Anisotropic and crystalline mean curvature flow of mean-convex sets

Antonin Chambolle, Matteo Novaga

To cite this version:

Antonin Chambolle, Matteo Novaga. Anisotropic and crystalline mean curvature flow of mean-convex sets. 2020. hal-02525796v1

HAL Id: hal-02525796
 https://hal.science/hal-02525796v1

Preprint submitted on 31 Mar 2020 (v1), last revised 27 Oct 2020 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Anisotropic and crystalline mean curvature flow of mean-convex sets

Antonin Chambolle *, Matteo Novaga ${ }^{\dagger}$

Abstract

We consider a variational scheme for the anisotropic (including crystalline) mean curvature flow of sets with strictly positive anisotropic mean curvature. We show that such condition is preserved by the scheme, and we prove the strict convergence in $B V$ of the time-integrated perimeters of the approximating evolutions, extending a recent result of De Philippis and Laux to the anisotropic setting. We also prove uniqueness of the flat flow obtained in the limit.

Keywords: Anisotropic mean curvature flow, crystal growth, minimizing movements, mean convexity, arrival time, 1 -superharmonic functions.

MSC (2020): 53E10, 49Q20, 58E12, 35A15, 74E10.

Contents

1. Introduction 2
2. Preliminary definitions 3
2.1. Outward minimizing sets 3
2.2. The discrete scheme 4
2.3. Preservation of the outward minimality 5
3. The arrival time function 6
4. Examples 8
4.1. The case $\delta=0$ 8
4.2. Continuity of the volume up to $t=0$ 9
A. 1-superharmonic functions 11
[^0]
1. Introduction

We are interested in the anisotropic mean curvature flow of sets with positive anisotropic mean curvature. More precisely, following [11, 9] we consider a family of sets $t \mapsto E(t)$ governed by the geometric evolution law

$$
\begin{equation*}
V(x, t)=-\psi\left(\nu_{E(t)}\right) \kappa_{E(t)}^{\phi}(x) \tag{1}
\end{equation*}
$$

where $V(x, t)$ denotes the normal velocity of the boundary $\partial E(t)$ at x, ϕ is a given norm on $\mathbb{R}^{d}, \kappa_{E(t)}^{\phi}$ is the anisotropic mean curvature of $\partial E(t)$ associated with the anisotropy ϕ, and ψ is another norm (usually called mobility) evaluated at the (outer) unit normal $\nu_{E(t)}$ to $\partial E(t)$. We recall that when ϕ is differentiable in $\mathbb{R}^{N} \backslash\{0\}$, then κ_{E}^{ϕ} is given by the tangential divergence of the so-called Cahn-Hoffman vector field [6]

$$
\begin{equation*}
\kappa_{E}^{\phi}=\operatorname{div}_{\tau}\left(\nabla \phi\left(\nu_{E}\right)\right), \tag{2}
\end{equation*}
$$

while in general (2) should be replaced with the differential inclusion

$$
\kappa_{E}^{\phi}=\operatorname{div}_{\tau}\left(n_{E}^{\phi}\right), \quad n_{E}^{\phi} \in \partial \phi\left(\nu_{E}\right)
$$

It is well-known that (1) can be interpreted as gradient flow of the anisotropic perimeter

$$
P_{\phi}(E)=\int_{\partial E} \phi\left(\nu_{E}\right) d \mathcal{H}^{d-1},
$$

and one can construct global-in-time weak solutions by means of the variational scheme introduced by Almgren, Taylor and Wang [1] and, independently, by Luckhaus and Sturzenhecker [14]. Such scheme consists in building a family of discrete-in-time evolutions by an iterative minimization procedure and in considering any limit of these discrete evolutions, as the time step $h>0$ vanishes, as an admissible solution to the geometric motion, usually referred to as a flat flow. The problem which is solved at each step takes the form $[1, \S 2.6] E_{h}^{n}:=T_{h} E_{h}^{n-1}$, where $T_{h} E$ is the solution of

$$
\begin{equation*}
\min _{F} P_{\phi}(F)+\frac{1}{h} \int_{F} d_{E}^{\psi^{\circ}}(x) d x \tag{3}
\end{equation*}
$$

where $d_{E}^{\psi^{\circ}}$ is the signed distance function of E, with respect to the (non necessarily symmetric) "norm" ψ°, which is defined as

$$
\begin{equation*}
d_{E}^{\psi^{\circ}}(x):=\inf _{y \in E} \psi^{\circ}(x-y)-\inf _{y \notin E} \psi^{\circ}(y-x) \tag{4}
\end{equation*}
$$

In [1] it is proved that the discrete solution $E_{h}(t):=E_{h}^{\left[\frac{t}{h}\right]}$, with $\psi=1$ and ϕ smooth, converges to a limit flat flow which is contained in the zero-level set of the (unique) viscosity solution of (1). Such a result has been extended in $[11,9]$ to general anisotropies ψ, ϕ. In the isotropic case $\phi=\psi=|\cdot|$ it is shown in [14] that $E_{h}(t)$ converges to a distributional solution $E(t)$ of (1), under the assumption that the perimeter is continuous in the limit, that is,

$$
\begin{equation*}
\lim _{h \rightarrow 0} \int_{0}^{T} P\left(E_{h}(t)\right) d t=\int_{0}^{T} P(E(t)) \quad \text { for } T>0 \tag{5}
\end{equation*}
$$

Recently, in [12] the authors proved that the continuity of the perimeter holds if the initial set is outward minimizing for the perimeter (see Section 2.1), a condition which implies the mean convexity and which is preserved by the variational scheme 3 , as already shown in [17].

In this paper we generalize the result in [12] to the general anisotropic case, where the continuity of the perimeter was previously known only in the convex case [5], as a consequence of the convexity
preserving property of the scheme. Such result is obtained under a stronger condition of strong outward minimality of the initial set, which is also preserved by the scheme and implies the strict positivity of the anisotropic mean curvature. As a corollary, we obtain the continuity of the volume and of the (anisotropic) perimeter of the limit flat flow.

The plan of the paper is the following: In Section 2 we introduce the notion of outward minimizing set, and we recall the variational scheme proposed by Almgren, Taylor and Wang in [1]. We also show that the scheme preserves the strict outward minimality. In section 3 we show the strict $B V$ convergence of the discrete arrival time functions, we prove the uniqueness of the limit flow, and we show continuity in time of volume and perimeter, and in Section 4 we give some examples. Eventually, in Appendix A we recall some results on 1-superharmonic functions, adapted to the anisotropic setting.

2. Preliminary definitions

2.1. Outward minimizing sets

Definition 2.1. Let Ω be an open subset of \mathbb{R}^{d} and let $E \subset \subset \Omega$ be a finite perimeter set. We say that E is outward minimizing in Ω (see $[12,17]$) if

$$
\begin{equation*}
P_{\phi}(E) \leq P_{\phi}(F) \quad \forall F \supset E, F \subset \subset \Omega . \tag{MC}
\end{equation*}
$$

Note that, if E, ϕ are regular, $(M C)$ implies that the ϕ-mean curvature of ∂E is non-negative.
We observe that such a set (or rather its complement) satisfies the following density bound: there exists $\gamma>0$ such that for all $x \in E$ such that $|B(x, \rho) \backslash E|>0$ for all $\rho>0$, one has:

$$
\begin{equation*}
\frac{|B(x, \rho) \backslash E|}{|B(x, \rho)|} \geq \gamma \tag{6}
\end{equation*}
$$

whenever $B(x, \rho) \subset \Omega$. A consequence is that whenever $x \in E$ is a point of Lebesgue density one, then there is ρ small such that (6) does not hold, and it follows that for a smaller radius $\rho^{\prime},\left|B\left(x, \rho^{\prime}\right) \backslash E\right|=0$. (This is even quantitative in the following sense: if $|B(x, \rho) \backslash E|<\gamma 2^{-d}|B(x, \rho)|$ then $|B(y, \rho / 2) \backslash E|<$ $\gamma|B(y, \rho / 2)|$ for all $y \in B(x, \rho / 2)$ so that $|B(x, \rho / 2) \backslash E|=0$.) Identifying thus E with its points of Lebesgue density one, one will always assume that E is an open subset of \mathbb{R}^{d}.

