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Anisotropic and crystalline mean curvature

flow of mean-convex sets

Antonin Chambolle ∗ , Matteo Novaga †

We consider a variational scheme for the anisotropic (including crystalline) mean

curvature flow of sets with strictly positive anisotropic mean curvature. We show

that such condition is preserved by the scheme, and we prove the strict conver-

gence in BV of the time-integrated perimeters of the approximating evolutions,

extending a recent result of De Philippis and Laux to the anisotropic setting. We

also prove uniqueness of the flat flow obtained in the limit.
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1. Introduction

We are interested in the anisotropic mean curvature flow of sets with positive anisotropic mean curva-

ture. More precisely, following [11, 9] we consider a family of sets t 7→ E(t) governed by the geometric

evolution law

V (x, t) = −ψ(νE(t))κ
φ
E(t)(x), (1)

where V (x, t) denotes the normal velocity of the boundary ∂E(t) at x, φ is a given norm on R
d, κφE(t)

is the anisotropic mean curvature of ∂E(t) associated with the anisotropy φ, and ψ is another norm

(usually called mobility) evaluated at the (outer) unit normal νE(t) to ∂E(t). We recall that when φ is

differentiable in R
N \{0}, then κφE is given by the tangential divergence of the so-called Cahn-Hoffman

vector field [6]

κφE = div τ (∇φ(νE)) , (2)

while in general (2) should be replaced with the differential inclusion

κφE = div τ

(

nφE

)

, nφE ∈ ∂φ(νE).

It is well-known that (1) can be interpreted as gradient flow of the anisotropic perimeter

Pφ(E) =

∫

∂E

φ(νE)dHd−1 ,

and one can construct global-in-time weak solutions by means of the variational scheme introduced by

Almgren, Taylor and Wang [1] and, independently, by Luckhaus and Sturzenhecker [14]. Such scheme

consists in building a family of discrete-in-time evolutions by an iterative minimization procedure and

in considering any limit of these discrete evolutions, as the time step h > 0 vanishes, as an admissible

solution to the geometric motion, usually referred to as a flat flow. The problem which is solved at

each step takes the form [1, §2.6] Enh := ThE
n−1
h , where ThE is the solution of

min
F
Pφ(F ) +

1

h

∫

F

dψ
◦

E (x)dx, (3)

where dψ
◦

E is the signed distance function of E, with respect to the (non necessarily symmetric) “norm”

ψ◦, which is defined as

dψ
◦

E (x) := inf
y∈E

ψ◦(x− y)− inf
y 6∈E

ψ◦(y − x). (4)

In [1] it is proved that the discrete solution Eh(t) := E
[ t

h
]

h , with ψ = 1 and φ smooth, converges to a

limit flat flow which is contained in the zero-level set of the (unique) viscosity solution of (1). Such a

result has been extended in [11, 9] to general anisotropies ψ, φ. In the isotropic case φ = ψ = | · | it is
shown in [14] that Eh(t) converges to a distributional solution E(t) of (1), under the assumption that

the perimeter is continuous in the limit, that is,

lim
h→0

∫ T

0

P (Eh(t)) dt =

∫ T

0

P (E(t)) for T > 0. (5)

Recently, in [12] the authors proved that the continuity of the perimeter holds if the initial set is

outward minimizing for the perimeter (see Section 2.1), a condition which implies the mean convexity

and which is preserved by the variational scheme 3, as already shown in [17].

In this paper we generalize the result in [12] to the general anisotropic case, where the continuity

of the perimeter was previously known only in the convex case [5], as a consequence of the convexity
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preserving property of the scheme. Such result is obtained under a stronger condition of strong outward

minimality of the initial set, which is also preserved by the scheme and implies the strict positivity

of the anisotropic mean curvature. As a corollary, we obtain the continuity of the volume and of the

(anisotropic) perimeter of the limit flat flow.

The plan of the paper is the following: In Section 2 we introduce the notion of outward minimizing

set, and we recall the variational scheme proposed by Almgren, Taylor and Wang in [1]. We also

show that the scheme preserves the strict outward minimality. In section 3 we show the strict BV -

convergence of the discrete arrival time functions, we prove the uniqueness of the limit flow, and we

show continuity in time of volume and perimeter, and in Section 4 we give some examples. Eventually,

in Appendix A we recall some results on 1-superharmonic functions, adapted to the anisotropic setting.

2. Preliminary definitions

2.1. Outward minimizing sets

Definition 2.1. Let Ω be an open subset of Rd and let E ⊂⊂ Ω be a finite perimeter set. We say

that E is outward minimizing in Ω (see [12, 17]) if

Pφ(E) ≤ Pφ(F ) ∀F ⊃ E,F ⊂⊂ Ω. (MC)

Note that, if E, φ are regular, (MC) implies that the φ-mean curvature of ∂E is non-negative.

We observe that such a set (or rather its complement) satisfies the following density bound: there

exists γ > 0 such that for all x ∈ E such that |B(x, ρ) \E| > 0 for all ρ > 0, one has:

|B(x, ρ) \ E|
|B(x, ρ)| ≥ γ (6)

whenever B(x, ρ) ⊂ Ω. A consequence is that whenever x ∈ E is a point of Lebesgue density one, then

there is ρ small such that (6) does not hold, and it follows that for a smaller radius ρ′, |B(x, ρ′)\E| = 0.

(This is even quantitative in the following sense: if |B(x, ρ)\E| < γ2−d|B(x, ρ)| then |B(y, ρ/2)\E| <
γ|B(y, ρ/2)| for all y ∈ B(x, ρ/2) so that |B(x, ρ/2) \ E| = 0.) Identifying thus E with its points of

Lebesgue density one, one will always assume that E is an open subset of Rd.

