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A numerical model is proposed to compute the eigenmodes and the forced response of multilayered elastic spheres. The main idea is to describe analytically the problem along the angular coordinates with spherical harmonics and to discretize the radial direction with one-dimensional finite elements. The proper test function must be carefully chosen so that both vector and tensor spherical harmonics orthogonality relationships can be used. The proposed approach yields a general one-dimensional formulation with a fully analytical description of the angular behaviour, suitable for any interpolating technique.

A linear eigenvalue problem, simple and fast to solve, is then obtained. The eigensolutions are the spheroidal and torsional modes. They are favourably compared with literature results for a homogeneous sphere. The eigensolutions are superposed to compute explicitly the forced response. The latter is used to reconstruct the propagation of surfaces waves. In particular, the col-

Introduction

The study of the free vibrations (eigenmodes) of an elastic sphere is a classical mechanics problem formally solved first by Lamb [START_REF] Lamb | On the vibrations of an elastic sphere[END_REF]. This topic received a great interest in geophysics [START_REF] Sezawa | Dispersion of elastic waves propagated on the surface of stratified bodies and on curved surfaces[END_REF][START_REF] Sato | Basic study on the oscillation of a homogeneous elastic sphere I. frequency of the free oscillation[END_REF], using the Earth's eigenmodes to synthesize seismograms and improve the understanding of earthquakes [4].

Lamb [START_REF] Lamb | On the vibrations of an elastic sphere[END_REF] and Shah et al. [START_REF] Shah | Three-dimensional and shell-theory analysis of elastic waves in a hollow sphere: Part 1-analytical foundation[END_REF] also studied the case of a hollow sphere (spherical shell), which has been reconsidered with the emergence of composites structures [START_REF] Heyliger | The free vibrations of inhomogeneous elastic cylinders and spheres[END_REF][START_REF] Chen | Free vibration of multi-layered spherically isotropic hollow spheres[END_REF][START_REF] Ye | Three-dimensional vibration analysis of laminated functionally graded spherical shells with general boundary conditions[END_REF]. Besides because the eigenmodes are intrinsic to the structure they can be used to characterize unknown materials or geometries, using e.g. the resonant scattering theory for immersed spheres [START_REF] Williams | Axially focused (glory) scattering due to surface waves generated on spheres: Model and experimental confirmation using tungsten carbide spheres[END_REF] or Raman scattering for nanoparticles [START_REF] Saviot | Vibrations of free and embedded anisotropic elastic spheres: Application to low-frequency Raman scattering of silicon nanoparticles in silica[END_REF]. Sphere eigenmodes have also found applications in the non-destructive testing of ceramic balls in aeronautics [START_REF] Petit | Non-destructive testing of ceramic balls using high frequency ultrasonic resonance spectroscopy[END_REF].

Eigenmodes are the solutions of a dispersion relationship, which can be obtained analytically in a homogeneous sphere. However advanced numerical methods are required when the structure is complex (e.g. multilayered).

Buchanan and Ramirez [START_REF] Buchanan | A note on the vibration of transversely isotropic solid spheres[END_REF] have used a two-dimensional model of the sphere cross-section, using finite elements to discretize the radial and polar angular directions and an exponential ansatz along the azimuthal coordinate. However the computational cost raises quickly with the frequency of interest, and this method is therefore rather limited to low-frequency computation. On the contrary, semi-analytical methods yield a one-dimensional model, and thus the cost remains reasonable even at high frequencies. The basic idea of semi-analytical methods is to describe analytically some directions (in a sphere, the angular ones) and to discretize the remaining one (the radial direction).

This principle has been applied with spherical harmonics along the angular directions and finite elements along the radial direction by Heyliger and Jilani [START_REF] Heyliger | The free vibrations of inhomogeneous elastic cylinders and spheres[END_REF] and Park [START_REF] Park | Wave motion in finite and infinite media using the thin-layer method[END_REF]. It leads to a linear eigenvalue problem which is simple to solve. However, both existing formulations do not take full advantage of the analytical description of the solution along the angular coordinates. The eigenproblem of Heyliger and Jilani [START_REF] Heyliger | The free vibrations of inhomogeneous elastic cylinders and spheres[END_REF] is not given in a closed-form, so that numerous integrations must be performed before computing the modes. The approach of Park [START_REF] Park | Wave motion in finite and infinite media using the thin-layer method[END_REF] (the so-called spherical thin layer method (STLM)) requires to evaluate, for a given interpolation choice, lengthy analytical expressions of the stiffness matrices. In Park's work, only the conventional linear and quadratic shape functions have been treated. The extension to other interpolating functions is possible, but it would require an important amount of tedious derivations and factorization along the angular coordi-nates. It is then of interest to propose a more compact formulation in which various interpolating functions can be immediately used, including high-order shape functions (see e.g. Ref. [START_REF] Gravenkamp | High-order shape functions in the scaled boundary finite element method revisited[END_REF]).

From the authors' point of view, the main issue is to properly identify the orthogonality relationships of spherical harmonics which must be used to preserve the separation of radial and angular variables in the elastodynamic balance equations. These equilibrium equations correspond to vector wave equations, which complicates the problem. As will be outlined in this paper, two kinds of orthogonality relationships are necessary to eventually obtain a general semi-analytical formulation. On one hand, the orthogonality of vector spherical harmonics is needed for the kinetic energy term (including the scalar product of displacements). This first kind of orthogonality is rather wellknown in the literature [START_REF] Kausel | Fundamental solutions in elastodynamics: a compendium[END_REF]. On the other hand, the orthogonality of tensor spherical harmonics is required for the potential energy term (including the stress-strain tensor product). This second kind of orthogonality is much more mathematically involved (see e.g. Refs. [START_REF] James | New tensor spherical harmonics, for application to the partial differential equations of mathematical physics[END_REF][START_REF] Martinec | Spectral-finite element approach to three-dimensional viscoelastic relaxation in a spherical earth[END_REF]). Note that the principle of semi-analytical methods, when applied to solve the scalar Helmholtz equation (as done in Ref. [START_REF] Chabassier | High order finite element method for solving convected helmholtz equation in radial and axisymmetric domains[END_REF] for instance), is simpler to implement since it only involves the orthogonality of scalar spherical harmonics.