Conversely if $E \subset \mathbb{R}^{d}$ is bounded and C^{2}, ϕ is $C^{2}\left(\mathbb{R}^{d} \backslash\{0\}\right)$, and its mean curvature is positive, then one can find $\Omega \supset \supset E$ such that E is outward minimizing in Ω. More precisely, if E is of class C^{2} then, in a neighborhood of $\partial E, d_{E}^{\phi^{\circ}}$ is C^{2}, while in a smaller neighborhood we even have $\operatorname{div} \nabla \phi\left(d_{E}^{\phi^{\circ}}\right) \geq \delta$ for some $\delta>0$. Let Ω be the union of E and this neighborhood, and set $n_{E}^{\phi}:=\nabla \phi\left(d_{E}^{\phi^{\circ}}\right)$: then if $E \subset F \subset \subset \Omega$,

$$
P_{\phi}(F) \geq \int_{\partial^{*} F} n_{E}^{\phi} \cdot \nu_{F} d \mathcal{H}^{d-1}=-\int_{\Omega} n_{E}^{\phi} \cdot D \chi_{F}
$$

while by construction $P_{\phi}(E)=-\int_{\Omega} n_{E}^{\phi} \cdot D \chi_{E}$. Hence,

$$
P_{\phi}(F) \geq P_{\phi}(E)-\int_{\Omega} n_{E}^{\phi} \cdot D\left(\chi_{F}-\chi_{E}\right)=P_{\phi}(E)+\int_{F \backslash E} \operatorname{div} n_{E}^{\phi} \geq P_{\phi}(E)+\delta|F \backslash E| .
$$

Observe (see [12, Lemma 2.5]) that equivalently, one can express this as:

$$
P_{\phi}(E \cap F) \leq P_{\phi}(F)-\delta|F \backslash E| \quad \forall F \subset \subset \Omega
$$

Clearly, condition $\left(M C_{\delta}\right)$ is stronger and reduces to $(M C)$ whenever $\delta=0$.

Remark 2.2 (Non symmetric distances). As in the standard case (that is when ψ° is smooth and even), the signed "distance" function defined in (4) is easily seen to satisfy the usual properties of a signed distance function. First, it is Lipschitz continuous, hence differentiable almost everywhere. Then, if x is a point of differentiability, $d_{E}^{\psi^{\circ}}(x)>0$ and $y \in \partial E$ is such that $\psi^{\circ}(x-y)=d_{E}^{\psi^{\circ}}(x)$, then for $s>0$ small and $h \in \mathbb{R}^{d} d_{E}^{\psi^{\circ}}(x+s h) \geq \psi^{\circ}(x+s h-y) \geq \psi^{\circ}(x-y)+s z \cdot h$ for any $z \in \partial \psi^{\circ}(x-y)$ and one deduces that $\partial \psi^{\circ}(x-y)=\left\{\nabla d_{E}^{\psi^{\circ}}(x)\right\}$. If $d_{E}^{\psi^{\circ}}(x)<0$, one writes that $\psi^{\circ}(y-x)=-d_{E}^{\psi^{\circ}}(x)$ for some $y \in \partial E$ and uses $\psi^{\circ}(y-x-s h) \geq \psi^{\circ}(y-x)-s z \cdot h$ for some $z \in \partial \psi^{\circ}(y-x)$, hence $d_{E}^{\psi^{\circ}}(x+s h)-d_{E}^{p}(x) \leq s z \cdot h$ to deduce now that $\partial \psi^{\circ}(y-x)=\left\{\nabla d_{E}^{\psi^{\circ}}(x)\right\}$. In all cases, one has $\phi\left(\nabla d_{E}^{\psi^{\circ}}(x)\right)=1$ a.e. in $\left\{d_{E}^{\psi^{\circ}} \neq 0\right\}$ (while of course $\nabla d_{E}^{\psi^{\circ}}(x)=0$ a.e. in $\left\{d_{E}^{\psi^{\circ}}=0\right\}$), and $\nabla d_{E}^{p}(x) \cdot(x-y)=d_{E}^{\psi^{\circ}}(x)$, which shows that $\left.y \in x-d_{E}^{\psi^{\circ}}(x) \partial \phi\left(\nabla d_{E}^{\psi^{\circ}}(x)\right)\right)$.

2.2. The discrete scheme

We now consider here the discrete scheme introduced in $[14,1]$ and its generalisation in $[8,5,11,10]$. It is based on the following process: given $h>0$, and E a (bounded) finite perimeter set, we define $T_{h} E$ as a minimizer of

$$
\begin{equation*}
\min _{F} P_{\phi}(F)+\frac{1}{h} \int_{F} d_{E}^{\psi^{\circ}}(x) d x \tag{ATW}
\end{equation*}
$$

where $d_{E}^{\psi^{\circ}}$ is defined in (4). If E satisfies $(M C)$ in Ω, it is clear that for $h>0$ small enough, one has $T_{h} E \subset E$. Indeed, for h small enough one has $\overline{T_{h} E} \subset \Omega$, and it follows from $(M C)$ that

$$
P_{h}\left(T_{h} E \cap E\right)+\frac{1}{h} \int_{T_{h} E \cap E} d_{E}^{\psi^{\circ}}(x) d x \leq P_{h}\left(T_{h} E\right)+\frac{1}{h} \int_{T_{h} E} d_{E}^{\psi^{\circ}}(x) d x-\frac{1}{h} \int_{T_{h} E \backslash E} d_{E}^{\psi^{\circ}}(x) d x
$$

showing that $\left|T_{h} E \backslash E\right|=0$. We recall in addition that in this case, $T_{h} E$ is also ϕ-mean convex in Ω, see the proof of [12, Lemma 2.7]. If E satisfies $\left(M C_{\delta}\right)$ for $\delta>0$, we can improve the inclusion $T_{h} E \subset E:$

Lemma 2.3. Assume that E satisfies $\left(M C_{\delta}\right), \delta>0$. Then for $h>0$ small enough, $T_{h} E+\left\{\phi^{\circ} \leq\right.$ $\delta h\} \subset E$. In particular, $d_{T_{h} E}^{\psi^{\circ}} \geq d_{E}^{\psi^{\circ}}+\delta h$ and $T_{h} E \subset\left\{d_{E}^{\psi^{\circ}} \leq-\delta h\right\}$.

Proof. Assume h is small enough so that $T_{h} E \subset E$ and $E+\left\{\psi^{\circ} \leq \delta h\right\} \subset \Omega$. Choose τ with $\psi^{\circ}(\tau)<\delta h$ and consider $F:=T_{h} E+\tau$. We show that also $F \subset E$. The set $F \subset \subset \Omega$ is a minimizer of

$$
P_{\phi}(F)+\frac{1}{h} \int_{F} d_{E}^{\psi^{\circ}}(x-\tau) d x .
$$

In particular, we have

$$
\begin{aligned}
P_{\phi}(F)+\frac{1}{h} \int_{F} d_{E}^{\psi^{\circ}}(x-\tau) d x \leq P_{\phi}(F & \cap E)+\frac{1}{h} \int_{F \cap E} d_{E}^{\psi^{\circ}}(x-\tau) d x \\
& \leq P_{\phi}(F)+\frac{1}{h} \int_{F} d_{E}^{\psi^{\circ}}(x-\tau) d x-\int_{F \backslash E} \frac{1}{h} d_{E}^{\psi^{\circ}}(x-\tau)+\delta d x .
\end{aligned}
$$

By definition of the signed distance function, for $x \notin E, d_{E}^{\psi^{\circ}}(x-\tau) \geq-\psi^{\circ}(x-(x-\tau))=-\psi^{\circ}(\tau)>-\delta h$ so that if $|F \backslash E|>0$ we have a contradiction. We deduce that $T_{h} E+\left\{\psi^{\circ} \leq \delta h\right\} \subset E$.

In particular, if $x \in T_{h} E$ and $y \notin E$ is such that $d_{E}^{\psi^{\circ}}(x)=-\psi^{\circ}(y-x)$, then $y^{\prime}=y-\delta h(y-$ $x) / \psi^{\circ}(y-x) \notin T_{h} E$ hence $d_{T_{h} E}^{\psi^{\circ}} \geq-\psi^{\circ}\left(y^{\prime}-x\right)=d_{E}^{\psi^{\circ}}(x)-\delta h$. If $x \in E \backslash T_{h} E, d_{E}^{\psi^{\circ}}(x)=-\psi(y-x)$ for some $y \in \overline{\Omega \backslash E}$, and $d_{T_{h} E}^{\psi^{\circ}}(x)=\psi\left(x-y^{\prime}\right)$ for some $y^{\prime} \in T_{h} E$. Since $\psi\left(x-y^{\prime}\right)+\psi(y-x) \geq$ $\psi\left(y-y^{\prime}\right) \geq \delta h$ we conclude. Eventually if $x \notin E$, for $y \in T_{h} E$ with $d_{T_{h} E}^{\psi^{\circ}}(x)=\phi^{\circ}(x-y)$ we have
$y+\delta h(x-y) / \phi^{\circ}(x-y) \in E$, so that $d_{E}^{\psi^{\circ}}(x) \leq \phi^{\circ}(x-y)-\delta h=d_{T_{h} E}^{\psi^{\circ}}(x)-\delta h$. This shows that $d_{T_{h} E}^{\psi^{\circ}} \geq d_{E}^{\psi^{\circ}}+\delta h$.