Conversely if E ⊂ R
d is bounded and C2, φ is C2(Rd \{0}), and its mean curvature is positive, then

one can find Ω ⊃⊃ E such that E is outward minimizing in Ω. More precisely, if E is of class C2 then,

in a neighborhood of ∂E, dφ
◦

E is C2, while in a smaller neighborhood we even have div∇φ(dφ
◦

E ) ≥ δ

for some δ > 0. Let Ω be the union of E and this neighborhood, and set nφE := ∇φ(dφ
◦

E ): then if

E ⊂ F ⊂⊂ Ω,

Pφ(F ) ≥
∫

∂∗F

nφE · νF dHd−1 = −
∫

Ω

nφE ·DχF

while by construction Pφ(E) = −
∫

Ω
nφE ·DχE . Hence,

Pφ(F ) ≥ Pφ(E)−
∫

Ω

nφE ·D(χF − χE) = Pφ(E) +

∫

F\E

divnφE ≥ Pφ(E) + δ|F \ E|.

Observe (see [12, Lemma 2.5]) that equivalently, one can express this as:

Pφ(E ∩ F ) ≤ Pφ(F )− δ|F \ E| ∀F ⊂⊂ Ω. (MCδ)

Clearly, condition (MCδ) is stronger and reduces to (MC) whenever δ = 0.
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Remark 2.2 (Non symmetric distances). As in the standard case (that is when ψ◦ is smooth and even),

the signed “distance” function defined in (4) is easily seen to satisfy the usual properties of a signed

distance function. First, it is Lipschitz continuous, hence differentiable almost everywhere. Then, if x

is a point of differentiability, dψ
◦

E (x) > 0 and y ∈ ∂E is such that ψ◦(x − y) = dψ
◦

E (x), then for s > 0

small and h ∈ R
d dψ

◦

E (x+sh) ≥ ψ◦(x+sh−y) ≥ ψ◦(x−y)+sz·h for any z ∈ ∂ψ◦(x−y) and one deduces

that ∂ψ◦(x − y) = {∇dψ
◦

E (x)}. If dψ
◦

E (x) < 0, one writes that ψ◦(y − x) = −dψ
◦

E (x) for some y ∈ ∂E

and uses ψ◦(y−x−sh) ≥ ψ◦(y−x)−sz ·h for some z ∈ ∂ψ◦(y−x), hence dψ
◦

E (x+sh)−dpE(x) ≤ sz ·h
to deduce now that ∂ψ◦(y − x) = {∇dψ

◦

E (x)}. In all cases, one has φ(∇dψ
◦

E (x)) = 1 a.e. in {dψ
◦

E 6= 0}
(while of course ∇dψ

◦

E (x) = 0 a.e. in {dψ
◦

E = 0}), and ∇dpE(x) · (x − y) = dψ
◦

E (x), which shows that

y ∈ x− dψ
◦

E (x)∂φ(∇dψ
◦

E (x))).

2.2. The discrete scheme

We now consider here the discrete scheme introduced in [14, 1] and its generalisation in [8, 5, 11, 10].

It is based on the following process: given h > 0, and E a (bounded) finite perimeter set, we define

ThE as a minimizer of

min
F

Pφ(F ) +
1

h

∫

F

dψ
◦

E (x)dx (ATW )

where dψ
◦

E is defined in (4). If E satisfies (MC) in Ω, it is clear that for h > 0 small enough, one has

ThE ⊂ E. Indeed, for h small enough one has ThE ⊂ Ω, and it follows from (MC) that

Ph(ThE ∩ E) +
1

h

∫

ThE∩E

dψ
◦

E (x)dx ≤ Ph(ThE) +
1

h

∫

ThE

dψ
◦

E (x)dx − 1

h

∫

ThE\E

dψ
◦

E (x)dx,

showing that |ThE \ E| = 0. We recall in addition that in this case, ThE is also φ-mean convex in

Ω, see the proof of [12, Lemma 2.7]. If E satisfies (MCδ) for δ > 0, we can improve the inclusion

ThE ⊂ E:

Lemma 2.3. Assume that E satisfies (MCδ), δ > 0. Then for h > 0 small enough, ThE + {φ◦ ≤
δh} ⊂ E. In particular, dψ

◦

ThE
≥ dψ

◦

E + δh and ThE ⊂ {dψ
◦

E ≤ −δh}.

Proof. Assume h is small enough so that ThE ⊂ E and E+{ψ◦ ≤ δh} ⊂ Ω. Choose τ with ψ◦(τ) < δh

and consider F := ThE + τ . We show that also F ⊂ E. The set F ⊂⊂ Ω is a minimizer of

Pφ(F ) +
1

h

∫

F

dψ
◦

E (x− τ)dx.

In particular, we have

Pφ(F ) +
1

h

∫

F

dψ
◦

E (x− τ)dx ≤ Pφ(F ∩ E) +
1

h

∫

F∩E

dψ
◦

E (x− τ)dx

≤ Pφ(F ) +
1

h

∫

F

dψ
◦

E (x − τ)dx −
∫

F\E

1

h
dψ

◦

E (x− τ) + δ dx.

By definition of the signed distance function, for x 6∈ E, dψ
◦

E (x−τ) ≥ −ψ◦(x−(x−τ)) = −ψ◦(τ) > −δh
so that if |F \ E| > 0 we have a contradiction. We deduce that ThE + {ψ◦ ≤ δh} ⊂ E.

