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Abstract: When dealing with fractional order systems, perturbations in differentiation orders arise frequently due to issues with
floating point arithmetics, or due to imprecisions of various order estimation algorithms. This paper establishes new results regard-
ing stability/instability of fractional systems with perturbed differentiation orders, knowing the related properties of their unperturbed
counterparts. First of all, starting from a point in the space of differentiation orders, sufficient stability/instability conditions of all
systems with differentiation orders varying along a line segment with a prescribed direction are established. Then, a continuation
procedure is developed allowing computation of the maximum perturbation (along some given direction) which guaranties that
the number of zeros in the closed right-half plane of the characteristic function remain unchanged. Finally, sufficient conditions
are established guarantying stability/instability of all systems having differentiation orders within a domain. The established results
allow concluding on the stability of incommensurate fractional transfer functions. They are illustrated by a number of examples,
including an experimental one.

1 Introduction

Stability of fractional systems has been attracting a lot of interest
during the last two decades in different fields of engineering and
science. In [1, 2], fractional calculs was used for modeling general
diffusive phenomena in semi-infinite planar, spherical, and cylin-
drical media. Moreover, in electrochemistry, it is proven that the
diffusion of charges in acid batteries is governed by Randles mod-
els [3, 4] that involve a half order integrator. In semi-infinite thermal
systems, it was shown in [5] that the exact solution of heat equation
links thermal flux to a half order derivative of surface temperature
on which the flux is applied. In rheology, stress in viscoelastic mate-
rials is proportional to a non integer derivative of deformation [6].
Foucault currents inside rotor bars in induction machines obey to
diffusive phenomena modeled by fractional operators [7]. An advan-
tage of continuous-time modeling is in straightforwardly estimating
physical parameters even when the physics reveals systems governed
by fractional differential equations. In this context and based on a
fractional model, Gabano and Poinot [8] have successfully estimated
thermal conductivity and diffusivity in a homogeneous medium.

It is well established that stability of linear time invariant frac-
tional systems depends on the location of their poles in the complex
plane which is a straightforward generalization of the rational case
(conjectured by [9, 10, 11], proven in [12]). However, computing all
the poles of a fractional system is not simple due to the plane cut and
the limitation of arguments of the Laplace variable.

Powerful criteria have been proposed for testing stability of frac-
tional commensurate systems since the seminal work by Matignon
[11]. It allows concluding on the stability by locating system sν -
poles, where ν is the commensurate order. Several other criteria
resulting from Matignon’s theorem have been established. For exam-
ple, stability of fractional systems of the second kind may be
deduced by checking the value of the pseudo-damping factor [13].
Stability analysis using Linear Matrix Inequalities (LMI) was estab-
lished in [14, 15] as a direct extension of the second Lyapunov
method. The LMI stability theorems can however be used only
on commensurate fractional systems. An extension to large-scale
fractional-order systems is proposed in [16]. A link with rational
systems that possess the same stability properties is proposed in

[17, 18]. Extensions were also considered to fractional commen-
surate nonlinear systems in [19]. Multiple other references can be
found in the survey paper [14].

Literature dedicated to the more general case of incommensu-
rate fractional systems is not so mature. A numerical algorithm for
stability testing based on Cauchy’s principal theorem is proposed
in [20]. The proposed algorithm is an improvement over the direct
numerical application of Cauchy’s argument principle but remains a
sufficient stability condition. A method based on Nyquist theorem
for testing stability of fractional systems is proposed in [21]. It is
however limited to two differentiation orders in transfer function
denominator. This result was extended to fractional systems with any
number of differentiation orders in [22] by using nested closed-loops
and addressing stability of the equivalent open-loop transfer func-
tions. This method is based on a recursive closed-loop realization of
the system and the application of Cauchy’s argument principle on
each loop of the realization. Computation of the number of poles
in the right-half plane is done graphically on the images of Nyquist
path. Although the authors propose a necessary and sufficient stabil-
ity conditions, the proposed algorithm is quite difficult to implement
numerically. In [23], the authors use a graphical method for deter-
mining stability region of incommensurate systems based on the
analysis of stability boundary curves. The algorithm is quite difficult
to implement numerically when multiple differentiation orders are
involved. Lyapunov approach, based on continuous frequency repre-
sentation [24, 25] may also be used for concluding on the stability
of incommensurate fractional systems, though it is quite tedious.

Another way of tackling stability of fractional incommensurate
systems is by considering fractional uncertain systems with uncer-
tainties on the differentiation orders. However, many contributions
[26, 27, 28, 29, 30, 31, 32, 33, 34, 35] consider uncertainties only
on the coefficients and consider fixed differentiation orders. For
example, in [35], the authors consider the problem of D-stability
of fractional interval systems by extending Kharitonov’s theorem to
fractional systems.

Tackling stability of fractional systems with perturbed differenti-
ation orders is much more challenging, because such perturbations
may change not only the commensurate order but also the com-
mensurability condition. Stability test of fractional systems with
uncertainties on differentiation orders was treated in the references
[36, 37, 38, 39]. In [36] the authors showed the feasibility of their
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method on a couple of examples using Kharitonov edge theorem
with a small number of uncertainty intervals. They did not provide a
rigorous proof for their result in the general case. In [37], edge poly-
nomial sampling is used. Each uncertain parameter is sampled in its
uncertainty interval and the sampling length of each parameter is a
tuning parameter of the method. Then the root locus is checked in
the stability region by mainly considering the roots of each sampled
characteristic polynomial computed from sampled hypercubes. The
smaller the sampling, the more precise the results, and the bigger the
computational burden. This sampling dependent method provides
only necessary stability conditions and its precision and computa-
tional complexity depend on the tuning parameters. In [38], it is
shown that the Edge Theorem is not applicable for general interval
fractional order systems. The authors show that the Edge Theorem
can be applied when either the differentiation orders are fixed or the
coefficients are fixed. Moreover, the authors use graphical methods
to check the stability of interval fractional order systems with inter-
val uncertainties in parameters and differentiation orders. The main
difficulty of the method is to construct the boundary that depends
on the uncertainty intervals in an efficient way. Inspired by all these
methods, simpler criteria are established in [39] at the expense of
some conservatism.