Corollary 2.4. For any $n \geq 1, T_{h}^{n+1} E+\left\{\psi^{\circ} \leq \delta h\right\} \subset T_{h}^{n} E$, and $d_{T_{h}^{n} E}^{\psi^{\circ}} \geq d_{E}^{\psi^{\circ}}-\delta n h$.
Proof. The first statement is obvious by induction: assuming that for τ with $\psi^{\circ}(\tau) \leq \delta h$ one has $T_{h}^{n} E+\tau \subset T_{h}^{n-1} E$ (which is true for $n=1$), one has applying T_{h} again and using the translational covariance that $T_{h}^{n+1} E+\tau \subset T_{h}^{n} E$. The second statement is obviously deduced, as in the previous proof.

Remark 2.5 (Density estimates). There exists $\gamma>0$, depending only on ϕ and the dimension, and $r_{0}>0$, depending also on ψ, such that the following holds: for x such that $\left|B(x, r) \cap T_{h} E\right|>0$ for all $r>0$ one has $\left|B(x, r) \cap T_{h} E\right| \geq \gamma r^{d}$ if $r<r_{0} h$. For the complement, as $T_{h} E$ is ϕ-mean convex in Ω, we have as before that for x such that $\left|B(x, r) \backslash T_{h} E\right|>0$ for all $r>0$, one has $\left|B(x, r) \backslash T_{h} E\right| \geq \gamma r^{d}$ for all r with $B(x, r) \subset \Omega, c f(6)$.

2.3. Preservation of the outward minimality

In the sequel, we show some further properties of the discrete evolutions and their limit. An interesting result in [12] is that the $\left(M C_{\delta}\right)$-condition is preserved during the evolution. We prove that it is also the case in the anisotropic setting.

We first show the following result:
Lemma 2.6. Assume E satisfies $\left(M C_{\delta}\right)$ in Ω, with $\delta>0$. Then for any $F \subset \subset \Omega, \delta|F| \leq P_{\phi}(F)$.
Proof. Since $\left.\delta|F|=\delta|F \cap E|+\delta|F \backslash E| \leq \delta|F \cap E|+\left(P_{\phi}(F)-P_{\phi}(F \cap E) \text {) (using (MC }\right)^{\prime}\right)$), it is enough to show the result for $F \subset E$. We introduce for any $s>0 E_{s}$ the largest minimizer of

$$
\begin{equation*}
P_{\phi}\left(E_{s}\right)+\frac{1}{s} \int_{E_{s}} d_{E}^{\psi^{\circ}} d x \tag{7}
\end{equation*}
$$

which is obtained as the level set $\left\{w_{s} \leq 0\right\}$ of the (Lipschitz continuous) solution w_{s} of the equation

$$
-s \operatorname{div} z_{s}+w_{s}=d_{E_{s}}^{\psi^{\circ}}, \quad z_{s} \in \partial \phi\left(\nabla w_{s}\right)
$$

see for instance [8] for details. It turns out that there exists some $s_{0}>0$ such that for $s<s_{0}, E_{s} \subset \Omega$. This is true because by comparison it is easy to show that $E_{s} \subset E+B(0, C \sqrt{s})$ for some constant C depending only on ϕ, ψ, but in fact, as soon as the minimizer of the same problem (7) with P_{ϕ} replaced with $P_{\phi}(\cdot ; \Omega)$ is strictly in Ω (hence in E, cf Lemma 2.3), then it coincides with E_{s} and it even follows that $E_{s} \subset \subset E$. In addition, $\psi\left(\nabla w_{s}\right) \leq 1=\psi\left(\nabla d_{E}^{\psi^{\circ}}\right)$ a.e. in \mathbb{R}^{d}. For $s<s_{0}$, we denote also $E_{s}^{\prime}=\left\{w_{s}<0\right\}$ the smallest minimizer of (7).

As $P_{\phi}\left(E_{s}\right) \leq P_{\phi}(E), \lim _{s \rightarrow 0} P_{\phi}\left(E_{s}\right)=P_{\phi}(E)$ and one deduces that for any $F \subset E, \lim _{s \rightarrow 0} P_{\phi}(F \cap$ $\left.E_{s}\right)=P_{\phi}(F)$. Indeed,

$$
P_{\phi}\left(F \cap E_{s}\right)+P_{\phi}\left(F \cup E_{s}\right) \leq P_{\phi}(F)+P_{\phi}\left(E_{s}\right),
$$

and $F \cup E_{s} \rightarrow E$, so that

$$
P(E)+\limsup _{s} P_{\phi}\left(F \cap E_{s}\right) \leq P_{\phi}(F)+P_{\phi}(E)
$$

which shows the claim.

Thanks to Lemma 2.3, one has that $d_{E}^{\psi^{\circ}} \leq-s \delta$ on $\partial E_{s}=\left\{w_{s} \leq 0\right\}$. Now if $x \in E_{s}$ and $y \in \partial E_{s}$, $w_{s}(x) \geq w_{s}(y)-\psi^{\circ}(y-x)=-\psi^{\circ}(y-x)\left(u \operatorname{sing} \psi^{\circ}\left(\nabla w_{s}\right) \leq 1\right)$. If $z \notin E$ and $y \in[x, z] \cap \partial E_{s}$, one has $\psi^{\circ}(z-x)=\psi^{\circ}(z-y)+\psi^{\circ}(y-x)$ (by one-homogeneity) so that $0 \leq w_{s}(x)+\psi^{\circ}(y-x)=$ $w_{s}(x)+\psi^{\circ}(z-x)-\psi^{\circ}(z-y) \leq w_{s}(x)+\psi^{\circ}(z-x)-s \delta$. Taking the infimum over z, we see that $s \delta \leq w_{s}(x)-d_{E}^{\psi^{\circ}}(x)$. Hence $\operatorname{div} z_{s} \geq \delta$ a.e. in E.

Let now $F \subset E$, one has $P_{\phi}\left(F \cap E_{s}\right) \geq \int_{\Omega} \operatorname{div} z_{s} \chi_{F \cap E_{s}} \geq \delta\left|F \cap E_{s}\right|$. The lemma follows letting $s \rightarrow 0$.

We can then deduce the following:
Lemma 2.7. Let $\delta>0, E$ (open) satisfy $\left(M C_{\delta}\right)$ in $\Omega, h>0$ small and $T_{h} E \subset E$ the solution of $(A T W)$. Then $T_{h} E$ satisfies $\left(M C_{\delta}\right)$.

Proof. We remark that the sets E_{s}, E_{s}^{\prime} built in the previous proof satisfy $E_{s} \subset E_{s^{\prime}}^{\prime}$ for $s>s^{\prime}$. This follows from the fact that the term $s \mapsto d_{E}^{\psi^{\circ}}(x) / s<0$ is increasing for $x \in E$. In particular, if $s_{n} \rightarrow s$, $s_{n}<s$, then $E_{s_{n}} \rightarrow E_{s}$, while if $s_{n}>s, \Omega \backslash E_{s_{n}}^{\prime}$ converges to $\Omega \backslash E_{s}^{\prime}$. Moreover, as the sets satisfy uniform density estimates (for n large enough), these convergences are also in the Hausdorff sense. In particular, we deduce that $E \backslash E_{s}^{\prime}=\bigcup_{0<s^{\prime} \leq s}\left(E_{s^{\prime}} \backslash E_{s^{\prime}}^{\prime}\right)$ (we recall $E_{s^{\prime}} \backslash E_{s^{\prime}}^{\prime}=\left\{w_{s^{\prime}}=0\right\}$).

Let $\varepsilon>0$. The previous analysis also shows that there exists $\eta>0$ (depending only on ϕ) such that for any $s \in\left(0, s_{0}\right)$, in $N_{s}=\left\{x: \operatorname{dist}\left(x, E_{s}\right)<s \eta\right\}$, one has $\operatorname{div} z_{s} \geq \delta-\varepsilon$ (we use here that $w_{s}-d_{E}^{\psi^{\circ}}$ is Lipschitz continuous).