In particular, if x ∈ ThE and y 6∈ E is such that dψ
◦

E (x) = −ψ◦(y − x), then y′ = y − δh(y −
x)/ψ◦(y − x) 6∈ ThE hence dψ

◦

ThE
≥ −ψ◦(y′ − x) = dψ

◦

E (x) − δh. If x ∈ E \ ThE, dψ
◦

E (x) = −ψ(y − x)

for some y ∈ Ω \ E, and dψ
◦

ThE
(x) = ψ(x − y′) for some y′ ∈ ThE. Since ψ(x − y′) + ψ(y − x) ≥

ψ(y − y′) ≥ δh we conclude. Eventually if x 6∈ E, for y ∈ ThE with dψ
◦

ThE
(x) = φ◦(x − y) we have
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y + δh(x − y)/φ◦(x − y) ∈ E, so that dψ
◦

E (x) ≤ φ◦(x − y) − δh = dψ
◦

ThE
(x) − δh. This shows that

dψ
◦

ThE
≥ dψ

◦

E + δh.

Corollary 2.4. For any n ≥ 1, T n+1
h E + {ψ◦ ≤ δh} ⊂ T nhE, and dψ

◦

Tn

h
E ≥ dψ

◦

E − δnh.

Proof. The first statement is obvious by induction: assuming that for τ with ψ◦(τ) ≤ δh one has

T nhE + τ ⊂ T n−1
h E (which is true for n = 1), one has applying Th again and using the translational

covariance that T n+1
h E + τ ⊂ T nhE. The second statement is obviously deduced, as in the previous

proof.

Remark 2.5 (Density estimates). There exists γ > 0, depending only on φ and the dimension, and

r0 > 0, depending also on ψ, such that the following holds: for x such that |B(x, r) ∩ ThE| > 0 for all

r > 0 one has |B(x, r) ∩ ThE| ≥ γrd if r < r0h. For the complement, as ThE is φ-mean convex in Ω,

we have as before that for x such that |B(x, r) \ ThE| > 0 for all r > 0, one has |B(x, r) \ ThE| ≥ γrd

for all r with B(x, r) ⊂ Ω, cf (6).

2.3. Preservation of the outward minimality

In the sequel, we show some further properties of the discrete evolutions and their limit. An interesting

result in [12] is that the (MCδ)-condition is preserved during the evolution. We prove that it is also

the case in the anisotropic setting.

We first show the following result:

Lemma 2.6. Assume E satisfies (MCδ) in Ω, with δ > 0. Then for any F ⊂⊂ Ω, δ|F | ≤ Pφ(F ).

Proof. Since δ|F | = δ|F ∩E|+ δ|F \E| ≤ δ|F ∩E|+(Pφ(F )−Pφ(F ∩E)) (using (MCδ)), it is enough

to show the result for F ⊂ E. We introduce for any s > 0 Es the largest minimizer of

Pφ(Es) +
1

s

∫

Es

dψ
◦

E dx. (7)

which is obtained as the level set {ws ≤ 0} of the (Lipschitz continuous) solution ws of the equation

−sdiv zs + ws = dψ
◦

Es
, zs ∈ ∂φ(∇ws),

see for instance [8] for details. It turns out that there exists some s0 > 0 such that for s < s0, Es ⊂ Ω.

This is true because by comparison it is easy to show that Es ⊂ E + B(0, C
√
s) for some constant

C depending only on φ, ψ, but in fact, as soon as the minimizer of the same problem (7) with Pφ
replaced with Pφ( · ; Ω) is strictly in Ω (hence in E, cf Lemma 2.3), then it coincides with Es and it

even follows that Es ⊂⊂ E. In addition, ψ(∇ws) ≤ 1 = ψ(∇dψ
◦

E ) a.e. in R
d. For s < s0, we denote

also E′
s = {ws < 0} the smallest minimizer of (7).

As Pφ(Es) ≤ Pφ(E), lims→0 Pφ(Es) = Pφ(E) and one deduces that for any F ⊂ E, lims→0 Pφ(F ∩
Es) = Pφ(F ). Indeed,

Pφ(F ∩Es) + Pφ(F ∪ Es) ≤ Pφ(F ) + Pφ(Es),

and F ∪ Es → E, so that

P (E) + lim sup
s

Pφ(F ∩ Es) ≤ Pφ(F ) + Pφ(E),

which shows the claim.
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Thanks to Lemma 2.3, one has that dψ
◦

E ≤ −sδ on ∂Es = {ws ≤ 0}. Now if x ∈ Es and y ∈ ∂Es,

ws(x) ≥ ws(y) − ψ◦(y − x) = −ψ◦(y − x) (using ψ◦(∇ws) ≤ 1). If z 6∈ E and y ∈ [x, z] ∩ ∂Es,

one has ψ◦(z − x) = ψ◦(z − y) + ψ◦(y − x) (by one-homogeneity) so that 0 ≤ ws(x) + ψ◦(y − x) =

ws(x) + ψ◦(z − x) − ψ◦(z − y) ≤ ws(x) + ψ◦(z − x) − sδ. Taking the infimum over z, we see that

sδ ≤ ws(x)− dψ
◦

E (x). Hence div zs ≥ δ a.e. in E.

Let now F ⊂ E, one has Pφ(F ∩ Es) ≥
∫

Ω div zsχF∩Es
≥ δ|F ∩ Es|. The lemma follows letting

s→ 0.

We can then deduce the following:

Lemma 2.7. Let δ > 0, E (open) satisfy (MCδ) in Ω, h > 0 small and ThE ⊂ E the solution of

(ATW ). Then ThE satisfies (MCδ).