Systems with perturbed differentiation orders arise frequently
in system identification using fractional models, especially when
estimating differentiation orders [40, 41, 42]. Usually iterative algo-
rithms are implemented such as gradient-based algorithms, because
fractional models are nonlinear with respect to differentiation orders.
In such algorithms, it is often necessary to check stability of inter-
mediate models obtained at a given iteration. When differentiation
orders are updated according to some value (corresponding to the
step in the gradient algorithm), the system becomes frequently com-
mensurate with a very low commensurate order close to the machine
epsilon. In such conditions, it becomes impossible to check its
stability using Matignon’s theorem as illustrated in Section 2.

The problem of stability of fractional systems with perturbed dif-
ferentiation orders, knowing stability/instability properties of their
unperturbed counterparts is tackled here. As compared to the exist-
ing methods cited above [36, 37, 38, 39], this paper is based on the
use Rouché’s theorem from complex analysis and provides neces-
sary conditions under which the characteristic functions of perturbed
and unperturbed systems have the same number of zeros in the
closed right-half complex plane. A continuation approach, along
a line, allows obtaining necessary and sufficient stability condi-
tions. The use of Hölder’s inequality provides the hyperspace where
stability is guaranteed. Moreover, the proposed approach allows a
constructive investigation of boundaries of the stability/instability
regions.

Preliminary results, corresponding to Theorem 3, were previ-
ously presented in [43] and [44]. More rigorous proofs and multiple
extensions are provided in the present work.

First of all, stability conditions of systems with differentiation
orders varying along a line segment in a prescribed direction are
established in Section 3. As a first step, sufficient conditions are pre-
sented in the case when perturbations do not increase the highest
differentiation order; then, an augmentation procedure is presented
which enables utilization of the obtained result even in the case when
the perturbation is not “highest-order-preserving”. Section 3 is con-
cluded with a continuation algorithm which allows computation of
the maximum perturbation (along some given direction) guarantee-
ing that the number of zeros in the closed right-half plane of the
characteristic equation will remain unchanged. In Section 4, suffi-
cient conditions are established guarantying stability/instability of
all systems having differentiation orders within a domain. Several
numerical examples are used to illustrate the exposition. Finally, in
Section 5 the proposed methodology is illustrated by investigating
stability of an experimentally identified thermal plant. The paper
finishes with a Conclusion.

1.1 Notation and Assumptions

N, R and C are used to denote respectively the sets of natural, real
and complex numbers, and R+ = {x ∈ R : x ≥ 0}. For an arbitrary
vector α, its i-th component is denoted as αi. Similarly, if αi is
a component, then the entire vector will sometimes be denoted as
(αi)i∈{1..n}, where n is the number of components.

In several places, the well-know inequality is used∣∣∣∣∣
∫b
a
m(t)dt

∣∣∣∣∣ ≤
∫b
a
|m(t)|dt ≤M(b− a) , (1)

where m is bounded integrable mapping, M = maxa≤t≤bm(t),
and b > a ∈ R. By the Integral Mean Value Theorem, if m is
continuous on [a, b], then there exists τ ∈ (a, b) such that∫b

a
m(t)dt = m(τ)(b− a) . (2)

A symbolic representation of a dynamic system governed by a
fractional differential equation is given in a transfer function form:

T (s, β)

F (s, α)
=

k∑
j=0

bjs
βj

1 +
n∑
i=1

aisαi
, (3)

where α = (αn, αn−1, . . . , α1) and β = (βk, βk−1, . . . , β0) are
vectors of differentiation orders. The denominator of (3), F (s, α),
is referred to as the characteristic function. Some common assump-
tions are:

A1.All differentiation orders are non-negative, so that α ∈ Rn+, β ∈
Rk+1

+ .
A2.Transfer function (3) is strictly proper, i.e. high-frequency gain is

zero, implying maxj βj < maxi αi.
A3.A branch cut line of the complex plane is chosen along the negative

real axis including the branching point 0 and∞, with arguments of
s restrained to (−π, π], for the function s 7→ sν to be analytic in the
rest of the complex plane.

If numerator and denominator of T
F contain no common zeros,

the stability is determined only by the location of the poles. It is
therefore natural to formulate and solve the problem in terms of the
characteristic function F . Note also that, if the transfer function (3)
is commensurate of order ν, then it can be rewritten as a ratio of two
polynomials in sν

T̃ (sν)

F̃ (sν)
=

k∑
j=0

bjs
j′ν

1 +
n∑
i=1

aisi
′ν

, (4)

where j′ =
βj
ν and i′ = αi

ν are integers.

1.2 Stability

The stability addressed in this paper is the Bounded Input Bounded
Output (BIBO). The system described by T

F in (3) is Lp-stable, 1 ≤
p ≤ ∞, if and only if

sup
u∈Lp,u6=0

‖g ? u‖p
‖u‖p

<∞, (5)

where ? stands for the convolution product, g the inverse Laplace
transform (impulse response, or kernel) of TF (or T̃

F̃
) and u(t) is the

system input. The Bounded-Input-Bounded-Output (BIBO) stability

IET Research Journals, pp. 1–11
2 © The Institution of Engineering and Technology 2015



is defined as the L∞-stability. In the case of fractional systems, Bon-
net and Partington [12] extended the well-known result regarding
stability of rational systems.

Theorem 1 ([12]). Let TF be defined as in (3) with αn ≥ βk. Then
T
F is BIBO stable if and only if TF has no pole in the closed right-half
plane {s : Re(s) ≥ 0} (in particular no pole of fractional order at
s = 0).

This theorem, conjectured by [9, 10, 11], will be used later in
this paper. Further, Matignon [11] established a very useful result
regarding stability of commensurate fractional systems.