Let $h>\bar{s}>\underline{s}>0$. The set $E_{\underline{s}} \backslash E_{\bar{s}}^{\prime}$ is covered by the open sets $N_{s} \backslash \overline{E_{s}^{\prime}}, 0<s<h$. Hence one can extract a finite covering indexed by $s_{1}>s_{2}>\cdots>s_{N-1}$. We observe that necessarily, $h>s_{1}>\bar{s}$ and we let $s_{N}:=\underline{s}$. Let $F \subset \subset \Omega$ and up to an infinitesimal translation, assume $\mathcal{H}^{d-1}\left(\partial^{*} F \cap \partial E_{s_{i}}\right)=0$ for $i=1, \ldots, N$. One has for $i \in\{1, \ldots, N\}$

$$
\begin{aligned}
P_{\phi}\left(E_{s_{i+1}} \cap F\right)-P_{\phi}\left(E_{s_{i}} \cap F\right) \geq \int_{\partial^{*}\left(F \cap E_{s_{i+1}} \backslash E_{s_{i}}\right)} & z_{s_{i}} \cdot \nu d \mathcal{H}^{d-1} \\
& =\int_{F \cap E_{s_{i+1}} \backslash E_{s_{i}}} \operatorname{div} z_{s_{i}} d x \geq(\delta-\varepsilon)\left|F \cap E_{s_{i+1}} \backslash E_{s_{i}}\right|
\end{aligned}
$$

so that, summing from $i=1$ to N, we find that

$$
P_{\phi}\left(E_{s_{1}} \cap F\right) \leq P_{\phi}\left(E_{\underline{s}} \cap F\right)-(\delta-\varepsilon)\left|\left(E_{\underline{s}} \backslash E_{s_{1}}\right) \cap F\right|
$$

Since $E_{\underline{s}}$ is outward minimizing, $P_{\phi}\left(E_{\underline{s}} \cap F\right) \leq P_{\phi}(E \cap F) \leq P_{\phi}(F)-(\delta-\varepsilon)|F \backslash E|$, so that:

$$
P_{\phi}\left(E_{s_{1}} \cap F\right) \leq P_{\phi}(F)-(\delta-\varepsilon)\left(|F \backslash E|+\left|\left(E_{\underline{s}} \backslash E_{s_{1}}\right) \cap F\right|\right) .
$$

Sending $\bar{s}<s_{1}$ to h and \underline{s} to 0 , we deduce that $P_{\phi}\left(E_{h} \cap F\right) \leq P_{\phi}(F)-(\delta-\varepsilon)\left|F \backslash E_{h}\right|$ hence the thesis holds, since ε is arbitrary.

3. The arrival time function

Consider an open set $\Omega \subset \mathbb{R}^{d}$ and a set $E^{0} \subset \subset \Omega$ such that $\left(M C_{\delta}\right)$ holds for some $\delta>0$. As usual $[14,1]$ we let $E_{h}(t):=T_{h}^{[t / h]}\left(E^{0}\right)$, here [•] denotes the integer part. Being the sets $T_{h}^{n}\left(E^{0}\right)$ mean-convex, we can choose an open representative. We can define the discrete arrival time function as

$$
u_{h}(x):=\max \left\{t \chi_{E_{h}(t)}(x), t \geq 0\right\}
$$

which is a l.s.c. function ${ }^{1}$ which, thanks to the co-area formula, satisfies

$$
\begin{equation*}
\int_{\Omega} \phi\left(-D u_{h}\right) \leq \int_{\bar{\Omega}} \phi(-D v) \tag{8}
\end{equation*}
$$

for any $v \in B V\left(\mathbb{R}^{d}\right)$ with $v \geq u_{h}, v=0$ in $\mathbb{R}^{d} \backslash \Omega$ - hence a (ϕ-)1-superharmonic function in the sense of [16], see Sec. A. One easily sees that $\left(u_{h}\right)_{h}$ is uniformly bounded in $B V(\Omega)$ so that a subsequence $u_{h_{k}}$ converges in $L^{1}(\Omega)$ to some u (which again is 1-superharmonic).

In addition, as E^{0} satisfies $\left(M C_{\delta}\right)$, we have thanks to Corollary 2.4 that u_{h} has a sort of global Lipschitz bound. More precisely, for $x, y \in \Omega$ there holds

$$
u_{h}(x)-u_{h}(y) \leq h+\frac{\phi^{\circ}(y-x)}{\delta}
$$

Indeed, one has $u_{h}(x)=t \Rightarrow u_{h}(x+\tau) \geq t-h$ for any $t \geq 0$ and τ with $\phi^{\circ}(\tau) \leq \delta h$. The claim follows by induction.

As a consequence we obtain that u_{h} converges uniformly, up to a subsequence, to a limit function u, which is also Lipschitz continuous, and satisfies

$$
\begin{equation*}
u(x)-u(y) \leq \frac{\phi^{\circ}(y-x)}{\delta} \tag{9}
\end{equation*}
$$

for any $x, y \in \Omega$. Moreover, recalling Lemma 2.7, we have that the functions u_{h} and u are (ϕ, δ)-1superharmonic, in the sense of Definition A. 1 below.

We will show that the function u is unique, and is the arrival time function of the anisotropic curvature flow starting form E^{0}, in the sense of [9].

Theorem 3.1. Under the previous assumption on E^{0}, the arrival time function u_{h} converge to a unique limit u, as $h \rightarrow 0$, which is such that $(x, t) \mapsto\{u(x) \leq t\}$ is a solution of $(M C F)$ starting from E. Moreover, there holds

$$
\lim _{h \rightarrow 0} \int_{\Omega} \phi\left(-D u_{h}\right)=\int_{\Omega} \phi(-D u)
$$

Proof. Let us denote E^{s} the (open) sets $\{u>s\}$. Since given x, ρ with $B(x, \rho) \subset E$, one knows that the curvature flow starting from $B(x, \rho)$ will contain x for a time of order ρ^{2}, one has $u(x) \gtrsim \rho^{2}$. It follows that $x \in E^{s}$ for some $s \sim \rho^{2}$ so that $\bigcup_{s>0} E^{s}=E$.

As a consequence of the existence and uniqueness result in $[11,9]$), for a.e. $s>0$ the arrival time functions $u_{h}^{s} \leq u_{h}$ of the discrete flows $T_{h}^{[t / h]} E^{s}$ converge uniformly to a unique limit u^{s}. In particular, considering the subsequence $u_{h_{k}}$, one has $u^{s} \leq u$. On the other hand, thanks to Corollary 2.4 and the Remark 2.5, given $s>0$ there is $\tau_{s}>0$ such that $T_{h}^{\left[\tau_{s} / h\right]} E^{0} \subset E^{s}$. Then, $T_{h}^{\left[\tau_{s} / h\right]+n} E^{0} \subset T_{h}^{n} E^{s}$ by induction so that $u_{h}-\tau_{s}-h \leq u_{h}^{s}$. If v is the limit of a converging subsequence of $\left(u_{h}\right)$, we deduce $v-\tau_{s} \leq u^{s} \leq u$. Sending $s \rightarrow 0$ we deduce $v \leq u$. Since this is true for any pair (u, v) of limits of converging subsequences of $\left(u_{h}\right)$, this limit is unique and $u_{h} \rightarrow u$.

The last statement is already proved in [12] in a simple way: clearly, one just needs to show that $\lim \sup _{h} \int_{\Omega} \phi\left(-D u_{h}\right) \leq \int_{\Omega} \phi(-D u)$. As $\left(u_{h}\right)_{h}$ converges uniformly to u, given $\varepsilon>0$, one has $u_{h} \leq u+\varepsilon$ for h small enough. On the other hand, since all these functions vanish out of E, it follows $u_{h} \leq u+\varepsilon \chi_{E}$. Hence, being $u_{h} \phi$-1-superharmonic,

$$
\int_{\Omega} \phi\left(-D u_{h}\right) \leq \int_{\Omega} \phi\left(-D\left(u+\varepsilon \chi_{E}\right)\right)=\int_{\Omega} \phi(-D u)+\varepsilon P_{\phi}(E)
$$

for h small enough, and the thesis follows.

[^1]Theorem 3.1 shows that the scheme starting from a strict ϕ-mean convex set always converges to a unique flow, with no loss of (anisotropic) perimeter. In particular, in the smooth and elliptic case, following [14] it allows to show that the limit satisfies a distributional formulation of the anisotropic curvature flow.

Remark 3.2 (Continuity of volume and perimeter). As is well-known for general flat flows (see [14, 7]), the limit motion $t \mapsto\{u \geq t\}$ is $1 / 2$-Hölder in $L^{1}(\Omega)$, in the sense that, for $s>t>0$,

$$
|\{s>u \geq t\} \cap \Omega| \leq C|t-s|^{1 / 2}
$$

where C depends on the dimension and on the perimeter of the initial set. In particular, $|\{u=t\}|=0$ for all $t>0$, so that up to a negligible set, $\{u>t\}=\{u \geq t\}$. (For $t=0$ it may happen that $|\overline{\{u>0\}}|>0$, as shown in the second example below.)

In addition, since each set $\{u>t\}$ is δ-superharmonic for $t>0$, for $s>t \geq 0$ one also has that

$$
P_{\phi}(\{u>s\})+\delta|\{s \geq u>t\}|=P_{\phi}(\{u>t\})
$$

so that $t \mapsto P_{\phi}(\{u>t\})$ is strictly decreasing, until extinction. Since $\bigcup_{s>t}\{u>s\}=\{u>t\}$ one also sees that $t \mapsto P_{\phi}(\{u>t\})$ is right-continuous. On the other hand, whether it could jump or not remains an open question.