Proof. We remark that the sets Es, E
′
s built in the previous proof satisfy Es ⊂ E′

s′ for s > s′. This

follows from the fact that the term s 7→ dψ
◦

E (x)/s < 0 is increasing for x ∈ E. In particular, if sn → s,

sn < s, then Esn → Es, while if sn > s, Ω \ E′
sn converges to Ω \ E′

s. Moreover, as the sets satisfy

uniform density estimates (for n large enough), these convergences are also in the Hausdorff sense. In

particular, we deduce that E \ E′
s =

⋃

0<s′≤s(Es′ \ E′
s′ ) (we recall Es′ \ E′

s′ = {ws′ = 0}).
Let ε > 0. The previous analysis also shows that there exists η > 0 (depending only on φ) such that

for any s ∈ (0, s0), in Ns = {x : dist(x,Es) < sη}, one has div zs ≥ δ − ε (we use here that ws − dψ
◦

E

is Lipschitz continuous).

Let h > s̄ > s > 0. The set Es \ E′
s̄ is covered by the open sets Ns \ E′

s, 0 < s < h. Hence one can

extract a finite covering indexed by s1 > s2 > · · · > sN−1. We observe that necessarily, h > s1 > s̄

and we let sN := s. Let F ⊂⊂ Ω and up to an infinitesimal translation, assume Hd−1(∂∗F ∩∂Esi ) = 0

for i = 1, . . . , N . One has for i ∈ {1, . . . , N}

Pφ(Esi+1
∩ F )− Pφ(Esi ∩ F ) ≥

∫

∂∗(F∩Esi+1
\Esi

)

zsi · ν dHd−1

=

∫

F∩Esi+1
\Esi

div zsidx ≥ (δ − ε)|F ∩Esi+1
\ Esi |

so that, summing from i = 1 to N , we find that

Pφ(Es1 ∩ F ) ≤ Pφ(Es ∩ F )− (δ − ε)|(Es \ Es1) ∩ F |.

Since Es is outward minimizing, Pφ(Es ∩ F ) ≤ Pφ(E ∩ F ) ≤ Pφ(F )− (δ − ε)|F \ E|, so that:

Pφ(Es1 ∩ F ) ≤ Pφ(F )− (δ − ε)(|F \ E|+ |(Es \ Es1) ∩ F |).

Sending s̄ < s1 to h and s to 0, we deduce that Pφ(Eh ∩F ) ≤ Pφ(F )− (δ− ε)|F \Eh| hence the thesis
holds, since ε is arbitrary.

3. The arrival time function

Consider an open set Ω ⊂ R
d and a set E0 ⊂⊂ Ω such that (MCδ) holds for some δ > 0. As

usual [14, 1] we let Eh(t) := T
[t/h]
h (E0), here [·] denotes the integer part. Being the sets T nh (E

0)

mean-convex, we can choose an open representative. We can define the discrete arrival time function

as

uh(x) := max{tχEh(t)(x), t ≥ 0},
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which is a l.s.c. function1 which, thanks to the co-area formula, satisfies
∫

Ω

φ(−Duh) ≤
∫

Ω

φ(−Dv) (8)

for any v ∈ BV (Rd) with v ≥ uh, v = 0 in R
d \Ω — hence a (φ-)1-superharmonic function in the sense

of [16], see Sec. A. One easily sees that (uh)h is uniformly bounded in BV (Ω) so that a subsequence

uhk
converges in L1(Ω) to some u (which again is 1-superharmonic).

In addition, as E0 satisfies (MCδ), we have thanks to Corollary 2.4 that uh has a sort of global

Lipschitz bound. More precisely, for x, y ∈ Ω there holds

uh(x) − uh(y) ≤ h+
φ◦(y − x)

δ

Indeed, one has uh(x) = t⇒ uh(x+ τ) ≥ t−h for any t ≥ 0 and τ with φ◦(τ) ≤ δh. The claim follows

by induction.

As a consequence we obtain that uh converges uniformly, up to a subsequence, to a limit function

u, which is also Lipschitz continuous, and satisfies

u(x)− u(y) ≤ φ◦(y − x)

δ
(9)

for any x, y ∈ Ω. Moreover, recalling Lemma 2.7, we have that the functions uh and u are (φ, δ)-1-

superharmonic, in the sense of Definition A.1 below.

We will show that the function u is unique, and is the arrival time function of the anisotropic

curvature flow starting form E0, in the sense of [9].

Theorem 3.1. Under the previous assumption on E0, the arrival time function uh converge to a

unique limit u, as h→ 0, which is such that (x, t) 7→ {u(x) ≤ t} is a solution of (MCF ) starting from

E. Moreover, there holds

lim
h→0

∫

Ω

φ(−Duh) =
∫

Ω

φ(−Du) .

Proof. Let us denote Es the (open) sets {u > s}. Since given x, ρ with B(x, ρ) ⊂ E, one knows that

the curvature flow starting from B(x, ρ) will contain x for a time of order ρ2, one has u(x) & ρ2. It

follows that x ∈ Es for some s ∼ ρ2 so that
⋃

s>0E
s = E.

As a consequence of the existence and uniqueness result in [11, 9]), for a.e. s > 0 the arrival time

functions ush ≤ uh of the discrete flows T
[t/h]
h Es converge uniformly to a unique limit us. In particular,

considering the subsequence uhk
, one has us ≤ u. On the other hand, thanks to Corollary 2.4 and the

Remark 2.5, given s > 0 there is τs > 0 such that T
[τs/h]
h E0 ⊂ Es. Then, T

[τs/h]+n
h E0 ⊂ T nhE

s by

induction so that uh − τs − h ≤ ush. If v is the limit of a converging subsequence of (uh), we deduce

v − τs ≤ us ≤ u. Sending s → 0 we deduce v ≤ u. Since this is true for any pair (u, v) of limits of

converging subsequences of (uh), this limit is unique and uh → u.

The last statement is already proved in [12] in a simple way: clearly, one just needs to show that

lim suph
∫

Ω φ(−Duh) ≤
∫

Ω φ(−Du). As (uh)h converges uniformly to u, given ε > 0, one has uh ≤ u+ε

for h small enough. On the other hand, since all these functions vanish out of E, it follows uh ≤ u+εχE.