Theorem 2 ([11] extended). A commensurate transfer function T̃
F̃

with a commensurate order ν, as in (4), with T̃ and F̃ two coprime
polynomials, is stable if and only if 0 < ν < 2 and

(∀s ∈ C) F̃ (s) = 0 ⇒ s ∈ Σν π2 , (6)

where for all φ ∈ [0, π]

Σφ = {s ∈ C : | arg(s)| > φ} . (7)

Matignon initially proved this theorem for 0 < ν < 1. The proof
is extended in multiple references to the interval (1, 2), see e.g.
[13]. This theorem is extended further in [45] to delayed fractional
systems of retarded and neutral type. Some further results on the
stability of fractional systems with time delays can be found in
[46, 47, 48, 49, 50]

Additionally, it is shown in [51] that a fractional system might be
stable and yet have an infinite L2-norm impulse response (infinite
energy). This result is extended to Lp-norms, 1 ≤ p ≤ ∞, in [52].

2 Problem formulation

First, start by formulating the problem on the characteristic function:

F (s, α) = sα2 + 2sα1 + 1 . (8)

where α = (α2, α1). Theorem 2 is very useful for testing stability
of fractional systems numerically. However, it does not apply to the
incommensurate system F−1

(
s, α1

)
with α1 = (π,

√
2).

Numerical representation of the real numbers gathered in α1

using floating point arithmetics is however impossible. Only approx-
imations of α1, such as α1∗ =

(
π∗,
√

2
∗)
, can be coded numeri-

cally. Hence, F−1(s, α1∗) is commensurate with a commensurate
order close to the machine epsilon, which is the maximum round-
off error between a real number and its representation. When using
double precision arithmetics, defined by the IEEE 754 standard, the
machine epsilon is ε = 2.22× 10−16. Although testing stability of
F−1

(
s, α1∗

)
using Matignon’s theorem is theoretically possible,

it is infeasible in practice, because it would have required checking
that all the roots of the polynomial:

F (s
1
ε , α1∗) = s

π∗
ε + 2s

√
2∗
ε + 1

= s1.41×1016

+ 2s0.64×1015

+ 1 (9)

belong to the sector Σεπ2 .
Assume now that the differentiation orders are coded with three

digit precision. The characteristic function F (s, α2) with α2 =
(3.141, 1.414) is now commensurate of order 0.001. Testing its

stability requires computing all the roots of the polynomial

F
(
s10−3

, α2
)

= s3141 + 2s1414 + 1 (10)

and checking that they all belong to the sector Σ0.001π2
. This oper-

ation is numerically feasible, although time-consuming∗ and the
results should be considered with great caution because significant
numerical errors may occur. Finally, assume that the differentia-
tion orders are coded with one digit precision. Stability testing of
the characteristic function F (s, α3), with† α3 = (3.2, 1.4), requires
computing all the roots of‡:

F
(
s

1
0.2 , α3

)
= s16 + 2s7 + 1 (11)

and checking that they all belong to the sector Σ0.2π2
. Computing

numerically all the roots of the 16th degree polynomial (11) is much
simpler, faster*, and more reliable.

In this particular case, the question is whether it is possible to con-
clude on stability (resp. instability) of F−1

(
s, α2

)
, F−1

(
s, α1∗

)
,

and F−1
(
s, α1

)
by testing the stability of F−1

(
s, α3

)
. How far

the orders of F−1
(
s, α3

)
can be perturbed and yet guarantee the

stability (resp. instability) of F−1.
More generally, the addressed problem is the following: for given

αA ∈ Rn+, αB ∈ Rn+, and a given characteristic function F of (3)
establish

(i)a line (along the direction (αB − αA)): α(t) = αA + (αB − αA)t
such that for all t < tc, F (s, αA) and F (s, α(t)) have the same
number of zeros in the closed right-half plane,

(ii)a region Ω ⊂ Rn+ centered at αA such that for all α ∈ Ω, the char-
acteristic functions F (s, αA) and F (s, α) have the same number of
zeros.

The former problem is treated in Section 3 and the latter in Section
4.

3 Stability on a Line

Let αA, αB ∈ Rn+ and let

α(t) = αA + (αB − αA)t , (12)

so that for an arbitrary t ∈ (0, 1), α(t) is a point on the line segment
connecting αA = α(0) and αB = α(1). The question addressed
in the present section is: What is the biggest value of t so that
F (s, αA) and F (s, α(t)) have the same number of zeros in the
closed right-half plane? Firstly, in Subsection 3.1, we consider suffi-
cient conditions when the highest order in αB is smaller or equal to
the highest order in αA. This constraint is alleviated later in Subsec-
tion 3.2. Finally, necessary and sufficient conditions are considered
in Subsection 3.3.

∗Computing all the roots of a polynomial in MATLAB involves computing

the eigenvalues of a Companion Matrix, which dimension equals polyno-

mial’s degree, via an iterative algorithm. Its complexity depends on the

number of iterations. It takes around 50s on author’s laptop to compute all

the roots of (36) as compared to ≈ 0.5ms to compute all the roots of (11).

It is about 105 slower in the former case as compared to the latter.
†π is approximated by 3.2 and

√
2 by 1.4.

‡The commensurate order equals 0.2.
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3.1 Perturbations not increasing the degree of F

Definition 1. For a given vector of differentiation orders α ∈ Rn+,
the set of all highest-order-preserving vectors is

Shop(α) = {α′ ∈ Rn+ : max
i
αi ≥ max

i
α′i} .

Theorem 3. Let αA ∈ Rn+, αB ∈ Shop(αA), and F (s, α) as in
(3). Consider α(t) ∈ Rn+ given by (12), and let

SF (jω, t) =

(∫ t
0
ai(jω)αi(τ) Ln(jω) dτ

)
i∈{1,...,n}

, (13)

where Ln(s) is the principal value of the complex logarithm. A
sufficient condition for F (s, αA) and F (s, α(t)) to have the same
number of zeros in the closed right-half plane is that for all ω > 0

|F (jω, αA)| >
∣∣∣∣∫ t

0

∂F (jω, α(τ))

∂τ
dτ

∣∣∣∣ , (14)

or, equivalently,

|F (jω, αA)| >
∣∣∣〈S(jω, t), αB − αA

〉∣∣∣ , (15)

where 〈·, ·〉 denotes the scalar product.