4. Examples

4.1. The case $\delta=0$

If the initial datum E^{0} satisfies $(M C)$ we should distinguish two cases: If ϕ is smooth and elliptic, ψ is smooth and ∂E^{0} is also smooth, then there exists a smooth solution to (1) on a time interval $[0, \tau)$, for some $\tau>0$ (see [15, Chapter 8]). Moreover, by the parabolic maximum principle, the solution $E(t)$ become strictly mean-convex for $t>0$. In particular, for any $\varepsilon \in(0, \tau)$ there exist $\delta_{\varepsilon}>0$ and an open set Ω_{ε} such that $E\left(t_{\varepsilon}\right) \subset \subset \Omega_{\varepsilon}, \delta_{\varepsilon} \rightarrow 0$ as $\varepsilon \rightarrow 0$, and $E(t)$ satisfies $\left(M C_{\delta_{\varepsilon}}\right)$ in Ω_{ε} for $t \in(\varepsilon, \tau)$. As a consequence, the previous results hold in all the time intervals $[\varepsilon,+\infty)$, so that and the limit function u it is still unique and continuous, and it is locally Lipschitz continuous in the interior of E^{0}.

On the other hand, for an arbitrary anisotropy ϕ, the function u could be discontinuous on the boundary of E^{0}. As an example let us consider, in two dimensions, the case $\psi(\xi, \eta)=\phi(\xi, \eta)=|\xi|+|\eta|$ (and $\left\{\psi^{\circ} \leq 1\right\}=\{(x, y):|x| \leq 1,|y| \leq 1\}$), and the cross-shaped initial datum

$$
E^{0}:=([-1,1] \times[-2,2]) \cup([-2,2] \times[-1,1]) \subset \mathbb{R}^{2} .
$$

It is easy to check that E^{0} is outward minimizing, so that $E(t) \subset E^{0}$ is also outward minimizing for all $t>0$. Moreover, the solution $E(t)=\{(x, y): u(x, y) \geq t\}$ is unique (see for instance [13]), and can be explicitly described as follows :

$$
E(t)= \begin{cases}([-1,1] \times[-2+t, 2-t]) \cup([-2+t, 2-t] \times[-1,1]) & \text { for } t \in[0,1] \tag{10}\\ {[-\sqrt{1-2(t-1)}, \sqrt{1-2(t-1)}]} & \text { for } t \in\left[1, \frac{3}{2}\right] \\ \emptyset & \text { for } t \geq \frac{3}{2}\end{cases}
$$

In particular, the function $u \in B V\left(\mathbb{R}^{2}\right)$ is discontinuous on $\partial E^{0} \backslash \partial([-2,2] \times[-2,2])$.

We observe that formula (10) for $E(t)$ can be easily obtained by finding explicit solutions to $(A T W)$, starting from $E_{L}=([-1,1] \times[-L, L]) \cup([-L, L] \times[-1,1]), L>1$. An approach is as follows: a "calibration" is given by the vector field (which one defines only in E_{L}):

$$
z(x, y)= \begin{cases}(x, y) & \text { if }|x| \leq 1,|y| \leq 1 \\ (x, \pm 1) & \text { if }|x| \leq 1,1 \leq \pm y \leq L \\ (\pm 1, y) & \text { if } 1 \leq \pm x \leq L,|y| \leq 1\end{cases}
$$

One has $\operatorname{div} z=1+\chi_{[-1,1]^{2}}$ in $E_{L}, z(x, y) \in\left\{\psi^{\circ} \leq 1\right\}$, and $P_{\phi}\left(E_{\ell}\right)=\int_{\partial E_{\ell}} z \cdot \nu d \mathcal{H}^{1}$ for any $1 \leq \ell \leq L$. Hence, if $L-h \geq 1$ and $F \subset E_{L}$, we have

$$
\begin{aligned}
& P_{\phi}(F)+\int_{F} \frac{d_{E_{L}}^{\psi^{\circ}}}{h} d x \geq \int_{\partial F} \nu \cdot z d \mathcal{H}^{1}+\int_{F} \frac{d_{E_{L}}^{\psi^{\circ}}}{h} d x \\
& \quad= \int_{\partial F} \nu \cdot z d \mathcal{H}^{1}-\int_{\partial E_{L-h}} \nu \cdot z d \mathcal{H}^{1}+P_{\phi}\left(E_{L-h}\right)+\int_{F} \frac{d_{E_{L}}^{\psi^{\circ}}}{h} d x \\
&=\int z \cdot\left(D \chi_{E_{L-h}}-D \chi_{F}\right)+P_{\phi}\left(E_{L-h}\right)+\int_{E_{L-h}} \frac{d_{E_{L}}^{\psi^{\circ}}}{h} d x+\int_{E_{L}}\left(\chi_{F}-\chi_{E_{L-h}}\right) \frac{d_{E_{L}}^{\psi^{\circ}}}{h} d x \\
&=P_{\phi}\left(E_{L-h}\right)+\int_{E_{L-h}} \frac{d_{E_{L}}^{\psi^{\circ}}}{h} d x+\int_{E_{L}}\left(\chi_{F}-\chi_{E_{L-h}}\right)\left(\frac{d_{E_{L}}^{\psi^{\circ}}}{h}+1+\chi_{[-1,1]^{2}}\right) d x .
\end{aligned}
$$

Now, the last integral is nonnegative, since $d_{E_{L}}^{\psi^{\circ}} / h+1 \leq 0$ in E_{L-h}, and is positive outside. As a consequence, E_{L-h} solves $(A T W)$ for $E=E_{L}$, and one deduces the first line in (10). The proof of the second line in (10) is a standard computation (see for instance [5]).

4.2. Continuity of the volume up to $t=0$

We provide an example of an open set E satisfying $\left(M C_{\delta}\right)$ for some $\delta>0$, and such that $|\partial E|=$ $|\overline{\{u>0\}}|>0$.

Let $\left(x_{n}\right)_{n \geq 1}$ be a dense sequence of rational points in $\Omega:=B(0,1) \subset \mathbb{R}^{2}$. We shall construct inductively a sequence $\left(r_{n}\right)_{n \geq 1}$ of positive numbers with $\sum_{n} r_{n}^{d-1}<+\infty$ such that the following property holds: Letting $E_{0}=\emptyset$ and $E_{n}=E_{n-1} \cup B\left(x_{n}, r_{n}\right)$ for $n \geq 1$, the sets E_{n} all satisfy $\left(M C_{\delta}\right)$ in Ω for some $\delta>0$.

Notice first that there exists $\delta>0$ such that each ball $B(x, r) \subset \Omega$ satisfies $\left(M C_{2 \delta}\right)$ in Ω. Choose now $r_{1}>0$ in such a way that $E_{1}=B\left(x_{1}, r_{1}\right) \subset \Omega$, then E_{1} satisfies $\left(M C_{2 \delta}\right)$. Assume now by induction that E_{n} satisfies $\left(M C_{(1+1 / n) \delta}\right)$. Then, if $d_{n}:=\operatorname{dist}\left(x_{n+1}, E_{n}\right)=0$ we let $r_{n+1}=0$, so that $E_{n+1}=E_{n}$. Otherwise, if $d_{n}>0$ we choose $r_{n+1} \in\left(0,2^{-n}\right)$ in such a way that

$$
\begin{equation*}
r_{n+1} \leq \min \left(\frac{1}{2}\left(\frac{1}{n}-\frac{1}{n+1}\right) \frac{\delta d_{n}^{2}}{2 \pi C}, \frac{d_{n}}{6}\right) \tag{11}
\end{equation*}
$$

where the constant $C>0$ will be chosen later in Case 3. Let also $\mathcal{N} \subset \mathbb{N}$ be the (infinite) set of indices such that $r_{n}>0$.