Hence, being uh φ-1-superharmonic,
∫

Ω

φ(−Duh) ≤
∫

Ω

φ(−D(u+ εχE)) =

∫

Ω

φ(−Du) + εPφ(E)

for h small enough, and the thesis follows.

1We can say that uh is a function in BV (Ω) with compact support and such that its approximate lower

limit u
−
h

is lower semicontinuous.
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Theorem 3.1 shows that the scheme starting from a strict φ-mean convex set always converges to

a unique flow, with no loss of (anisotropic) perimeter. In particular, in the smooth and elliptic case,

following [14] it allows to show that the limit satisfies a distributional formulation of the anisotropic

curvature flow.

Remark 3.2 (Continuity of volume and perimeter). As is well-known for general flat flows (see [14, 7]),

the limit motion t 7→ {u ≥ t} is 1/2-Hölder in L1(Ω), in the sense that, for s > t > 0,

|{s > u ≥ t} ∩ Ω| ≤ C|t− s|1/2,

where C depends on the dimension and on the perimeter of the initial set. In particular, |{u = t}| = 0

for all t > 0, so that up to a negligible set, {u > t} = {u ≥ t}. (For t = 0 it may happen that

|{u > 0}| > 0, as shown in the second example below.)

In addition, since each set {u > t} is δ-superharmonic for t > 0, for s > t ≥ 0 one also has that

Pφ({u > s}) + δ|{s ≥ u > t}| = Pφ({u > t})

so that t 7→ Pφ({u > t}) is strictly decreasing, until extinction. Since
⋃

s>t{u > s} = {u > t} one

also sees that t 7→ Pφ({u > t}) is right-continuous. On the other hand, whether it could jump or not

remains an open question.

4. Examples

4.1. The case δ = 0

If the initial datum E0 satisfies (MC) we should distinguish two cases: If φ is smooth and elliptic, ψ

is smooth and ∂E0 is also smooth, then there exists a smooth solution to (1) on a time interval [0, τ),

for some τ > 0 (see [15, Chapter 8]). Moreover, by the parabolic maximum principle, the solution

E(t) become strictly mean-convex for t > 0. In particular, for any ε ∈ (0, τ) there exist δε > 0 and an

open set Ωε such that E(tε) ⊂⊂ Ωε, δε → 0 as ε → 0, and E(t) satisfies (MCδε) in Ωε for t ∈ (ε, τ).

As a consequence, the previous results hold in all the time intervals [ε,+∞), so that and the limit

function u it is still unique and continuous, and it is locally Lipschitz continuous in the interior of E0.

On the other hand, for an arbitrary anisotropy φ, the function u could be discontinuous on the

boundary of E0. As an example let us consider, in two dimensions, the case ψ(ξ, η) = φ(ξ, η) = |ξ|+ |η|
(and {ψ◦ ≤ 1} = {(x, y) : |x| ≤ 1, |y| ≤ 1}), and the cross-shaped initial datum

E0 := ([−1, 1]× [−2, 2]) ∪ ([−2, 2]× [−1, 1]) ⊂ R
2 .

It is easy to check that E0 is outward minimizing, so that E(t) ⊂ E0 is also outward minimizing for

all t > 0. Moreover, the solution E(t) = {(x, y) : u(x, y) ≥ t} is unique (see for instance [13]), and can

be explicitly described as follows :

E(t) =



















([−1, 1]× [−2 + t, 2− t]) ∪ ([−2 + t, 2− t]× [−1, 1]) for t ∈ [0, 1]
[

−
√

1− 2(t− 1),
√

1− 2(t− 1)
]

for t ∈
[

1, 32
]

∅ for t ≥ 3
2 .

(10)

In particular, the function u ∈ BV (R2) is discontinuous on ∂E0 \ ∂([−2, 2]× [−2, 2]).
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We observe that formula (10) for E(t) can be easily obtained by finding explicit solutions to (ATW ),

starting from EL = ([−1, 1] × [−L,L]) ∪ ([−L,L] × [−1, 1]), L > 1. An approach is as follows: a

“calibration” is given by the vector field (which one defines only in EL):

z(x, y) =















(x, y) if |x| ≤ 1, |y| ≤ 1,

(x,±1) if |x| ≤ 1, 1 ≤ ±y ≤ L,

(±1, y) if 1 ≤ ±x ≤ L, |y| ≤ 1.

One has div z = 1+χ[−1,1]2 in EL, z(x, y) ∈ {ψ◦ ≤ 1}, and Pφ(Eℓ) =
∫

∂Eℓ

z · ν dH1 for any 1 ≤ ℓ ≤ L.

Hence, if L− h ≥ 1 and F ⊂ EL, we have

Pφ(F ) +

∫

F

dψ
◦

EL

h
dx ≥

∫

∂F

ν · zdH1 +

∫

F

dψ
◦

EL

h
dx

=

∫

∂F

ν · zdH1 −
∫

∂EL−h

ν · zdH1 + Pφ(EL−h) +

∫

F

dψ
◦

EL

h
dx

=

∫

z · (DχEL−h
−DχF ) + Pφ(EL−h) +

∫

EL−h

dψ
◦

EL

h
dx+

∫

EL

(χF − χEL−h
)
dψ

◦

EL

h
dx

= Pφ(EL−h) +

∫

EL−h

dψ
◦

EL

h
dx+

∫

EL

(χF − χEL−h
)

(

dψ
◦

EL

h
+ 1 + χ[−1,1]2

)

dx.