Proof: By applying the Fundamental Theorem of Calculus to
F (s, α(t)) ∗ we find that for any given s ∈ C

F (s, α(t)) = F (s, αA) +

∫ t
0

∂F (s, α(τ))

∂τ
dτ , (16)

where

∂F (s, α(τ))

∂τ
=

n∑
i=1

ais
αi(τ)(αBi − α

A
i ) Ln(s) . (17)

By applying Rouché’s theorem [53], see the appendix, F (s, αA) and
F (s, α(t)) have the same number of zeros within the closed right-
half plane if

|F (s, αA)| >
∣∣∣∣∫ t

0

∂F (s, α(τ))

∂τ
dτ

∣∣∣∣ (18)

on the contour C depicted in Fig. 1 with ε→ 0 and R→∞. After
inserting (17) into (18), and interchanging the order of integration
and summation, the condition reads

|F (s, αA)| >

∣∣∣∣∣
n∑
i=1

∫ t
0
ais

αi(τ) Ln(s)d τ(αBi − α
A
i )

∣∣∣∣∣ , (19)

or equivalently,

|F (s, αA)| >
∣∣∣〈SF (s, t), αB − αA

〉∣∣∣ . (20)

Consider separately three sub-contours: (i) the imaginary axis (with-
out the origin), (ii) the “small” quarter-circle of radius ε, and (iii)
the “big” quarter-circle of radius R. Notice that, due to symmetry of

∗Actually, the Fundamental Theorem of Calculus (FTC) is usually stated

for real-valued functions. However, equation (16) is obtained by applying

FTC separately to real and imaginary parts of F , and then combining the

resulting real-valued expressions into a single complex-valued one.

(20), only the “upper” quadrant (with positive imaginary part of s)
needs to be considered.

i) On the upper part of the imaginary axis, s = jω with ω > 0. In
this case, (18) and (20) reduce to condition (14) (or equivalently
(15)), stated in the Theorem.

ii) On the upper part of the “small” quarter-circle, the Laplace
variable is substituted by s = εejϕ, with ϕ ∈ [0, π/2] and ε→ 0.
Since α(t) ∈ Rn+, the left-hand side of (20) approaches 1, while the
right-hand side vanishes. To see this, note that (1) implies

∣∣∣∣∫ t
0
(εejϕ)αi(τ) Ln(εejϕ)dτ

∣∣∣∣ ≤(
max

0<τ<t
εαi(τ)

∣∣∣Ln(ε) + j
π

2

∣∣∣) t ∀i ∈ {1, . . . , n}.
The obtained upper limit vanishes with ε, and so does the right-hand
side of (14) and (15).

iii) On the upper part of the “big” quarter-circle, the Laplace vari-
able is substituted with s = Rejϕ, with ϕ ∈ [0, π/2] and R→∞.
For large values of R, the left-hand side of (19) grows with Rαmax ,
where αmax = maxi α

A
i . Note that by assumption α(t) ∈ Shop,

so that αmax ≥ maxi αi(t) for all t. To evaluate the asymptotic
behavior of the right-hand side of (19), notice first that for any
i ∈ {1, . . . , n}

∣∣∣∣∫ t
0
(Rejϕ)αi(τ) Ln(Rejϕ)dτ

∣∣∣∣ ≤(∫ t
0
Rαi(τ)dτ

) ∣∣∣Ln(R) + j
π

2

∣∣∣ .
By means of (2), the last inequality reads∣∣∣∣∫ t

0
(Rejϕ)αi(τ) Ln(Rejϕ)dτ

∣∣∣∣ ≤ (Rαi(τi)t) ∣∣∣Ln(R) + j
π

2

∣∣∣ ,
for some τi ∈ (0, t). So that the right-hand side of (19) is upper
bounded by

n∑
i=1

aiR
αi(τi)(αBi − α

A
i )
∣∣∣Ln(R) + j

π

2

∣∣∣ . (21)

Two separate cases must be considered: either (i) α(t) decreases the
highest order of α, or (ii) it keeps the highest order constant. In the
first case, all αi(τi) are strictly smaller than αmax. In the second
case, for some i, αi(τi) is constant and equals to αmax, but for that
i, αBi − α

A
i = 0, and the corresponding term does not contribute to

the the upper bound (21) or the right-hand side of (19). Either way,
the upper bound (21) asymptotically grows as Rα

′
Ln(R) for some

α′ < αmax. Consequently, (19) is satisfied for sufficiently large R.
�

Theorem 4. Under assumptions of Theorem 3, a sufficient condition
for the characteristic functionsF (s, αA) andF (s, α(τ)) to have the
same number of zeros in the closed right-half plane for all τ ∈ [0, t]
is

B(t) > t , (22)

where

B(t) = min
ω>0

|F (jω, αA)|
M(ω, t)

, (23)

M(ω, t) = max
0≤τ≤t

∣∣∣∣∂F (jω, α(τ))

∂τ

∣∣∣∣ . (24)
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ε

R

Re s

Im s

Fig. 1: Contour C used when applying the Rouché Theorem in the
proof of Theorem 3.