As far as wave propagation is concerned, surface acoustic waves on a sphere are strongly related to the eigenmodes. The latter corresponds to standing waves which naturally occur because of the closed geometry of the sphere. Any wave can be reconstructed by a superposition on the eigenmodes [4,[START_REF] Eringen | Elastodynamics[END_REF]. The Rayleigh surface wave, when excited by a point source, propagates all over the sphere (because of diffraction) and merges at the pole opposite to the source (because of the curvature). However as shown by Tsukahara et al. [START_REF] Tsukahara | Observation of diffraction-free propagation of surface acoustic waves around a homogeneous isotropic solid sphere[END_REF], Ishikawa et al. [START_REF] Ishikawa | Surface acoustic waves on a sphere with divergent, focusing, and collimating beam shapes excited by an interdigital transducer[END_REF] and Clorennec and Royer [START_REF] Clorennec | Investigation of surface acoustic wave propagation on a sphere using laser ultrasonics[END_REF], if the source is a line of specific width, the Rayleigh wave is naturally collimated, that is, the wave is not diffracted but propagates with a quasi-constant width.

Such a wave makes several roundtrips, which has been exploited to design gas sensors [START_REF] Yamanaka | Principle and application of ball surface acoustic wave (SAW) sensor[END_REF]. This phenomenon can be explained as a balance between diffraction and curvature effects. In this paper, we are interested in modelling the propagation of waves excited by an arbitrary source, based on the eigenvibrations of a multilayered sphere. In particular, we want to reproduce the collimation of a Rayleigh wave generated by a line source in a homogeneous sphere, and to investigate the perturbation induced by the addition of a thin viscoelastic coating to the sphere.

The main objective of this paper is to elaborate a general one-dimensional semi-analytical finite element model to compute both the free (eigenmodes) and forced responses of an elastic sphere of complex internal structure (e.g. multilayered). This model is presented in Sec. 2 of this paper. The forced response model is calculated explicitly based on modal superposition on the eigenmodes. It is subsequently used to reconstruct the propagation of surface waves. In Sec. 3, the computed eigenmodes are compared with literature results. The forced response is used in Sec. 4 to simulate a collimating Rayleigh wave. The behaviour of this wave is analysed in terms of the eigenvibrations of the sphere. Finally, the effect of a viscoelastic coating on the collimating wave is investigated.

The numerical model

Elastodynamic variational formulation

We consider a solid sphere of radius r = a. The problem is described in the spherical coordinate system (r, θ, φ) shown in Fig. 1. r is the radial direction; θ is the polar or colatitude angle, with 0 ≤ θ ≤ π; φ is the azimuthal angle, with 0 ≤ φ ≤ 2π. A time-harmonic dependance e -jωt is chosen for

the displacement field, with u(r, θ, φ) = [u r (r, θ, φ), u θ (r, θ, φ), u φ (r, θ, φ)] T .
The superscript T denotes matrix transpose. The elastodynamics variational formulation is (see e.g. Bathe [24,Chap. 4]):

V δ T σdV -ω 2 V ρδu T udV = V δu T f dV + ∂V δu T td∂V , (1) 
with dV = r 2 dr sin θdθdφ. f is the vector of volumic acoustic forces. t is the vector of stresses on a spherical isosurface of radius r = a, such that d∂V = r 2 sin θdθdφ (note that a stress boundary condition may also be applied on the inner radius, supposed at r = b, in case of a hollow sphere). The stress and strain vectors are respectively given by σ = [σ rr , σ θθ , σ φφ , σ θφ , σ rφ , σ rθ ] T and = [ rr , θθ , φφ , 2 θφ , 2 rφ , 2 rθ ] T . The stress-strain relation is σ = C .

C is the matrix of material properties. The materials can be elastic or viscoelastic. The model is restricted to the case of transversely isotropic materials, such that:

C =                  C 11 C 12 C 12 0 0 0 C 12 C α C 23 0 0 0 C 12 C 23 C α 0 0 0 0 0 0 C 44 0 0 0 0 0 0 C 55 0 0 0 0 0 0 C 55                  , ( 2 
)
where C α = 2C 44 +C 23 . This restriction is necessary to allow the separation of angular and radial variables in Sec. 2.2. Besides, material properties can vary arbitrarily along the radius only (e.g. a sphere made of several homogeneous layers).

The strain-displacement relation is = Lu. The operator L is given by:

L = L r ∂ ∂r + L θ 1 r ∂ ∂θ + L φ 1 r sin θ ∂ ∂φ + 1 r L 1 + cot θ r L 2 , (3) 
with:

L r =                  1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0                  , L θ =                  0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0                  , L φ =                  0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0                  , L 1 =                  0 0 0 1 0 0 1 0 0 0 0 0 0 0 -1 0 -1 0                  , L 2 =                  0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0                  . ( 4 
)

Vector spherical harmonic expansion

Let us first remind that, applying the Helmholtz decomposition theorem, finding the solutions of the homogeneous elastodynamic equations (strong formulation) consists in solving three scalar Helmholtz equations. The radial and angular coordinates can be separated, and the angular scalar dependence is written on a basis of spherical harmonic functions [4,[START_REF] Kausel | Fundamental solutions in elastodynamics: a compendium[END_REF][START_REF] Eringen | Elastodynamics[END_REF]. The normalized scalar spherical harmonic functions are given by:

Y m l (θ, φ) = N m l √ 2π P m l (cos θ)e jmφ , ( 5 
)
with the degree l (l ≥ 0) and the order m (|m| ≤ l) [START_REF] Arfken | Mathematical methods for physicists[END_REF].

N m l = (2l+1)(l-m)! 2(l+m)!
is the normalization factor. The integers l and m are also called the polar and azimuthal wavenumbers [4]. P m l (cos θ) is the associated Legendre polynomial of the first kind, which satisfies the Legendre equation [START_REF] Arfken | Mathematical methods for physicists[END_REF]:

d 2 P m l dθ 2 + cot θ dP m l dθ + l - m 2 sin 2 θ P m l = 0 , ( 6 
)
with l = l(l + 1). The explicit form of associated Legendre polynomials is written by convention [START_REF] Arfken | Mathematical methods for physicists[END_REF]:

P m l (cos θ) = (-1) m (sin θ) m d m d(cos θ) m P l (cos θ) , ( 7 
)
where P l (cos θ) is the Legendre polynomial of the first kind, including the Condon-Shortley phase (-1) m .

From the scalar solutions, one can eventually obtain the vector displacement solution in which radial and angular variables are also separated. In this paper, the radial behaviour of the displacement is interpolated using finite elements (see Sec. 2.3) instead of using exact spherical Bessel function, while the analytical description of the angular behaviour, using vector spherical harmonics, is exploited.

