Si experimental loop 

 

 

 

 

 

 

 

 

 

 

To obtain a good approximation of hysteresis for Fe-Si, the program is executed for a number of iterations equal to 

 

 200 and m=400.The error evolution is presented in Fig.9. 
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 1.12×10
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k 30 - 200 71 

c 0.01 -0.9 0.24 
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Fig.  9. Error evolution with iteration number for  Jiles-Atherton  

parameter  identification for Fe-Si material 

 

In the same way Fig.10 gives the results of the identification done on several hysteresis curves at different maximum flux 

densities of Fe-Si material. The obtained parameters shown in Table VI allow a very good representation of hysteresis loops. 

 

 

Fig.  10. Measured and hysteresis curves generated by  Jiles- Atherton model  

for different maximum flux  densities for Fe-Si material  
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TABLE  VI. Jiles Atherton parameters obtained by ABC method 

using several measured loops with different maximum flux  densities for Fe-Si experimental loops 

 

 

 

 

 

 

 

 

 

 

VII. Conclusion 

For the first time the ABC, BEE principal algorithms is applied on hysteresis identification problem. The advantage of this 

algorithm is that it requires only few parameters. The robustness of this method is assessed on comparison between measured 

and calculated signal on Frölich and JA model, the first with 2 independent parameters and the second with 5 dependent 

parameters, the ABC method can accurately describe measured hysteresis loops. The algorithm converges in a short time and 

offers high accurate results. The rate of convergence depends on the number of parameters to be identified. For both models 

the program gives good results from a number of bees equal to 300. For both tested materials, the characteristic points and 

the surface of the loops which represent the hysteresis losses agree very well with those of measured ones. This method 

shows the ability to give good results for the identification of several loops with different maximum flux densities too. 

As a perspective, complex hystesresis loops will be tested such as:  minor asymmetric curves, reversal loops… 
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