Proof: Let us prove that (22) implies (15), so that the claim follows
by application of Theorem 3. The following inequalities hold

t < B(t) due to (22)

≤ |F (jω, αA)|
M(ω, t)

(∀ω > 0) due to (23)

≤ |F (jω, αA)|∣∣∣∂F (jω,α(τ))
∂τ

∣∣∣ (∀ω > 0, 0 ≤ τ ≤ t) due to (24)

Therefore, (22) implies that

|F (jω, αA)| >
(

max
0≤τ≤t

∣∣∣∣∂F (jω, α(τ))

∂τ

∣∣∣∣) t (∀ω > 0)

≥
∫ t
0

∣∣∣∣∂F (jω, α(τ))

∂τ

∣∣∣∣ dτ
≥
∣∣∣∣∫ t

0

∂F (jω, α(τ))

∂τ
dτ

∣∣∣∣ ,
and so, by Theorem 3, F (s, αA) and F (s, α(t)) have the same
number of zeros in the closed right-half plane. Furthermore, since
M(ω, t) does not decrease with t (for any fixed ω), B(t) is a non-
increasing function of t. Therefore, if B(t) > t , then B(τ) > τ for
all 0 ≤ τ ≤ t. �

Corollary 5. Under assumptions of Theorem 4, let tc be the smallest
solution of

B(tc) = tc (25)

then, for all 0 ≤ t < tc, F (s, αA) and F (s, α(t)) have the same
number of zeros in the closed right-half plane.

Example 1. Consider F as in (8), αA = (3.2, 1.4), and αB =
(π,
√

2). By the application of Matignon’s theorem, F (s, αA) is
unstable. Is it possible to conclude on the instability of F (s, αB)?
Graphical evaluation of condition (25) is shown in Fig. 2. It leads to
tc ≈ 0.067, which means that the critical value of the order vector is

αc = α(tc) ≈ [3.1961, 1.4010] .

The total step size in the space of differentiation order is tc||αB −
αA|| ≈ 0.0286. The system is guaranteed to be unstable for all
α(t) with 0 ≤ t < 0.067. Since tc < 1, stability of αB remains
inconclusive.

0 0.05 0.1 0.15
t

0

0.05

0.1

0.15

B(t)

B(t)

t

t
c
 = 0.067

Fig. 2: Graphical evaluation of condition (25) in Example 1. The
critical value tc is obtained in the intersection of the two curves.

3.2 Perturbations increasing the degree of F

The principal difficulty with perturbations increasing the highest dif-
ferentiation order is that (20) no longer holds for “large” values of s.
More precisely, left-hand side of (19) is of a smaller order of magni-
tude than the right-hand side on the “big” semicircle. To circumvent
this problem, the characteristic equation can be augmented with a
“stable” multiplicative factor such that the highest differentiation
order in the product is fixed.

Theorem 6. Consider αA, αB ∈ Rn+, together with F (s, α) as in
(3), and α(t) ∈ Rn+ given by (12). Let ∆α = αB − αA, and i∗ =

argmaxiα
A
i . Introduce

HL(s, t) = (s1−t
∆αi∗
L + 1)L , (26)

F ∗L(s, ᾱ(t)) = F (s, α(t))HL(s, t) , (27)

where L ∈ N, L ≥ |∆αi∗ |, and ᾱ is the transformed vector of dif-
ferentiation orders, obtained by explicitly multiplying the two factors
of (27). Let

t′ = sup{t > 0 : i∗ = argmaxiαi(t)} ,

and t′′ = min{1, t′}, then for all t ∈ (0, t′′):

i)F ∗L(s, ᾱ(t)) contains only positive powers of s which are all affine
functions of t

ii)the highest power of s in F ∗L(s, ᾱ(t)) is independent of t, and
iii)F (s, α(t)) and F ∗L(s, ᾱ(t)) have the same number of zeros in the

closed right-half plane.

Proof: i) SinceL > |∆αi∗ | and |t| < 1,HL(s, t) contains only pos-
itive powers of s, so the same must be true for F ∗L as well. All powers
of s appearing in F ∗L are sums of different powers of s appearing in
HL and F , both of which are affine functions of t.

ii) Since t < t′, the highest power of s inHL isL− t∆αi∗ , while
the highest power in F is αAi∗ + t∆αi∗ . Term with the highest power
in the product F ∗L is therefore L+ αAi∗ , which is independent of t.

iii) Due to Matignon’s Theorem, HL contains only zeros in the
open left-hand side of the complex plane for all |t| < 1, so that the
number of zeros in F and F ∗L which lie in the closed right-half plane
is the same. �

Remark 1. Theorem 6 allows to interpret F ∗L(s, ᾱ(t)) as a charac-
teristic function, of the same form as the one appearing in (3), only
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Fig. 3: Graphical evaluation of condition (25) in Example 2.

with α replaced by ᾱ. Mapping α 7→ ᾱ is affine and the number of
zeros in the closed right-half plane of F and F ∗L is the same; how-
ever, the highest power of s in F ∗L is fixed, so that stability of F can
be investigated by applying Theorems 3 and 4 to F ∗L.

Example 2. Consider Example 1, but with a slightly modified initial
point αA = (3.1, 1.4). By the application of Matignon’s theorem,
F (s, αA) is stable. Is it possible to conclude on the stability of
F (s, αB)? Since αB1 > αA1 , it is impossible to directly apply The-
orems 3 or 4. By choosing L = 1, the augmented characteristic
polynomial of Theorem 6 becomes

F ∗1 (s, ᾱ(t)) = s1+αA2 + 2s1+αA1 +t(∆α1−∆α2) + s1−t∆α2

+ sα
A
2 +t∆α2 + 2sα

A
1 +t∆α1 + 1 , (28)

with

ᾱ(t) = (1 + αA2 , 1 + αA1 + t(∆α1 −∆α2), 1− t∆α2,

αA2 + t∆α2, α
A
1 + t∆α1) .

The upper allowable parameter value t′′ of Theorem 6 is obtained
from

αA2 + t∆α2 > αA1 + t∆α1 ,

which is fulfilled for all positive values of t. Therefore, t′ = +∞
and t′′ = 1. Applying Theorem 4 to F ∗L, allows concluding that
F ∗L(s, ᾱ(t)) and F ∗L(s, ᾱ(0)) have the same number of zeros in
the closed right-half plane. Illustration is given in Fig 3. In con-
clusion, since F−1(s, αA) is stable, so is F−1(s, αB), and so is
F−1(s, α(t)) for all t ∈ [0, 1].