In Eq. ( 1), the displacement field is then written as:

u(r, θ, φ) = l≥0 |m|≤l S m l (θ, φ)û m l (r) , ( 8 
)
where ûm l (r) = [û m l (r), vm l (r), ŵm l (r)] T is the vector of the (l, m)-coefficients of the expansion (to be determined). The matrix S m l conveniently concatenates the vector spherical harmonics and is given by [START_REF] Park | Wave motion in finite and infinite media using the thin-layer method[END_REF][START_REF] Kausel | Fundamental solutions in elastodynamics: a compendium[END_REF]:

S m l (θ, φ) =        Y m l (θ, φ) 0 0 0 ∂Y m l (θ,φ) ∂θ - ∂Y m l (θ,φ) sin θ∂φ 0 ∂Y m l (θ,φ) sin θ∂φ ∂Y m l (θ,φ) ∂θ        . ( 9 
)
The same form is also assumed for the volumic forces and the normal stresses, that is:

f (r, θ, φ) = l≥0 |m|≤l S m l (θ, φ) f m l (r) , (10) 
t(θ, φ) = l≥0 |m|≤l S m l (θ, φ) tm l . ( 11 
)
It is noteworthy that the vector spherical harmonics form an orthogonal basis [START_REF] Kausel | Fundamental solutions in elastodynamics: a compendium[END_REF][START_REF] Martinec | Spectral-finite element approach to three-dimensional viscoelastic relaxation in a spherical earth[END_REF], with:

π 0 2π 0 S p * k S m l dφ sin θdθ =        1 0 0 0 l 0 0 0 l        δ kl δ mp , ( 12 
)
where * stands for the transpose conjugate matrix. The proof is briefly recalled in Appendix A.1. As explained later, the key point of the formulation proposed in this paper is then to choose the test function as follows:

δu T (r, θ, φ) = δ ûT (r)S p * k (θ, φ) . ( 13 
)
From Eq. ( 13), one can write the virtual strains as:

δ T = LS p * T k δ û T .

Finite element approximation of the radial dependance of wavefields

Along the radial direction, a finite element approximation is applied such that the displacement on each element is given by:

ûm,e l (r) = N e (r) Ûm,e l . ( 14 
)
N e (r) is the matrix of one-dimensional interpolation functions. Ûm,e l is the vector of nodal displacements.

In Eq. ( 1), the angular integrations are then computed and simplified using Eq. ( 12). To evaluate the integral δ T σ sin θdθdφ, additional relationships coming from the orthogonality of tensor spherical harmonics are necessary. These are given in Appendix A.1. A detailed example is also given in Appendix B for the calculation of one matrix component. Finally, after lengthy algebraic manipulations, the following global matrix system can be obtained:

K(l) -ω 2 M(l) Ûm l = Fm l . ( 15 
)
The stiffness matrix is given by:

K(l) = K 1 (l) + K 2 (l) + K T 2 (l) + K 3 (l) , ( 16 
)
where elementary matrices are:

K e 1 (l) = dN eT dr        C 11 0 0 0 lC 55 0 0 0 lC 55        dN e dr r 2 dr , ( 17 
)
K e 2 (l) = dN eT dr        2C 12 -lC 12 0 lC 55 -lC 55 0 0 0 -lC 55        N e rdr , ( 18 
)
K e 3 (l) = N eT        lC 55 + 4C β -l C 55 + 2C β 0 -l C 55 + 2C β l(C 55 + lC 23 + 2(l -1)C 44 ) 0 0 l(C 55 + (l -2)C 44 ) 0        N e dr , (19) 
where

C β = C 23 + C 44 .
The elementary mass matrix is given by:

M e (l) = ρN eT        1 0 0 0 l 0 0 0 l        N e r 2 dr . ( 20 
)
The force vector Fm l gathers the contribution of volumic forces and stresses, that is:

Fm l = Fm l,v + Fm l,s . ( 21 
)
The elementary volumic forces are given by:

Fm,e l,v = N eT        1 0 0 0 l 0 0 0 l        f m,e l r 2 dr . ( 22 
)
The contribution of stresses can be written:

δ ÛT Fm l,s =        1 0 0 0 l 0 0 0 l        δ ûr 2 tm l r=a r=b , ( 23 
)
where δ Û is the vector of virtual nodal displacements.

As a final remark, let us highlight the significance of the test function [START_REF] Park | Wave motion in finite and infinite media using the thin-layer method[END_REF]. Owing to this choice, the orthogonality of vector spherical harmonics (Eq. ( 12)) immediately appears in each integral of Eq. ( 1). Moreover, this choice also takes advantage of the orthogonality of tensor spherical harmonics [START_REF] James | New tensor spherical harmonics, for application to the partial differential equations of mathematical physics[END_REF][START_REF] Martinec | Spectral-finite element approach to three-dimensional viscoelastic relaxation in a spherical earth[END_REF], which leads to the identities summed up by Eqs. (A.4)-(A.5) in Appendix A.1. Both vector and tensor orthogonality relationships are mandatory to get uncoupled governing equations for each pair of wavenumbers (l, m), as eventually obtained in Eq. ( 15). This yields a general formulation with a fully analytical description of the problem along the two angular coordinates. This is not the case in the model of Heyliger and Jilani [START_REF] Heyliger | The free vibrations of inhomogeneous elastic cylinders and spheres[END_REF], in which angular integrals must be solved analytically or numerically for each value of l. On the other hand, compared with the formulation of Park [START_REF] Park | Wave motion in finite and infinite media using the thin-layer method[END_REF], the expressions of the matrices given by Eqs. ( 17)-( 19) are valid for any choice of interpolation functions.

The source-free problem: computation of the eigenmodes

To compute the eigenmodes of the sphere, the source-free problem must be considered (i.e. Fm l = 0 in Eq. ( 15)). It yields a standard linear eigenproblem in terms of ω. For each integer value of l, one obtains N eigenfrequencies

ω (n) l
and eigenvectors Û(n) l (corresponding to the radial mode shapes), with

n = 1 . . . N .
Let us stress than when this problem is solved analytically, the eigenfrequencies are the roots of transcendental equations involving spherical Bessel functions (the dispersion relationship can be found for a homogeneous and isotropic sphere in Ref. [START_REF] Eringen | Elastodynamics[END_REF]), which must be solved with root-finding algorithms. Their convergence can be poor at high frequencies because of instabilities [START_REF] Fong | A study of curvature effects on guided elastic waves[END_REF]. Conversely, the linear eigenproblem obtained in this paper can be solved with standard methods.