Let us check that E_{n+1} satisfies $\left(M C_{\delta+\delta /(n+1)}\right)$. We consider a set F of finite perimeter such that $E_{n+1} \subset F \subset \Omega$, and we distinguish three cases:

Case 1. $\left|F \cap B\left(x_{n}, d_{n}\right)\right| \geq d_{n}^{2} / C$. In this case we have

$$
\begin{aligned}
P(F) & \geq P\left(E_{n}\right)+\left(1+\frac{1}{n}\right) \delta\left|F \backslash E_{n}\right| \\
& \geq P\left(E_{n+1}\right)-2 \pi r_{n+1}+\left(1+\frac{1}{n+1}\right) \delta\left|F \backslash E_{n}\right|+\left(\frac{1}{n}-\frac{1}{n+1}\right) \delta\left|F \cap B\left(x_{n}, d_{n}\right)\right| \\
& \geq P\left(E_{n+1}\right)+\left(1+\frac{1}{n+1}\right) \delta\left|F \backslash E_{n+1}\right|+\left(\frac{1}{n}-\frac{1}{n+1}\right) \frac{\delta d_{n}^{2}}{C}-2 \pi r_{n+1} \\
& \geq P\left(E_{n+1}\right)+\left(1+\frac{1}{n+1}\right) \delta\left|F \backslash E_{n+1}\right|
\end{aligned}
$$

where in the last inequality we used (11).
Case 2. $\left|F \cap B\left(x_{n}, d_{n}\right)\right| \leq d_{n}^{2} / C$ and $\mathcal{H}^{1}\left(F \cap \partial B\left(x_{n}, r\right)\right)=0$ for some $r \in\left(r_{n+1}, d_{n}\right)$. In this case, we write $F=F_{1} \cup F_{2}$, with $F_{1}=F \cap B\left(x_{n}, r\right) \supset B\left(x_{n}, r_{n+1}\right)$ and $F_{2}=F \backslash B\left(x_{n}, r\right) \supset E_{n}$, and we have

$$
\begin{aligned}
& P\left(F_{1}\right) \geq P\left(B\left(x_{n}, r_{n+1}\right)\right)+2 \delta\left|F_{1} \backslash B\left(x_{n}, r_{n+1}\right)\right| \\
& P\left(F_{2}\right) \geq P\left(E_{n}\right)+\left(1+\frac{1}{n}\right) \delta\left|F_{2} \backslash E_{n}\right|
\end{aligned}
$$

Summing up the two inequalities above, we get

$$
\begin{aligned}
P(F) & =P\left(F_{1}\right)+P\left(F_{2}\right) \geq P\left(E_{n+1}\right)+\left(1+\frac{1}{n}\right) \delta\left(\left|F_{1} \backslash B\left(x_{n}, r_{n+1}\right)\right|+\left|F_{2} \backslash E_{n}\right|\right) \\
& =P\left(E_{n+1}\right)+\left(1+\frac{1}{n}\right) \delta\left|F \backslash E_{n+1}\right|
\end{aligned}
$$

Case 3. $\left|F \cap B\left(x_{n}, d_{n}\right)\right| \leq d_{n}^{2} / C$ and $\mathcal{H}^{1}\left(F \cap \partial B\left(x_{n}, r\right)\right)>0$ for a.e. $r \in\left(r_{n+1}, d_{n}\right)$. In this case, by coarea formula we have

$$
\left|F \cap\left(B\left(x_{n}, \frac{d_{n}}{3}\right) \backslash B\left(x_{n}, \frac{d_{n}}{6}\right)\right)\right|=\int_{\frac{d_{n}}{6}}^{\frac{d_{n}}{3}} \mathcal{H}^{1}\left(F \cap \partial B\left(x_{n}, r\right)\right) d r \leq \frac{d_{n}^{2}}{C}
$$

It follows that there exists $r_{1} \in\left(d_{n} / 6, d_{n} / 3\right)$ such that

$$
\mathcal{H}^{1}\left(F \cap \partial B\left(x_{n}, r_{1}\right)\right) \leq \frac{6 d_{n}}{C}
$$

Similarly we have

$$
\left|F \cap\left(B\left(x_{n}, d_{n}\right) \backslash B\left(x_{n}, \frac{2 d_{n}}{3}\right)\right)\right|=\int_{\frac{2 d_{n}}{3}}^{d_{n}} \mathcal{H}^{1}\left(F \cap \partial B\left(x_{n}, r\right)\right) d r \leq \frac{d_{n}^{2}}{C}
$$

and there exists $r_{2} \in\left(2 d_{n} / 3, d_{n}\right)$ such that

$$
\mathcal{H}^{1}\left(F \cap \partial B\left(x_{n}, r_{2}\right)\right) \leq \frac{3 d_{n}}{C}
$$

Using that $\mathcal{H}^{1}\left(F \cap \partial B\left(x_{n}, r\right)\right)>0$ for all $r \in\left(r_{n+1}, d_{n}\right)$ we deduce that either for a.e. $r \in\left(r_{1}, r_{2}\right)$, $\mathcal{H}^{0}\left(\partial^{*} F \cap B\left(x_{n}, r\right)\right) \geq 2$ and it follows that $P\left(F, B\left(x_{n}, r_{2}\right) \backslash B\left(x_{n}, r_{1}\right)\right) \geq 2\left(r_{2}-r_{1}\right) \geq 2 d_{n} / 3$, or for a set of positive measure of radii $r \in\left(r_{1}, r_{2}\right)$ one has $\mathcal{H}^{1}\left(F \cap \partial B\left(x_{n}, r\right)\right)=2 \pi r$, however this implies $P\left(F, B\left(x_{n}, r_{2}\right) \backslash B\left(x_{n}, r_{1}\right)\right) \geq 2 \pi r_{1}-6 d_{n} / C \geq d_{n}(\pi / 3-6 / C) \geq 2 d_{n} / 3$ provided we have chosen $C \geq 18 /(\pi-2)$.

Then, proceeding as in the previous case we let $F_{1}=F \cap B\left(x_{n}, r_{1}\right)$ and $F_{2}=F \backslash B\left(x_{n}, r_{2}\right)$, and we have

$$
\begin{aligned}
P(F) & =P\left(F_{1}\right)+P\left(F_{2}\right)-\mathcal{H}^{1}\left(F \cap \partial B\left(x_{n}, r_{1}\right)\right)-\mathcal{H}^{1}\left(F \cap \partial B\left(x_{n}, r_{2}\right)\right)+P\left(F, B\left(x_{n}, r_{2}\right) \backslash B\left(x_{n}, r_{1}\right)\right) \\
& \geq P\left(E_{n+1}\right)+\left(1+\frac{1}{n}\right) \delta\left(\left|F_{1} \backslash B\left(x_{n}, r_{n+1}\right)\right|+\left|F_{2} \backslash E_{n}\right|\right)-\frac{9 d_{n}}{C}+\frac{2 d_{n}}{3} \\
& \geq P\left(E_{n+1}\right)+\left(1+\frac{1}{n}\right) \delta\left|F \backslash E_{n+1}\right|-\left(1+\frac{1}{n}\right) \delta \frac{d_{n}^{2}}{C}-\frac{9 d_{n}}{C}+\frac{2 d_{n}}{3} \\
& \geq P\left(E_{n+1}\right)+\left(1+\frac{1}{n}\right) \delta\left|F \backslash E_{n+1}\right|-\frac{2 \delta+9}{C} d_{n}+\frac{2 d_{n}}{3} \\
& \geq P\left(E_{n+1}\right)+\left(1+\frac{1}{n}\right) \delta\left|F \backslash E_{n+1}\right|,
\end{aligned}
$$

as long as we choose $C \geq 3(2 \delta+9) / 2$.
We proved that E_{n} satisfies $\left(M C_{\delta}\right)$ for all $n \in \mathbf{N}$, therefore also the limit set

$$
E=\bigcup_{n \in \mathbf{N}} E_{n}=\bigcup_{n \in \mathbf{N}} B\left(x_{n}, r_{n}\right)
$$

satisfies $\left(M C_{\delta}\right)$ in Ω. In this case, the solution u in Theorem 3.1 is explicit and is given by

$$
u(x)=\sum_{n \in \mathbf{N}} \frac{\left(r_{n}^{2}-\left|x-x_{n}\right|^{2}\right)^{+}}{2(d-1)}
$$

Notice that we have

$$
\partial\{u>0\}=\partial E=\overline{B(0,1)} \backslash E,
$$

so that $|\partial\{u>0\}|=\pi-|E|>0$.

A. 1-superharmonic functions

The goal of this appendix is to recall some results proved in [16] on 1-superharmonic functions, to give precise statements in the anisotropic case, and to propose some simple proofs, when possible.

Definition A.1. We say that u is $(\phi-) 1$-superharmonic in Ω if $\{u \neq 0\} \subset \subset \Omega$ and for any v with $v \geq u,\{v \neq 0\} \subset \subset \Omega$, one has

$$
\int_{\Omega} \phi(-D u) \leq \int_{\Omega} \phi(-D v)
$$

or, equivalently, for any v with compact support in Ω,

$$
\begin{equation*}
\int_{\Omega} \phi(-D(u \wedge v)) \leq \int_{\Omega} \phi(-D v) \tag{SH}
\end{equation*}
$$

Given $\delta>0$, we say that u is $((\phi, \delta)-) 1$-superharmonic in Ω if $\{u \neq 0\} \subset \subset \Omega$ and one has:

$$
\int_{\Omega} \phi(-D(u \wedge v)) \leq \int_{\Omega} \phi(-D v)-\delta \int_{\Omega}(v-u)^{+} d x \quad \forall v,\{v \neq 0\} \subset \subset \Omega
$$

Equivalently, u is a minimizer of

$$
\int_{\Omega} \phi(-D u)-\delta \int_{\Omega} u d x
$$

with respect to larger competitors with the same boundary condition.

Obviously then, $u \geq 0$ (using $v=u^{+}$in $(S H)$). Notice that χ_{E} is 1-superharmonic if and only if the set E is outward minimizing.