3.3 Continuation : Necessary and Sufficient Conditions

When applying Corollary 5, it is possible to claim that F (s, αA) and
F (s, αB) have the same number of zeros in the closed right-half
plane only if tc > 1. However, tc ≤ 1 does not imply that the num-
ber of closed right half-plane zeros is different. In fact, it is possible
to choose some t1 < tc and reapply Corollary 5 starting from α(t1)
by proceeding in the same direction. If necessary, the procedure can
be repeated multiple times, as described in Algorithm 1.

Theorem 7. Consider the sequence {ti} generated by Algorithm
1 with ε = 0. If the sequence is finite, we assume that it has been
extended by repeating the last element ad infinitum.

Algorithm 1 The continuation algorithm.

Require: α0 ∈ Rn+
Require: ∆α ∈ Rn
Require: 0 < ρ < 1
Require: ε ≥ 0
t0 ← 0
i← 0
loop

Set αA = αi, αB = αi + ∆α
Apply Corollary 5 to obtain tc.
if tc < ε then

return
end if
ti+1 ← ti + ρtc
i← i+ 1
αi+1 ← αi + ρtc∆α
if αi+1 6= max{αi+1,0} then

αi+1 ← max{αi+1,0}
return

end if
end loop

*In the listing above, max is used as a component-wise operation.

i)If {ti} converges to some t∗, then F (s, α0) and F (s, α(t)) have the
same number of zeros in the closed right-half plane for all t < t∗.

ii)If {ti} converges to some t∗ such that α(t∗) > 0, then F (s, α(t∗))
has at least one zero on the imaginary axis.

iii)If {ti} diverges to +∞, then for all t > 0, F (s, α0) and F (s, α(t))
have the same number of zeros in the closed right-half plane.

Proof: Note first that the sequence {ti} is non-negative, non-
decreasing; it can therefore either converge to some non-negative
t∗, or diverge to +∞.

Parts i) and iii) follow immediately by construction: F (s, α(t))
has an unchanging number of zeros in the closed right-half plane for
all t ∈ [0, ti] and any i ∈ N \ {0}.

Assume now that t∗ is the limit, and that α(t∗) > 0. The only
reason for the algorithm not to continue beyond t∗ is the tc computed
by Corollary 5 with αA = α(t∗) would happen to be zero, i.e. if
B(0) = 0. This could happen either if M(ω, 0) is infinite for some
ω, or if |F (jω, α(t∗))| is zero for some ω. Since M is bounded,
F (s, α(t∗)) must attain zero at least at one point on the imaginary
axis. �

Corollary 8. Under assumptions of Theorem 4, necessary and suf-
ficient condition for F (s, α0) and F (s, α(t)) to have the same
number of zeros in the closed right-half plane, for all t ∈ [0, 1]
(i.e. on the entire line-segment connecting αA to αB) is that the
sequence {ti} generated by Algorithm 1 either converges to t∗ > 1
or diverges.

Remark 2. Conditions stated in Theorem 3 are only sufficient, due
to the fact that the proof is based on the Rouché’s Theorem. An addi-
tional layer of conservatism is introduced in Theorem 4 (and also
in Theorem 6), due to upper-bounding of an appropriate integral.
However, by repeated application of those claims the conservatism
issue is removed, and Algorithm 1 gives both sufficient and necessary
conditions under which the number of zeros in the closed right-hand
side is preserved (Theorem 7).

Remark 3. Algorithm 1 should be applied with care. The procedure
itself does not pose any self-regulatory mechanism that would allow
it to recover from an accidental jump over the ideal limit t∗, which
might be caused by roundoff errors, or other numerical problems.
In particular, if ti accidentally becomes larger than t∗ then there
is no mechanism to stop it growing further away. This may lead to
false conclusions, since for t > t∗, the number of zeros in the closed
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Table 1 Output sequence of Algorithm 1 in Example 3 with an instable initial point αA1 = (3.2, 1.4).

i ti αi

0 0 (3.2000, 1.4000)
1 0.0636 (3.1963, 1.4009)
2 0.0855 (3.1950, 1.4012)

Table 2 Output sequence of Algorithm 1 in Example 3 with a stable initial point αA2 = (3.1, 1.4).

i ti αi

0 0 (3.1000, 1.4000)
1 3.2272 (3.2342, 1.4459)
2 3.6300 (3.2510, 1.4516)
3 3.6927 (3.2536, 1.4525)

right-half plane of F (s, α(t)) and F (s, α(0)) is probably different.
Parameter ρ is introduced for this very reason; it reduces the step
size and forces the following step to start from a numerically more
favorable position. Parameter ε forces the algorithm to stop once it
becomes sufficiently close to the stability boundary.

Example 3. Let’s apply the continuation approach to F (s, α) in (8)
by choosing the target point αB = (π,

√
2) and three different initial

points αA1 , αA2 , αA3 . For each initial point, Algorithm 1 is applied
with α0 = αAi , ∆α = αB − αAi , and ρ = 0.95.

First, consider the unstable initial point αA1 = (3.2, 1.4) of
Example 1. Applying Algorithm 1 with a precision of ε = 0.005∗

one obtains the sequence reported in Table 1. This sequence con-
verges to α2 = (3.1950, 1.4012) without reaching the target point.
Applying ii) of Theorem 7 allows to conclude that F (s, α2) has at
least one zero on the imaginary axis. Theorem 7 does not allow to
state whether beyond α2, on the line joining αA1 to αB , the number
of zeros is bigger or smaller. Henceforth, the stability of F (s, αB)
remains inconclusive.

Consider now the stable initial point αA2 = (3.1, 1.4) of Exam-
ple 2. The sequence obtained by applying Algorithm 1 with a
precision of ε = 0.1† is reporeted in Table 2. The limit point α3 =
(3.2536, 1.4525) is well beyond the target point αB (on the given
line). This confirms that F (s, αB) and F (s, αA2) have the same
number of closed right half-plane zeros. Henceforth, F−1(s, αB) is
stable.

Next, for illustration purposes, consider the initial point αA3 =
(1, 1). The obtained sequence of {αi} is reported graphically in Fig.
4, along the dashed line.