The eigenproblem shares some properties with the analytical dispersion relationship. Both are degenerate with respect to the azimuthal wavenumber m, such that there are 2l+1 independent modes with the same eigenfrequency ω (n) l [START_REF] Silbiger | Nonaxisymmetric modes of vibration of thin spherical shells[END_REF][START_REF] Duffey | Vibrations of complete spherical shells with imperfections[END_REF]. Furthermore, it can be noticed from the structures of matrices in Eqs. ( 17)-( 20) that the eigensystem can be readily divided into two independent linear eigenproblems, namely:

(K S -ω 2 M S ) ÛS = 0 , ( 24 
) (K T -ω 2 M T ) ÛT = 0 . ( 25 
)
One recovers the two families of eigenmodes in a sphere [START_REF] Eringen | Elastodynamics[END_REF]. The first eigenproblem yields the so-called spheroidal modes, which have a non-zero displacement in every direction. The second eigenproblem yields the so-called torsional modes, which have a non-zero displacement only in the angular (transverse) directions. For the simplicity of the formulation, this decomposition is not exploited in this paper (the finite element discretization is only one-dimensional and leads to fast computations).

The forced response: wave propagation

To reconstruct surface wave propagation, the forced response problem must be considered. First, let us write the linear eigenproblem for a given mode (l, n):

(K(l) -ω (n)2 l M(l)) Û(n) l = 0 . ( 26 
)
Owing to viscoelasticity (if any), the matrices K and M are complex-valued and not Hermitian. However, both matrices are symmetric such that the following orthogonality relationships hold:

Û(k)T l K(l) Û(n) l = ω (n)2 l δ kn , ( 27 
) Û(k)T l M(l) Û(n) l = δ kn . ( 28 
)
Introducing the modal expansion Ûm

l = N n=1 α (n) Û(n) l
into the forced response equation [START_REF] Kausel | Fundamental solutions in elastodynamics: a compendium[END_REF], multiplying by Û(k)T l and using the orthogonality relationships ( 27) and ( 28) yields:

α (n) = Û(n)T l Fm l ω (n)2 l -ω 2 , ( 29 
)
such that:

Ûm l = N n=1 Û(n)T l Fm l Û(n) l ω (n)2 l -ω 2 . ( 30 
)
This quantity corresponds at each node to the displacement Frequency Response Function (FRF) of a pair (l, m). Its inverse Fourier transform yields the transient displacement:

Ûm l (t) = 1 2π +∞ -∞   N n=1 Û(n)T l Fm l (ω) Û(n) l ω (n)2 l -ω 2   e -jωt dω . ( 31 
)
Finally, the vector of physical nodal displacements in the time domain is given by:

U(θ, φ, t) = l≥0 |m|≤l S m l (θ, φ) Ûm l (t) . ( 32 
)

Wave properties

Phase and group velocities can be derived from the eigenfrequencies. The phase velocity is given by:

v (n) p l = Re(ω (n) l )a l + 1 2 , ( 33 
)
where ka = l+1/2 accounts for the polar phase-shift of surface waves [START_REF] Eringen | Elastodynamics[END_REF][START_REF] Brune | The polar phase shift of surface waves on a sphere[END_REF].

The group velocity is defined as [START_REF] Eringen | Elastodynamics[END_REF]:

v (n) g l = Re ∂ω (n) l ∂l a , (34) 
Following Finnveden [START_REF] Finnveden | Evaluation of modal density and group velocity by a finite element method[END_REF], the group velocity can be obtained from the finite element matrices (which avoids complex mode sorting). Deriving Eq. ( 26)

with respect to l yields:

  ∂K(l) ∂l -2ω (n) l M(l) ∂ω (n) l ∂l -ω (n)2 l ∂M(l) ∂l   Û(n) l + (K(l) -ω (n)2 l M(l)) ∂ Û(n) l ∂l = 0 . ( 35 
)
Multiplying by Û(n)T l , the second term is equal to zero. One readily obtains the following expression:

v (n) g l = Re   Û(n)T l ∂K(l) ∂l -ω (n)2 l ∂M(l) ∂l Û(n) l 2ω (n) l Û(n)T l M(l) Û(n) l   a . ( 36 
)
To compute the derivative of the mass and the stiffness matrices, it is noteworthy that they can be readily factored as:

K(l) = K 1 + l(K 2 + K T 2 ) + l 2 K 3 , (37) 
M(l) = M 1 + lM 2 . ( 38 
)
Therefore, their derivatives are given by:

∂K(l) ∂l = (2l + 1)(K 2 + K T 2 ) + 2l(2l + 1)K 3 , ( 39 
)
∂M(l) ∂l = (2l + 1)M 2 . ( 40 
)

Remarks on the sherical harmonic expansion

In Eqs. ( 8), ( 10), [START_REF] Petit | Non-destructive testing of ceramic balls using high frequency ultrasonic resonance spectroscopy[END_REF], the quantities ûm l , f m l , tm l stand for the coefficients of a Vector Spherical Harmonic Transform (Vector SHT analysis), given by:

ûm l (r) = π 0 2π 0 S m * l (θ, φ)u(r, θ, φ)dφ sin θdθ . ( 41 
)
Accordingly the physical quantities u m l , f m l , t m l are the results of an Inverse

Vector Spherical Harmonic Transform (Vector SHT synthesis). As shown by Kostelec et al. [START_REF] Kostelec | Computational harmonic analysis for tensor fields on the two-sphere[END_REF], the θ-derivative of Y m l in S m l can be related recursively to the l + 1 and l -1 spherical harmonics degrees, such that the vector SHT is equivalent to several scalar SHT. For any scalar function h(θ, φ), its SHT synthesis is:

h(θ, φ) = l≥0 |m|≤l Y m l (θ, φ) ĥm l . ( 42 
)
The complex-valued coefficients ĥm l can be obtained from the SHT analysis of the function h, that is:

ĥm l = π 0 2π 0 Y m * l (θ, φ)h(θ, φ)dφ sin θdθ . ( 43 
)
These transforms cannot be evaluated analytically in general. Several accurate and quick numerical tools have been proposed in the literature [START_REF] Healy | FFTs for the 2-Sphere-Improvements and Variations[END_REF][START_REF] Wieczorek | Shtools: Tools for working with spherical harmonics[END_REF][START_REF] Schaeffer | Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations[END_REF].