Now, the last integral is nonnegative, since dψ
◦

EL
/h + 1 ≤ 0 in EL−h, and is positive outside. As a

consequence, EL−h solves (ATW ) for E = EL, and one deduces the first line in (10). The proof of

the second line in (10) is a standard computation (see for instance [5]).

4.2. Continuity of the volume up to t = 0

We provide an example of an open set E satisfying (MCδ) for some δ > 0, and such that |∂E| =
|{u > 0}| > 0.

Let (xn)n≥1 be a dense sequence of rational points in Ω := B(0, 1) ⊂ R
2. We shall construct

inductively a sequence (rn)n≥1 of positive numbers with
∑

n r
d−1
n < +∞ such that the following

property holds: Letting E0 = ∅ and En = En−1 ∪B(xn, rn) for n ≥ 1, the sets En all satisfy (MCδ)

in Ω for some δ > 0.

Notice first that there exists δ > 0 such that each ball B(x, r) ⊂ Ω satisfies (MC2δ) in Ω. Choose

now r1 > 0 in such a way that E1 = B(x1, r1) ⊂ Ω, then E1 satisfies (MC2δ). Assume now by

induction that En satisfies (MC(1+1/n)δ). Then, if dn := dist(xn+1, En) = 0 we let rn+1 = 0, so that

En+1 = En. Otherwise, if dn > 0 we choose rn+1 ∈ (0, 2−n) in such a way that

rn+1 ≤ min

(

1

2

(

1

n
− 1

n+ 1

)

δd2n
2πC

,
dn
6

)

, (11)

where the constant C > 0 will be chosen later in Case 3. Let also N ⊂ N be the (infinite) set of

indices such that rn > 0.

Let us check that En+1 satisfies (MCδ+δ/(n+1)). We consider a set F of finite perimeter such that

En+1 ⊂ F ⊂ Ω, and we distinguish three cases:

9



Case 1. |F ∩B(xn, dn)| ≥ d2n/C. In this case we have

P (F ) ≥ P (En) +

(

1 +
1

n

)

δ|F \ En|

≥ P (En+1)− 2πrn+1 +

(

1 +
1

n+ 1

)

δ|F \ En|+
(

1

n
− 1

n+ 1

)

δ|F ∩B(xn, dn)|

≥ P (En+1) +

(

1 +
1

n+ 1

)

δ|F \ En+1|+
(

1

n
− 1

n+ 1

)

δd2n
C

− 2πrn+1

≥ P (En+1) +

(

1 +
1

n+ 1

)

δ|F \ En+1|,

where in the last inequality we used (11).

Case 2. |F ∩B(xn, dn)| ≤ d2n/C and H1(F ∩ ∂B(xn, r)) = 0 for some r ∈ (rn+1, dn). In this case, we

write F = F1 ∪ F2, with F1 = F ∩B(xn, r) ⊃ B(xn, rn+1) and F2 = F \B(xn, r) ⊃ En, and we have

P (F1) ≥ P (B(xn, rn+1)) + 2δ|F1 \B(xn, rn+1)|

P (F2) ≥ P (En) +

(

1 +
1

n

)

δ|F2 \ En|.

Summing up the two inequalities above, we get

P (F ) = P (F1) + P (F2) ≥ P (En+1) +

(

1 +
1

n

)

δ (|F1 \B(xn, rn+1)|+ |F2 \En|)

= P (En+1) +

(

1 +
1

n

)

δ|F \ En+1|.

Case 3. |F ∩ B(xn, dn)| ≤ d2n/C and H1(F ∩ ∂B(xn, r)) > 0 for a.e. r ∈ (rn+1, dn). In this case, by

coarea formula we have

∣

∣

∣

∣

F ∩
(

B

(

xn,
dn
3

)

\B
(

xn,
dn
6

))
∣

∣

∣

∣

=

∫
dn

3

dn

6

H1(F ∩ ∂B(xn, r)) dr ≤
d2n
C
.

It follows that there exists r1 ∈ (dn/6, dn/3) such that

H1(F ∩ ∂B(xn, r1)) ≤
6dn
C
.

Similarly we have

∣

∣

∣

∣

F ∩
(

B(xn, dn) \B
(

xn,
2dn
3

))∣

∣

∣

∣

=

∫ dn

2dn
3

H1(F ∩ ∂B(xn, r)) dr ≤
d2n
C
,

and there exists r2 ∈ (2dn/3, dn) such that

H1(F ∩ ∂B(xn, r2)) ≤
3dn
C
.

Using that H1(F ∩ ∂B(xn, r)) > 0 for all r ∈ (rn+1, dn) we deduce that either for a.e. r ∈ (r1, r2),

H0(∂∗F ∩ B(xn, r)) ≥ 2 and it follows that P (F,B(xn, r2) \ B(xn, r1)) ≥ 2(r2 − r1) ≥ 2dn/3, or for

a set of positive measure of radii r ∈ (r1, r2) one has H1(F ∩ ∂B(xn, r)) = 2πr, however this implies

P (F,B(xn, r2) \ B(xn, r1)) ≥ 2πr1 − 6dn/C ≥ dn(π/3 − 6/C) ≥ 2dn/3 provided we have chosen

C ≥ 18/(π − 2).
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Then, proceeding as in the previous case we let F1 = F ∩B(xn, r1) and F2 = F \B(xn, r2), and we

have

P (F ) = P (F1) + P (F2)−H1(F ∩ ∂B(xn, r1))−H1(F ∩ ∂B(xn, r2)) + P (F,B(xn, r2) \B(xn, r1))

≥ P (En+1) +

(

1 +
1

n

)

δ (|F1 \B(xn, rn+1)|+ |F2 \ En|)−
9dn
C

+
2dn
3

≥ P (En+1) +

(

1 +
1

n

)

δ|F \ En+1| −
(

1 +
1

n

)

δ
d2n
C

− 9dn
C

+
2dn
3

≥ P (En+1) +

(

1 +
1

n

)

δ|F \ En+1| −
2δ + 9

C
dn +

2dn
3

≥ P (En+1) +

(

1 +
1

n

)

δ|F \ En+1|,

as long as we choose C ≥ 3(2δ + 9)/2.