Finally, instead of considering a single direction from αA3 =
(1, 1) to αB , consider multiple directions to identify the stability
boundary in the (α2, α1)-plane. Apply the continuation approach,
from the initial point αA3 , and consider N radially equidistant
directions,

αB,` = αA3 +
(

cos(ϕ`), sin(ϕ`)
)
,

where ϕ` = −π4 + `
N π, 0 ≤ ` ≤ N , and N = 60. The results are

shown in Fig. 4, where the limit point of each continuation process is
indicated by a black dot. The obtained results are verified by repeated
application of Matignon’s Theorem to commensurate points (iν, jν)
inside and outside the stability boundary plotted in Fig. 4 (where
ν = 0.2 is used).

It is not possible to prove formally that all points in the interior of
the “stability margin” of Fig.4 preserve stability. Although a dense

∗A small ε is chosen in Algorithm 1 because αA is very close to the

stability limit.
†A bigger ε is chosen here, because αA2 is now further from the stability

limit.
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Fig. 4: Stability margin obtained by the continuation approach. Con-
tinuous line denotes the stability boundary obtained numerically in
the (α2, α1) plane.

set of directions starting from αA3 can be chosen, this set cannot
be infinitesimal. This is why results regarding stability/instability
within a domain are required.

4 Stability within a domain

Previous results have all been used to establish line segments in the
parameter space in which the number of zeros in the closed right
half-plane is unchanged. In many cases, however, it is more con-
venient to have a region of guaranteed stability/instability around a
given point. In a slightly more general formulation, we assume that
the differentiation order vector is an affine function of a perturbation
vector ε ∈ Rr , with r ≤ n, i.e. that there exists a matrix P ∈ Rn,r
such that

α(ε) = αA + Pε . (29)

The problem is to determine a region Ω ⊂ Rr such that for all
ε ∈ Ω the number of zeros in the closed right-half plane of F (s, αA)
and F (s, α(ε)) is the same. Often, the perturbations act directly on
the differentiation orders, so that r = n, P is the identity matrix,
and α(ε) = αA + ε. In other cases, for example if one applies
augmentation as in Theorem 6, the dependence of α on ε is not
trivial.

Theorem 9. Let αA ∈ Rn+, F (s, α) as in (3) and

GF (jω, ε) =

(
∂F (jω, α(ε))

∂εi

)
i∈{1,...,r}

. (30)

Let α(ε) be defined as in (29). Choose any p, q ≥ 1 such that 1/p+
1/q = 1, and any εq > 0. A sufficient condition for the character-
istic functions F (s, αA) and F (s, α(ε)) to have the same number
of zeros in the closed right-half plane for all α(ε) ∈ Shop(αA) such
that ‖ε‖q ≤ εq is

Bq(‖ε‖q) > εq , (31)

where

Bq(ε) = min
ω>0

|F (jω, αA)|
Mq(ω, ε)

, (32)

Mq(ω, ε) = max
‖ε‖q≤ε

‖GF (jω, ε)‖p . (33)
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Proof: Due to (31) and (32), for any ε such that ‖ε‖q ≤ εq

min
ω>0

|F (jω, αA)|
Mq(ω, ‖ε‖q)

> εq ≥ ‖ε‖q ,

implying that for all ω > 0,

|F (jω, αA)| > Mq(ω, ‖ε‖q)‖ε‖q .

Taking into account (33), for all ω > 0 and any ‖ε‖q ≤ εq

|F (jω, αA)| > ‖GF (jω, ε)‖p ‖ε‖q .

Using Hölder inequality [54], product of the norms on the right-hand
side can be lower-bounded by the absolute value of the inner product,
so that for all ω > 0 and all ε such that ‖ε‖q ≤ εq

‖GF (jω, ε)‖p ‖ε‖q ≥ |〈GF (jω, ε), ε〉| .

Thus, by direct application of the basic properties of integrals

‖GF (jω, ε)‖p ‖ε‖q ≥

∣∣∣∣∣
∫1

0
〈GF (jω, ε(t)), ε(t)〉 dt

∣∣∣∣∣ ,
and therefore

|F (jω, αA)| >

∣∣∣∣∣
∫1

0
〈GF (jω, ε(t)), ε(t)〉 dt

∣∣∣∣∣ .
Finally, the last expression can equivalently be rewritten as

|F (jω, αA)| >

∣∣∣∣∣
∫1

0

∂F (jω, α(ε(t)))

∂t
dt

∣∣∣∣∣ .
Thus, by starting from the conditions of the present claim, we arrive
at the condition (14), which concludes the proof. �

Remark 4. Theorem 9 can be interpreted as a procedure in which
one considers the most conservative bound, looking at all possible
directions from αA.

Corollary 10. Under assumptions of Theorem 9, let ε be the
smallest solution of

Bq(ε) = ε (34)

then F (s, αA) and F (s, αA + Pε) have the same number of zeros
in the closed right-half plane for all ε such that ‖ε‖q < ε.

Remark 5. Theorem 9 is somewhat conservative: it is based on two
inequalities (Rouché’s and Hölder’s), none of which is tight. It is
however possible to apply a form of continuation, in this case as
well, simply by re-applying Theorem 9 or Corollary 10 to edge points
of the previously computed stability regions. Unfortunately, the pro-
cedure would lead to domains of irregular shapes, and efficient
manipulations of those is beyond the scope of the present paper.

Example 4. Let us revisit Example 1 by determining a guaranteed
stability/instability domain around two different initial points. Intro-
duce perturbations directly into the vector of differentiation orders,
so that α = αA + ε (i.e. P is the identity matrix).

By choosing αA1 = (3.2, 1.4). Areas of guaranteed instability
obtained for different values of q are shown in Figure 5. Because
the augmentation is not used in this Example, only differentiation
orders α such that α2 < αA1

2 are considered.
The widest area, delimited by thick blue line, is obtained by appli-

cation of Theorem 4 sequentially, along a number of arrays starting
from αA1 (in the same manner used to obtain stability “region” in
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p=q=2

p=inf, q=1

Fig. 5: Areas of guaranteed instability surrounding point αA =
(3.2, 1.4) computed in Example 4. The “directional“ contour is
obtained by application of Theorem 4 (without continuation).

the last part of Example 3). Continuation is not used. The figure illus-
trate results obtained by one-step application of Theorem 4. For this
reason, the obtained instability contour is denoted as “directional”.