In this paper, the SHT analysis and synthesis are performed following the numerical strategy described in Refs. [START_REF] Wieczorek | Shtools: Tools for working with spherical harmonics[END_REF] and [START_REF] Schaeffer | Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations[END_REF]. The fundamental steps are briefly recalled in the following for self-consistency.

First, Eq. ( 43) can be written as:

ĥm l = N m l √ 2π π 0 2π 0 e -jmφ f (θ, φ)dφ P m l (cos θ) sin θdθ . ( 44 
)
Equation ( 44) shows that the SHT analysis can be subdivided into a Fourier transform followed by a projection on the basis of associated Legendre polynomials of the first kind.

The Fourier transform integral is computed using a Discrete Fourier Transform (DFT) on a minimum of N T F = 2L + 1 samples along the azimuthal coordinate according to Shannon's theorem, where L is the maximum value of l. In practice, the DFT can be efficiently computed using Fast Fourier Transform (FFT) algorithms [START_REF] Frigo | FFTW: An adaptive software architecture for the FFT[END_REF]. It yields the spectrum of coefficients h m (θ).

The projection on the basis of associated Legendre polynomial is then evaluated using a Gauss-Legendre quadrature (GLQ). For a given m and using the change of variable x = cos θ, one obtains:

π 0 h m (θ)P m l (cos θ) sin θdθ = L+1 q=1 w q h m (acos x q )P m l (x q ) , ( 45 
)
where w q are the Gauss weights and x q are the Gauss points. Using L + 1

Gauss points, the integration is exact if the product h m (acos x q )P m l (x q ) is a polynomial of maximum degree 2L. The latter assumption is not strictly satisfied, but the accuracy has been shown to be very good in practice [START_REF] Wieczorek | Shtools: Tools for working with spherical harmonics[END_REF].

The SHT synthesis (42) can be written as:

h(θ, φ) = N m l √ 2π m=L m=-L   L l=|m| ĥm l P m l (cos θ)   e jmφ . ( 46 
)
This equation shows that for each value of θ the first step of the SHT synthesis is a summation over the associated Legendre polynomial basis, followed by an Inverse DFT. Note that the number of synthesis along θ can be reduced taking advantage of the symmetry of the associated Legendre polynomial across the equator, with the identity:

P m l (cos(π -θ)) = (-1) (l+m) P m l (cos θ) . ( 47 
)

Validation test case: free vibrations of an isotropic homogeneous sphere

Material E (GPa) ρ (kg m -3 ) c l (m s -1 ) c s (m s -1 ) η l (Np wavelength -1 ) η s (Np wavelength 

Description of the test case

Let us consider an isotropic sphere of radius a = 10 mm. The surface of the sphere is free (i.e. σ rr = σ rθ = σ rφ = 0). The sphere is made of steel.

Materials properties are given in Table 1 (here the viscoelastic parameters are equal to zero). The material is isotropic and its stiffness matrix can be written as:

C =                  3λ λ λ 0 0 0 λ 3λ λ 0 0 0 λ λ 3λ 0 0 0 0 0 0 λ 0 0 0 0 0 0 λ 0 0 0 0 0 0 λ                  , ( 48 
)
with the Lamé's parameter

λ = Eν/[(1 + ν)(1 -2ν)] (ν = 0.25).
The eigenmodes computed with the numerical method of this paper are compared with the results of Ref. [START_REF] Eringen | Elastodynamics[END_REF]Ch. 8] for n = 1, . . . , 5 and l = 1, . . . , 60. The non-dimensional eigenfrequencies are defined by ω

(n) l = aω (n) l /c S ,
where c S is the shear wave velocity. The radius is discretized with three-nodes line elements of length ∆r = 0.012a, which corresponds to a sixth of the minimum radial wavelength given by 2πc S /max(ω

(n)
l ). The one-dimensional numerical model then comprises 1014 degrees of freedom (dofs).

Results

Figure 2 compares the eigenfrequencies of Ref. [START_REF] Eringen | Elastodynamics[END_REF] and those obtained with the numerical method of this paper. Both results are superimposed.

The curves of the spheroidal modes (blue triangles in Fig. 2) start at l = 0 at breathing mode eigenfrequencies (modes with a radial polarization only).

At low wavenumber l, these curves also exhibit a sudden change of slope, characterizing a strong dispersive behaviour.

Some radial modeshapes U m l are displayed in Fig. 3. The dofs ûm l , vm l and ŵm l can be related to physical displacements, based on the two independent eigensystems ( 24)- [START_REF] Arfken | Mathematical methods for physicists[END_REF]. The dofs ûm l describe the radial dependence of u r .

As expected, they are null for torsional modes which are polarized along the angular directions only -see Fig. 3e. The dofs vm l give the radial dependence of u θ and u φ for spheroidal modes. As shown in Fig. 3b,c,d, the dofs ŵm l are null in that case. On the contrary, the dofs ŵm l are the only non-zero dofs for torsional modes -see Fig. 3e. To verify the accuracy on modeshapes, Fig. 3b can be compared with the results of Ref. [START_REF] Eringen | Elastodynamics[END_REF]. A very good visual agreement is obtained.

The radial behaviour of the modes depends on their polar wavenumber l and on their order n. For l = 0, the motion is purely radial (breathing mode)

and distributed over the radius (Fig. 3a). The spheroidal modes with l = 1 are the only modes with a non-zero displacement at r = 0 -see Fig. 3b and [START_REF] Eringen | Elastodynamics[END_REF]. As shown in Fig. 3c and3d, for high values of l the displacement is confined near the surface, particularly for the fundamental mode with n = 1 (Fig. 3c). When the order n of the mode increases, e.g. in Fig. 3d with n = 5, the inner displacement increases and oscillations can be observed along the radius.

A simple post-processing step enables to represent the modal displacement on a spherical surface (some properties necessary to compute the values of S m l (θ, φ) are given in Appendix A.2). Figure 4 of a surface-free sphere made of steel.