We proved that En satisfies (MCδ) for all n ∈ N, therefore also the limit set

E =
⋃

n∈N

En =
⋃

n∈N

B(xn, rn)

satisfies (MCδ) in Ω. In this case, the solution u in Theorem 3.1 is explicit and is given by

u(x) =
∑

n∈N

(r2n − |x− xn|2)+
2(d− 1)

.

Notice that we have

∂{u > 0} = ∂E = B(0, 1) \ E,

so that |∂{u > 0}| = π − |E| > 0.

A. 1-superharmonic functions

The goal of this appendix is to recall some results proved in [16] on 1-superharmonic functions, to give

precise statements in the anisotropic case, and to propose some simple proofs, when possible.

Definition A.1. We say that u is (φ-)1-superharmonic in Ω if {u 6= 0} ⊂⊂ Ω and for any v with

v ≥ u, {v 6= 0} ⊂⊂ Ω, one has
∫

Ω

φ(−Du) ≤
∫

Ω

φ(−Dv),

or, equivalently, for any v with compact support in Ω,

∫

Ω

φ(−D(u ∧ v)) ≤
∫

Ω

φ(−Dv). (SH)

Given δ > 0, we say that u is ((φ, δ)-)1-superharmonic in Ω if {u 6= 0} ⊂⊂ Ω and one has:

∫

Ω

φ(−D(u ∧ v)) ≤
∫

Ω

φ(−Dv)− δ

∫

Ω

(v − u)+dx ∀ v, {v 6= 0} ⊂⊂ Ω. (SHδ)

Equivalently, u is a minimizer of
∫

Ω

φ(−Du)− δ

∫

Ω

udx,

with respect to larger competitors with the same boundary condition.
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Obviously then, u ≥ 0 (using v = u+ in (SH)). Notice that χE is 1-superharmonic if and only if

the set E is outward minimizing.

Observe that, in this case, the set E0 = {u > 0} has finite perimeter and satisfies (MCδ). Indeed,

for E ⊂ F ⊂⊂ Ω, letting v = εχF for ε > 0, we have

∫

Ω

φ(−D(u ∧ εχF )) =
∫ ε

0

Pφ({u > s} ∩ F )ds

≤ εPφ(F )− δ

∫

Ω

(εχF − u)+dx = ε

(

Pφ(F )− δ

∫

Ω

(χF − u/ε)+dx

)

.

Hence:
∫ 1

0

Pφ({u > tε} ∩ F )dt ≤ Pφ(F )− δ

∫

Ω

(χF − u/ε)+dx.

Sending ε→ 0, we deduce (MCδ).

In particular, it follows from Lemma 2.6 that for any v ∈ BV (Ω) compactly supported, δ
∫

Ω
|v|dx ≤

∫

Ω φ(−Dv). We then deduce that if u satisfies (SHδ) also u ∧ T for any T > 0. Indeed,

∫

Ω

φ(−D((u ∧ T ) ∧ v)) ≤
∫

Ω

φ(−D(v ∧ T ))− δ

∫

Ω

((v ∧ T )− u)+dx

On the other hand,

∫

Ω

φ(−D(v ∧ T )) =
∫

Ω

φ(−Dv) −
∫

Ω

φ(−D(v − T )+) ≤
∫

Ω

φ(−Dv) − δ

∫

Ω

(v − T )+ dx,

and it follows ∫

Ω

φ(−D((u ∧ T ) ∧ v)) ≤
∫

Ω

φ(−Dv) − δ

∫

Ω

(v − (u ∧ T ))+dx.

Then, the following characterization holds:

Proposition A.2. Let u satisfy (SHδ). Then there exists z ∈ L∞(Ω; {φ◦ ≤ 1}) with div z ≥ δ,

[z,Du+] = |Du| in the sense of measures (equivalently,
∫

Ω
u+div z dx =

∫

φ(−Du)), and div z = δ on

{u = 0}.

Corollary A.3. Let u satisfy (SHδ). Then for any s > 0, {u+ ≥ s} and {u+ > s} satisfy (MCδ).

Here, u+ is as usual the superior approximate limit of u (defined Hd−1-a.e.) and [z,Du+] the pairing

in the sense of Anzellotti [4].

Proof. For n ≥ 1, let vn be the unique minimizer of

min
v=0 ∂Ω

∫

Ω

φ(−Dv) +
∫

Ω

n

2
(v − u ∧ n)2 − δv dx. (12)

(the boundary condition is to be intended in a relaxed sense, adding a term
∫

∂Ω
|Trv|φ(νΩ)dHd−1 in

the energy if the trace of v on the boundary does not vanish). The Euler-Lagrange equation for this

problem asserts the existence of a field zn ∈ L∞(Ω; {φ◦ ≤ 1}) with bounded divergence such that

div zn + nvn = n(u ∧ n) + δ

a.e. in Ω, and
∫

Ω div znvn dx =
∫

Ω φ(−Dvn). On the other hand
∫

Ω φ(−Dvn) ≤
∫

Ω φ(−D(u ∧ n)) ≤
∫

Ω
φ(−Du) and we have vn → u,

∫

Ω
φ(−Dvn) →

∫

Ω
φ(−Du) as n→ ∞.