The remaining three contours are obtained by application of
Theorem 9 (more precisely Corollary 10). The two rectangular areas
are obtained with q = 1 and q =∞, respectively, while the circular
area corresponds to q = 2.

This example clearly illustrates the fact that Theorem 9 can be
obtained from Theorem 4, by considering each array in the param-
eter space. Once stability/instability bounds are found along each
direction, the one having the smallest q-norm is chosen. Thus, for
any q, the region obtained by Theorem 9 is a subset of the region
obtained by sequential application of Theorem 4, with the bounds
touching each other in at least one point. This point is, in fact,
minimal with respect to q-norm on the “directional” contour.

Theorem 9 remains true if F (s, α) is formally replaced by
F ∗(s, ᾱ). Therefore, it remains valid when applied to the extended
form of the characteristic equation (27). In this way, it is possible to
obtain areas of guaranteed stability/instability in which the highest
differentiation order is allowed to increase as well. Figure 6 shows
area of guaranteed stability surrounding point αA = (3.1, 1.4) for
different values of q obtained in this way. In particular, Theorem 9
is applied to the augmented characteristic polynomial (28) in which
t∆α1 ≡ ε1 and t∆α2 ≡ ε2. Shaded area in the same figure is the
instability "area" previously depicted in Figure 5. Clearly, the sta-
bility region obtained around point (3.1, 1.4) and instability area
surrounding point (3.2, 1.4) do not overlap, as expected. Moreover,
the point (π,

√
2) clearly falls into the stability area.

5 Application to stability verification of an
identified model of a thermal plant [41]

Consider a long aluminium rod shown in Fig. 7. The input signal
is a thermal flux generated by a resistor glued at one end and the
output signal is the temperature of the rod measured at a distance
x = 0.5cm from the heated end using a platinum probe. To ensure a
unidirectional heat transfer, the entire surface of the rod is insulated.

The system is driven to a steady-state temperature by injecting a
constant flux density of φ = 5kWm−2 for a sufficiently long period.
Then a pseudo-random-binary-signal is applied with a flux variation
of ±5kWm−2 around the constant flux of 5kWm−2. A delay of 4
samples (2s) is observed between the output and the input.

In [55], a theoretical model of the aluminum rod, obtained by
solving heat equation under some simplifying assumptions, was
compared to experimental data. Among the simplifying assump-
tions, the rod was assumed to be perfectly isolated. The theoretical
model was found to be commensurate of order 0.5. It was also shown
that fractional models are more compact than rational models: higher
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Fig. 7: Insulated long aluminium rod heated by a resistor

order rational models are required to get comparable results to frac-
tional models. However, since the aluminum rod reaches a steady
state temperature, it is not perfectly insulated. Consequently, there
is no reason to have a commensurate order of 0.5 nor to have an
integrator as in the physical model [55].

In [41], a black box model was identified by minimizing the `2-
norm of the output error. First of all, a commensurate differentiation
order was optimized and the optimal order was found to be around
0.6. Then the commensurability condition was released and the dif-
ferentiation orders were further adjusted. Output of the obtained
model

G(s, α) =
3.09× 10−3

263.4sα2 + 88.78sα1 + 1
e−2s , (35)

with α = (α2, α1), α1 = α
opt
1 = 0.593 and α2 = α

opt
2 = 1.186, is

compared to experimental measurements on Fig.8.
The objective of this example it to examine the stability of the

obtained model (35). Brut force application of Matignon’s theorem
would require checking that all roots of the characteristic function of
G(s0.001),

FG(s0.001, α) = 263.4s1186 + 88.78s593 + 1, (36)

belong to the sector Σ10−3 π
2

. As indicated in Section 2, this oper-
ation is numerically feasible, although time-consuming and the
results should be considered with great caution because significant
numerical errors may occur.
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Fig. 8: Time-domain responses plotted on validation data (y1
stands for the commensurate model output (35) and y2 for the non
commensurate model output of Table 4)
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Fig. 9: Regions of guaranteed stability surrounding point
(α1, α2) = (1.2, 0.6) obtained using different combinations of
norms.

Instead, stability is first determined for (α2, α1) = (1.2, 0.6),
which is performed by investigating the characteristic function,

FG(s0.1, (1.2, 0.6)) = 263.4s12 + 88.78s6 + 1 . (37)

Starting from this initial stable point, the surrounding stability region
is obtained by means of the procedure derived in Section 4, and illus-
trated in Fig. 9. Since the desired perturbations do not increase the
overall degree of the characteristic equation in this case, augmen-
tation is not necessary, but the computed stability region contains
α2 ≤ αopt

2 only.
Alternatively, one can start from a stable point (α1, α2) =

(1.1, 0.6), apply augmentation in the same manner as in Exam-
ple 2, and then proceed as in Section 4 in order to obtain stability
region. The result is plotted in Fig 10. In either case, the point
αopt = (1.186, 0.593) is clearly inside the stability region.

6 Conclusions

Important results are established in this paper allowing to conclude
on the stability/instability of fractional transfer functions having per-
turbed differentiation orders, knowing the stability/instability of the
unperturbed ones. Stability of incommensurate transfer functions
can be deduced from the established results. For that purpose, (i)
a necessary and sufficient stability/instability conditions are estab-
lished along a line segment on a prescribed direction, (ii) sufficient
stability/instability conditions are established within a domain.
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8 Appendix

Theorem A (Rouché, [53]). Let f and g be complex mappings,
holomorphic inside and on a closed contour C. If g is strictly
absolutely dominated by f on C, i.e. if

|g(s)| < |f(s)| (∀s ∈ C) ,

then f and f + g have the same number of zeros inside C, where
each zero is counted according to its multiplicity.
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