Solid and dashed blacked lines: results of Eringen and S ¸uhubi [START_REF] Eringen | Elastodynamics[END_REF] for spheroidal and torsional modes. Blue triangles: numerical results for spheroidal modes. Red crosses: numerical results for torsional modes.

harmonics [START_REF] Kausel | Fundamental solutions in elastodynamics: a compendium[END_REF][START_REF] Arfken | Mathematical methods for physicists[END_REF], modulated by the radial behaviour of the mode. For the angular components u θ and u φ (not shown here), similar patterns can be observed (some of them then involve the θ-derivative of the patterns of spherical harmonics). It is noteworthy that for high values of l (i.e. with a displacement confined at the surface), the sectoral modes appear to be analogue to the so-called whispering-gallery modes, which have found many applications in optics [START_REF] Knight | Mapping whispering-gallery modes in microspheres with a near-field probe[END_REF][START_REF] Oraevsky | Whispering-gallery waves[END_REF][START_REF] Foreman | Whispering gallery mode sensors[END_REF].

Surface Acoustic Waves

In this section, the numerical model is used to reconstruct the collimation of the Rayleigh surface wave, and to interpret this phenomenon in terms of the eigenvibrations of the sphere. As an example of a multilayered sphere, the effect of a viscoelastic coating is finally investigated.

Description of the collimating wave test case

In this test case, an isotropic and homogeneous sphere made of viscoelastic steel is considered. The material properties are given in Table 1. The radius of the sphere is a = 25 mm. A normal force F (θ, φ, t)e r is applied at the surface of the sphere, with:

F (θ, φ, t) = f (θ, φ)g(t) . ( 49 
)
Only spheroidal modes are excited, because the excitation is limited to the radial direction.

The transient part of the force g(t) is a sinus of centre frequency f c = 1 MHz modulated over n = 5 cycles by a Hanning window. It is given explicitely by:

g(t) =            1 2 sin(2πf c t) 1 + cos 2πf c n t -π if 0 ≤ t ≤ n f c , 0 if t > n f c . ( 50 
)
f (θ, φ) is distributed along a thick line. The line source is modelled by the product of two Gaussian functions as:

f (θ, φ) = e - (θ-θc) 2 2θ 2 σ e - (φ-φc) 2 2φ 2 σ . ( 51 
)
It is centered at the equator (i.e. at θ c = π/2) and at φ c = 0. The standard deviations θ σ and φ σ control the width of the Gaussian along the polar and the azimuthal coordinates respectively. One sets φ σ = 2π/235 (≈ 1.5 • ) to obtain a thick line perpendicular to the equator.

According to Clorennec and Royer [START_REF] Clorennec | Investigation of surface acoustic wave propagation on a sphere using laser ultrasonics[END_REF], it is possible to choose the polar aperture of the source (51) to obtain a collimating Rayleigh wave. In that case, the propagation of the wave is diffraction-free. The Rayleigh wave propagates with a quasi-constant polar width in the direction perpendicular to the source. The collimation angle of the source is given in Ref. [START_REF] Clorennec | Investigation of surface acoustic wave propagation on a sphere using laser ultrasonics[END_REF] by the formula:

θ COL = πc R 4af c , ( 52 
)
where c R ≈ 0.9194c S is the Rayleigh wave velocity [START_REF] Eringen | Elastodynamics[END_REF]. Here, c R ≈ 2919.8 m s -1 .

It yields θ COL ≈ 0.3029 (≈ 17.3 • ). Taking the Gaussian width as 1/e 2 , one sets θ σ = 0.1514 in Eq. ( 51). For comparison, two other cases are also considered: a longer line source (θ σ = 0.2668) and a shorter line source (θ σ = 0.0667). The waves emitted by these three different sources are computed from the modal expansion given in Sec. 2.5.

The source term (see Eq. ( 21)) is obtained from the coefficients tm l .

The latter are computed with a numerical SHT analysis (see Eqs.( 44)-( 45)) applied to Eq. ( 51) with l from 0 to 150. The GLQ is computed with L = 151

Gauss points and weights (determined with the function legpts of the Chebfun package [START_REF] Hale | Chebfun Guide[END_REF]). The number of FFT points along the azimuthal wavenumber is set to 512. It has been checked that the L2-error over the whole spherical surface between the initial source (given by Eq. ( 51)) and the synthetized one (inverse SHT of tm l , applying Eq. ( 46)) is less than 1%.

The length of the one-dimensional finite elements is ∆r = 0.003a, which yields 2 010 dofs. The forced response is obtained with a superposition of N = 80 eigenfrequencies. The solution is computed between 0 and 10 MHz for 8 192 frequencies. Line source: θ σ = 0.1514. tion of the polar angle θ, at φ = 0 (at the source position) and at φ = π/2 (after a trip of a quarter of circumference), for the three different sources. In each case, the amplitude is lower at φ = π/2 (red curve) than at the source position (blue dashed curve) because of viscoelastic losses (and because the source splits into waves travelling in opposite directions).

Results

Collimating, diverging and focusing waves

For a source width θ σ = 0.1514, the variation of the wavefront width is weak and equal to 6% (see Fig. 6a). A collimating wave is then obtained, as predicted by Eq. (52).

Conversely, the wavefront width strongly decreases when the source is larger (θ σ = 0.2668) -see Fig. 6b. As shown in Fig. 6c, when the source is shorter (θ σ = 0.0667) the wavefront width increases. The propagation is not diffraction-free in these cases. Note that the diffraction reaches its maximum at φ = π/2 because it is located right in between the source and its opposite pole. The wave in Fig. 6b is called focusing wave because the wavefront focuses towards φ = π/2 and then diverges towards the pole opposite to the source [START_REF] Ishikawa | Surface acoustic waves on a sphere with divergent, focusing, and collimating beam shapes excited by an interdigital transducer[END_REF]. The so-called diverging wave (Fig. 6c 

Modal analysis

As described in Sec. 3.2, the displacement of the fundamental spheroidal mode (n = 1) is generally confined near the surface. This mode is usually called the Rayleigh mode [START_REF] Clorennec | Investigation of surface acoustic wave propagation on a sphere using laser ultrasonics[END_REF], because its velocity approaches asymptotically the Rayleigh wave velocity in a half-space (see Fig. 7). Retaining only the Rayleigh mode to compute the forced response yields the red curve in Fig. 5, which correctly approximates the main wave packets. Higher-order modes (n > 1) enrich the signal with the contribution of other waves which can be identified as body waves travelling inside the sphere [START_REF] Eringen | Elastodynamics[END_REF]. Interestingly the modal contributions can be further decomposed as a function of polar and azimuthal wavenumbers l and m. -c show that the contribution of tesseral modes is also significant for higher polar wavenumbers l (l > 30), as opposed to the collimating case. In that case, the FRF exhibits a single resonance peak which corresponds to the Rayleigh mode for various values of m (see Fig. 12 for the diverging case at l = 52).