12



We show that vn ≤ u ∧ n. Indeed,
∫

Ω φ(−D(vn ∧ u ∧ n)) ≤
∫

Ω φ(−Dvn) − δ
∫

Ω(vn − (u ∧ n))+dx,
while

∫

Ω
(vn − (u ∧ n))2dx ≥

∫

Ω
((vn ∧ u ∧ n)− (u ∧ n))2. Hence,

∫

Ω

φ(−D(vn ∧ u ∧ n)) + n

2

∫

Ω

((vn ∧ u ∧ n)− (u ∧ n))2 − δ

∫

Ω

(vn ∧ u ∧ n)dx

≤
∫

Ω

φ(−Dvn) +
n

2

∫

Ω

(vn − (u ∧ n))2dx− δ

∫

Ω

vndx

+ δ

∫

Ω

(vn − (vn ∧ u ∧ n))− (vn − (u ∧ n))+dx

=

∫

Ω

φ(−Dvn) +
n

2

∫

Ω

(vn − (u ∧ n))2dx− δ

∫

Ω

vndx

and as the minimizer vn of (12) is unique, we deduce vn = vn∧u∧n. In particular, it follows div zn ≥ δ.

(Observe that since vn ≥ 0, one also has div zn ≤ δ+n(u∧n), in particular div zn = δ a.e. in {u = 0}.
Also,

∫

{u>0} div zn ≤ Pφ(E
0), hence (div zn)n≥1 are uniformly bounded Radon measures. Hence, up

to a subsequence, we may assume that zn
∗
⇀ z weakly-∗ in L∞(Ω; {φ◦ ≤ 1}) while div zn

∗
⇀ div z

weakly-∗ in M1(Ω;R+), that is, as positive measures.

We now write
∫

Ω

φ(−Dvn) =
∫

Ω

vndiv zn dx ≤
∫

Ω

(u ∧ n)div zn dx =

∫ n

0

∫

{u≥s}

div zn dxds,

hence, since vn → u,

∫

Ω

φ(−Du) ≤ lim sup
n→∞

∫ n

0

∫

{u≥s}

div zn dxds ≤
∫ ∞

0

(

lim sup
n→∞

∫

{u≥s}

div zn dx

)

ds

thanks to Fatou’s lemma (and the fact
∫

{u≥s}
div zn dx ≤ Pφ(E

0) are uniformly bounded).

We now study the limit of
∫

{u≥s} div zn dx, for s > 0 given, assuming {u > s} has finite perimeter

(this is true for a.e. s, and in fact one could independently check that s 7→ Pφ({u ≥ s}) is nonincreas-
ing).

We consider a set F = {u ≥ s} with finite perimeter, and we recall DχF is supported on the

reduced boundary ∂∗F . By inner regularity, given ε > 0, we find a compact set K ⊂ ∂∗F with

|DχF |(Ω \K) < ε. We observe that Hd−1-a.e. on K (which is countably rectifiable), χF has an upper

an lower trace, respectively χ+
F = 1 and χ−

F = 0. By the Meyers-Serrin Theorem (or its BV version,

cf [3] or [2, Theorem 3.9]), there exists ϕk a sequence of functions in C∞(Ω \K; [0, 1]) with ϕk → χF
and

∫ 1

0

Hd−1({x ∈ Ω \K : ϕk(x) = k}) =
∫

Ω\K

|∇ϕk|dx→ |DχF |(Ω \K) < ε.

Moreover, by construction the traces of ϕk in K coincide with the traces of χF (see [2, Section 3.8]).

We choose for each k sk ∈ [1/4, 3/4] such that Hd−1(∂{ϕk ≥ sk} \ K) ≤ 2ε. We then define the

closed (compact) sets Fk := {ϕk ≥ sk} ∪K. One has
∫

Ω
|DχF −DχFk

| =
∫

Ω\K
|DχF −DχFk

| ≤ 3ε.

(This shows that F can be approximated strongly in BV norm by closed sets.)

Then, one has lim supn
∫

Fk

div zndx ≤
∫

Fk

div z as the measures are nonnegative and χFk
is scs. On

the other hand, |
∫

Ω
div zn(χF − χFk

)dx| ≤ 3ε, so that

lim sup
n→∞

∫

F

div zndx ≤ 3ε+

∫

F

div z +

∫

(χFk
− χF )div z ≤ 3ε+

∫

F

div z +

∫

(χFk
− χF )

+div z.

Notice that it is important to specify precisely the set F that we consider in the last inequality: We

pick for F the complement F+ of its points of density zero, equivalently F+ = {u+ ≥ s}. In that case,
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up to a set of zero Hd−1-measure, χG := (χFk
− χF+)+ = χFk\F+ vanishes on K pointwise, moreover

at Hd−1-a.e. x ∈ K, G has Lebesgue density 0. Hence G coincides Hd−1-a.e. with a Caccioppoli set

strictly inside Ω and with
∫

Ω |DχG| ≤ 3ε. Thanks to [18, Thm 5.12.4] it follows div z(G) ≤ Cε for C

depending only on φ and the dimension (see also [16, Prop. 3.5]). As a consequence, since ε > 0 is

arbitrary,

lim sup
n→∞

∫

{u≥s}

div zndx ≤
∫

{u+≥s}

div z.

We obtain that ∫

Ω

φ(−Du) ≤
∫

Ω

u+div z.

The reverse inequality also holds thanks to [16, Prop. 3.5, (3.9)], and can be proved by localizing

and smoothing with kernels depending on the local orientation of the jump. We also deduce that, for

a.e. s > 0,
∫

{u+≥s}

div z = Pφ({u ≥ s}) .

Note that s 7→ div z({u+ ≥ s}) is left-continuous, and s 7→ div z({u+ > s}) is right-continuous, whereas
s 7→ Pφ({u+ ≥ s}) is left-semicontinuous, which implies the thesis.
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