Observe that, in this case, the set $E^{0}=\{u>0\}$ has finite perimeter and satisfies $\left(M C_{\delta}\right)$. Indeed, for $E \subset F \subset \subset \Omega$, letting $v=\varepsilon \chi_{F}$ for $\varepsilon>0$, we have

$$
\begin{aligned}
\int_{\Omega} \phi\left(-D\left(u \wedge \varepsilon \chi_{F}\right)\right)=\int_{0}^{\varepsilon} P_{\phi} & (\{u>s\} \cap F) d s \\
& \leq \varepsilon P_{\phi}(F)-\delta \int_{\Omega}\left(\varepsilon \chi_{F}-u\right)^{+} d x=\varepsilon\left(P_{\phi}(F)-\delta \int_{\Omega}\left(\chi_{F}-u / \varepsilon\right)^{+} d x\right) .
\end{aligned}
$$

Hence:

$$
\int_{0}^{1} P_{\phi}(\{u>t \varepsilon\} \cap F) d t \leq P_{\phi}(F)-\delta \int_{\Omega}\left(\chi_{F}-u / \varepsilon\right)^{+} d x .
$$

Sending $\varepsilon \rightarrow 0$, we deduce $\left(M C_{\delta}\right)$.
In particular, it follows from Lemma 2.6 that for any $v \in B V(\Omega)$ compactly supported, $\delta \int_{\Omega}|v| d x \leq$ $\int_{\Omega} \phi(-D v)$. We then deduce that if u satisfies $\left(S H_{\delta}\right)$ also $u \wedge T$ for any $T>0$. Indeed,

$$
\int_{\Omega} \phi(-D((u \wedge T) \wedge v)) \leq \int_{\Omega} \phi(-D(v \wedge T))-\delta \int_{\Omega}((v \wedge T)-u)^{+} d x
$$

On the other hand,

$$
\int_{\Omega} \phi(-D(v \wedge T))=\int_{\Omega} \phi(-D v)-\int_{\Omega} \phi\left(-D(v-T)^{+}\right) \leq \int_{\Omega} \phi(-D v)-\delta \int_{\Omega}(v-T)^{+} d x
$$

and it follows

$$
\int_{\Omega} \phi(-D((u \wedge T) \wedge v)) \leq \int_{\Omega} \phi(-D v)-\delta \int_{\Omega}(v-(u \wedge T))^{+} d x
$$

Then, the following characterization holds:
Proposition A.2. Let u satisfy $\left(S H_{\delta}\right)$. Then there exists $z \in L^{\infty}\left(\Omega ;\left\{\phi^{\circ} \leq 1\right\}\right)$ with $\operatorname{div} z \geq \delta$, $\left[z, D u^{+}\right]=|D u|$ in the sense of measures (equivalently, $\int_{\Omega} u^{+} \operatorname{div} z d x=\int \phi(-D u)$), and $\operatorname{div} z=\delta$ on $\{u=0\}$.

Corollary A.3. Let u satisfy $\left(S H_{\delta}\right)$. Then for any $s>0,\left\{u^{+} \geq s\right\}$ and $\left\{u^{+}>s\right\}$ satisfy $\left(M C_{\delta}\right)$.
Here, u^{+}is as usual the superior approximate limit of u (defined \mathcal{H}^{d-1}-a.e.) and $\left[z, D u^{+}\right]$the pairing in the sense of Anzellotti [4].

Proof. For $n \geq 1$, let v_{n} be the unique minimizer of

$$
\begin{equation*}
\min _{v=0} \int_{\Omega \Omega} \phi(-D v)+\int_{\Omega} \frac{n}{2}(v-u \wedge n)^{2}-\delta v d x \tag{12}
\end{equation*}
$$

(the boundary condition is to be intended in a relaxed sense, adding a term $\int_{\partial \Omega}|\operatorname{Tr} v| \phi\left(\nu_{\Omega}\right) d \mathcal{H}^{d-1}$ in the energy if the trace of v on the boundary does not vanish). The Euler-Lagrange equation for this problem asserts the existence of a field $z_{n} \in L^{\infty}\left(\Omega ;\left\{\phi^{\circ} \leq 1\right\}\right)$ with bounded divergence such that

$$
\operatorname{div} z_{n}+n v_{n}=n(u \wedge n)+\delta
$$

a.e. in Ω, and $\int_{\Omega} \operatorname{div} z_{n} v_{n} d x=\int_{\Omega} \phi\left(-D v_{n}\right)$. On the other hand $\int_{\Omega} \phi\left(-D v_{n}\right) \leq \int_{\Omega} \phi(-D(u \wedge n)) \leq$ $\int_{\Omega} \phi(-D u)$ and we have $v_{n} \rightarrow u, \int_{\Omega} \phi\left(-D v_{n}\right) \rightarrow \int_{\Omega} \phi(-D u)$ as $n \rightarrow \infty$.

We show that $v_{n} \leq u \wedge n$. Indeed, $\int_{\Omega} \phi\left(-D\left(v_{n} \wedge u \wedge n\right)\right) \leq \int_{\Omega} \phi\left(-D v_{n}\right)-\delta \int_{\Omega}\left(v_{n}-(u \wedge n)\right)^{+} d x$, while $\int_{\Omega}\left(v_{n}-(u \wedge n)\right)^{2} d x \geq \int_{\Omega}\left(\left(v_{n} \wedge u \wedge n\right)-(u \wedge n)\right)^{2}$. Hence,

$$
\begin{aligned}
\int_{\Omega} \phi\left(-D\left(v_{n} \wedge u \wedge n\right)\right)+ & \frac{n}{2} \int_{\Omega}\left(\left(v_{n} \wedge u \wedge n\right)-(u \wedge n)\right)^{2}-\delta \int_{\Omega}\left(v_{n} \wedge u \wedge n\right) d x \\
\leq & \int_{\Omega} \phi\left(-D v_{n}\right)+\frac{n}{2} \int_{\Omega}\left(v_{n}-(u \wedge n)\right)^{2} d x-\delta \int_{\Omega} v_{n} d x \\
& +\delta \int_{\Omega}\left(v_{n}-\left(v_{n} \wedge u \wedge n\right)\right)-\left(v_{n}-(u \wedge n)\right)^{+} d x \\
& =\int_{\Omega} \phi\left(-D v_{n}\right)+\frac{n}{2} \int_{\Omega}\left(v_{n}-(u \wedge n)\right)^{2} d x-\delta \int_{\Omega} v_{n} d x
\end{aligned}
$$

and as the minimizer v_{n} of (12) is unique, we deduce $v_{n}=v_{n} \wedge u \wedge n$. In particular, it follows $\operatorname{div} z_{n} \geq \delta$. (Observe that since $v_{n} \geq 0$, one also has $\operatorname{div} z_{n} \leq \delta+n(u \wedge n)$, in particular $\operatorname{div} z_{n}=\delta$ a.e. in $\{u=0\}$. Also, $\int_{\{u>0\}} \operatorname{div} z_{n} \leq P_{\phi}\left(E^{0}\right)$, hence $\left(\operatorname{div} z_{n}\right)_{n \geq 1}$ are uniformly bounded Radon measures. Hence, up to a subsequence, we may assume that $z_{n} \xrightarrow{*} z$ weakly-* in $L^{\infty}\left(\Omega ;\left\{\phi^{\circ} \leq 1\right\}\right)$ while $\operatorname{div} z_{n} \stackrel{*}{\longrightarrow} \operatorname{div} z$ weakly-* in $\mathcal{M}^{1}\left(\Omega ; \mathbb{R}_{+}\right)$, that is, as positive measures.

We now write

$$
\int_{\Omega} \phi\left(-D v_{n}\right)=\int_{\Omega} v_{n} \operatorname{div} z_{n} d x \leq \int_{\Omega}(u \wedge n) \operatorname{div} z_{n} d x=\int_{0}^{n} \int_{\{u \geq s\}} \operatorname{div} z_{n} d x d s
$$

hence, since $v_{n} \rightarrow u$,

$$
\int_{\Omega} \phi(-D u) \leq \limsup _{n \rightarrow \infty} \int_{0}^{n} \int_{\{u \geq s\}} \operatorname{div} z_{n} d x d s \leq \int_{0}^{\infty}\left(\limsup _{n \rightarrow \infty} \int_{\{u \geq s\}} \operatorname{div} z_{n} d x\right) d s
$$

thanks to Fatou's lemma (and the fact $\int_{\{u \geq s\}} \operatorname{div} z_{n} d x \leq P_{\phi}\left(E^{0}\right)$ are uniformly bounded).
We now study the limit of $\int_{\{u \geq s\}} \operatorname{div} z_{n} \bar{d} x$, for $s>0$ given, assuming $\{u>s\}$ has finite perimeter (this is true for a.e. s, and in fact one could independently check that $s \mapsto P_{\phi}(\{u \geq s\})$ is nonincreasing).