Therefore, the focusing and diverging waves indeed involve the contribution of Rayleigh tesseral modes (m l), in addition to sectoral modes. Note that in the diverging case (Fig. 8c and Fig. 9c), modes with a small polar wavenumber are more excited than in the two other cases. This is an expected result because, as already explained for the collimating source, these loworder modes represent the contribution of body waves, diffracted throughout the sphere.

As a side remark, the similarities between Figs. 8 and 9 tend to show that the type of wave (i.e. collimating, focusing or diverging) generated by a source can be qualitatively predicted solely from the a SHT analysis of the force (Fig. 8).

Effect of a viscoelastic coating

In this last test case, a 1-mm epoxy coating is added at the surface of the sphere (materials properties are given in Table 1). The generation of a collimating wave at the interface between the sphere and the coating is investigated.

The eigenfrequencies of the spheroidal modes of the coated sphere are displayed in Fig. 13 for n ≤ 5 and the group velocity is plotted in Fig. 14.

For the sake of comparison, the curves corresponding to the Rayleigh mode without coating are represented with red crosses. The behaviour of the modes significantly changes with the coating. It can be observed that the modal density increases and that the modes are much more dispersive. In particular, the Rayleigh mode of the sphere is not recovered. However, for some values Bullets: modes with a 1-mm coating of epoxy (in blue, the quasi-Rayleigh mode). of l the eigenfrequencies of the coated sphere almost coincide with those of the Rayleigh mode of the surface-free sphere (see the circled zone in Fig. 13).

Group velocities can then be locally close to that of the Rayleigh wave. In Fig. 14, the group velocity of the mode identified with blue points is almost non dispersive for 50 < l < 100. Its value (2620 m s -1 ) is ten percent lower than the Rayleigh wave velocity of the sphere. The modal attenuations (not shown here for conciseness) are also almost equal in this region. For simplicity, this mode will be called quasi-Rayleigh mode in the following.

Since the collimating wave is a superposition of Rayleigh modes (see Sec. 4.2.2), the source is modified to select the quasi-Rayleigh mode when it is similar to the Rayleigh mode without coating (i.e. for 50 < l < 100).

The frequency bandwidth is reduced and centred on a higher frequency (the transient source g(t) is a sinus of centre frequency f c = 1.2 MHz modulated over 10 cycles). The spatial profile f (θ, φ) of the source is modified according to Eq. ( 52). The source is applied in the normal direction and at the interface between the sphere and the coating.

The forced response u r (t) at the interface and for θ = π/2, φ = π/2 is shown in Fig. 15. As in the surface-free sphere (in Fig. 5), several major peaks are observed. The time-of-flight between the peaks is equal to 30.31 µs. It yields a velocity of 2591 m s -1 , which is quite close to the group velocity of the quasi-Rayleigh mode. Actually, this mode prevails in the FRF (not shown here) which confirms the modal selectivity of the chosen source. Figure 16 represents the normal displacement u r (θ) at φ = 0 (blue dashed line) and φ = π/2 (red solid line). The amplitude of the wavefront varies, but its width is nearly constant, which means that a collimating wave can be generated at These three scalar relationships yields the orthogonality of vector spherical harmonics, expressed by Eq. ( 12), and are also useful to evaluate some components of the stiffness and mass matrices.

Other relationships are necessary to evaluate the integral of δ T σ in Eq. ( 1). These relations are [START_REF] Martinec | Spectral-finite element approach to three-dimensional viscoelastic relaxation in a spherical earth[END_REF]:

π 0 2π 0 ∂ 2 Y p * k ∂θ 2 -cot θ ∂Y p * k ∂θ - 1 sin 2 θ ∂ 2 Y p * k ∂φ 2 ∂ 2 Y m l ∂θ 2 -cot θ ∂Y m l ∂θ - 1 sin 2 θ ∂ 2 Y m l ∂φ 2

+4

∂ ∂θ dφ sin θdθ = 0.

(A.5)

The above results, which are given in a scalar form in this paper for the sake of simplicity, must actually be derived from the orthogonality properties of tensor spherical harmonics. This derivation is more mathematically involved than for vector spherical harmonics [START_REF] James | New tensor spherical harmonics, for application to the partial differential equations of mathematical physics[END_REF]. These tensorial properties can be found under a compact dyadic form in the work of Martinec [START_REF] Martinec | Spectral-finite element approach to three-dimensional viscoelastic relaxation in a spherical earth[END_REF].

be explicitely written: Hence, there is 25 matrices to compute using Eqs. ( 2), ( 4), [START_REF] Williams | Axially focused (glory) scattering due to surface waves generated on spheres: Model and experimental confirmation using tungsten carbide spheres[END_REF]. In the specific case of the component K 22 , it yields on one finite element: where k = k(k + 1). This term involves orthogonality relationships (A.1) and (A.4). Finally, the two terms factored by C 23 can be replaced using the Legendre equation ( 6) and further simplified using the orthogonality relationship (A.1). This yields: 

δ T σ =
K 22 =
K 22 =
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 1 Figure 1: Spherical coordinate system. r: radial coordinate; 0 ≤ θ ≤ π: polar or colatitude angle; 0 ≤ φ ≤ 2π: azimuthal angle.
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 2 Figure 2: Non-dimensional eigenfrequencies ω (n) l

Figure 3 :

 3 Figure 3: Radial modeshapes (arbitrary unit) ûm l (r) (solid blue line), vm l (r) (dashed red line) and ŵm l (r) (dotted black line) of (a) spheroidal mode, l = 0, n = 1 (ω (1) 0 = 4.44); (b) spheroidal mode, l = 1, n = 2 (ω

1 = 3 .

 13 412); (c) spheroidal mode, l = 60, n = 1 (ω (1) 60 = 57.13); (d) spheroidal mode, l = 60, n = 5 (ω (5) 60 = 86.03); (e) torsional mode, l = 60, n = 1 (ω (1) 60 = 63.44).

Figure 4 :

 4 Figure 4: Normal modal displacement (arbitrary unit) u r (r = a, θ, φ) of the fundamental spheroidal modes l = 30, n = 1 (ω (1) 30 = 29.46) (a) for m = 0; (b) for m = 10; (c) for m = l.

Figure 5 :

 5 Figure 5: Transient collimating signal u r (t)/a at the surface of a viscoelastic sphere (r = a) at point θ = π/2, φ = π/2. Blue curve: modal superposition using N = 80 modes. Red dashed curve: modal superposition using the fundamental Rayleigh mode only (N = 1).

Figure 5

 5 Figure 5 shows the transient displacement at the point θ = π/2 (on the equator) and φ = π/2, for the source with θ σ = 0.1514. Several major peaks can be observed. These peaks correspond to the arrivals of the Rayleigh wave, either propagating counter-clockwise (e.g. the first and the third peaks), either propagating clockwise (e.g. the second and the fourth peaks). On this figure, the time-of-flight between the peaks is estimated to 27.01 µs, which agrees well with the theoretical arrival of the Rayleigh wave to do a half-trip (26.89 µs).

Figure 6 Figure 6 :

 66 Figure 6 represents the normal displacement u r at the surface as a func-

Figure 7 :

 7 Figure 7: Phase velocity of spheroidal modes for a viscoelastic steel sphere of radius a = 25 mm. Red crosses: Rayleigh fundamental mode (n = 1).

Figure 8 :

 8 Figure 8: Coefficients 10 log 10 (| tm l /max tm l |) (dB) of the force applied to obtain (a) a collimating wave (θ σ = 0.1514); (b) a focusing wave (θ σ = 0.2668); (c) a diverging wave (θ σ = 0.0667). These coefficients are computed from the numerical SHT analysis based on Eq. (45) with l from 0 to 150, 151 GLQ and 512 FFT points.

Figure 9 :

 9 Figure 9: Forced response 10 log 10 (|û m l /max ûm l |) (dB) at the surface of a viscoelastic sphere (r = a) and at the centre frequency (ω = 49.46) for (a) a collimating wave (θ σ = 0.1514); (b) a focusing wave (θ σ = 0.2668); (c) a diverging wave (θ σ = 0.0667).

Figure 8 9 .Figure 10 :

 8910 Figure 10: FRF |û m l (ω)|/a at the surface of a viscoelastic sphere (r = a) for l = 9 for the collimating wave (θ σ = 0.1514).

Fig. 10 ,

 10 Fig. 10, the FRF |û m l (ω)| for l = 9 exhibit several peaks which correspond to resonances of various spheroidal modes (torsional modes are not excited). It can be observed that the leading contributions come from the resonances of the 14th and the 17th spheroidal modes. The resonance of the Rayleigh mode is hence negligible. Therefore in Fig. 9a, the modes with a small polar wavenumber l can be interpreted as the contribution of body waves. It can be inferred that the collimating Rayleigh wave actually corresponds to a superposition of Rayleigh sectoral modes of high wavenumber m ≈ l, i.e. modes confined near the surface and near the equator of the sphere. This is confirmed by Fig. 11, showing the FRF |û m l (ω)| for l = 52. For the diverging and focusing waves, Figs. 8b-c and Figs. 9b-c show

Figure 11 :

 11 Figure 11: FRF |û m l (ω)|/a at the surface of a viscoelastic sphere (r = a) for l = 52 for the collimating wave (θ σ = 0.1514).

Figure 12 :

 12 Figure 12: FRF |û m l (ω)|/a at the surface of a viscoelastic sphere (r = a) for l = 52 for the diverging wave (θ σ = 0.0667).

Figure 13 :

 13 Figure 13: Non-dimensional eigenfrequencies ω (n) l of the spheroidal modes of a viscoelastic steel sphere of radius a = 25 mm. Red crosses: Rayleigh mode (n = 1) without coating.

Figure 14 :

 14 Figure 14: Group velocity of the spheroidal modes of a viscoelastic steel sphere of radius a = 25 mm. Red crosses: Rayleigh mode (n = 1) without coating. Bullets: modes with a 1-mm coating of epoxy (in blue, the quasi-Rayleigh mode).

Figure 15 :Figure 16 :

 1516 Figure 15: Transient collimating signal u r (t)/a at the surface (r = a) of a viscoelastic sphere coated with epoxy at point θ = π/2, φ = π/2. Source parameter: θ σ = 0.1514.

  θdθ = (l -1)l(l + 2)δ kl δ mp ,

  l + L 1 S m l + cot θL 2 S m l .

  dφ sin θdθ .(B.2)It can be immediatly noticed that the terms factored by C 55 involves the orthogonality relationship (A.2). Noticing thatcot θ using the Legendre equation (6), the term factored by C 44 can be rewritten as:

Table 1 :

 1 Material properties

	-1 )

  δ ûeT l 2 C 23 + 2l(l -1)C 44 ûmeUsing the finite element interpolation (14), one finally recasts the second diagonal component of the elementary matrices of Eqs. (17)-(19).

	l dr+	δ ûeT -r	∂δ ûeT ∂r	lC 55	ûe -r	∂ ûe ∂r	dr.
					(B.4)		
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quency range. This allows generating a collimating wave at the interface of the sphere and the coating.

Further works are currently in progress to model and study the influence of an infinite embedding medium on the free vibrations and surface wave propagation in spherical structures.

Appendix A.2. Derivative with respect to the polar angle

To evaluate the value of the matrix S m l at any angular coordinates, it is necessary to compute the derivative ∂Y m l ∂θ . Convenient formulas are given by Bosch [START_REF] Bosch | On the computation of derivatives of Legendre functions[END_REF] to avoid singular values at poles. These formulas have been slightly modified to be consistent with the normalization chosen in this paper, based on the guidelines of Ref. [40, Appendix A], denoting

The polar derivative of a spherical harmonic can be obtained using the following recurrence formula (for m ≥ 0):

For m < 0, the derivative can be readily obtained using the equality

The cases of m = 0 or m = l are specific and the derivatives are given by:

At poles (θ = 0 or θ = π), for m = 0 the spherical harmonics do not depend on φ. From Eq. ( 5) and using the properties P 0 l (1) = 1 and P 0 l (-1) = (-1) l , one gets [START_REF] Arfken | Mathematical methods for physicists[END_REF]:

For m > 0, the azimuthal coordinate is undetermined and the spherical harmonics must hence vanish at poles [START_REF] Arfken | Mathematical methods for physicists[END_REF].

Similarly, the derivative must vanish at poles for m 0. For m = 0, using the property P 1 l (±1) = 0 into Eq. (A.8) enables to show that:

Appendix B. Example: calculation of the component K 22 of the stiffness matrix

In the following, let us detail for the sake of clarity the computation of the second diagonal component of the stiffness matrix K, denoted K 22 . The latter is derived from the integral of δ T σ in Eq. ( 1), where the integrand can