We consider a set $F=\{u \geq s\}$ with finite perimeter, and we recall $D \chi_{F}$ is supported on the reduced boundary $\partial^{*} F$. By inner regularity, given $\varepsilon>0$, we find a compact set $K \subset \partial^{*} F$ with $\left|D \chi_{F}\right|(\Omega \backslash K)<\varepsilon$. We observe that \mathcal{H}^{d-1}-a.e. on K (which is countably rectifiable), χ_{F} has an upper an lower trace, respectively $\chi_{F}^{+}=1$ and $\chi_{F}^{-}=0$. By the Meyers-Serrin Theorem (or its $B V$ version, $c f[3]$ or [2, Theorem 3.9]), there exists φ_{k} a sequence of functions in $C^{\infty}(\Omega \backslash K ;[0,1])$ with $\varphi_{k} \rightarrow \chi_{F}$ and

$$
\int_{0}^{1} \mathcal{H}^{d-1}\left(\left\{x \in \Omega \backslash K: \varphi_{k}(x)=k\right\}\right)=\int_{\Omega \backslash K}\left|\nabla \varphi_{k}\right| d x \rightarrow\left|D \chi_{F}\right|(\Omega \backslash K)<\varepsilon
$$

Moreover, by construction the traces of φ_{k} in K coincide with the traces of χ_{F} (see [2, Section 3.8]).
We choose for each $k s_{k} \in[1 / 4,3 / 4]$ such that $\mathcal{H}^{d-1}\left(\partial\left\{\varphi_{k} \geq s_{k}\right\} \backslash K\right) \leq 2 \varepsilon$. We then define the closed (compact) sets $F_{k}:=\left\{\varphi_{k} \geq s_{k}\right\} \cup K$. One has $\int_{\Omega}\left|D \chi_{F}-D \chi_{F_{k}}\right|=\int_{\Omega \backslash K}\left|D \chi_{F}-D \chi_{F_{k}}\right| \leq 3 \varepsilon$. (This shows that F can be approximated strongly in $B V$ norm by closed sets.)

Then, one has $\lim \sup _{n} \int_{F_{k}} \operatorname{div} z_{n} d x \leq \int_{F_{k}} \operatorname{div} z$ as the measures are nonnegative and $\chi_{F_{k}}$ is scs. On the other hand, $\left|\int_{\Omega} \operatorname{div} z_{n}\left(\chi_{F}-\chi_{F_{k}}\right) d x\right| \leq 3 \varepsilon$, so that

$$
\limsup _{n \rightarrow \infty} \int_{F} \operatorname{div} z_{n} d x \leq 3 \varepsilon+\int_{F} \operatorname{div} z+\int\left(\chi_{F_{k}}-\chi_{F}\right) \operatorname{div} z \leq 3 \varepsilon+\int_{F} \operatorname{div} z+\int\left(\chi_{F_{k}}-\chi_{F}\right)^{+} \operatorname{div} z .
$$

Notice that it is important to specify precisely the set F that we consider in the last inequality: We pick for F the complement F^{+}of its points of density zero, equivalently $F^{+}=\left\{u^{+} \geq s\right\}$. In that case,
up to a set of zero \mathcal{H}^{d-1}-measure, $\chi_{G}:=\left(\chi_{F_{k}}-\chi_{F^{+}}\right)^{+}=\chi_{F_{k} \backslash F^{+}}$vanishes on K pointwise, moreover at \mathcal{H}^{d-1}-a.e. $x \in K, G$ has Lebesgue density 0 . Hence G coincides \mathcal{H}^{d-1}-a.e. with a Caccioppoli set strictly inside Ω and with $\int_{\Omega}\left|D \chi_{G}\right| \leq 3 \varepsilon$. Thanks to [18, Thm 5.12.4] it follows $\operatorname{div} z(G) \leq C \varepsilon$ for C depending only on ϕ and the dimension (see also [16, Prop. 3.5]). As a consequence, since $\varepsilon>0$ is arbitrary,

$$
\limsup _{n \rightarrow \infty} \int_{\{u \geq s\}} \operatorname{div} z_{n} d x \leq \int_{\left\{u^{+} \geq s\right\}} \operatorname{div} z
$$

We obtain that

$$
\int_{\Omega} \phi(-D u) \leq \int_{\Omega} u^{+} \operatorname{div} z
$$

The reverse inequality also holds thanks to [16, Prop. $3.5,(3.9)]$, and can be proved by localizing and smoothing with kernels depending on the local orientation of the jump. We also deduce that, for a.e. $s>0$,

$$
\int_{\left\{u^{+} \geq s\right\}} \operatorname{div} z=P_{\phi}(\{u \geq s\})
$$

Note that $s \mapsto \operatorname{div} z\left(\left\{u^{+} \geq s\right\}\right)$ is left-continuous, and $s \mapsto \operatorname{div} z\left(\left\{u^{+}>s\right\}\right)$ is right-continuous, whereas $s \mapsto P_{\phi}\left(\left\{u^{+} \geq s\right\}\right)$ is left-semicontinuous, which implies the thesis.

References

[1] Fred Almgren, Jean E. Taylor, and Lihe Wang. Curvature-driven flows: a variational approach. SIAM J. Control Optim., 31(2):387-438, 1993.
[2] Luigi Ambrosio, Nicola Fusco, and Diego Pallara. Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000.
[3] G. Anzellotti and M. Giaquinta. BV functions and traces. Rend. Sem. Mat. Univ. Padova, 60:1-21 (1979), 1978.
[4] Gabriele Anzellotti. Pairings between measures and bounded functions and compensated compactness. Ann. Mat. Pura Appl. (4), 135:293-318 (1984), 1983.
[5] Giovanni Bellettini, Vicent Caselles, Antonin Chambolle, and Matteo Novaga. Crystalline mean curvature flow of convex sets. Arch. Ration. Mech. Anal., 179(1):109-152, 2006.
[6] J. W. Cahn and D. W. Hoffmann. A vector thermodynamics for anisotropic surfaces-ii. curved and faceted surfaces. Acta Metallurgica, 22:1205-1214, 051974.
[7] David G. Caraballo. Flat ϕ curvature flow of convex sets. Taiwanese J. Math., 16(1):1-12, 2012.
[8] V. Caselles and A. Chambolle. Anisotropic curvature-driven flow of convex sets. Nonlinear Anal., 65(8):1547-1577, 2006.
[9] Antonin Chambolle, Massimiliano Morini, Matteo Novaga, and Marcello Ponsiglione. Existence and uniqueness for anisotropic and crystalline mean curvature flows. Jour. Amer. Math. Soc., 32(3):779-824, 2019.
[10] Antonin Chambolle, Massimiliano Morini, Matteo Novaga, and Marcello Ponsiglione. Generalized crystalline evolutions as limits of flows with smooth anisotropies. Anal. PDE, 12(3):789-813, 2019.
[11] Antonin Chambolle, Massimiliano Morini, and Marcello Ponsiglione. Existence and uniqueness for a crystalline mean curvature flow. Comm. Pure Appl. Math., 70(6):1084-1114, 2017.
[12] Guido De Philippis and Tim Laux. Implicit time discretization for the mean curvature flow of mean convex sets. arXiv:1806.02716, Jun 2018. to appear on Ann. Sc. Norm. Sup. Pisa Cl. Sci.
[13] M.-H. Giga and Y. Giga. Generalized motion by nonlocal curvature in the plane. Arch. Ration. Mech. Anal., 159(4):295-333, 2001.
[14] Stephan Luckhaus and Thomas Sturzenhecker. Implicit time discretization for the mean curvature flow equation. Calc. Var. Partial Differential Equations, 3(2):253-271, 1995.
[15] Alessandra Lunardi. Analytic semigroups and optimal regularity in parabolic problems. Modern Birkhäuser Classics. Birkhäuser/Springer Basel AG, Basel, 1995.
[16] Christoph Scheven and Thomas Schmidt. BV supersolutions to equations of 1-Laplace and minimal surface type. J. Differential Equations, 261(3):1904-1932, 2016.
[17] Emanuele Spadaro. Mean-convex sets and minimal barriers. arXiv:1112.4288, Dec. 2011.
[18] William P. Ziemer. Weakly differentiable functions, volume 120 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1989.

[^0]: *CMAP, Ecole Polytechnique, CNRS, Institut Polytechnique de Paris, Palaiseau, France, e-mail: antonin.chambolle@polytechnique.fr
 ${ }^{\dagger}$ Dipartimento di Matematica, Università di Pisa, Largo B. Pontecorvo 5, 56127 Pisa, Italy, e-mail: matteo.novaga@unipi.it

[^1]: ${ }^{1}$ We can say that u_{h} is a function in $B V(\Omega)$ with compact support and such that its approximate lower limit u_{h}^{-}is lower semicontinuous.

